xref: /titanic_52/usr/src/lib/libc_db/common/thread_db.c (revision d92a527c473246e5c750ae6c33ecd2f242a5bf1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <stddef.h>
32 #include <unistd.h>
33 #include <thr_uberdata.h>
34 #include <thread_db.h>
35 #include <libc_int.h>
36 
37 /*
38  * Private structures.
39  */
40 
41 typedef union {
42 	mutex_t		lock;
43 	rwlock_t	rwlock;
44 	sema_t		semaphore;
45 	cond_t		condition;
46 } td_so_un_t;
47 
48 struct td_thragent {
49 	rwlock_t	rwlock;
50 	struct ps_prochandle *ph_p;
51 	int		initialized;
52 	int		sync_tracking;
53 	int		model;
54 	int		primary_map;
55 	psaddr_t	bootstrap_addr;
56 	psaddr_t	uberdata_addr;
57 	psaddr_t	tdb_eventmask_addr;
58 	psaddr_t	tdb_register_sync_addr;
59 	psaddr_t	tdb_events[TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1];
60 	psaddr_t	hash_table_addr;
61 	int		hash_size;
62 	lwpid_t		single_lwpid;
63 	psaddr_t	single_ulwp_addr;
64 };
65 
66 /*
67  * This is the name of the variable in libc that contains
68  * the uberdata address that we will need.
69  */
70 #define	TD_BOOTSTRAP_NAME	"_tdb_bootstrap"
71 /*
72  * This is the actual name of uberdata, used in the event
73  * that tdb_bootstrap has not yet been initialized.
74  */
75 #define	TD_UBERDATA_NAME	"_uberdata"
76 /*
77  * The library name should end with ".so.1", but older versions of
78  * dbx expect the unadorned name and malfunction if ".1" is specified.
79  * Unfortunately, if ".1" is not specified, mdb malfunctions when it
80  * is applied to another instance of itself (due to the presence of
81  * /usr/lib/mdb/proc/libc.so).  So we try it both ways.
82  */
83 #define	TD_LIBRARY_NAME		"libc.so"
84 #define	TD_LIBRARY_NAME_1	"libc.so.1"
85 
86 td_err_e __td_thr_get_info(td_thrhandle_t *th_p, td_thrinfo_t *ti_p);
87 
88 td_err_e __td_ta_thr_iter(td_thragent_t *ta_p, td_thr_iter_f *cb,
89 	void *cbdata_p, td_thr_state_e state, int ti_pri,
90 	sigset_t *ti_sigmask_p, unsigned ti_user_flags);
91 
92 /*
93  * Initialize threads debugging interface.
94  */
95 #pragma weak td_init = __td_init
96 td_err_e
97 __td_init()
98 {
99 	return (TD_OK);
100 }
101 
102 /*
103  * This function does nothing, and never did.
104  * But the symbol is in the ABI, so we can't delete it.
105  */
106 #pragma weak td_log = __td_log
107 void
108 __td_log()
109 {
110 }
111 
112 /*
113  * Short-cut to read just the hash table size from the process,
114  * to avoid repeatedly reading the full uberdata structure when
115  * dealing with a single-threaded process.
116  */
117 static uint_t
118 td_read_hash_size(td_thragent_t *ta_p)
119 {
120 	psaddr_t addr;
121 	uint_t hash_size;
122 
123 	switch (ta_p->initialized) {
124 	default:	/* uninitialized */
125 		return (0);
126 	case 1:		/* partially initialized */
127 		break;
128 	case 2:		/* fully initialized */
129 		return (ta_p->hash_size);
130 	}
131 
132 	if (ta_p->model == PR_MODEL_NATIVE) {
133 		addr = ta_p->uberdata_addr + offsetof(uberdata_t, hash_size);
134 	} else {
135 #if defined(_LP64) && defined(_SYSCALL32)
136 		addr = ta_p->uberdata_addr + offsetof(uberdata32_t, hash_size);
137 #else
138 		addr = 0;
139 #endif
140 	}
141 	if (ps_pdread(ta_p->ph_p, addr, &hash_size, sizeof (hash_size))
142 	    != PS_OK)
143 		return (0);
144 	return (hash_size);
145 }
146 
147 static td_err_e
148 td_read_uberdata(td_thragent_t *ta_p)
149 {
150 	struct ps_prochandle *ph_p = ta_p->ph_p;
151 
152 	if (ta_p->model == PR_MODEL_NATIVE) {
153 		uberdata_t uberdata;
154 
155 		if (ps_pdread(ph_p, ta_p->uberdata_addr,
156 		    &uberdata, sizeof (uberdata)) != PS_OK)
157 			return (TD_DBERR);
158 		ta_p->primary_map = uberdata.primary_map;
159 		ta_p->tdb_eventmask_addr = ta_p->uberdata_addr +
160 		    offsetof(uberdata_t, tdb.tdb_ev_global_mask);
161 		ta_p->tdb_register_sync_addr = ta_p->uberdata_addr +
162 		    offsetof(uberdata_t, uberflags.uf_tdb_register_sync);
163 		ta_p->hash_table_addr = (psaddr_t)uberdata.thr_hash_table;
164 		ta_p->hash_size = uberdata.hash_size;
165 		if (ps_pdread(ph_p, (psaddr_t)uberdata.tdb.tdb_events,
166 		    ta_p->tdb_events, sizeof (ta_p->tdb_events)) != PS_OK)
167 			return (TD_DBERR);
168 
169 	} else {
170 #if defined(_LP64) && defined(_SYSCALL32)
171 		uberdata32_t uberdata;
172 		caddr32_t tdb_events[TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1];
173 		int i;
174 
175 		if (ps_pdread(ph_p, ta_p->uberdata_addr,
176 		    &uberdata, sizeof (uberdata)) != PS_OK)
177 			return (TD_DBERR);
178 		ta_p->primary_map = uberdata.primary_map;
179 		ta_p->tdb_eventmask_addr = ta_p->uberdata_addr +
180 		    offsetof(uberdata32_t, tdb.tdb_ev_global_mask);
181 		ta_p->tdb_register_sync_addr = ta_p->uberdata_addr +
182 		    offsetof(uberdata32_t, uberflags.uf_tdb_register_sync);
183 		ta_p->hash_table_addr = (psaddr_t)uberdata.thr_hash_table;
184 		ta_p->hash_size = uberdata.hash_size;
185 		if (ps_pdread(ph_p, (psaddr_t)uberdata.tdb.tdb_events,
186 		    tdb_events, sizeof (tdb_events)) != PS_OK)
187 			return (TD_DBERR);
188 		for (i = 0; i < TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1; i++)
189 			ta_p->tdb_events[i] = tdb_events[i];
190 #else
191 		return (TD_DBERR);
192 #endif
193 	}
194 	if (ta_p->hash_size != 1) {	/* multi-threaded */
195 		ta_p->initialized = 2;
196 		ta_p->single_lwpid = 0;
197 		ta_p->single_ulwp_addr = NULL;
198 	} else {			/* single-threaded */
199 		ta_p->initialized = 1;
200 		/*
201 		 * Get the address and lwpid of the single thread/LWP.
202 		 * It may not be ulwp_one if this is a child of fork1().
203 		 */
204 		if (ta_p->model == PR_MODEL_NATIVE) {
205 			thr_hash_table_t head;
206 			lwpid_t lwpid = 0;
207 
208 			if (ps_pdread(ph_p, ta_p->hash_table_addr,
209 			    &head, sizeof (head)) != PS_OK)
210 				return (TD_DBERR);
211 			if ((psaddr_t)head.hash_bucket == NULL)
212 				ta_p->initialized = 0;
213 			else if (ps_pdread(ph_p, (psaddr_t)head.hash_bucket +
214 			    offsetof(ulwp_t, ul_lwpid),
215 			    &lwpid, sizeof (lwpid)) != PS_OK)
216 				return (TD_DBERR);
217 			ta_p->single_lwpid = lwpid;
218 			ta_p->single_ulwp_addr = (psaddr_t)head.hash_bucket;
219 		} else {
220 #if defined(_LP64) && defined(_SYSCALL32)
221 			thr_hash_table32_t head;
222 			lwpid_t lwpid = 0;
223 
224 			if (ps_pdread(ph_p, ta_p->hash_table_addr,
225 			    &head, sizeof (head)) != PS_OK)
226 				return (TD_DBERR);
227 			if ((psaddr_t)head.hash_bucket == NULL)
228 				ta_p->initialized = 0;
229 			else if (ps_pdread(ph_p, (psaddr_t)head.hash_bucket +
230 			    offsetof(ulwp32_t, ul_lwpid),
231 			    &lwpid, sizeof (lwpid)) != PS_OK)
232 				return (TD_DBERR);
233 			ta_p->single_lwpid = lwpid;
234 			ta_p->single_ulwp_addr = (psaddr_t)head.hash_bucket;
235 #else
236 			return (TD_DBERR);
237 #endif
238 		}
239 	}
240 	if (!ta_p->primary_map)
241 		ta_p->initialized = 0;
242 	return (TD_OK);
243 }
244 
245 static td_err_e
246 td_read_bootstrap_data(td_thragent_t *ta_p)
247 {
248 	struct ps_prochandle *ph_p = ta_p->ph_p;
249 	psaddr_t bootstrap_addr;
250 	psaddr_t uberdata_addr;
251 	ps_err_e db_return;
252 	td_err_e return_val;
253 	int do_1;
254 
255 	switch (ta_p->initialized) {
256 	case 2:			/* fully initialized */
257 		return (TD_OK);
258 	case 1:			/* partially initialized */
259 		if (td_read_hash_size(ta_p) == 1)
260 			return (TD_OK);
261 		return (td_read_uberdata(ta_p));
262 	}
263 
264 	/*
265 	 * Uninitialized -- do the startup work.
266 	 * We set ta_p->initialized to -1 to cut off recursive calls
267 	 * into libc_db by code in the provider of ps_pglobal_lookup().
268 	 */
269 	do_1 = 0;
270 	ta_p->initialized = -1;
271 	db_return = ps_pglobal_lookup(ph_p, TD_LIBRARY_NAME,
272 	    TD_BOOTSTRAP_NAME, &bootstrap_addr);
273 	if (db_return == PS_NOSYM) {
274 		do_1 = 1;
275 		db_return = ps_pglobal_lookup(ph_p, TD_LIBRARY_NAME_1,
276 		    TD_BOOTSTRAP_NAME, &bootstrap_addr);
277 	}
278 	if (db_return == PS_NOSYM)	/* libc is not linked yet */
279 		return (TD_NOLIBTHREAD);
280 	if (db_return != PS_OK)
281 		return (TD_ERR);
282 	db_return = ps_pglobal_lookup(ph_p,
283 	    do_1? TD_LIBRARY_NAME_1 : TD_LIBRARY_NAME,
284 	    TD_UBERDATA_NAME, &uberdata_addr);
285 	if (db_return == PS_NOSYM)	/* libc is not linked yet */
286 		return (TD_NOLIBTHREAD);
287 	if (db_return != PS_OK)
288 		return (TD_ERR);
289 
290 	/*
291 	 * Read the uberdata address into the thread agent structure.
292 	 */
293 	if (ta_p->model == PR_MODEL_NATIVE) {
294 		psaddr_t psaddr;
295 		if (ps_pdread(ph_p, bootstrap_addr,
296 		    &psaddr, sizeof (psaddr)) != PS_OK)
297 			return (TD_DBERR);
298 		if ((ta_p->bootstrap_addr = psaddr) == NULL)
299 			psaddr = uberdata_addr;
300 		else if (ps_pdread(ph_p, psaddr,
301 		    &psaddr, sizeof (psaddr)) != PS_OK)
302 			return (TD_DBERR);
303 		ta_p->uberdata_addr = psaddr;
304 	} else {
305 #if defined(_LP64) && defined(_SYSCALL32)
306 		caddr32_t psaddr;
307 		if (ps_pdread(ph_p, bootstrap_addr,
308 		    &psaddr, sizeof (psaddr)) != PS_OK)
309 			return (TD_DBERR);
310 		if ((ta_p->bootstrap_addr = (psaddr_t)psaddr) == NULL)
311 			psaddr = (caddr32_t)uberdata_addr;
312 		else if (ps_pdread(ph_p, (psaddr_t)psaddr,
313 		    &psaddr, sizeof (psaddr)) != PS_OK)
314 			return (TD_DBERR);
315 		ta_p->uberdata_addr = (psaddr_t)psaddr;
316 #else
317 		return (TD_DBERR);
318 #endif	/* _SYSCALL32 */
319 	}
320 
321 	if ((return_val = td_read_uberdata(ta_p)) != TD_OK)
322 		return (return_val);
323 	if (ta_p->bootstrap_addr == NULL)
324 		ta_p->initialized = 0;
325 	return (TD_OK);
326 }
327 
328 #pragma weak ps_kill
329 #pragma weak ps_lrolltoaddr
330 
331 /*
332  * Allocate a new agent process handle ("thread agent").
333  */
334 #pragma weak td_ta_new = __td_ta_new
335 td_err_e
336 __td_ta_new(struct ps_prochandle *ph_p, td_thragent_t **ta_pp)
337 {
338 	td_thragent_t *ta_p;
339 	int model;
340 	td_err_e return_val = TD_OK;
341 
342 	if (ph_p == NULL)
343 		return (TD_BADPH);
344 	if (ta_pp == NULL)
345 		return (TD_ERR);
346 	*ta_pp = NULL;
347 	if (ps_pstop(ph_p) != PS_OK)
348 		return (TD_DBERR);
349 	/*
350 	 * ps_pdmodel might not be defined if this is an older client.
351 	 * Make it a weak symbol and test if it exists before calling.
352 	 */
353 #pragma weak ps_pdmodel
354 	if (ps_pdmodel == NULL) {
355 		model = PR_MODEL_NATIVE;
356 	} else if (ps_pdmodel(ph_p, &model) != PS_OK) {
357 		(void) ps_pcontinue(ph_p);
358 		return (TD_ERR);
359 	}
360 	if ((ta_p = malloc(sizeof (*ta_p))) == NULL) {
361 		(void) ps_pcontinue(ph_p);
362 		return (TD_MALLOC);
363 	}
364 
365 	/*
366 	 * Initialize the agent process handle.
367 	 * Pick up the symbol value we need from the target process.
368 	 */
369 	(void) memset(ta_p, 0, sizeof (*ta_p));
370 	ta_p->ph_p = ph_p;
371 	(void) rwlock_init(&ta_p->rwlock, USYNC_THREAD, NULL);
372 	ta_p->model = model;
373 	return_val = td_read_bootstrap_data(ta_p);
374 
375 	/*
376 	 * Because the old libthread_db enabled lock tracking by default,
377 	 * we must also do it.  However, we do it only if the application
378 	 * provides the ps_kill() and ps_lrolltoaddr() interfaces.
379 	 * (dbx provides the ps_kill() and ps_lrolltoaddr() interfaces.)
380 	 */
381 	if (return_val == TD_OK && ps_kill != NULL && ps_lrolltoaddr != NULL) {
382 		register_sync_t oldenable;
383 		register_sync_t enable = REGISTER_SYNC_ENABLE;
384 		psaddr_t psaddr = ta_p->tdb_register_sync_addr;
385 
386 		if (ps_pdread(ph_p, psaddr,
387 		    &oldenable, sizeof (oldenable)) != PS_OK)
388 			return_val = TD_DBERR;
389 		else if (oldenable != REGISTER_SYNC_OFF ||
390 		    ps_pdwrite(ph_p, psaddr,
391 		    &enable, sizeof (enable)) != PS_OK) {
392 			/*
393 			 * Lock tracking was already enabled or we
394 			 * failed to enable it, probably because we
395 			 * are examining a core file.  In either case
396 			 * set the sync_tracking flag non-zero to
397 			 * indicate that we should not attempt to
398 			 * disable lock tracking when we delete the
399 			 * agent process handle in td_ta_delete().
