1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/sdt.h> 30 31 #include "lint.h" 32 #include "thr_uberdata.h" 33 34 /* 35 * This mutex is initialized to be held by lwp#1. 36 * It is used to block a thread that has returned from a mutex_lock() 37 * of a PTHREAD_PRIO_INHERIT mutex with an unrecoverable error. 38 */ 39 mutex_t stall_mutex = DEFAULTMUTEX; 40 41 static int shared_mutex_held(mutex_t *); 42 43 /* 44 * Lock statistics support functions. 45 */ 46 void 47 record_begin_hold(tdb_mutex_stats_t *msp) 48 { 49 tdb_incr(msp->mutex_lock); 50 msp->mutex_begin_hold = gethrtime(); 51 } 52 53 hrtime_t 54 record_hold_time(tdb_mutex_stats_t *msp) 55 { 56 hrtime_t now = gethrtime(); 57 58 if (msp->mutex_begin_hold) 59 msp->mutex_hold_time += now - msp->mutex_begin_hold; 60 msp->mutex_begin_hold = 0; 61 return (now); 62 } 63 64 /* 65 * Called once at library initialization. 66 */ 67 void 68 mutex_setup(void) 69 { 70 if (set_lock_byte(&stall_mutex.mutex_lockw)) 71 thr_panic("mutex_setup() cannot acquire stall_mutex"); 72 stall_mutex.mutex_owner = (uintptr_t)curthread; 73 } 74 75 /* 76 * The default spin counts of 1000 and 500 are experimentally determined. 77 * On sun4u machines with any number of processors they could be raised 78 * to 10,000 but that (experimentally) makes almost no difference. 79 * The environment variables: 80 * _THREAD_ADAPTIVE_SPIN=count 81 * _THREAD_RELEASE_SPIN=count 82 * can be used to override and set the counts in the range [0 .. 1,000,000]. 83 */ 84 int thread_adaptive_spin = 1000; 85 uint_t thread_max_spinners = 100; 86 int thread_release_spin = 500; 87 int thread_queue_verify = 0; 88 static int ncpus; 89 90 /* 91 * Distinguish spinning for queue locks from spinning for regular locks. 92 * The environment variable: 93 * _THREAD_QUEUE_SPIN=count 94 * can be used to override and set the count in the range [0 .. 1,000,000]. 95 * There is no release spin concept for queue locks. 96 */ 97 int thread_queue_spin = 1000; 98 99 /* 100 * Use the otherwise-unused 'mutex_ownerpid' field of a USYNC_THREAD 101 * mutex to be a count of adaptive spins in progress. 102 */ 103 #define mutex_spinners mutex_ownerpid 104 105 void 106 _mutex_set_typeattr(mutex_t *mp, int attr) 107 { 108 mp->mutex_type |= (uint8_t)attr; 109 } 110 111 /* 112 * 'type' can be one of USYNC_THREAD or USYNC_PROCESS, possibly 113 * augmented by the flags LOCK_RECURSIVE and/or LOCK_ERRORCHECK, 114 * or it can be USYNC_PROCESS_ROBUST with no extra flags. 115 */ 116 #pragma weak _private_mutex_init = __mutex_init 117 #pragma weak mutex_init = __mutex_init 118 #pragma weak _mutex_init = __mutex_init 119 /* ARGSUSED2 */ 120 int 121 __mutex_init(mutex_t *mp, int type, void *arg) 122 { 123 int error; 124 125 switch (type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) { 126 case USYNC_THREAD: 127 case USYNC_PROCESS: 128 (void) _memset(mp, 0, sizeof (*mp)); 129 mp->mutex_type = (uint8_t)type; 130 mp->mutex_flag = LOCK_INITED; 131 error = 0; 132 break; 133 case USYNC_PROCESS_ROBUST: 134 if (type & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) 135 error = EINVAL; 136 else 137 error = ___lwp_mutex_init(mp, type); 138 break; 139 default: 140 error = EINVAL; 141 break; 142 } 143 if (error == 0) 144 mp->mutex_magic = MUTEX_MAGIC; 145 return (error); 146 } 147 148 /* 149 * Delete mp from list of ceil mutexes owned by curthread. 