400 			 */
401 			ta_p->sync_tracking = 1;
402 		}
403 	}
404 
405 	if (return_val == TD_OK)
406 		*ta_pp = ta_p;
407 	else
408 		free(ta_p);
409 
410 	(void) ps_pcontinue(ph_p);
411 	return (return_val);
412 }
413 
414 /*
415  * Utility function to grab the readers lock and return the prochandle,
416  * given an agent process handle.  Performs standard error checking.
417  * Returns non-NULL with the lock held, or NULL with the lock not held.
418  */
419 static struct ps_prochandle *
420 ph_lock_ta(td_thragent_t *ta_p, td_err_e *err)
421 {
422 	struct ps_prochandle *ph_p = NULL;
423 	td_err_e error;
424 
425 	if (ta_p == NULL || ta_p->initialized == -1) {
426 		*err = TD_BADTA;
427 	} else if (rw_rdlock(&ta_p->rwlock) != 0) {	/* can't happen? */
428 		*err = TD_BADTA;
429 	} else if ((ph_p = ta_p->ph_p) == NULL) {
430 		(void) rw_unlock(&ta_p->rwlock);
431 		*err = TD_BADPH;
432 	} else if (ta_p->initialized != 2 &&
433 	    (error = td_read_bootstrap_data(ta_p)) != TD_OK) {
434 		(void) rw_unlock(&ta_p->rwlock);
435 		ph_p = NULL;
436 		*err = error;
437 	} else {
438 		*err = TD_OK;
439 	}
440 
441 	return (ph_p);
442 }
443 
444 /*
445  * Utility function to grab the readers lock and return the prochandle,
446  * given an agent thread handle.  Performs standard error checking.
447  * Returns non-NULL with the lock held, or NULL with the lock not held.
448  */
449 static struct ps_prochandle *
450 ph_lock_th(const td_thrhandle_t *th_p, td_err_e *err)
451 {
452 	if (th_p == NULL || th_p->th_unique == NULL) {
453 		*err = TD_BADTH;
454 		return (NULL);
455 	}
456 	return (ph_lock_ta(th_p->th_ta_p, err));
457 }
458 
459 /*
460  * Utility function to grab the readers lock and return the prochandle,
461  * given a synchronization object handle.  Performs standard error checking.
462  * Returns non-NULL with the lock held, or NULL with the lock not held.
463  */
464 static struct ps_prochandle *
465 ph_lock_sh(const td_synchandle_t *sh_p, td_err_e *err)
466 {
467 	if (sh_p == NULL || sh_p->sh_unique == NULL) {
468 		*err = TD_BADSH;
469 		return (NULL);
470 	}
471 	return (ph_lock_ta(sh_p->sh_ta_p, err));
472 }
473 
474 /*
475  * Unlock the agent process handle obtained from ph_lock_*().
476  */
477 static void
478 ph_unlock(td_thragent_t *ta_p)
479 {
480 	(void) rw_unlock(&ta_p->rwlock);
481 }
482 
483 /*
484  * De-allocate an agent process handle,
485  * releasing all related resources.
486  *
487  * XXX -- This is hopelessly broken ---
488  * Storage for thread agent is not deallocated.  The prochandle
489  * in the thread agent is set to NULL so that future uses of
490  * the thread agent can be detected and an error value returned.
491  * All functions in the external user interface that make
492  * use of the thread agent are expected
493  * to check for a NULL prochandle in the thread agent.
494  * All such functions are also expected to obtain a
495  * reader lock on the thread agent while it is using it.
496  */
497 #pragma weak td_ta_delete = __td_ta_delete
498 td_err_e
499 __td_ta_delete(td_thragent_t *ta_p)
500 {
501 	struct ps_prochandle *ph_p;
502 
503 	/*
504 	 * This is the only place we grab the writer lock.
505 	 * We are going to NULL out the prochandle.
506 	 */
507 	if (ta_p == NULL || rw_wrlock(&ta_p->rwlock) != 0)
508 		return (TD_BADTA);
509 	if ((ph_p = ta_p->ph_p) == NULL) {
510 		(void) rw_unlock(&ta_p->rwlock);
511 		return (TD_BADPH);
512 	}
513 	/*
514 	 * If synch. tracking was disabled when td_ta_new() was called and
515 	 * if td_ta_sync_tracking_enable() was never called, then disable
516 	 * synch. tracking (it was enabled by default in td_ta_new()).
517 	 */
518 	if (ta_p->sync_tracking == 0 &&
519 	    ps_kill != NULL && ps_lrolltoaddr != NULL) {
520 		register_sync_t enable = REGISTER_SYNC_DISABLE;
521 
522 		(void) ps_pdwrite(ph_p, ta_p->tdb_register_sync_addr,
523 		    &enable, sizeof (enable));
524 	}
525 	ta_p->ph_p = NULL;
526 	(void) rw_unlock(&ta_p->rwlock);
527 	return (TD_OK);
528 }
529 
530 /*
531  * Map an agent process handle to a client prochandle.
532  * Currently unused by dbx.
533  */
534 #pragma weak td_ta_get_ph = __td_ta_get_ph
535 td_err_e
536 __td_ta_get_ph(td_thragent_t *ta_p, struct ps_prochandle **ph_pp)
537 {
538 	td_err_e return_val;
539 
540 	if (ph_pp != NULL)	/* protect stupid callers */
541 		*ph_pp = NULL;
542 	if (ph_pp == NULL)
543 		return (TD_ERR);
544 	if ((*ph_pp = ph_lock_ta(ta_p, &return_val)) == NULL)
545 		return (return_val);
546 	ph_unlock(ta_p);
547 	return (TD_OK);
548 }
549 
550 /*
551  * Set the process's suggested concurrency level.
552  * This is a no-op in a one-level model.
553  * Currently unused by dbx.
554  */
555 #pragma weak td_ta_setconcurrency = __td_ta_setconcurrency
556 /* ARGSUSED1 */
557 td_err_e
558 __td_ta_setconcurrency(const td_thragent_t *ta_p, int level)
559 {
560 	if (ta_p == NULL)
561 		return (TD_BADTA);
562 	if (ta_p->ph_p == NULL)
563 		return (TD_BADPH);
564 	return (TD_OK);
565 }
566 
567 /*
568  * Get the number of threads in the process.
569  */
570 #pragma weak td_ta_get_nthreads = __td_ta_get_nthreads
571 td_err_e
572 __td_ta_get_nthreads(td_thragent_t *ta_p, int *nthread_p)
573 {
574 	struct ps_prochandle *ph_p;
575 	td_err_e return_val;
576 	int nthreads;
577 	int nzombies;
578 	psaddr_t nthreads_addr;
579 	psaddr_t nzombies_addr;
580 
581 	if (ta_p->model == PR_MODEL_NATIVE) {
582 		nthreads_addr = ta_p->uberdata_addr +
583 		    offsetof(uberdata_t, nthreads);
584 		nzombies_addr = ta_p->uberdata_addr +
585 		    offsetof(uberdata_t, nzombies);
586 	} else {
587 #if defined(_LP64) && defined(_SYSCALL32)
588 		nthreads_addr = ta_p->uberdata_addr +
589 		    offsetof(uberdata32_t, nthreads);
590 		nzombies_addr = ta_p->uberdata_addr +
591 		    offsetof(uberdata32_t, nzombies);
592 #else
593 		nthreads_addr = 0;
594 		nzombies_addr = 0;
595 #endif	/* _SYSCALL32 */
596 	}
597 
598 	if (nthread_p == NULL)
599 		return (TD_ERR);
600 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
601 		return (return_val);
602 	if (ps_pdread(ph_p, nthreads_addr, &nthreads, sizeof (int)) != PS_OK)
603 		return_val = TD_DBERR;
604 	if (ps_pdread(ph_p, nzombies_addr, &nzombies, sizeof (int)) != PS_OK)
605 		return_val = TD_DBERR;
606 	ph_unlock(ta_p);
607 	if (return_val == TD_OK)
608 		*nthread_p = nthreads + nzombies;
609 	return (return_val);
610 }
611 
612 typedef struct {
613 	thread_t	tid;
614 	int		found;
615 	td_thrhandle_t	th;
616 } td_mapper_param_t;
617 
618 /*
619  * Check the value in data against the thread id.
620  * If it matches, return 1 to terminate iterations.
621  * This function is used by td_ta_map_id2thr() to map a tid to a thread handle.
622  */
623 static int
624 td_mapper_id2thr(td_thrhandle_t *th_p, td_mapper_param_t *data)
625 {
626 	td_thrinfo_t ti;
627 
628 	if (__td_thr_get_info(th_p, &ti) == TD_OK &&
629 	    data->tid == ti.ti_tid) {
630 		data->found = 1;
631 		data->th = *th_p;
632 		return (1);
633 	}
634 	return (0);
635 }
636 
637 /*
638  * Given a thread identifier, return the corresponding thread handle.
639  */
640 #pragma weak td_ta_map_id2thr = __td_ta_map_id2thr
641 td_err_e
642 __td_ta_map_id2thr(td_thragent_t *ta_p, thread_t tid,
643 	td_thrhandle_t *th_p)
644 {
645 	td_err_e		return_val;
646 	td_mapper_param_t	data;
647 
648 	if (th_p != NULL &&	/* optimize for a single thread */
649 	    ta_p != NULL &&
650 	    ta_p->initialized == 1 &&
651 	    (td_read_hash_size(ta_p) == 1 ||
652 	    td_read_uberdata(ta_p) == TD_OK) &&
653 	    ta_p->initialized == 1 &&
654 	    ta_p->single_lwpid == tid) {
655 		th_p->th_ta_p = ta_p;
656 		if ((th_p->th_unique = ta_p->single_ulwp_addr) == 0)
657 			return (TD_NOTHR);
658 		return (TD_OK);
659 	}
660 
661 	/*
662 	 * LOCKING EXCEPTION - Locking is not required here because
663 	 * the locking and checking will be done in __td_ta_thr_iter.
664 	 */
665 
666 	if (ta_p == NULL)
667 		return (TD_BADTA);
668 	if (th_p == NULL)
669 		return (TD_BADTH);
670 	if (tid == 0)
671 		return (TD_NOTHR);
672 
673 	data.tid = tid;
674 	data.found = 0;
675 	return_val = __td_ta_thr_iter(ta_p,
676 	    (td_thr_iter_f *)td_mapper_id2thr, (void *)&data,
677 	    TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY,
678 	    TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS);
679 	if (return_val == TD_OK) {
680 		if (data.found == 0)
681 			return_val = TD_NOTHR;
682 		else
683 			*th_p = data.th;
684 	}
685 
686 	return (return_val);
687 }
688 
689 /*
690  * Map the address of a synchronization object to a sync. object handle.
691  */
692 #pragma weak td_ta_map_addr2sync = __td_ta_map_addr2sync
693 td_err_e
694 __td_ta_map_addr2sync(td_thragent_t *ta_p, psaddr_t addr, td_synchandle_t *sh_p)
695 {
696 	struct ps_prochandle *ph_p;
697 	td_err_e return_val;
698 	uint16_t sync_magic;
699 
700 	if (sh_p == NULL)
701 		return (TD_BADSH);
702 	if (addr == NULL)
703 		return (TD_ERR);
704 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
705 		return (return_val);
706 	/*
707 	 * Check the magic number of the sync. object to make sure it's valid.
708 	 * The magic number is at the same offset for all sync. objects.
709 	 */
710 	if (ps_pdread(ph_p, (psaddr_t)&((mutex_t *)addr)->mutex_magic,
711 	    &sync_magic, sizeof (sync_magic)) != PS_OK) {
712 		ph_unlock(ta_p);
713 		return (TD_BADSH);
714 	}
715 	ph_unlock(ta_p);
716 	if (sync_magic != MUTEX_MAGIC && sync_magic != COND_MAGIC &&
717 	    sync_magic != SEMA_MAGIC && sync_magic != RWL_MAGIC)
718 		return (TD_BADSH);
719 	/*
720 	 * Just fill in the appropriate fields of the sync. handle.
721 	 */
722 	sh_p->sh_ta_p = (td_thragent_t *)ta_p;
723 	sh_p->sh_unique = addr;
724 	return (TD_OK);
725 }
726 
727 /*
728  * Iterate over the set of global TSD keys.
729  * The call back function is called with three arguments,
730  * a key, a pointer to the destructor function, and the cbdata pointer.
731  * Currently unused by dbx.
732  */
733 #pragma weak td_ta_tsd_iter = __td_ta_tsd_iter
734 td_err_e
735 __td_ta_tsd_iter(td_thragent_t *ta_p, td_key_iter_f *cb, void *cbdata_p)
736 {
737 	struct ps_prochandle *ph_p;
738 	td_err_e	return_val;
739 	int		key;
740 	int		numkeys;
741 	psaddr_t	dest_addr;
742 	psaddr_t	*destructors = NULL;
743 	PFrV		destructor;
744 
745 	if (cb == NULL)
746 		return (TD_ERR);
747 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
748 		return (return_val);
749 	if (ps_pstop(ph_p) != PS_OK) {
750 		ph_unlock(ta_p);
751 		return (TD_DBERR);
752 	}
753 
754 	if (ta_p->model == PR_MODEL_NATIVE) {
755 		tsd_metadata_t tsdm;
756 
757 		if (ps_pdread(ph_p,
758 		    ta_p->uberdata_addr + offsetof(uberdata_t, tsd_metadata),
759 		    &tsdm, sizeof (tsdm)) != PS_OK)
760 			return_val = TD_DBERR;
761 		else {
762 			numkeys = tsdm.tsdm_nused;
763 			dest_addr = (psaddr_t)tsdm.tsdm_destro;
764 			if (numkeys > 0)
765 				destructors =
766 				    malloc(numkeys * sizeof (psaddr_t));
767 		}
768 	} else {
769 #if defined(_LP64) && defined(_SYSCALL32)
770 		tsd_metadata32_t tsdm;
771 
772 		if (ps_pdread(ph_p,
773 		    ta_p->uberdata_addr + offsetof(uberdata32_t, tsd_metadata),
774 		    &tsdm, sizeof (tsdm)) != PS_OK)
775 			return_val = TD_DBERR;
776 		else {
777 			numkeys = tsdm.tsdm_nused;
778 			dest_addr = (psaddr_t)tsdm.tsdm_destro;
779 			if (numkeys > 0)
780 				destructors =
781 				    malloc(numkeys * sizeof (caddr32_t));
782 		}
783 #else
784 		return_val = TD_DBERR;
785 #endif	/* _SYSCALL32 */
786 	}
787 
788 	if (return_val != TD_OK || numkeys <= 0) {
789 		(void) ps_pcontinue(ph_p);
790 		ph_unlock(ta_p);
791 		return (return_val);
792 	}
793 
794 	if (destructors == NULL)
795 		return_val = TD_MALLOC;
796 	else if (ta_p->model == PR_MODEL_NATIVE) {
797 		if (ps_pdread(ph_p, dest_addr,
798 		    destructors, numkeys * sizeof (psaddr_t)) != PS_OK)
799 			return_val = TD_DBERR;
800 		else {
801 			for (key = 1; key < numkeys; key++) {
802 				destructor = (PFrV)destructors[key];
803 				if (destructor != TSD_UNALLOCATED &&
804 				    (*cb)(key, destructor, cbdata_p))
805 					break;
806 			}
807 		}
808 #if defined(_LP64) && defined(_SYSCALL32)
809 	} else {
810 		caddr32_t *destructors32 = (caddr32_t *)destructors;
811 		caddr32_t destruct32;
812 
813 		if (ps_pdread(ph_p, dest_addr,
814 		    destructors32, numkeys * sizeof (caddr32_t)) != PS_OK)
815 			return_val = TD_DBERR;
816 		else {
817 			for (key = 1; key < numkeys; key++) {
818 				destruct32 = destructors32[key];
819 				if (destruct32 != (caddr32_t)TSD_UNALLOCATED &&
820 				    (*cb)(key, (PFrV)(uintptr_t)destruct32,
821 				    cbdata_p))
822 					break;
823 			}
824 		}
825 #endif	/* _SYSCALL32 */
826 	}
827 
828 	if (destructors)
829 		free(destructors);
830 	(void) ps_pcontinue(ph_p);
831 	ph_unlock(ta_p);
832 	return (return_val);
833 }
834 
835 int
836 sigequalset(const sigset_t *s1, const sigset_t *s2)
837 {
838 	return (
839 	    s1->__sigbits[0] == s2->__sigbits[0] &&
840 	    s1->__sigbits[1] == s2->__sigbits[1] &&
841 	    s1->__sigbits[2] == s2->__sigbits[2] &&
842 	    s1->__sigbits[3] == s2->__sigbits[3]);
843 }
844 
845 /*
846  * Description:
847  *   Iterate over all threads. For each thread call
848  * the function pointed to by "cb" with a pointer
849  * to a thread handle, and a pointer to data which
850  * can be NULL. Only call td_thr_iter_f() on threads
851  * which match the properties of state, ti_pri,
852  * ti_sigmask_p, and ti_user_flags.  If cb returns
853  * a non-zero value, terminate iterations.
854  *
855  * Input:
856  *   *ta_p - thread agent
857  *   *cb - call back function defined by user.
858  * td_thr_iter_f() takes a thread handle and
859  * cbdata_p as a parameter.
860  *   cbdata_p - parameter for td_thr_iter_f().
861  *
862  *   state - state of threads of interest.  A value of
863  * TD_THR_ANY_STATE from enum td_thr_state_e
864  * does not restrict iterations by state.
865  *   ti_pri - lower bound of priorities of threads of
866  * interest.  A value of TD_THR_LOWEST_PRIORITY
867  * defined in thread_db.h does not restrict
868  * iterations by priority.  A thread with priority
869  * less than ti_pri will NOT be passed to the callback
870  * function.
871  *   ti_sigmask_p - signal mask of threads of interest.
872  * A value of TD_SIGNO_MASK defined in thread_db.h
873  * does not restrict iterations by signal mask.
874  *   ti_user_flags - user flags of threads of interest.  A
875  * value of TD_THR_ANY_USER_FLAGS defined in thread_db.h
876  * does not restrict iterations by user flags.
877  */
878 #pragma weak td_ta_thr_iter = __td_ta_thr_iter
879 td_err_e
880 __td_ta_thr_iter(td_thragent_t *ta_p, td_thr_iter_f *cb,
881 	void *cbdata_p, td_thr_state_e state, int ti_pri,
882 	sigset_t *ti_sigmask_p, unsigned ti_user_flags)
883 {
884 	struct ps_prochandle *ph_p;
885 	psaddr_t	first_lwp_addr;
886 	psaddr_t	first_zombie_addr;
887 	psaddr_t	curr_lwp_addr;
888 	psaddr_t	next_lwp_addr;
889 	td_thrhandle_t	th;
890 	ps_err_e	db_return;
891 	ps_err_e	db_return2;
892 	td_err_e	return_val;
893 
894 	if (cb == NULL)
895 		return (TD_ERR);
896 	/*
897 	 * If state is not within bound, short circuit.
898 	 */
899 	if (state < TD_THR_ANY_STATE || state > TD_THR_STOPPED_ASLEEP)
900 		return (TD_OK);
901 
902 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
903 		return (return_val);
904 	if (ps_pstop(ph_p) != PS_OK) {
905 		ph_unlock(ta_p);
906 		return (TD_DBERR);
907 	}
908 
909 	/*
910 	 * For each ulwp_t in the circular linked lists pointed
911 	 * to by "all_lwps" and "all_zombies":
912 	 * (1) Filter each thread.
913 	 * (2) Create the thread_object for each thread that passes.
914 	 * (3) Call the call back function on each thread.
915 	 */
916 
917 	if (ta_p->model == PR_MODEL_NATIVE) {
918 		db_return = ps_pdread(ph_p,
919 		    ta_p->uberdata_addr + offsetof(uberdata_t, all_lwps),
920 		    &first_lwp_addr, sizeof (first_lwp_addr));
921 		db_return2 = ps_pdread(ph_p,
922 		    ta_p->uberdata_addr + offsetof(uberdata_t, all_zombies),
923 		    &first_zombie_addr, sizeof (first_zombie_addr));
924 	} else {
925 #if defined(_LP64) && defined(_SYSCALL32)
926 		caddr32_t addr32;
927 
928 		db_return = ps_pdread(ph_p,
929 		    ta_p->uberdata_addr + offsetof(uberdata32_t, all_lwps),
930 		    &addr32, sizeof (addr32));
931 		first_lwp_addr = addr32;
932 		db_return2 = ps_pdread(ph_p,
933 		    ta_p->uberdata_addr + offsetof(uberdata32_t, all_zombies),
934 		    &addr32, sizeof (addr32));
935 		first_zombie_addr = addr32;
936 #else	/* _SYSCALL32 */
937 		db_return = PS_ERR;
938 		db_return2 = PS_ERR;
939 #endif	/* _SYSCALL32 */
940 	}
941 	if (db_return == PS_OK)
942 		db_return = db_return2;
943 
944 	/*
945 	 * If first_lwp_addr and first_zombie_addr are both NULL,
946 	 * libc must not yet be initialized or all threads have
947 	 * exited.  Return TD_NOTHR and all will be well.
948 	 */
949 	if (db_return == PS_OK &&
950 	    first_lwp_addr == NULL && first_zombie_addr == NULL) {
951 		(void) ps_pcontinue(ph_p);
952 		ph_unlock(ta_p);
953 		return (TD_NOTHR);
954 	}
955 	if (db_return != PS_OK) {
956 		(void) ps_pcontinue(ph_p);
957 		ph_unlock(ta_p);
958 		return (TD_DBERR);
959 	}
960 
961 	/*
962 	 * Run down the lists of all living and dead lwps.
963 	 */
964 	if (first_lwp_addr == NULL)
965 		first_lwp_addr = first_zombie_addr;
966 	curr_lwp_addr = first_lwp_addr;
967 	for (;;) {
968 		td_thr_state_e ts_state;
969 		int userpri;
970 		unsigned userflags;
971 		sigset_t mask;
972 
973 		/*
974 		 * Read the ulwp struct.
975 		 */
976 		if (ta_p->model == PR_MODEL_NATIVE) {
977 			ulwp_t ulwp;
978 
979 			if (ps_pdread(ph_p, curr_lwp_addr,
980 			    &ulwp, sizeof (ulwp)) != PS_OK &&
981 			    ((void) memset(&ulwp, 0, sizeof (ulwp)),
982 			    ps_pdread(ph_p, curr_lwp_addr,
983 			    &ulwp, REPLACEMENT_SIZE)) != PS_OK) {
984 				return_val = TD_DBERR;
985 				break;
986 			}
987 			next_lwp_addr = (psaddr_t)ulwp.ul_forw;
988 
989 			ts_state = ulwp.ul_dead? TD_THR_ZOMBIE :
990 			    ulwp.ul_stop? TD_THR_STOPPED :
991 			    ulwp.ul_wchan? TD_THR_SLEEP :
992 			    TD_THR_ACTIVE;
993 			userpri = ulwp.ul_pri;
994 			userflags = ulwp.ul_usropts;
995 			if (ulwp.ul_dead)
996 				(void) sigemptyset(&mask);
997 			else
998 				mask = *(sigset_t *)&ulwp.ul_sigmask;
999 		} else {
1000 #if defined(_LP64) && defined(_SYSCALL32)
1001 			ulwp32_t ulwp;
1002 
1003 			if (ps_pdread(ph_p, curr_lwp_addr,
1004 			    &ulwp, sizeof (ulwp)) != PS_OK &&
1005 			    ((void) memset(&ulwp, 0, sizeof (ulwp)),
1006 			    ps_pdread(ph_p, curr_lwp_addr,
1007 			    &ulwp, REPLACEMENT_SIZE32)) != PS_OK) {
1008 				return_val = TD_DBERR;
1009 				break;
1010 			}
1011 			next_lwp_addr = (psaddr_t)ulwp.ul_forw;
1012 
1013 			ts_state = ulwp.ul_dead? TD_THR_ZOMBIE :
1014 			    ulwp.ul_stop? TD_THR_STOPPED :
1015 			    ulwp.ul_wchan? TD_THR_SLEEP :
1016 			    TD_THR_ACTIVE;
1017 			userpri = ulwp.ul_pri;
1018 			userflags = ulwp.ul_usropts;
1019 			if (ulwp.ul_dead)
1020 				(void) sigemptyset(&mask);
1021 			else
1022 				mask = *(sigset_t *)&ulwp.ul_sigmask;
1023 #else	/* _SYSCALL32 */
1024 			return_val = TD_ERR;
1025 			break;
1026 #endif	/* _SYSCALL32 */
1027 		}
1028 
1029 		/*
1030 		 * Filter on state, priority, sigmask, and user flags.
1031 		 */
1032 
1033 		if ((state != ts_state) &&
1034 		    (state != TD_THR_ANY_STATE))
1035 			goto advance;
1036 
1037 		if (ti_pri > userpri)
1038 			goto advance;
1039 
1040 		if (ti_sigmask_p != TD_SIGNO_MASK &&
1041 		    !sigequalset(ti_sigmask_p, &mask))
1042 			goto advance;
1043 
1044 		if (ti_user_flags != userflags &&
1045 		    ti_user_flags != (unsigned)TD_THR_ANY_USER_FLAGS)
1046 			goto advance;
1047 
1048 		/*
1049 		 * Call back - break if the return
1050 		 * from the call back is non-zero.
1051 		 */
1052 		th.th_ta_p = (td_thragent_t *)ta_p;
1053 		th.th_unique = curr_lwp_addr;
1054 		if ((*cb)(&th, cbdata_p))
1055 			break;
1056 
1057 advance:
1058 		if ((curr_lwp_addr = next_lwp_addr) == first_lwp_addr) {
1059 			/*
1060 			 * Switch to the zombie list, unless it is NULL
1061 			 * or we have already been doing the zombie list,
1062 			 * in which case terminate the loop.
1063 			 */
1064 			if (first_zombie_addr == NULL ||
1065 			    first_lwp_addr == first_zombie_addr)
1066 				break;
1067 			curr_lwp_addr = first_lwp_addr = first_zombie_addr;
1068 		}
1069 	}
1070 
1071 	(void) ps_pcontinue(ph_p);
1072 	ph_unlock(ta_p);
1073 	return (return_val);
1074 }
1075 
1076 /*
1077  * Enable or disable process synchronization object tracking.
1078  * Currently unused by dbx.
1079  */
1080 #pragma weak td_ta_sync_tracking_enable = __td_ta_sync_tracking_enable
1081 td_err_e
1082 __td_ta_sync_tracking_enable(td_thragent_t *ta_p, int onoff)
1083 {
1084 	struct ps_prochandle *ph_p;
1085 	td_err_e return_val;
1086 	register_sync_t enable;
1087 
1088 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
1089 		return (return_val);
1090 	/*
1091 	 * Values of tdb_register_sync in the victim process:
1092 	 *	REGISTER_SYNC_ENABLE	enables registration of synch objects
1093 	 *	REGISTER_SYNC_DISABLE	disables registration of synch objects
1094 	 * These cause the table to be cleared and tdb_register_sync set to:
1095 	 *	REGISTER_SYNC_ON	registration in effect
1096 	 *	REGISTER_SYNC_OFF	registration not in effect
1097 	 */
1098 	enable = onoff? REGISTER_SYNC_ENABLE : REGISTER_SYNC_DISABLE;
1099 	if (ps_pdwrite(ph_p, ta_p->tdb_register_sync_addr,
1100 	    &enable, sizeof (enable)) != PS_OK)
1101 		return_val = TD_DBERR;
1102 	/*
1103 	 * Remember that this interface was called (see td_ta_delete()).
1104 	 */
1105 	ta_p->sync_tracking = 1;
1106 	ph_unlock(ta_p);
1107 	return (return_val);
1108 }
1109 
1110 /*
1111  * Iterate over all known synchronization variables.
1112  * It is very possible that the list generated is incomplete,
1113  * because the iterator can only find synchronization variables
1114  * that have been registered by the process since synchronization
1115  * object registration was enabled.
1116  * The call back function cb is called for each synchronization
1117  * variable with two arguments: a pointer to the synchronization
1118  * handle and the passed-in argument cbdata.
1119  * If cb returns a non-zero value, iterations are terminated.
1120  */
1121 #pragma weak td_ta_sync_iter = __td_ta_sync_iter
1122 td_err_e
1123 __td_ta_sync_iter(td_thragent_t *ta_p, td_sync_iter_f *cb, void *cbdata)
1124 {
1125 	struct ps_prochandle *ph_p;
1126 	td_err_e	return_val;
1127 	int		i;
1128 	register_sync_t	enable;
1129 	psaddr_t	next_desc;
1130 	tdb_sync_stats_t sync_stats;
1131 	td_synchandle_t	synchandle;
1132 	psaddr_t	psaddr;
1133 	void		*vaddr;
1134 	uint64_t	*sync_addr_hash = NULL;
1135 
1136 	if (cb == NULL)
1137 		return (TD_ERR);
1138 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
1139 		return (return_val);
1140 	if (ps_pstop(ph_p) != PS_OK) {
1141 		ph_unlock(ta_p);
1142 		return (TD_DBERR);
1143 	}
1144 	if (ps_pdread(ph_p, ta_p->tdb_register_sync_addr,
1145 	    &enable, sizeof (enable)) != PS_OK) {
1146 		return_val = TD_DBERR;
1147 		goto out;
1148 	}
1149 	if (enable != REGISTER_SYNC_ON)
1150 		goto out;
1151 
1152 	/*
1153 	 * First read the hash table.
1154 	 * The hash table is large; allocate with mmap().
1155 	 */
1156 	if ((vaddr = mmap(NULL, TDB_HASH_SIZE * sizeof (uint64_t),
1157 	    PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
1158 	    == MAP_FAILED) {
1159 		return_val = TD_MALLOC;
1160 		goto out;
1161 	}
1162 	sync_addr_hash = vaddr;
1163 
1164 	if (ta_p->model == PR_MODEL_NATIVE) {
1165 		if (ps_pdread(ph_p, ta_p->uberdata_addr +
1166 		    offsetof(uberdata_t, tdb.tdb_sync_addr_hash),
1167 		    &psaddr, sizeof (&psaddr)) != PS_OK) {
1168 			return_val = TD_DBERR;
1169 			goto out;
1170 		}
1171 	} else {
1172 #ifdef  _SYSCALL32
1173 		caddr32_t addr;
1174 
1175 		if (ps_pdread(ph_p, ta_p->uberdata_addr +
1176 		    offsetof(uberdata32_t, tdb.tdb_sync_addr_hash),
1177 		    &addr, sizeof (addr)) != PS_OK) {
1178 			return_val = TD_DBERR;
1179 			goto out;
1180 		}
1181 		psaddr = addr;
1182 #else
1183 		return_val = TD_ERR;
1184 		goto out;
1185 #endif /* _SYSCALL32 */
1186 	}
1187 
1188 	if (psaddr == NULL)
1189 		goto out;
1190 	if (ps_pdread(ph_p, psaddr, sync_addr_hash,
1191 	    TDB_HASH_SIZE * sizeof (uint64_t)) != PS_OK) {
1192 		return_val = TD_DBERR;
1193 		goto out;
1194 	}
1195 
1196 	/*
1197 	 * Now scan the hash table.