150 * Return 1 if the head of the chain was updated. 151 */ 152 int 153 _ceil_mylist_del(mutex_t *mp) 154 { 155 ulwp_t *self = curthread; 156 mxchain_t **mcpp; 157 mxchain_t *mcp; 158 159 mcpp = &self->ul_mxchain; 160 while ((*mcpp)->mxchain_mx != mp) 161 mcpp = &(*mcpp)->mxchain_next; 162 mcp = *mcpp; 163 *mcpp = mcp->mxchain_next; 164 lfree(mcp, sizeof (*mcp)); 165 return (mcpp == &self->ul_mxchain); 166 } 167 168 /* 169 * Add mp to head of list of ceil mutexes owned by curthread. 170 * Return ENOMEM if no memory could be allocated. 171 */ 172 int 173 _ceil_mylist_add(mutex_t *mp) 174 { 175 ulwp_t *self = curthread; 176 mxchain_t *mcp; 177 178 if ((mcp = lmalloc(sizeof (*mcp))) == NULL) 179 return (ENOMEM); 180 mcp->mxchain_mx = mp; 181 mcp->mxchain_next = self->ul_mxchain; 182 self->ul_mxchain = mcp; 183 return (0); 184 } 185 186 /* 187 * Inherit priority from ceiling. The inheritance impacts the effective 188 * priority, not the assigned priority. See _thread_setschedparam_main(). 189 */ 190 void 191 _ceil_prio_inherit(int ceil) 192 { 193 ulwp_t *self = curthread; 194 struct sched_param param; 195 196 (void) _memset(¶m, 0, sizeof (param)); 197 param.sched_priority = ceil; 198 if (_thread_setschedparam_main(self->ul_lwpid, 199 self->ul_policy, ¶m, PRIO_INHERIT)) { 200 /* 201 * Panic since unclear what error code to return. 202 * If we do return the error codes returned by above 203 * called routine, update the man page... 204 */ 205 thr_panic("_thread_setschedparam_main() fails"); 206 } 207 } 208 209 /* 210 * Waive inherited ceiling priority. Inherit from head of owned ceiling locks 211 * if holding at least one ceiling lock. If no ceiling locks are held at this 212 * point, disinherit completely, reverting back to assigned priority. 213 */ 214 void 215 _ceil_prio_waive(void) 216 { 217 ulwp_t *self = curthread; 218 struct sched_param param; 219 220 (void) _memset(¶m, 0, sizeof (param)); 221 if (self->ul_mxchain == NULL) { 222 /* 223 * No ceil locks held. Zero the epri, revert back to ul_pri. 224 * Since thread's hash lock is not held, one cannot just 225 * read ul_pri here...do it in the called routine... 226 */ 227 param.sched_priority = self->ul_pri; /* ignored */ 228 if (_thread_setschedparam_main(self->ul_lwpid, 229 self->ul_policy, ¶m, PRIO_DISINHERIT)) 230 thr_panic("_thread_setschedparam_main() fails"); 231 } else { 232 /* 233 * Set priority to that of the mutex at the head 234 * of the ceilmutex chain. 235 */ 236 param.sched_priority = 237 self->ul_mxchain->mxchain_mx->mutex_ceiling; 238 if (_thread_setschedparam_main(self->ul_lwpid, 239 self->ul_policy, ¶m, PRIO_INHERIT)) 240 thr_panic("_thread_setschedparam_main() fails"); 241 } 242 } 243 244 /* 245 * Non-preemptive spin locks. Used by queue_lock(). 246 * No lock statistics are gathered for these locks. 