1198 	 */
1199 	for (i = 0; i < TDB_HASH_SIZE; i++) {
1200 		for (next_desc = (psaddr_t)sync_addr_hash[i];
1201 		    next_desc != NULL;
1202 		    next_desc = (psaddr_t)sync_stats.next) {
1203 			if (ps_pdread(ph_p, next_desc,
1204 			    &sync_stats, sizeof (sync_stats)) != PS_OK) {
1205 				return_val = TD_DBERR;
1206 				goto out;
1207 			}
1208 			if (sync_stats.un.type == TDB_NONE) {
1209 				/* not registered since registration enabled */
1210 				continue;
1211 			}
1212 			synchandle.sh_ta_p = ta_p;
1213 			synchandle.sh_unique = (psaddr_t)sync_stats.sync_addr;
1214 			if ((*cb)(&synchandle, cbdata) != 0)
1215 				goto out;
1216 		}
1217 	}
1218 
1219 out:
1220 	if (sync_addr_hash != NULL)
1221 		(void) munmap((void *)sync_addr_hash,
1222 		    TDB_HASH_SIZE * sizeof (uint64_t));
1223 	(void) ps_pcontinue(ph_p);
1224 	ph_unlock(ta_p);
1225 	return (return_val);
1226 }
1227 
1228 /*
1229  * Enable process statistics collection.
1230  */
1231 #pragma weak td_ta_enable_stats = __td_ta_enable_stats
1232 /* ARGSUSED */
1233 td_err_e
1234 __td_ta_enable_stats(const td_thragent_t *ta_p, int onoff)
1235 {
1236 	return (TD_NOCAPAB);
1237 }
1238 
1239 /*
1240  * Reset process statistics.
1241  */
1242 #pragma weak td_ta_reset_stats = __td_ta_reset_stats
1243 /* ARGSUSED */
1244 td_err_e
1245 __td_ta_reset_stats(const td_thragent_t *ta_p)
1246 {
1247 	return (TD_NOCAPAB);
1248 }
1249 
1250 /*
1251  * Read process statistics.
1252  */
1253 #pragma weak td_ta_get_stats = __td_ta_get_stats
1254 /* ARGSUSED */
1255 td_err_e
1256 __td_ta_get_stats(const td_thragent_t *ta_p, td_ta_stats_t *tstats)
1257 {
1258 	return (TD_NOCAPAB);
1259 }
1260 
1261 /*
1262  * Transfer information from lwp struct to thread information struct.
1263  * XXX -- lots of this needs cleaning up.
1264  */
1265 static void
1266 td_thr2to(td_thragent_t *ta_p, psaddr_t ts_addr,
1267 	ulwp_t *ulwp, td_thrinfo_t *ti_p)
1268 {
1269 	lwpid_t lwpid;
1270 
1271 	if ((lwpid = ulwp->ul_lwpid) == 0)
1272 		lwpid = 1;
1273 	(void) memset(ti_p, 0, sizeof (*ti_p));
1274 	ti_p->ti_ta_p = ta_p;
1275 	ti_p->ti_user_flags = ulwp->ul_usropts;
1276 	ti_p->ti_tid = lwpid;
1277 	ti_p->ti_exitval = ulwp->ul_rval;
1278 	ti_p->ti_startfunc = (psaddr_t)ulwp->ul_startpc;
1279 	if (!ulwp->ul_dead) {
1280 		/*
1281 		 * The bloody fools got this backwards!
1282 		 */
1283 		ti_p->ti_stkbase = (psaddr_t)ulwp->ul_stktop;
1284 		ti_p->ti_stksize = ulwp->ul_stksiz;
1285 	}
1286 	ti_p->ti_ro_area = ts_addr;
1287 	ti_p->ti_ro_size = ulwp->ul_replace?
1288 	    REPLACEMENT_SIZE : sizeof (ulwp_t);
1289 	ti_p->ti_state = ulwp->ul_dead? TD_THR_ZOMBIE :
1290 	    ulwp->ul_stop? TD_THR_STOPPED :
1291 	    ulwp->ul_wchan? TD_THR_SLEEP :
1292 	    TD_THR_ACTIVE;
1293 	ti_p->ti_db_suspended = 0;
1294 	ti_p->ti_type = TD_THR_USER;
1295 	ti_p->ti_sp = ulwp->ul_sp;
1296 	ti_p->ti_flags = 0;
1297 	ti_p->ti_pri = ulwp->ul_pri;
1298 	ti_p->ti_lid = lwpid;
1299 	if (!ulwp->ul_dead)
1300 		ti_p->ti_sigmask = ulwp->ul_sigmask;
1301 	ti_p->ti_traceme = 0;
1302 	ti_p->ti_preemptflag = 0;
1303 	ti_p->ti_pirecflag = 0;
1304 	(void) sigemptyset(&ti_p->ti_pending);
1305 	ti_p->ti_events = ulwp->ul_td_evbuf.eventmask;
1306 }
1307 
1308 #if defined(_LP64) && defined(_SYSCALL32)
1309 static void
1310 td_thr2to32(td_thragent_t *ta_p, psaddr_t ts_addr,
1311 	ulwp32_t *ulwp, td_thrinfo_t *ti_p)
1312 {
1313 	lwpid_t lwpid;
1314 
1315 	if ((lwpid = ulwp->ul_lwpid) == 0)
1316 		lwpid = 1;
1317 	(void) memset(ti_p, 0, sizeof (*ti_p));
1318 	ti_p->ti_ta_p = ta_p;
1319 	ti_p->ti_user_flags = ulwp->ul_usropts;
1320 	ti_p->ti_tid = lwpid;
1321 	ti_p->ti_exitval = (void *)(uintptr_t)ulwp->ul_rval;
1322 	ti_p->ti_startfunc = (psaddr_t)ulwp->ul_startpc;
1323 	if (!ulwp->ul_dead) {
1324 		/*
1325 		 * The bloody fools got this backwards!
1326 		 */
1327 		ti_p->ti_stkbase = (psaddr_t)ulwp->ul_stktop;
1328 		ti_p->ti_stksize = ulwp->ul_stksiz;
1329 	}
1330 	ti_p->ti_ro_area = ts_addr;
1331 	ti_p->ti_ro_size = ulwp->ul_replace?
1332 	    REPLACEMENT_SIZE32 : sizeof (ulwp32_t);
1333 	ti_p->ti_state = ulwp->ul_dead? TD_THR_ZOMBIE :
1334 	    ulwp->ul_stop? TD_THR_STOPPED :
1335 	    ulwp->ul_wchan? TD_THR_SLEEP :
1336 	    TD_THR_ACTIVE;
1337 	ti_p->ti_db_suspended = 0;
1338 	ti_p->ti_type = TD_THR_USER;
1339 	ti_p->ti_sp = (uint32_t)ulwp->ul_sp;
1340 	ti_p->ti_flags = 0;
1341 	ti_p->ti_pri = ulwp->ul_pri;
1342 	ti_p->ti_lid = lwpid;
1343 	if (!ulwp->ul_dead)
1344 		ti_p->ti_sigmask = *(sigset_t *)&ulwp->ul_sigmask;
1345 	ti_p->ti_traceme = 0;
1346 	ti_p->ti_preemptflag = 0;
1347 	ti_p->ti_pirecflag = 0;
1348 	(void) sigemptyset(&ti_p->ti_pending);
1349 	ti_p->ti_events = ulwp->ul_td_evbuf.eventmask;
1350 }
1351 #endif	/* _SYSCALL32 */
1352 
1353 /*
1354  * Get thread information.
1355  */
1356 #pragma weak td_thr_get_info = __td_thr_get_info
1357 td_err_e
1358 __td_thr_get_info(td_thrhandle_t *th_p, td_thrinfo_t *ti_p)
1359 {
1360 	struct ps_prochandle *ph_p;
1361 	td_thragent_t	*ta_p;
1362 	td_err_e	return_val;
1363 	psaddr_t	psaddr;
1364 
1365 	if (ti_p == NULL)
1366 		return (TD_ERR);
1367 	(void) memset(ti_p, NULL, sizeof (*ti_p));
1368 
1369 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1370 		return (return_val);
1371 	ta_p = th_p->th_ta_p;
1372 	if (ps_pstop(ph_p) != PS_OK) {
1373 		ph_unlock(ta_p);
1374 		return (TD_DBERR);
1375 	}
1376 
1377 	/*
1378 	 * Read the ulwp struct from the process.
1379 	 * Transfer the ulwp struct to the thread information struct.
1380 	 */
1381 	psaddr = th_p->th_unique;
1382 	if (ta_p->model == PR_MODEL_NATIVE) {
1383 		ulwp_t ulwp;
1384 
1385 		if (ps_pdread(ph_p, psaddr, &ulwp, sizeof (ulwp)) != PS_OK &&
1386 		    ((void) memset(&ulwp, 0, sizeof (ulwp)),
1387 		    ps_pdread(ph_p, psaddr, &ulwp, REPLACEMENT_SIZE)) != PS_OK)
1388 			return_val = TD_DBERR;
1389 		else
1390 			td_thr2to(ta_p, psaddr, &ulwp, ti_p);
1391 	} else {
1392 #if defined(_LP64) && defined(_SYSCALL32)
1393 		ulwp32_t ulwp;
1394 
1395 		if (ps_pdread(ph_p, psaddr, &ulwp, sizeof (ulwp)) != PS_OK &&
1396 		    ((void) memset(&ulwp, 0, sizeof (ulwp)),
1397 		    ps_pdread(ph_p, psaddr, &ulwp, REPLACEMENT_SIZE32)) !=
1398 		    PS_OK)
1399 			return_val = TD_DBERR;
1400 		else
1401 			td_thr2to32(ta_p, psaddr, &ulwp, ti_p);
1402 #else
1403 		return_val = TD_ERR;
1404 #endif	/* _SYSCALL32 */
1405 	}
1406 
1407 	(void) ps_pcontinue(ph_p);
1408 	ph_unlock(ta_p);
1409 	return (return_val);
1410 }
1411 
1412 /*
1413  * Given a process and an event number, return information about
1414  * an address in the process or at which a breakpoint can be set
1415  * to monitor the event.
1416  */
1417 #pragma weak td_ta_event_addr = __td_ta_event_addr
1418 td_err_e
1419 __td_ta_event_addr(td_thragent_t *ta_p, td_event_e event, td_notify_t *notify_p)
1420 {
1421 	if (ta_p == NULL)
1422 		return (TD_BADTA);
1423 	if (event < TD_MIN_EVENT_NUM || event > TD_MAX_EVENT_NUM)
1424 		return (TD_NOEVENT);
1425 	if (notify_p == NULL)
1426 		return (TD_ERR);
1427 
1428 	notify_p->type = NOTIFY_BPT;
1429 	notify_p->u.bptaddr = ta_p->tdb_events[event - TD_MIN_EVENT_NUM];
1430 
1431 	return (TD_OK);
1432 }
1433 
1434 /*
1435  * Add the events in eventset 2 to eventset 1.
1436  */
1437 static void
1438 eventsetaddset(td_thr_events_t *event1_p, td_thr_events_t *event2_p)
1439 {
1440 	int	i;
1441 
1442 	for (i = 0; i < TD_EVENTSIZE; i++)
1443 		event1_p->event_bits[i] |= event2_p->event_bits[i];
1444 }
1445 
1446 /*
1447  * Delete the events in eventset 2 from eventset 1.
1448  */
1449 static void
1450 eventsetdelset(td_thr_events_t *event1_p, td_thr_events_t *event2_p)
1451 {
1452 	int	i;
1453 
1454 	for (i = 0; i < TD_EVENTSIZE; i++)
1455 		event1_p->event_bits[i] &= ~event2_p->event_bits[i];
1456 }
1457 
1458 /*
1459  * Either add or delete the given event set from a thread's event mask.
1460  */
1461 static td_err_e
1462 mod_eventset(td_thrhandle_t *th_p, td_thr_events_t *events, int onoff)
1463 {
1464 	struct ps_prochandle *ph_p;
1465 	td_err_e	return_val = TD_OK;
1466 	char		enable;
1467 	td_thr_events_t	evset;
1468 	psaddr_t	psaddr_evset;
1469 	psaddr_t	psaddr_enab;
1470 
1471 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1472 		return (return_val);
1473 	if (th_p->th_ta_p->model == PR_MODEL_NATIVE) {
1474 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
1475 		psaddr_evset = (psaddr_t)&ulwp->ul_td_evbuf.eventmask;
1476 		psaddr_enab = (psaddr_t)&ulwp->ul_td_events_enable;
1477 	} else {
1478 #if defined(_LP64) && defined(_SYSCALL32)
1479 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
1480 		psaddr_evset = (psaddr_t)&ulwp->ul_td_evbuf.eventmask;
1481 		psaddr_enab = (psaddr_t)&ulwp->ul_td_events_enable;
1482 #else
1483 		ph_unlock(th_p->th_ta_p);
1484 		return (TD_ERR);
1485 #endif	/* _SYSCALL32 */
1486 	}
1487 	if (ps_pstop(ph_p) != PS_OK) {
1488 		ph_unlock(th_p->th_ta_p);
1489 		return (TD_DBERR);
1490 	}
1491 
1492 	if (ps_pdread(ph_p, psaddr_evset, &evset, sizeof (evset)) != PS_OK)
1493 		return_val = TD_DBERR;
1494 	else {
1495 		if (onoff)
1496 			eventsetaddset(&evset, events);
1497 		else
1498 			eventsetdelset(&evset, events);
1499 		if (ps_pdwrite(ph_p, psaddr_evset, &evset, sizeof (evset))
1500 		    != PS_OK)
1501 			return_val = TD_DBERR;
1502 		else {
1503 			enable = 0;
1504 			if (td_eventismember(&evset, TD_EVENTS_ENABLE))
1505 				enable = 1;
1506 			if (ps_pdwrite(ph_p, psaddr_enab,
1507 			    &enable, sizeof (enable)) != PS_OK)
1508 				return_val = TD_DBERR;
1509 		}
1510 	}
1511 
1512 	(void) ps_pcontinue(ph_p);
1513 	ph_unlock(th_p->th_ta_p);
1514 	return (return_val);
1515 }
1516 
1517 /*
1518  * Enable or disable tracing for a given thread.  Tracing
1519  * is filtered based on the event mask of each thread.  Tracing
1520  * can be turned on/off for the thread without changing thread
1521  * event mask.
1522  * Currently unused by dbx.
1523  */
1524 #pragma weak td_thr_event_enable = __td_thr_event_enable
1525 td_err_e
1526 __td_thr_event_enable(td_thrhandle_t *th_p, int onoff)
1527 {
1528 	td_thr_events_t	evset;
1529 
1530 	td_event_emptyset(&evset);
1531 	td_event_addset(&evset, TD_EVENTS_ENABLE);
1532 	return (mod_eventset(th_p, &evset, onoff));
1533 }
1534 
1535 /*
1536  * Set event mask to enable event. event is turned on in
1537  * event mask for thread.  If a thread encounters an event
1538  * for which its event mask is on, notification will be sent
1539  * to the debugger.
1540  * Addresses for each event are provided to the
1541  * debugger.  It is assumed that a breakpoint of some type will
1542  * be placed at that address.  If the event mask for the thread
1543  * is on, the instruction at the address will be executed.
1544  * Otherwise, the instruction will be skipped.
1545  */
1546 #pragma weak td_thr_set_event = __td_thr_set_event
1547 td_err_e
1548 __td_thr_set_event(td_thrhandle_t *th_p, td_thr_events_t *events)
1549 {
1550 	return (mod_eventset(th_p, events, 1));
1551 }
1552 
1553 /*
1554  * Enable or disable a set of events in the process-global event mask,
1555  * depending on the value of onoff.
1556  */
1557 static td_err_e
1558 td_ta_mod_event(td_thragent_t *ta_p, td_thr_events_t *events, int onoff)
1559 {
1560 	struct ps_prochandle *ph_p;
1561 	td_thr_events_t targ_eventset;
1562 	td_err_e	return_val;
1563 
1564 	if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL)
1565 		return (return_val);
1566 	if (ps_pstop(ph_p) != PS_OK) {
1567 		ph_unlock(ta_p);
1568 		return (TD_DBERR);
1569 	}
1570 	if (ps_pdread(ph_p, ta_p->tdb_eventmask_addr,
1571 	    &targ_eventset, sizeof (targ_eventset)) != PS_OK)
1572 		return_val = TD_DBERR;
1573 	else {
1574 		if (onoff)
1575 			eventsetaddset(&targ_eventset, events);
1576 		else
1577 			eventsetdelset(&targ_eventset, events);
1578 		if (ps_pdwrite(ph_p, ta_p->tdb_eventmask_addr,
1579 		    &targ_eventset, sizeof (targ_eventset)) != PS_OK)
1580 			return_val = TD_DBERR;
1581 	}
1582 	(void) ps_pcontinue(ph_p);
1583 	ph_unlock(ta_p);
1584 	return (return_val);
1585 }
1586 
1587 /*
1588  * Enable a set of events in the process-global event mask.
1589  */
1590 #pragma weak td_ta_set_event = __td_ta_set_event
1591 td_err_e
1592 __td_ta_set_event(td_thragent_t *ta_p, td_thr_events_t *events)
1593 {
1594 	return (td_ta_mod_event(ta_p, events, 1));
1595 }
1596 
1597 /*
1598  * Set event mask to disable the given event set; these events are cleared
1599  * from the event mask of the thread.  Events that occur for a thread
1600  * with the event masked off will not cause notification to be
1601  * sent to the debugger (see td_thr_set_event for fuller description).
1602  */
1603 #pragma weak td_thr_clear_event = __td_thr_clear_event
1604 td_err_e
1605 __td_thr_clear_event(td_thrhandle_t *th_p, td_thr_events_t *events)
1606 {
1607 	return (mod_eventset(th_p, events, 0));
1608 }
1609 
1610 /*
1611  * Disable a set of events in the process-global event mask.
1612  */
1613 #pragma weak td_ta_clear_event = __td_ta_clear_event
1614 td_err_e
1615 __td_ta_clear_event(td_thragent_t *ta_p, td_thr_events_t *events)
1616 {
1617 	return (td_ta_mod_event(ta_p, events, 0));
1618 }
1619 
1620 /*
1621  * This function returns the most recent event message, if any,
1622  * associated with a thread.  Given a thread handle, return the message
1623  * corresponding to the event encountered by the thread.  Only one
1624  * message per thread is saved.  Messages from earlier events are lost
1625  * when later events occur.
1626  */
1627 #pragma weak td_thr_event_getmsg = __td_thr_event_getmsg
1628 td_err_e
1629 __td_thr_event_getmsg(td_thrhandle_t *th_p, td_event_msg_t *msg)
1630 {
1631 	struct ps_prochandle *ph_p;
1632 	td_err_e	return_val = TD_OK;
1633 	psaddr_t	psaddr;
1634 
1635 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1636 		return (return_val);
1637 	if (ps_pstop(ph_p) != PS_OK) {
1638 		ph_unlock(th_p->th_ta_p);
1639 		return (TD_BADTA);
1640 	}
1641 	if (th_p->th_ta_p->model == PR_MODEL_NATIVE) {
1642 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
1643 		td_evbuf_t evbuf;
1644 
1645 		psaddr = (psaddr_t)&ulwp->ul_td_evbuf;
1646 		if (ps_pdread(ph_p, psaddr, &evbuf, sizeof (evbuf)) != PS_OK) {
1647 			return_val = TD_DBERR;
1648 		} else if (evbuf.eventnum == TD_EVENT_NONE) {
1649 			return_val = TD_NOEVENT;
1650 		} else {
1651 			msg->event = evbuf.eventnum;
1652 			msg->th_p = (td_thrhandle_t *)th_p;
1653 			msg->msg.data = (uintptr_t)evbuf.eventdata;
1654 			/* "Consume" the message */
1655 			evbuf.eventnum = TD_EVENT_NONE;
1656 			evbuf.eventdata = NULL;
1657 			if (ps_pdwrite(ph_p, psaddr, &evbuf, sizeof (evbuf))
1658 			    != PS_OK)
1659 				return_val = TD_DBERR;
1660 		}
1661 	} else {
1662 #if defined(_LP64) && defined(_SYSCALL32)
1663 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
1664 		td_evbuf32_t evbuf;
1665 
1666 		psaddr = (psaddr_t)&ulwp->ul_td_evbuf;
1667 		if (ps_pdread(ph_p, psaddr, &evbuf, sizeof (evbuf)) != PS_OK) {
1668 			return_val = TD_DBERR;
1669 		} else if (evbuf.eventnum == TD_EVENT_NONE) {
1670 			return_val = TD_NOEVENT;
1671 		} else {
1672 			msg->event = evbuf.eventnum;
1673 			msg->th_p = (td_thrhandle_t *)th_p;
1674 			msg->msg.data = (uintptr_t)evbuf.eventdata;
1675 			/* "Consume" the message */
1676 			evbuf.eventnum = TD_EVENT_NONE;
1677 			evbuf.eventdata = NULL;
1678 			if (ps_pdwrite(ph_p, psaddr, &evbuf, sizeof (evbuf))
1679 			    != PS_OK)
1680 				return_val = TD_DBERR;
1681 		}
1682 #else
1683 		return_val = TD_ERR;
1684 #endif	/* _SYSCALL32 */
1685 	}
1686 
1687 	(void) ps_pcontinue(ph_p);
1688 	ph_unlock(th_p->th_ta_p);
1689 	return (return_val);
1690 }
1691 
1692 /*
1693  * The callback function td_ta_event_getmsg uses when looking for
1694  * a thread with an event.  A thin wrapper around td_thr_event_getmsg.
1695  */
1696 static int
1697 event_msg_cb(const td_thrhandle_t *th_p, void *arg)
1698 {
1699 	static td_thrhandle_t th;
1700 	td_event_msg_t *msg = arg;
1701 
1702 	if (__td_thr_event_getmsg((td_thrhandle_t *)th_p, msg) == TD_OK) {
1703 		/*
1704 		 * Got an event, stop iterating.
1705 		 *
1706 		 * Because of past mistakes in interface definition,
1707 		 * we are forced to pass back a static local variable
1708 		 * for the thread handle because th_p is a pointer
1709 		 * to a local variable in __td_ta_thr_iter().
1710 		 * Grr...
1711 		 */
1712 		th = *th_p;
1713 		msg->th_p = &th;
1714 		return (1);
1715 	}
1716 	return (0);
1717 }
1718 
1719 /*
1720  * This function is just like td_thr_event_getmsg, except that it is
1721  * passed a process handle rather than a thread handle, and returns
1722  * an event message for some thread in the process that has an event
1723  * message pending.  If no thread has an event message pending, this
1724  * routine returns TD_NOEVENT.  Thus, all pending event messages may
1725  * be collected from a process by repeatedly calling this routine
1726  * until it returns TD_NOEVENT.
1727  */
1728 #pragma weak td_ta_event_getmsg = __td_ta_event_getmsg
1729 td_err_e
1730 __td_ta_event_getmsg(td_thragent_t *ta_p, td_event_msg_t *msg)
1731 {
1732 	td_err_e return_val;
1733 
1734 	if (ta_p == NULL)
1735 		return (TD_BADTA);
1736 	if (ta_p->ph_p == NULL)
1737 		return (TD_BADPH);
1738 	if (msg == NULL)
1739 		return (TD_ERR);
1740 	msg->event = TD_EVENT_NONE;
1741 	if ((return_val = __td_ta_thr_iter(ta_p, event_msg_cb, msg,
1742 	    TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY, TD_SIGNO_MASK,
1743 	    TD_THR_ANY_USER_FLAGS)) != TD_OK)
1744 		return (return_val);
1745 	if (msg->event == TD_EVENT_NONE)
1746 		return (TD_NOEVENT);
1747 	return (TD_OK);
1748 }
1749 
1750 static lwpid_t
1751 thr_to_lwpid(const td_thrhandle_t *th_p)
1752 {
1753 	struct ps_prochandle *ph_p = th_p->th_ta_p->ph_p;
1754 	lwpid_t lwpid;
1755 
1756 	/*
1757 	 * The caller holds the prochandle lock
1758 	 * and has already verfied everything.
1759 	 */
1760 	if (th_p->th_ta_p->model == PR_MODEL_NATIVE) {
1761 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
1762 
1763 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_lwpid,
1764 		    &lwpid, sizeof (lwpid)) != PS_OK)
1765 			lwpid = 0;
1766 		else if (lwpid == 0)
1767 			lwpid = 1;
1768 	} else {
1769 #if defined(_LP64) && defined(_SYSCALL32)
1770 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
1771 
1772 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_lwpid,
1773 		    &lwpid, sizeof (lwpid)) != PS_OK)
1774 			lwpid = 0;
1775 		else if (lwpid == 0)
1776 			lwpid = 1;
1777 #else
1778 		lwpid = 0;
1779 #endif	/* _SYSCALL32 */
1780 	}
1781 
1782 	return (lwpid);
1783 }
1784 
1785 /*
1786  * Suspend a thread.
1787  * XXX: What does this mean in a one-level model?
1788  */
1789 #pragma weak td_thr_dbsuspend = __td_thr_dbsuspend
1790 td_err_e
1791 __td_thr_dbsuspend(const td_thrhandle_t *th_p)
1792 {
1793 	struct ps_prochandle *ph_p;
1794 	td_err_e return_val;
1795 
1796 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1797 		return (return_val);
1798 	if (ps_lstop(ph_p, thr_to_lwpid(th_p)) != PS_OK)
1799 		return_val = TD_DBERR;
1800 	ph_unlock(th_p->th_ta_p);
1801 	return (return_val);
1802 }
1803 
1804 /*
1805  * Resume a suspended thread.
1806  * XXX: What does this mean in a one-level model?
1807  */
1808 #pragma weak td_thr_dbresume = __td_thr_dbresume
1809 td_err_e
1810 __td_thr_dbresume(const td_thrhandle_t *th_p)
1811 {
1812 	struct ps_prochandle *ph_p;
1813 	td_err_e return_val;
1814 
1815 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1816 		return (return_val);
1817 	if (ps_lcontinue(ph_p, thr_to_lwpid(th_p)) != PS_OK)
1818 		return_val = TD_DBERR;
1819 	ph_unlock(th_p->th_ta_p);
1820 	return (return_val);
1821 }
1822 
1823 /*
1824  * Set a thread's signal mask.
1825  * Currently unused by dbx.
1826  */
1827 #pragma weak td_thr_sigsetmask = __td_thr_sigsetmask
1828 /* ARGSUSED */
1829 td_err_e
1830 __td_thr_sigsetmask(const td_thrhandle_t *th_p, const sigset_t ti_sigmask)
1831 {
1832 	return (TD_NOCAPAB);
1833 }
1834 
1835 /*
1836  * Set a thread's "signals-pending" set.
1837  * Currently unused by dbx.
1838  */
1839 #pragma weak td_thr_setsigpending = __td_thr_setsigpending
1840 /* ARGSUSED */
1841 td_err_e
1842 __td_thr_setsigpending(const td_thrhandle_t *th_p,
1843 	uchar_t ti_pending_flag, const sigset_t ti_pending)
1844 {
1845 	return (TD_NOCAPAB);
1846 }
1847 
1848 /*
1849  * Get a thread's general register set.
1850  */
1851 #pragma weak td_thr_getgregs = __td_thr_getgregs
1852 td_err_e
1853 __td_thr_getgregs(td_thrhandle_t *th_p, prgregset_t regset)
1854 {
1855 	struct ps_prochandle *ph_p;
1856 	td_err_e return_val;
1857 
1858 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1859 		return (return_val);
1860 	if (ps_pstop(ph_p) != PS_OK) {
1861 		ph_unlock(th_p->th_ta_p);
1862 		return (TD_DBERR);
1863 	}
1864 
1865 	if (ps_lgetregs(ph_p, thr_to_lwpid(th_p), regset) != PS_OK)
1866 		return_val = TD_DBERR;
1867 
1868 	(void) ps_pcontinue(ph_p);
1869 	ph_unlock(th_p->th_ta_p);
1870 	return (return_val);
1871 }
1872 
1873 /*
1874  * Set a thread's general register set.
1875  */
1876 #pragma weak td_thr_setgregs = __td_thr_setgregs
1877 td_err_e
1878 __td_thr_setgregs(td_thrhandle_t *th_p, const prgregset_t regset)
1879 {
1880 	struct ps_prochandle *ph_p;
1881 	td_err_e return_val;
1882 
1883 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1884 		return (return_val);
1885 	if (ps_pstop(ph_p) != PS_OK) {
1886 		ph_unlock(th_p->th_ta_p);
1887 		return (TD_DBERR);
1888 	}
1889 
1890 	if (ps_lsetregs(ph_p, thr_to_lwpid(th_p), regset) != PS_OK)
1891 		return_val = TD_DBERR;
1892 
1893 	(void) ps_pcontinue(ph_p);
1894 	ph_unlock(th_p->th_ta_p);
1895 	return (return_val);
1896 }
1897 
1898 /*
1899  * Get a thread's floating-point register set.
1900  */
1901 #pragma weak td_thr_getfpregs = __td_thr_getfpregs
1902 td_err_e
1903 __td_thr_getfpregs(td_thrhandle_t *th_p, prfpregset_t *fpregset)
1904 {
1905 	struct ps_prochandle *ph_p;
1906 	td_err_e return_val;
1907 
1908 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1909 		return (return_val);
1910 	if (ps_pstop(ph_p) != PS_OK) {
1911 		ph_unlock(th_p->th_ta_p);
1912 		return (TD_DBERR);
1913 	}
1914 
1915 	if (ps_lgetfpregs(ph_p, thr_to_lwpid(th_p), fpregset) != PS_OK)
1916 		return_val = TD_DBERR;
1917 
1918 	(void) ps_pcontinue(ph_p);
1919 	ph_unlock(th_p->th_ta_p);
1920 	return (return_val);
1921 }
1922 
1923 /*
1924  * Set a thread's floating-point register set.
1925  */
1926 #pragma weak td_thr_setfpregs = __td_thr_setfpregs
1927 td_err_e
1928 __td_thr_setfpregs(td_thrhandle_t *th_p, const prfpregset_t *fpregset)
1929 {
1930 	struct ps_prochandle *ph_p;
1931 	td_err_e return_val;
1932 
1933 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1934 		return (return_val);
1935 	if (ps_pstop(ph_p) != PS_OK) {
1936 		ph_unlock(th_p->th_ta_p);
1937 		return (TD_DBERR);
1938 	}
1939 
1940 	if (ps_lsetfpregs(ph_p, thr_to_lwpid(th_p), fpregset) != PS_OK)
1941 		return_val = TD_DBERR;
1942 
1943 	(void) ps_pcontinue(ph_p);
1944 	ph_unlock(th_p->th_ta_p);
1945 	return (return_val);
1946 }
1947 
1948 /*
1949  * Get the size of the extra state register set for this architecture.