247 */ 248 void 249 spin_lock_set(mutex_t *mp) 250 { 251 ulwp_t *self = curthread; 252 253 no_preempt(self); 254 if (set_lock_byte(&mp->mutex_lockw) == 0) { 255 mp->mutex_owner = (uintptr_t)self; 256 return; 257 } 258 /* 259 * Spin for a while, attempting to acquire the lock. 260 */ 261 if (self->ul_spin_lock_spin != UINT_MAX) 262 self->ul_spin_lock_spin++; 263 if (mutex_queuelock_adaptive(mp) == 0 || 264 set_lock_byte(&mp->mutex_lockw) == 0) { 265 mp->mutex_owner = (uintptr_t)self; 266 return; 267 } 268 /* 269 * Try harder if we were previously at a no premption level. 270 */ 271 if (self->ul_preempt > 1) { 272 if (self->ul_spin_lock_spin2 != UINT_MAX) 273 self->ul_spin_lock_spin2++; 274 if (mutex_queuelock_adaptive(mp) == 0 || 275 set_lock_byte(&mp->mutex_lockw) == 0) { 276 mp->mutex_owner = (uintptr_t)self; 277 return; 278 } 279 } 280 /* 281 * Give up and block in the kernel for the mutex. 282 */ 283 if (self->ul_spin_lock_sleep != UINT_MAX) 284 self->ul_spin_lock_sleep++; 285 (void) ___lwp_mutex_timedlock(mp, NULL); 286 mp->mutex_owner = (uintptr_t)self; 287 } 288 289 void 290 spin_lock_clear(mutex_t *mp) 291 { 292 ulwp_t *self = curthread; 293 294 mp->mutex_owner = 0; 295 if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) { 296 (void) ___lwp_mutex_wakeup(mp); 297 if (self->ul_spin_lock_wakeup != UINT_MAX) 298 self->ul_spin_lock_wakeup++; 299 } 300 preempt(self); 301 } 302 303 /* 304 * Allocate the sleep queue hash table. 305 */ 306 void 307 queue_alloc(void) 308 { 309 ulwp_t *self = curthread; 310 uberdata_t *udp = self->ul_uberdata; 311 void *data; 312 int i; 313 314 /* 315 * No locks are needed; we call here only when single-threaded. 316 */ 317 ASSERT(self == udp->ulwp_one); 318 ASSERT(!udp->uberflags.uf_mt); 319 if ((data = _private_mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t), 320 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0)) 321 == MAP_FAILED) 322 thr_panic("cannot allocate thread queue_head table"); 323 udp->queue_head = (queue_head_t *)data; 324 for (i = 0; i < 2 * QHASHSIZE; i++) 325 udp->queue_head[i].qh_lock.mutex_magic = MUTEX_MAGIC; 326 } 327 328 #if defined(THREAD_DEBUG) 329 330 /* 331 * Debugging: verify correctness of a sleep queue. 332 */ 333 void 334 QVERIFY(queue_head_t *qp) 335 { 336 ulwp_t *self = curthread; 337 uberdata_t *udp = self->ul_uberdata; 338 ulwp_t *ulwp; 339 ulwp_t *prev; 340 uint_t index; 341 uint32_t cnt = 0; 342 char qtype; 343 void *wchan; 344 345 ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE); 346 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 347 ASSERT((qp->qh_head != NULL && qp->qh_tail != NULL) || 348 (qp->qh_head == NULL && qp->qh_tail == NULL)); 349 if (!thread_queue_verify) 350 return; 351 /* real expensive stuff, only for _THREAD_QUEUE_VERIFY */ 352 qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV; 353 for (prev = NULL, ulwp = qp->qh_head; ulwp != NULL; 354 prev = ulwp, ulwp = ulwp->ul_link, cnt++) { 355 ASSERT(ulwp->ul_qtype == qtype); 356 ASSERT(ulwp->ul_wchan != NULL); 357 ASSERT(ulwp->ul_sleepq == qp); 358 wchan = ulwp->ul_wchan; 359 index = QUEUE_HASH(wchan, qtype); 360 ASSERT(&udp->queue_head[index] == qp); 361 } 362 ASSERT(qp->qh_tail == prev); 363 ASSERT(qp->qh_qlen == cnt); 364 } 365 366 #else /* THREAD_DEBUG */ 367 368 #define QVERIFY(qp) 369 370 #endif /* THREAD_DEBUG */ 371 372 /* 373 * Acquire a queue head. 374 */ 375 queue_head_t * 376 queue_lock(void *wchan, int qtype) 377 { 378 uberdata_t *udp = curthread->ul_uberdata; 379 queue_head_t *qp; 380 381 ASSERT(qtype == MX || qtype == CV); 382 383 /* 384 * It is possible that we could be called while still single-threaded. 385 * If so, we call queue_alloc() to allocate the queue_head[] array. 386 */ 387 if ((qp = udp->queue_head) == NULL) { 388 queue_alloc(); 389 qp = udp->queue_head; 390 } 391 qp += QUEUE_HASH(wchan, qtype); 392 spin_lock_set(&qp->qh_lock); 393 /* 394 * At once per nanosecond, qh_lockcount will wrap after 512 years. 395 * Were we to care about this, we could peg the value at UINT64_MAX. 396 */ 397 qp->qh_lockcount++; 398 QVERIFY(qp); 399 return (qp); 400 } 401 402 /* 403 * Release a queue head. 404 */ 405 void 406 queue_unlock(queue_head_t *qp) 407 { 408 QVERIFY(qp); 409 spin_lock_clear(&qp->qh_lock); 410 } 411 412 /* 413 * For rwlock queueing, we must queue writers ahead of readers of the 414 * same priority. We do this by making writers appear to have a half 415 * point higher priority for purposes of priority comparisons below. 416 */ 417 #define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer) 418 419 void 420 enqueue(queue_head_t *qp, ulwp_t *ulwp, void *wchan, int qtype) 421 { 422 ulwp_t **ulwpp; 423 ulwp_t *next; 424 int pri = CMP_PRIO(ulwp); 425 int force_fifo = (qtype & FIFOQ); 426 int do_fifo; 427 428 qtype &= ~FIFOQ; 429 ASSERT(qtype == MX || qtype == CV); 430 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 431 ASSERT(ulwp->ul_sleepq != qp); 432 433 /* 434 * LIFO queue ordering is unfair and can lead to starvation, 435 * but it gives better performance for heavily contended locks. 436 * We use thread_queue_fifo (range is 0..8) to determine 437 * the frequency of FIFO vs LIFO queuing: 438 * 0 : every 256th time (almost always LIFO) 439 * 1 : every 128th time 440 * 2 : every 64th time 441 * 3 : every 32nd time 442 * 4 : every 16th time (the default value, mostly LIFO) 443 * 5 : every 8th time 444 * 6 : every 4th time 445 * 7 : every 2nd time 446 * 8 : every time (never LIFO, always FIFO) 447 * Note that there is always some degree of FIFO ordering. 448 * This breaks live lock conditions that occur in applications 449 * that are written assuming (incorrectly) that threads acquire 450 * locks fairly, that is, in roughly round-robin order. 451 * In any event, the queue is maintained in priority order. 452 * 453 * If we are given the FIFOQ flag in qtype, fifo queueing is forced. 454 * SUSV3 requires this for semaphores. 455 */ 456 do_fifo = (force_fifo || 457 ((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0); 458 459 if (qp->qh_head == NULL) { 460 /* 461 * The queue is empty. LIFO/FIFO doesn't matter. 462 */ 463 ASSERT(qp->qh_tail == NULL); 464 ulwpp = &qp->qh_head; 465 } else if (do_fifo) { 466 /* 467 * Enqueue after the last thread whose priority is greater 468 * than or equal to the priority of the thread being queued. 469 * Attempt first to go directly onto the tail of the queue. 470 */ 471 if (pri <= CMP_PRIO(qp->qh_tail)) 472 ulwpp = &qp->qh_tail->ul_link; 473 else { 474 for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL; 475 ulwpp = &next->ul_link) 476 if (pri > CMP_PRIO(next)) 477 break; 478 } 479 } else { 480 /* 481 * Enqueue before the first thread whose priority is less 482 * than or equal to the priority of the thread being queued. 