1950  * Currently unused by dbx.
1951  */
1952 #pragma weak td_thr_getxregsize = __td_thr_getxregsize
1953 /* ARGSUSED */
1954 td_err_e
1955 __td_thr_getxregsize(td_thrhandle_t *th_p, int *xregsize)
1956 {
1957 #if defined(__sparc)
1958 	struct ps_prochandle *ph_p;
1959 	td_err_e return_val;
1960 
1961 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1962 		return (return_val);
1963 	if (ps_pstop(ph_p) != PS_OK) {
1964 		ph_unlock(th_p->th_ta_p);
1965 		return (TD_DBERR);
1966 	}
1967 
1968 	if (ps_lgetxregsize(ph_p, thr_to_lwpid(th_p), xregsize) != PS_OK)
1969 		return_val = TD_DBERR;
1970 
1971 	(void) ps_pcontinue(ph_p);
1972 	ph_unlock(th_p->th_ta_p);
1973 	return (return_val);
1974 #else	/* __sparc */
1975 	return (TD_NOXREGS);
1976 #endif	/* __sparc */
1977 }
1978 
1979 /*
1980  * Get a thread's extra state register set.
1981  */
1982 #pragma weak td_thr_getxregs = __td_thr_getxregs
1983 /* ARGSUSED */
1984 td_err_e
1985 __td_thr_getxregs(td_thrhandle_t *th_p, void *xregset)
1986 {
1987 #if defined(__sparc)
1988 	struct ps_prochandle *ph_p;
1989 	td_err_e return_val;
1990 
1991 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
1992 		return (return_val);
1993 	if (ps_pstop(ph_p) != PS_OK) {
1994 		ph_unlock(th_p->th_ta_p);
1995 		return (TD_DBERR);
1996 	}
1997 
1998 	if (ps_lgetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK)
1999 		return_val = TD_DBERR;
2000 
2001 	(void) ps_pcontinue(ph_p);
2002 	ph_unlock(th_p->th_ta_p);
2003 	return (return_val);
2004 #else	/* __sparc */
2005 	return (TD_NOXREGS);
2006 #endif	/* __sparc */
2007 }
2008 
2009 /*
2010  * Set a thread's extra state register set.
2011  */
2012 #pragma weak td_thr_setxregs = __td_thr_setxregs
2013 /* ARGSUSED */
2014 td_err_e
2015 __td_thr_setxregs(td_thrhandle_t *th_p, const void *xregset)
2016 {
2017 #if defined(__sparc)
2018 	struct ps_prochandle *ph_p;
2019 	td_err_e return_val;
2020 
2021 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
2022 		return (return_val);
2023 	if (ps_pstop(ph_p) != PS_OK) {
2024 		ph_unlock(th_p->th_ta_p);
2025 		return (TD_DBERR);
2026 	}
2027 
2028 	if (ps_lsetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK)
2029 		return_val = TD_DBERR;
2030 
2031 	(void) ps_pcontinue(ph_p);
2032 	ph_unlock(th_p->th_ta_p);
2033 	return (return_val);
2034 #else	/* __sparc */
2035 	return (TD_NOXREGS);
2036 #endif	/* __sparc */
2037 }
2038 
2039 struct searcher {
2040 	psaddr_t	addr;
2041 	int		status;
2042 };
2043 
2044 /*
2045  * Check the struct thread address in *th_p again first
2046  * value in "data".  If value in data is found, set second value
2047  * in "data" to 1 and return 1 to terminate iterations.
2048  * This function is used by td_thr_validate() to verify that
2049  * a thread handle is valid.
2050  */
2051 static int
2052 td_searcher(const td_thrhandle_t *th_p, void *data)
2053 {
2054 	struct searcher *searcher_data = (struct searcher *)data;
2055 
2056 	if (searcher_data->addr == th_p->th_unique) {
2057 		searcher_data->status = 1;
2058 		return (1);
2059 	}
2060 	return (0);
2061 }
2062 
2063 /*
2064  * Validate the thread handle.  Check that
2065  * a thread exists in the thread agent/process that
2066  * corresponds to thread with handle *th_p.
2067  * Currently unused by dbx.
2068  */
2069 #pragma weak td_thr_validate = __td_thr_validate
2070 td_err_e
2071 __td_thr_validate(const td_thrhandle_t *th_p)
2072 {
2073 	td_err_e return_val;
2074 	struct searcher searcher_data = {0, 0};
2075 
2076 	if (th_p == NULL)
2077 		return (TD_BADTH);
2078 	if (th_p->th_unique == NULL || th_p->th_ta_p == NULL)
2079 		return (TD_BADTH);
2080 
2081 	/*
2082 	 * LOCKING EXCEPTION - Locking is not required
2083 	 * here because no use of the thread agent is made (other
2084 	 * than the sanity check) and checking of the thread
2085 	 * agent will be done in __td_ta_thr_iter.
2086 	 */
2087 
2088 	searcher_data.addr = th_p->th_unique;
2089 	return_val = __td_ta_thr_iter(th_p->th_ta_p,
2090 	    td_searcher, &searcher_data,
2091 	    TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY,
2092 	    TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS);
2093 
2094 	if (return_val == TD_OK && searcher_data.status == 0)
2095 		return_val = TD_NOTHR;
2096 
2097 	return (return_val);
2098 }
2099 
2100 /*
2101  * Get a thread's private binding to a given thread specific
2102  * data(TSD) key(see thr_getspecific(3T).  If the thread doesn't
2103  * have a binding for a particular key, then NULL is returned.
2104  */
2105 #pragma weak td_thr_tsd = __td_thr_tsd
2106 td_err_e
2107 __td_thr_tsd(td_thrhandle_t *th_p, thread_key_t key, void **data_pp)
2108 {
2109 	struct ps_prochandle *ph_p;
2110 	td_thragent_t	*ta_p;
2111 	td_err_e	return_val;
2112 	int		maxkey;
2113 	int		nkey;
2114 	psaddr_t	tsd_paddr;
2115 
2116 	if (data_pp == NULL)
2117 		return (TD_ERR);
2118 	*data_pp = NULL;
2119 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
2120 		return (return_val);
2121 	ta_p = th_p->th_ta_p;
2122 	if (ps_pstop(ph_p) != PS_OK) {
2123 		ph_unlock(ta_p);
2124 		return (TD_DBERR);
2125 	}
2126 
2127 	if (ta_p->model == PR_MODEL_NATIVE) {
2128 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
2129 		tsd_metadata_t tsdm;
2130 		tsd_t stsd;
2131 
2132 		if (ps_pdread(ph_p,
2133 		    ta_p->uberdata_addr + offsetof(uberdata_t, tsd_metadata),
2134 		    &tsdm, sizeof (tsdm)) != PS_OK)
2135 			return_val = TD_DBERR;
2136 		else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_stsd,
2137 		    &tsd_paddr, sizeof (tsd_paddr)) != PS_OK)
2138 			return_val = TD_DBERR;
2139 		else if (tsd_paddr != NULL &&
2140 		    ps_pdread(ph_p, tsd_paddr, &stsd, sizeof (stsd)) != PS_OK)
2141 			return_val = TD_DBERR;
2142 		else {
2143 			maxkey = tsdm.tsdm_nused;
2144 			nkey = tsd_paddr == NULL ? TSD_NFAST : stsd.tsd_nalloc;
2145 
2146 			if (key < TSD_NFAST)
2147 				tsd_paddr = (psaddr_t)&ulwp->ul_ftsd[0];
2148 		}
2149 	} else {
2150 #if defined(_LP64) && defined(_SYSCALL32)
2151 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
2152 		tsd_metadata32_t tsdm;
2153 		tsd32_t stsd;
2154 		caddr32_t addr;
2155 
2156 		if (ps_pdread(ph_p,
2157 		    ta_p->uberdata_addr + offsetof(uberdata32_t, tsd_metadata),
2158 		    &tsdm, sizeof (tsdm)) != PS_OK)
2159 			return_val = TD_DBERR;
2160 		else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_stsd,
2161 		    &addr, sizeof (addr)) != PS_OK)
2162 			return_val = TD_DBERR;
2163 		else if (addr != NULL &&
2164 		    ps_pdread(ph_p, addr, &stsd, sizeof (stsd)) != PS_OK)
2165 			return_val = TD_DBERR;
2166 		else {
2167 			maxkey = tsdm.tsdm_nused;
2168 			nkey = addr == NULL ? TSD_NFAST : stsd.tsd_nalloc;
2169 
2170 			if (key < TSD_NFAST) {
2171 				tsd_paddr = (psaddr_t)&ulwp->ul_ftsd[0];
2172 			} else {
2173 				tsd_paddr = addr;
2174 			}
2175 		}
2176 #else
2177 		return_val = TD_ERR;
2178 #endif	/* _SYSCALL32 */
2179 	}
2180 
2181 	if (return_val == TD_OK && (key < 1 || key >= maxkey))
2182 		return_val = TD_NOTSD;
2183 	if (return_val != TD_OK || key >= nkey) {
2184 		/* NULL has already been stored in data_pp */
2185 		(void) ps_pcontinue(ph_p);
2186 		ph_unlock(ta_p);
2187 		return (return_val);
2188 	}
2189 
2190 	/*
2191 	 * Read the value from the thread's tsd array.
2192 	 */
2193 	if (ta_p->model == PR_MODEL_NATIVE) {
2194 		void *value;
2195 
2196 		if (ps_pdread(ph_p, tsd_paddr + key * sizeof (void *),
2197 		    &value, sizeof (value)) != PS_OK)
2198 			return_val = TD_DBERR;
2199 		else
2200 			*data_pp = value;
2201 #if defined(_LP64) && defined(_SYSCALL32)
2202 	} else {
2203 		caddr32_t value32;
2204 
2205 		if (ps_pdread(ph_p, tsd_paddr + key * sizeof (caddr32_t),
2206 		    &value32, sizeof (value32)) != PS_OK)
2207 			return_val = TD_DBERR;
2208 		else
2209 			*data_pp = (void *)(uintptr_t)value32;
2210 #endif	/* _SYSCALL32 */
2211 	}
2212 
2213 	(void) ps_pcontinue(ph_p);
2214 	ph_unlock(ta_p);
2215 	return (return_val);
2216 }
2217 
2218 /*
2219  * Get the base address of a thread's thread local storage (TLS) block
2220  * for the module (executable or shared object) identified by 'moduleid'.
2221  */
2222 #pragma weak td_thr_tlsbase = __td_thr_tlsbase
2223 td_err_e
2224 __td_thr_tlsbase(td_thrhandle_t *th_p, ulong_t moduleid, psaddr_t *base)
2225 {
2226 	struct ps_prochandle *ph_p;
2227 	td_thragent_t	*ta_p;
2228 	td_err_e	return_val;
2229 
2230 	if (base == NULL)
2231 		return (TD_ERR);
2232 	*base = NULL;
2233 	if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL)
2234 		return (return_val);
2235 	ta_p = th_p->th_ta_p;
2236 	if (ps_pstop(ph_p) != PS_OK) {
2237 		ph_unlock(ta_p);
2238 		return (TD_DBERR);
2239 	}
2240 
2241 	if (ta_p->model == PR_MODEL_NATIVE) {
2242 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
2243 		tls_metadata_t tls_metadata;
2244 		TLS_modinfo tlsmod;
2245 		tls_t tls;
2246 
2247 		if (ps_pdread(ph_p,
2248 		    ta_p->uberdata_addr + offsetof(uberdata_t, tls_metadata),
2249 		    &tls_metadata, sizeof (tls_metadata)) != PS_OK)
2250 			return_val = TD_DBERR;
2251 		else if (moduleid >= tls_metadata.tls_modinfo.tls_size)
2252 			return_val = TD_NOTLS;
2253 		else if (ps_pdread(ph_p,
2254 		    (psaddr_t)((TLS_modinfo *)
2255 		    tls_metadata.tls_modinfo.tls_data + moduleid),
2256 		    &tlsmod, sizeof (tlsmod)) != PS_OK)
2257 			return_val = TD_DBERR;
2258 		else if (tlsmod.tm_memsz == 0)
2259 			return_val = TD_NOTLS;
2260 		else if (tlsmod.tm_flags & TM_FLG_STATICTLS)
2261 			*base = (psaddr_t)ulwp - tlsmod.tm_stattlsoffset;
2262 		else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_tls,
2263 		    &tls, sizeof (tls)) != PS_OK)
2264 			return_val = TD_DBERR;
2265 		else if (moduleid >= tls.tls_size)
2266 			return_val = TD_TLSDEFER;
2267 		else if (ps_pdread(ph_p,
2268 		    (psaddr_t)((tls_t *)tls.tls_data + moduleid),
2269 		    &tls, sizeof (tls)) != PS_OK)
2270 			return_val = TD_DBERR;
2271 		else if (tls.tls_size == 0)
2272 			return_val = TD_TLSDEFER;
2273 		else
2274 			*base = (psaddr_t)tls.tls_data;
2275 	} else {
2276 #if defined(_LP64) && defined(_SYSCALL32)
2277 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
2278 		tls_metadata32_t tls_metadata;
2279 		TLS_modinfo32 tlsmod;
2280 		tls32_t tls;
2281 
2282 		if (ps_pdread(ph_p,
2283 		    ta_p->uberdata_addr + offsetof(uberdata32_t, tls_metadata),
2284 		    &tls_metadata, sizeof (tls_metadata)) != PS_OK)
2285 			return_val = TD_DBERR;
2286 		else if (moduleid >= tls_metadata.tls_modinfo.tls_size)
2287 			return_val = TD_NOTLS;
2288 		else if (ps_pdread(ph_p,
2289 		    (psaddr_t)((TLS_modinfo32 *)
2290 		    (uintptr_t)tls_metadata.tls_modinfo.tls_data + moduleid),
2291 		    &tlsmod, sizeof (tlsmod)) != PS_OK)
2292 			return_val = TD_DBERR;
2293 		else if (tlsmod.tm_memsz == 0)
2294 			return_val = TD_NOTLS;
2295 		else if (tlsmod.tm_flags & TM_FLG_STATICTLS)
2296 			*base = (psaddr_t)ulwp - tlsmod.tm_stattlsoffset;
2297 		else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_tls,
2298 		    &tls, sizeof (tls)) != PS_OK)
2299 			return_val = TD_DBERR;
2300 		else if (moduleid >= tls.tls_size)
2301 			return_val = TD_TLSDEFER;
2302 		else if (ps_pdread(ph_p,
2303 		    (psaddr_t)((tls32_t *)(uintptr_t)tls.tls_data + moduleid),
2304 		    &tls, sizeof (tls)) != PS_OK)
2305 			return_val = TD_DBERR;
2306 		else if (tls.tls_size == 0)
2307 			return_val = TD_TLSDEFER;
2308 		else
2309 			*base = (psaddr_t)tls.tls_data;
2310 #else
2311 		return_val = TD_ERR;
2312 #endif	/* _SYSCALL32 */
2313 	}
2314 
2315 	(void) ps_pcontinue(ph_p);
2316 	ph_unlock(ta_p);
2317 	return (return_val);
2318 }
2319 
2320 /*
2321  * Change a thread's priority to the value specified by ti_pri.