483 * Hopefully we can go directly onto the head of the queue. 484 */ 485 for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL; 486 ulwpp = &next->ul_link) 487 if (pri >= CMP_PRIO(next)) 488 break; 489 } 490 if ((ulwp->ul_link = *ulwpp) == NULL) 491 qp->qh_tail = ulwp; 492 *ulwpp = ulwp; 493 494 ulwp->ul_sleepq = qp; 495 ulwp->ul_wchan = wchan; 496 ulwp->ul_qtype = qtype; 497 if (qp->qh_qmax < ++qp->qh_qlen) 498 qp->qh_qmax = qp->qh_qlen; 499 } 500 501 /* 502 * Return a pointer to the queue slot of the 503 * highest priority thread on the queue. 504 * On return, prevp, if not NULL, will contain a pointer 505 * to the thread's predecessor on the queue 506 */ 507 static ulwp_t ** 508 queue_slot(queue_head_t *qp, void *wchan, int *more, ulwp_t **prevp) 509 { 510 ulwp_t **ulwpp; 511 ulwp_t *ulwp; 512 ulwp_t *prev = NULL; 513 ulwp_t **suspp = NULL; 514 ulwp_t *susprev; 515 516 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 517 518 /* 519 * Find a waiter on the sleep queue. 520 */ 521 for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL; 522 prev = ulwp, ulwpp = &ulwp->ul_link) { 523 if (ulwp->ul_wchan == wchan) { 524 if (!ulwp->ul_stop) 525 break; 526 /* 527 * Try not to return a suspended thread. 528 * This mimics the old libthread's behavior. 529 */ 530 if (suspp == NULL) { 531 suspp = ulwpp; 532 susprev = prev; 533 } 534 } 535 } 536 537 if (ulwp == NULL && suspp != NULL) { 538 ulwp = *(ulwpp = suspp); 539 prev = susprev; 540 suspp = NULL; 541 } 542 if (ulwp == NULL) { 543 if (more != NULL) 544 *more = 0; 545 return (NULL); 546 } 547 548 if (prevp != NULL) 549 *prevp = prev; 550 if (more == NULL) 551 return (ulwpp); 552 553 /* 554 * Scan the remainder of the queue for another waiter. 555 */ 556 if (suspp != NULL) { 557 *more = 1; 558 return (ulwpp); 559 } 560 for (ulwp = ulwp->ul_link; ulwp != NULL; ulwp = ulwp->ul_link) { 561 if (ulwp->ul_wchan == wchan) { 562 *more = 1; 563 return (ulwpp); 564 } 565 } 566 567 *more = 0; 568 return (ulwpp); 569 } 570 571 ulwp_t * 572 dequeue(queue_head_t *qp, void *wchan, int *more) 573 { 574 ulwp_t **ulwpp; 575 ulwp_t *ulwp; 576 ulwp_t *prev; 577 578 if ((ulwpp = queue_slot(qp, wchan, more, &prev)) == NULL) 579 return (NULL); 580 581 /* 582 * Dequeue the waiter. 583 */ 584 ulwp = *ulwpp; 585 *ulwpp = ulwp->ul_link; 586 ulwp->ul_link = NULL; 587 if (qp->qh_tail == ulwp) 588 qp->qh_tail = prev; 589 qp->qh_qlen--; 590 ulwp->ul_sleepq = NULL; 591 ulwp->ul_wchan = NULL; 592 593 return (ulwp); 594 } 595 596 /* 597 * Return a pointer to the highest priority thread sleeping on wchan. 598 */ 599 ulwp_t * 600 queue_waiter(queue_head_t *qp, void *wchan) 601 { 602 ulwp_t **ulwpp; 603 604 if ((ulwpp = queue_slot(qp, wchan, NULL, NULL)) == NULL) 605 return (NULL); 606 return (*ulwpp); 607 } 608 609 uint8_t 610 dequeue_self(queue_head_t *qp, void *wchan) 611 { 612 ulwp_t *self = curthread; 613 ulwp_t **ulwpp; 614 ulwp_t *ulwp; 615 ulwp_t *prev = NULL; 616 int found = 0; 617 int more = 0; 618 619 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 620 621 /* find self on the sleep queue */ 622 for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL; 623 prev = ulwp, ulwpp = &ulwp->ul_link) { 624 if (ulwp == self) { 625 /* dequeue ourself */ 626 *ulwpp = self->ul_link; 627 if (qp->qh_tail == self) 628 qp->qh_tail = prev; 629 qp->qh_qlen--; 630 ASSERT(self->ul_wchan == wchan); 631 self->ul_cvmutex = NULL; 632 self->ul_sleepq = NULL; 633 self->ul_wchan = NULL; 634 self->ul_cv_wake = 0; 635 self->ul_link = NULL; 636 found = 1; 637 break; 638 } 639 if (ulwp->ul_wchan == wchan) 640 more = 1; 641 } 642 643 if (!found) 644 thr_panic("dequeue_self(): curthread not found on queue"); 645 646 if (more) 647 return (1); 648 649 /* scan the remainder of the queue for another waiter */ 650 for (ulwp = *ulwpp; ulwp != NULL; ulwp = ulwp->ul_link) { 651 if (ulwp->ul_wchan == wchan) 652 return (1); 653 } 654 655 return (0); 656 } 657 658 /* 659 * Called from call_user_handler() and _thrp_suspend() to take 660 * ourself off of our sleep queue so we can grab locks. 661 */ 662 void 663 unsleep_self(void) 664 { 665 ulwp_t *self = curthread; 666 queue_head_t *qp; 667 668 /* 669 * Calling enter_critical()/exit_critical() here would lead 670 * to recursion. Just manipulate self->ul_critical directly. 671 */ 672 self->ul_critical++; 673 self->ul_writer = 0; 674 while (self->ul_sleepq != NULL) { 675 qp = queue_lock(self->ul_wchan, self->ul_qtype); 676 /* 677 * We may have been moved from a CV queue to a 678 * mutex queue while we were attempting queue_lock(). 679 * If so, just loop around and try again. 680 * dequeue_self() clears self->ul_sleepq. 681 */ 682 if (qp == self->ul_sleepq) 683 (void) dequeue_self(qp, self->ul_wchan); 684 queue_unlock(qp); 685 } 686 self->ul_critical--; 687 } 688 689 /* 690 * Common code for calling the the ___lwp_mutex_timedlock() system call. 691 * Returns with mutex_owner and mutex_ownerpid set correctly. 692 */ 693 int 694 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp) 695 { 696 ulwp_t *self = curthread; 697 uberdata_t *udp = self->ul_uberdata; 698 hrtime_t begin_sleep; 699 int error; 700 701 self->ul_sp = stkptr(); 702 self->ul_wchan = mp; 703 if (__td_event_report(self, TD_SLEEP, udp)) { 704 self->ul_td_evbuf.eventnum = TD_SLEEP; 705 self->ul_td_evbuf.eventdata = mp; 706 tdb_event(TD_SLEEP, udp); 707 } 708 if (msp) { 709 tdb_incr(msp->mutex_sleep); 710 begin_sleep = gethrtime(); 711 } 712 713 DTRACE_PROBE1(plockstat, mutex__block, mp); 714 715 for (;;) { 716 if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0) { 717 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 718 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 719 break; 720 } 721 722 if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) { 723 /* 724 * Defend against forkall(). We may be the child, 725 * in which case we don't actually own the mutex. 