2322  * Currently unused by dbx.
2323  */
2324 #pragma weak td_thr_setprio = __td_thr_setprio
2325 /* ARGSUSED */
2326 td_err_e
2327 __td_thr_setprio(td_thrhandle_t *th_p, int ti_pri)
2328 {
2329 	return (TD_NOCAPAB);
2330 }
2331 
2332 /*
2333  * This structure links td_thr_lockowner and the lowner_cb callback function.
2334  */
2335 typedef struct {
2336 	td_sync_iter_f	*owner_cb;
2337 	void		*owner_cb_arg;
2338 	td_thrhandle_t	*th_p;
2339 } lowner_cb_ctl_t;
2340 
2341 static int
2342 lowner_cb(const td_synchandle_t *sh_p, void *arg)
2343 {
2344 	lowner_cb_ctl_t *ocb = arg;
2345 	int trunc = 0;
2346 	union {
2347 		rwlock_t rwl;
2348 		mutex_t mx;
2349 	} rw_m;
2350 
2351 	if (ps_pdread(sh_p->sh_ta_p->ph_p, sh_p->sh_unique,
2352 	    &rw_m, sizeof (rw_m)) != PS_OK) {
2353 		trunc = 1;
2354 		if (ps_pdread(sh_p->sh_ta_p->ph_p, sh_p->sh_unique,
2355 		    &rw_m.mx, sizeof (rw_m.mx)) != PS_OK)
2356 			return (0);
2357 	}
2358 	if (rw_m.mx.mutex_magic == MUTEX_MAGIC &&
2359 	    rw_m.mx.mutex_owner == ocb->th_p->th_unique)
2360 		return ((ocb->owner_cb)(sh_p, ocb->owner_cb_arg));
2361 	if (!trunc && rw_m.rwl.magic == RWL_MAGIC) {
2362 		mutex_t *rwlock = &rw_m.rwl.mutex;
2363 		if (rwlock->mutex_owner == ocb->th_p->th_unique)
2364 			return ((ocb->owner_cb)(sh_p, ocb->owner_cb_arg));
2365 	}
2366 	return (0);
2367 }
2368 
2369 /*
2370  * Iterate over the set of locks owned by a specified thread.
2371  * If cb returns a non-zero value, terminate iterations.
2372  */
2373 #pragma weak td_thr_lockowner = __td_thr_lockowner
2374 td_err_e
2375 __td_thr_lockowner(const td_thrhandle_t *th_p, td_sync_iter_f *cb,
2376 	void *cb_data)
2377 {
2378 	td_thragent_t	*ta_p;
2379 	td_err_e	return_val;
2380 	lowner_cb_ctl_t	lcb;
2381 
2382 	/*
2383 	 * Just sanity checks.
2384 	 */
2385 	if (ph_lock_th((td_thrhandle_t *)th_p, &return_val) == NULL)
2386 		return (return_val);
2387 	ta_p = th_p->th_ta_p;
2388 	ph_unlock(ta_p);
2389 
2390 	lcb.owner_cb = cb;
2391 	lcb.owner_cb_arg = cb_data;
2392 	lcb.th_p = (td_thrhandle_t *)th_p;
2393 	return (__td_ta_sync_iter(ta_p, lowner_cb, &lcb));
2394 }
2395 
2396 /*
2397  * If a thread is asleep on a synchronization variable,
2398  * then get the synchronization handle.
2399  */
2400 #pragma weak td_thr_sleepinfo = __td_thr_sleepinfo
2401 td_err_e
2402 __td_thr_sleepinfo(const td_thrhandle_t *th_p, td_synchandle_t *sh_p)
2403 {
2404 	struct ps_prochandle *ph_p;
2405 	td_err_e	return_val = TD_OK;
2406 	uintptr_t	wchan;
2407 
2408 	if (sh_p == NULL)
2409 		return (TD_ERR);
2410 	if ((ph_p = ph_lock_th((td_thrhandle_t *)th_p, &return_val)) == NULL)
2411 		return (return_val);
2412 
2413 	/*
2414 	 * No need to stop the process for a simple read.
2415 	 */
2416 	if (th_p->th_ta_p->model == PR_MODEL_NATIVE) {
2417 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
2418 
2419 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan,
2420 		    &wchan, sizeof (wchan)) != PS_OK)
2421 			return_val = TD_DBERR;
2422 	} else {
2423 #if defined(_LP64) && defined(_SYSCALL32)
2424 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
2425 		caddr32_t wchan32;
2426 
2427 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan,
2428 		    &wchan32, sizeof (wchan32)) != PS_OK)
2429 			return_val = TD_DBERR;
2430 		wchan = wchan32;
2431 #else
2432 		return_val = TD_ERR;
2433 #endif	/* _SYSCALL32 */
2434 	}
2435 
2436 	if (return_val != TD_OK || wchan == NULL) {
2437 		sh_p->sh_ta_p = NULL;
2438 		sh_p->sh_unique = NULL;
2439 		if (return_val == TD_OK)
2440 			return_val = TD_ERR;
2441 	} else {
2442 		sh_p->sh_ta_p = th_p->th_ta_p;
2443 		sh_p->sh_unique = (psaddr_t)wchan;
2444 	}
2445 
2446 	ph_unlock(th_p->th_ta_p);
2447 	return (return_val);
2448 }
2449 
2450 /*
2451  * Which thread is running on an lwp?
2452  */
2453 #pragma weak td_ta_map_lwp2thr = __td_ta_map_lwp2thr
2454 td_err_e
2455 __td_ta_map_lwp2thr(td_thragent_t *ta_p, lwpid_t lwpid,
2456 	td_thrhandle_t *th_p)
2457 {
2458 	return (__td_ta_map_id2thr(ta_p, lwpid, th_p));
2459 }
2460 
2461 /*
2462  * Common code for td_sync_get_info() and td_sync_get_stats()
2463  */
2464 static td_err_e
2465 sync_get_info_common(const td_synchandle_t *sh_p, struct ps_prochandle *ph_p,
2466 	td_syncinfo_t *si_p)
2467 {
2468 	int trunc = 0;
2469 	td_so_un_t generic_so;
2470 
2471 	/*
2472 	 * Determine the sync. object type; a little type fudgery here.
2473 	 * First attempt to read the whole union.  If that fails, attempt
2474 	 * to read just the condvar.  A condvar is the smallest sync. object.
2475 	 */
2476 	if (ps_pdread(ph_p, sh_p->sh_unique,
2477 	    &generic_so, sizeof (generic_so)) != PS_OK) {
2478 		trunc = 1;
2479 		if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so.condition,
2480 		    sizeof (generic_so.condition)) != PS_OK)
2481 			return (TD_DBERR);
2482 	}
2483 
2484 	switch (generic_so.condition.cond_magic) {
2485 	case MUTEX_MAGIC:
2486 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2487 		    &generic_so.lock, sizeof (generic_so.lock)) != PS_OK)
2488 			return (TD_DBERR);
2489 		si_p->si_type = TD_SYNC_MUTEX;
2490 		si_p->si_shared_type =
2491 		    (generic_so.lock.mutex_type & USYNC_PROCESS);
2492 		(void) memcpy(si_p->si_flags, &generic_so.lock.mutex_flag,
2493 		    sizeof (generic_so.lock.mutex_flag));
2494 		si_p->si_state.mutex_locked =
2495 		    (generic_so.lock.mutex_lockw != 0);
2496 		si_p->si_size = sizeof (generic_so.lock);
2497 		si_p->si_has_waiters = generic_so.lock.mutex_waiters;
2498 		si_p->si_rcount = generic_so.lock.mutex_rcount;
2499 		si_p->si_prioceiling = generic_so.lock.mutex_ceiling;
2500 		if (si_p->si_state.mutex_locked) {
2501 			if (si_p->si_shared_type & USYNC_PROCESS)
2502 				si_p->si_ownerpid =
2503 				    generic_so.lock.mutex_ownerpid;
2504 			si_p->si_owner.th_ta_p = sh_p->sh_ta_p;
2505 			si_p->si_owner.th_unique = generic_so.lock.mutex_owner;
2506 		}
2507 		break;
2508 	case COND_MAGIC:
2509 		si_p->si_type = TD_SYNC_COND;
2510 		si_p->si_shared_type =
2511 		    (generic_so.condition.cond_type & USYNC_PROCESS);
2512 		(void) memcpy(si_p->si_flags, generic_so.condition.flags.flag,
2513 		    sizeof (generic_so.condition.flags.flag));
2514 		si_p->si_size = sizeof (generic_so.condition);
2515 		si_p->si_has_waiters =
2516 		    (generic_so.condition.cond_waiters_user |
2517 		    generic_so.condition.cond_waiters_kernel)? 1 : 0;
2518 		break;
2519 	case SEMA_MAGIC:
2520 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2521 		    &generic_so.semaphore, sizeof (generic_so.semaphore))
2522 		    != PS_OK)
2523 			return (TD_DBERR);
2524 		si_p->si_type = TD_SYNC_SEMA;
2525 		si_p->si_shared_type =
2526 		    (generic_so.semaphore.type & USYNC_PROCESS);
2527 		si_p->si_state.sem_count = generic_so.semaphore.count;
2528 		si_p->si_size = sizeof (generic_so.semaphore);
2529 		si_p->si_has_waiters =
2530 		    ((lwp_sema_t *)&generic_so.semaphore)->flags[7];
2531 		/* this is useless but the old interface provided it */
2532 		si_p->si_data = (psaddr_t)generic_so.semaphore.count;
2533 		break;
2534 	case RWL_MAGIC:
2535 	{
2536 		uint32_t rwstate;
2537 
2538 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2539 		    &generic_so.rwlock, sizeof (generic_so.rwlock)) != PS_OK)
2540 			return (TD_DBERR);
2541 		si_p->si_type = TD_SYNC_RWLOCK;
2542 		si_p->si_shared_type =
2543 		    (generic_so.rwlock.rwlock_type & USYNC_PROCESS);
2544 		si_p->si_size = sizeof (generic_so.rwlock);
2545 
2546 		rwstate = (uint32_t)generic_so.rwlock.rwlock_readers;
2547 		if (rwstate & URW_WRITE_LOCKED) {
2548 			si_p->si_state.nreaders = -1;
2549 			si_p->si_is_wlock = 1;
2550 			si_p->si_owner.th_ta_p = sh_p->sh_ta_p;
2551 			si_p->si_owner.th_unique =
2552 			    generic_so.rwlock.rwlock_owner;
2553 			if (si_p->si_shared_type & USYNC_PROCESS)
2554 				si_p->si_ownerpid =
2555 				    generic_so.rwlock.rwlock_ownerpid;
2556 		} else {
2557 			si_p->si_state.nreaders = (rwstate & URW_READERS_MASK);
2558 		}
2559 		si_p->si_has_waiters = ((rwstate & URW_HAS_WAITERS) != 0);
2560 
2561 		/* this is useless but the old interface provided it */
2562 		si_p->si_data = (psaddr_t)generic_so.rwlock.readers;
2563 		break;
2564 	}
2565 	default:
2566 		return (TD_BADSH);
2567 	}
2568 
2569 	si_p->si_ta_p = sh_p->sh_ta_p;
2570 	si_p->si_sv_addr = sh_p->sh_unique;
2571 	return (TD_OK);
2572 }
2573 
2574 /*
2575  * Given a synchronization handle, fill in the
2576  * information for the synchronization variable into *si_p.
2577  */
2578 #pragma weak td_sync_get_info = __td_sync_get_info
2579 td_err_e
2580 __td_sync_get_info(const td_synchandle_t *sh_p, td_syncinfo_t *si_p)
2581 {
2582 	struct ps_prochandle *ph_p;
2583 	td_err_e return_val;
2584 
2585 	if (si_p == NULL)
2586 		return (TD_ERR);
2587 	(void) memset(si_p, 0, sizeof (*si_p));
2588 	if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL)
2589 		return (return_val);
2590 	if (ps_pstop(ph_p) != PS_OK) {
2591 		ph_unlock(sh_p->sh_ta_p);
2592 		return (TD_DBERR);
2593 	}
2594 
2595 	return_val = sync_get_info_common(sh_p, ph_p, si_p);
2596 
2597 	(void) ps_pcontinue(ph_p);
2598 	ph_unlock(sh_p->sh_ta_p);
2599 	return (return_val);
2600 }
2601 
2602 static uint_t
2603 tdb_addr_hash64(uint64_t addr)
2604 {
2605 	uint64_t value60 = (addr >> 4);
2606 	uint32_t value30 = (value60 >> 30) ^ (value60 & 0x3fffffff);
2607 	return ((value30 >> 15) ^ (value30 & 0x7fff));
2608 }
2609 
2610 static uint_t
2611 tdb_addr_hash32(uint64_t addr)
2612 {
2613 	uint32_t value30 = (addr >> 2);		/* 30 bits */
2614 	return ((value30 >> 15) ^ (value30 & 0x7fff));
2615 }
2616 
2617 static td_err_e
2618 read_sync_stats(td_thragent_t *ta_p, psaddr_t hash_table,
2619 	psaddr_t sync_obj_addr, tdb_sync_stats_t *sync_stats)
2620 {
2621 	psaddr_t next_desc;
2622 	uint64_t first;
2623 	uint_t ix;
2624 
2625 	/*
2626 	 * Compute the hash table index from the synch object's address.
2627 	 */
2628 	if (ta_p->model == PR_MODEL_LP64)
2629 		ix = tdb_addr_hash64(sync_obj_addr);
2630 	else
2631 		ix = tdb_addr_hash32(sync_obj_addr);
2632 
2633 	/*
2634 	 * Get the address of the first element in the linked list.
2635 	 */
2636 	if (ps_pdread(ta_p->ph_p, hash_table + ix * sizeof (uint64_t),
2637 	    &first, sizeof (first)) != PS_OK)
2638 		return (TD_DBERR);
2639 
2640 	/*
2641 	 * Search the linked list for an entry for the synch object..
2642 	 */
2643 	for (next_desc = (psaddr_t)first; next_desc != NULL;
2644 	    next_desc = (psaddr_t)sync_stats->next) {
2645 		if (ps_pdread(ta_p->ph_p, next_desc,
2646 		    sync_stats, sizeof (*sync_stats)) != PS_OK)
2647 			return (TD_DBERR);
2648 		if (sync_stats->sync_addr == sync_obj_addr)
2649 			return (TD_OK);
2650 	}
2651 
2652 	(void) memset(sync_stats, 0, sizeof (*sync_stats));
2653 	return (TD_OK);
2654 }
2655 
2656 /*
2657  * Given a synchronization handle, fill in the
2658  * statistics for the synchronization variable into *ss_p.
2659  */
2660 #pragma weak td_sync_get_stats = __td_sync_get_stats
2661 td_err_e
2662 __td_sync_get_stats(const td_synchandle_t *sh_p, td_syncstats_t *ss_p)
2663 {
2664 	struct ps_prochandle *ph_p;
2665 	td_thragent_t *ta_p;
2666 	td_err_e return_val;
2667 	register_sync_t enable;
2668 	psaddr_t hashaddr;
2669 	tdb_sync_stats_t sync_stats;
2670 	size_t ix;
2671 
2672 	if (ss_p == NULL)
2673 		return (TD_ERR);
2674 	(void) memset(ss_p, 0, sizeof (*ss_p));
2675 	if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL)
2676 		return (return_val);
2677 	ta_p = sh_p->sh_ta_p;
2678 	if (ps_pstop(ph_p) != PS_OK) {
2679 		ph_unlock(ta_p);
2680 		return (TD_DBERR);
2681 	}
2682 
2683 	if ((return_val = sync_get_info_common(sh_p, ph_p, &ss_p->ss_info))
2684 	    != TD_OK) {
2685 		if (return_val != TD_BADSH)
2686 			goto out;
2687 		/* we can correct TD_BADSH */
2688 		(void) memset(&ss_p->ss_info, 0, sizeof (ss_p->ss_info));
2689 		ss_p->ss_info.si_ta_p = sh_p->sh_ta_p;
2690 		ss_p->ss_info.si_sv_addr = sh_p->sh_unique;
2691 		/* we correct si_type and si_size below */
2692 		return_val = TD_OK;
2693 	}
2694 	if (ps_pdread(ph_p, ta_p->tdb_register_sync_addr,
2695 	    &enable, sizeof (enable)) != PS_OK) {
2696 		return_val = TD_DBERR;
2697 		goto out;
2698 	}
2699 	if (enable != REGISTER_SYNC_ON)
2700 		goto out;
2701 
2702 	/*
2703 	 * Get the address of the hash table in the target process.
2704 	 */
2705 	if (ta_p->model == PR_MODEL_NATIVE) {
2706 		if (ps_pdread(ph_p, ta_p->uberdata_addr +
2707 		    offsetof(uberdata_t, tdb.tdb_sync_addr_hash),
2708 		    &hashaddr, sizeof (&hashaddr)) != PS_OK) {
2709 			return_val = TD_DBERR;
2710 			goto out;
2711 		}
2712 	} else {
2713 #if defined(_LP64) && defined(_SYSCALL32)
2714 		caddr32_t addr;
2715 
2716 		if (ps_pdread(ph_p, ta_p->uberdata_addr +
2717 		    offsetof(uberdata32_t, tdb.tdb_sync_addr_hash),
2718 		    &addr, sizeof (addr)) != PS_OK) {
2719 			return_val = TD_DBERR;
2720 			goto out;
2721 		}
2722 		hashaddr = addr;
2723 #else
2724 		return_val = TD_ERR;
2725 		goto out;
2726 #endif	/* _SYSCALL32 */
2727 	}
2728 
2729 	if (hashaddr == 0)
2730 		return_val = TD_BADSH;
2731 	else
2732 		return_val = read_sync_stats(ta_p, hashaddr,
2733 		    sh_p->sh_unique, &sync_stats);
2734 	if (return_val != TD_OK)
2735 		goto out;
2736 
2737 	/*
2738 	 * We have the hash table entry.  Transfer the data to
2739 	 * the td_syncstats_t structure provided by the caller.
2740 	 */
2741 	switch (sync_stats.un.type) {
2742 	case TDB_MUTEX:
2743 	{
2744 		td_mutex_stats_t *msp = &ss_p->ss_un.mutex;
2745 
2746 		ss_p->ss_info.si_type = TD_SYNC_MUTEX;
2747 		ss_p->ss_info.si_size = sizeof (mutex_t);
2748 		msp->mutex_lock =
2749 		    sync_stats.un.mutex.mutex_lock;
2750 		msp->mutex_sleep =
2751 		    sync_stats.un.mutex.mutex_sleep;
2752 		msp->mutex_sleep_time =
2753 		    sync_stats.un.mutex.mutex_sleep_time;
2754 		msp->mutex_hold_time =
2755 		    sync_stats.un.mutex.mutex_hold_time;
2756 		msp->mutex_try =
2757 		    sync_stats.un.mutex.mutex_try;
2758 		msp->mutex_try_fail =
2759 		    sync_stats.un.mutex.mutex_try_fail;
2760 		if (sync_stats.sync_addr >= ta_p->hash_table_addr &&
2761 		    (ix = sync_stats.sync_addr - ta_p->hash_table_addr)
2762 		    < ta_p->hash_size * sizeof (thr_hash_table_t))
2763 			msp->mutex_internal =
2764 			    ix / sizeof (thr_hash_table_t) + 1;
2765 		break;
2766 	}
2767 	case TDB_COND:
2768 	{
2769 		td_cond_stats_t *csp = &ss_p->ss_un.cond;
2770 
2771 		ss_p->ss_info.si_type = TD_SYNC_COND;
2772 		ss_p->ss_info.si_size = sizeof (cond_t);
2773 		csp->cond_wait =
2774 		    sync_stats.un.cond.cond_wait;
2775 		csp->cond_timedwait =
2776 		    sync_stats.un.cond.cond_timedwait;
2777 		csp->cond_wait_sleep_time =
2778 		    sync_stats.un.cond.cond_wait_sleep_time;
2779 		csp->cond_timedwait_sleep_time =
2780 		    sync_stats.un.cond.cond_timedwait_sleep_time;
2781 		csp->cond_timedwait_timeout =
2782 		    sync_stats.un.cond.cond_timedwait_timeout;
2783 		csp->cond_signal =
2784 		    sync_stats.un.cond.cond_signal;
2785 		csp->cond_broadcast =
2786 		    sync_stats.un.cond.cond_broadcast;
2787 		if (sync_stats.sync_addr >= ta_p->hash_table_addr &&
2788 		    (ix = sync_stats.sync_addr - ta_p->hash_table_addr)
2789 		    < ta_p->hash_size * sizeof (thr_hash_table_t))
2790 			csp->cond_internal =
2791 			    ix / sizeof (thr_hash_table_t) + 1;
2792 		break;
2793 	}
2794 	case TDB_RWLOCK:
2795 	{
2796 		td_rwlock_stats_t *rwsp = &ss_p->ss_un.rwlock;
2797 
2798 		ss_p->ss_info.si_type = TD_SYNC_RWLOCK;
2799 		ss_p->ss_info.si_size = sizeof (rwlock_t);
2800 		rwsp->rw_rdlock =
2801 		    sync_stats.un.rwlock.rw_rdlock;
2802 		rwsp->rw_rdlock_try =
2803 		    sync_stats.un.rwlock.rw_rdlock_try;
2804 		rwsp->rw_rdlock_try_fail =
2805 		    sync_stats.un.rwlock.rw_rdlock_try_fail;
2806 		rwsp->rw_wrlock =
2807 		    sync_stats.un.rwlock.rw_wrlock;
2808 		rwsp->rw_wrlock_hold_time =
2809 		    sync_stats.un.rwlock.rw_wrlock_hold_time;
2810 		rwsp->rw_wrlock_try =
2811 		    sync_stats.un.rwlock.rw_wrlock_try;
2812 		rwsp->rw_wrlock_try_fail =
2813 		    sync_stats.un.rwlock.rw_wrlock_try_fail;
2814 		break;
2815 	}
2816 	case TDB_SEMA:
2817 	{
2818 		td_sema_stats_t *ssp = &ss_p->ss_un.sema;
2819 
2820 		ss_p->ss_info.si_type = TD_SYNC_SEMA;
2821 		ss_p->ss_info.si_size = sizeof (sema_t);
2822 		ssp->sema_wait =
2823 		    sync_stats.un.sema.sema_wait;
2824 		ssp->sema_wait_sleep =
2825 		    sync_stats.un.sema.sema_wait_sleep;
2826 		ssp->sema_wait_sleep_time =
2827 		    sync_stats.un.sema.sema_wait_sleep_time;
2828 		ssp->sema_trywait =
2829 		    sync_stats.un.sema.sema_trywait;
2830 		ssp->sema_trywait_fail =
2831 		    sync_stats.un.sema.sema_trywait_fail;
2832 		ssp->sema_post =
2833 		    sync_stats.un.sema.sema_post;
2834 		ssp->sema_max_count =
2835 		    sync_stats.un.sema.sema_max_count;
2836 		ssp->sema_min_count =
2837 		    sync_stats.un.sema.sema_min_count;
2838 		break;
2839 	}
2840 	default:
2841 		return_val = TD_BADSH;
2842 		break;
2843 	}
2844 
2845 out:
2846 	(void) ps_pcontinue(ph_p);
2847 	ph_unlock(ta_p);
2848 	return (return_val);
2849 }
2850 
2851 /*
2852  * Change the state of a synchronization variable.
2853  *	1) mutex lock state set to value
2854  *	2) semaphore's count set to value
2855  *	3) writer's lock set by value < 0
2856  *	4) reader's lock number of readers set to value >= 0
2857  * Currently unused by dbx.
2858  */
2859 #pragma weak td_sync_setstate = __td_sync_setstate
2860 td_err_e
2861 __td_sync_setstate(const td_synchandle_t *sh_p, long lvalue)
2862 {
2863 	struct ps_prochandle *ph_p;
2864 	int		trunc = 0;
2865 	td_err_e	return_val;
2866 	td_so_un_t	generic_so;
2867 	uint32_t	*rwstate;
2868 	int		value = (int)lvalue;
2869 
2870 	if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL)
2871 		return (return_val);
2872 	if (ps_pstop(ph_p) != PS_OK) {
2873 		ph_unlock(sh_p->sh_ta_p);
2874 		return (TD_DBERR);
2875 	}
2876 
2877 	/*
2878 	 * Read the synch. variable information.
2879 	 * First attempt to read the whole union and if that fails
2880 	 * fall back to reading only the smallest member, the condvar.
2881 	 */
2882 	if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so,
2883 	    sizeof (generic_so)) != PS_OK) {
2884 		trunc = 1;
2885 		if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so.condition,
2886 		    sizeof (generic_so.condition)) != PS_OK) {
2887 			(void) ps_pcontinue(ph_p);
2888 			ph_unlock(sh_p->sh_ta_p);
2889 			return (TD_DBERR);
2890 		}
2891 	}
2892 
2893 	/*
2894 	 * Set the new value in the sync. variable, read the synch. variable
2895 	 * information. from the process, reset its value and write it back.
2896 	 */
2897 	switch (generic_so.condition.mutex_magic) {
2898 	case MUTEX_MAGIC:
2899 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2900 		    &generic_so.lock, sizeof (generic_so.lock)) != PS_OK) {
2901 			return_val = TD_DBERR;
2902 			break;
2903 		}
2904 		generic_so.lock.mutex_lockw = (uint8_t)value;
2905 		if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.lock,
2906 		    sizeof (generic_so.lock)) != PS_OK)
2907 			return_val = TD_DBERR;
2908 		break;
2909 	case SEMA_MAGIC:
2910 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2911 		    &generic_so.semaphore, sizeof (generic_so.semaphore))
2912 		    != PS_OK) {
2913 			return_val = TD_DBERR;
2914 			break;
2915 		}
2916 		generic_so.semaphore.count = value;
2917 		if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.semaphore,
2918 		    sizeof (generic_so.semaphore)) != PS_OK)
2919 			return_val = TD_DBERR;
2920 		break;
2921 	case COND_MAGIC:
2922 		/* Operation not supported on a condition variable */
2923 		return_val = TD_ERR;
2924 		break;
2925 	case RWL_MAGIC:
2926 		if (trunc && ps_pdread(ph_p, sh_p->sh_unique,
2927 		    &generic_so.rwlock, sizeof (generic_so.rwlock)) != PS_OK) {
2928 			return_val = TD_DBERR;
2929 			break;
2930 		}
2931 		rwstate = (uint32_t *)&generic_so.rwlock.readers;
2932 		*rwstate &= URW_HAS_WAITERS;
2933 		if (value < 0)
2934 			*rwstate |= URW_WRITE_LOCKED;
2935 		else
2936 			*rwstate |= (value & URW_READERS_MASK);
2937 		if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.rwlock,
2938 		    sizeof (generic_so.rwlock)) != PS_OK)
2939 			return_val = TD_DBERR;
2940 		break;
2941 	default:
2942 		/* Bad sync. object type */
2943 		return_val = TD_BADSH;
2944 		break;
2945 	}
2946 
2947 	(void) ps_pcontinue(ph_p);
2948 	ph_unlock(sh_p->sh_ta_p);
2949 	return (return_val);
2950 }
2951 
2952 typedef struct {
2953 	td_thr_iter_f	*waiter_cb;
2954 	psaddr_t	sync_obj_addr;
2955 	uint16_t	sync_magic;
2956 	void		*waiter_cb_arg;
2957 	td_err_e	errcode;
2958 } waiter_cb_ctl_t;
2959 
2960 static int
2961 waiters_cb(const td_thrhandle_t *th_p, void *arg)
2962 {
2963 	td_thragent_t	*ta_p = th_p->th_ta_p;
2964 	struct ps_prochandle *ph_p = ta_p->ph_p;
2965 	waiter_cb_ctl_t	*wcb = arg;
2966 	caddr_t		wchan;
2967 
2968 	if (ta_p->model == PR_MODEL_NATIVE) {
2969 		ulwp_t *ulwp = (ulwp_t *)th_p->th_unique;
2970 
2971 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan,
2972 		    &wchan, sizeof (wchan)) != PS_OK) {
2973 			wcb->errcode = TD_DBERR;
2974 			return (1);
2975 		}
2976 	} else {
2977 #if defined(_LP64) && defined(_SYSCALL32)
2978 		ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique;
2979 		caddr32_t wchan32;
2980 
2981 		if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan,
2982 		    &wchan32, sizeof (wchan32)) != PS_OK) {
2983 			wcb->errcode = TD_DBERR;
2984 			return (1);
2985 		}
2986 		wchan = (caddr_t)(uintptr_t)wchan32;
2987 #else
2988 		wcb->errcode = TD_ERR;
2989 		return (1);
2990 #endif	/* _SYSCALL32 */
2991 	}
2992 
2993 	if (wchan == NULL)
2994 		return (0);
2995 
2996 	if (wchan == (caddr_t)wcb->sync_obj_addr)
2997 		return ((*wcb->waiter_cb)(th_p, wcb->waiter_cb_arg));
2998 
2999 	return (0);
3000 }
3001 
3002 /*
3003  * For a given synchronization variable, iterate over the
3004  * set of waiting threads.  The call back function is passed
3005  * two parameters, a pointer to a thread handle and a pointer
3006  * to extra call back data.
3007  */
3008 #pragma weak td_sync_waiters = __td_sync_waiters
3009 td_err_e
3010 __td_sync_waiters(const td_synchandle_t *sh_p, td_thr_iter_f *cb, void *cb_data)
3011 {
3012 	struct ps_prochandle *ph_p;
3013 	waiter_cb_ctl_t	wcb;
3014 	td_err_e	return_val;
3015 
3016 	if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL)
3017 		return (return_val);
3018 	if (ps_pdread(ph_p,
3019 	    (psaddr_t)&((mutex_t *)sh_p->sh_unique)->mutex_magic,
3020 	    (caddr_t)&wcb.sync_magic, sizeof (wcb.sync_magic)) != PS_OK) {
3021 		ph_unlock(sh_p->sh_ta_p);
3022 		return (TD_DBERR);
3023 	}
3024 	ph_unlock(sh_p->sh_ta_p);
3025 
3026 	switch (wcb.sync_magic) {
3027 	case MUTEX_MAGIC:
3028 	case COND_MAGIC:
3029 	case SEMA_MAGIC:
3030 	case RWL_MAGIC:
3031 		break;
3032 	default:
3033 		return (TD_BADSH);
3034 	}
3035 
3036 	wcb.waiter_cb = cb;
3037 	wcb.sync_obj_addr = sh_p->sh_unique;
3038 	wcb.waiter_cb_arg = cb_data;
3039 	wcb.errcode = TD_OK;
3040 	return_val = __td_ta_thr_iter(sh_p->sh_ta_p, waiters_cb, &wcb,
3041 	    TD_THR_SLEEP, TD_THR_LOWEST_PRIORITY,
3042 	    TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS);
3043 
3044 	if (return_val != TD_OK)
3045 		return (return_val);
3046 
3047 	return (wcb.errcode);
3048 }
3049