726 */ 727 enter_critical(self); 728 if (mp->mutex_ownerpid == udp->pid) { 729 mp->mutex_owner = (uintptr_t)self; 730 exit_critical(self); 731 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 732 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 733 0, 0); 734 break; 735 } 736 exit_critical(self); 737 } else { 738 mp->mutex_owner = (uintptr_t)self; 739 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 740 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 741 break; 742 } 743 } 744 if (msp) 745 msp->mutex_sleep_time += gethrtime() - begin_sleep; 746 self->ul_wchan = NULL; 747 self->ul_sp = 0; 748 749 return (error); 750 } 751 752 /* 753 * Common code for calling the ___lwp_mutex_trylock() system call. 754 * Returns with mutex_owner and mutex_ownerpid set correctly. 755 */ 756 int 757 mutex_trylock_kernel(mutex_t *mp) 758 { 759 ulwp_t *self = curthread; 760 uberdata_t *udp = self->ul_uberdata; 761 int error; 762 763 for (;;) { 764 if ((error = ___lwp_mutex_trylock(mp)) != 0) { 765 if (error != EBUSY) { 766 DTRACE_PROBE2(plockstat, mutex__error, mp, 767 error); 768 } 769 break; 770 } 771 772 if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) { 773 /* 774 * Defend against forkall(). We may be the child, 775 * in which case we don't actually own the mutex. 776 */ 777 enter_critical(self); 778 if (mp->mutex_ownerpid == udp->pid) { 779 mp->mutex_owner = (uintptr_t)self; 780 exit_critical(self); 781 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 782 0, 0); 783 break; 784 } 785 exit_critical(self); 786 } else { 787 mp->mutex_owner = (uintptr_t)self; 788 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 789 break; 790 } 791 } 792 793 return (error); 794 } 795 796 volatile sc_shared_t * 797 setup_schedctl(void) 798 { 799 ulwp_t *self = curthread; 800 volatile sc_shared_t *scp; 801 sc_shared_t *tmp; 802 803 if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */ 804 !self->ul_vfork && /* not a child of vfork() */ 805 !self->ul_schedctl_called) { /* haven't been called before */ 806 enter_critical(self); 807 self->ul_schedctl_called = &self->ul_uberdata->uberflags; 808 if ((tmp = __schedctl()) != (sc_shared_t *)(-1)) 809 self->ul_schedctl = scp = tmp; 810 exit_critical(self); 811 } 812 /* 813 * Unless the call to setup_schedctl() is surrounded 814 * by enter_critical()/exit_critical(), the address 815 * we are returning could be invalid due to a forkall() 816 * having occurred in another thread. 817 */ 818 return (scp); 819 } 820 821 /* 822 * Interfaces from libsched, incorporated into libc. 823 * libsched.so.1 is now a filter library onto libc. 824 */ 825 #pragma weak schedctl_lookup = _schedctl_init 826 #pragma weak _schedctl_lookup = _schedctl_init 827 #pragma weak schedctl_init = _schedctl_init 828 schedctl_t * 829 _schedctl_init(void) 830 { 831 volatile sc_shared_t *scp = setup_schedctl(); 832 return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl); 833 } 834 835 #pragma weak schedctl_exit = _schedctl_exit 836 void 837 _schedctl_exit(void) 838 { 839 } 840 841 /* 842 * Contract private interface for java. 843 * Set up the schedctl data if it doesn't exist yet. 844 * Return a pointer to the pointer to the schedctl data. 845 */ 846 volatile sc_shared_t *volatile * 847 _thr_schedctl(void) 848 { 849 ulwp_t *self = curthread; 850 volatile sc_shared_t *volatile *ptr; 851 852 if (self->ul_vfork) 853 return (NULL); 854 if (*(ptr = &self->ul_schedctl) == NULL) 855 (void) setup_schedctl(); 856 return (ptr); 857 } 858 859 /* 860 * Block signals and attempt to block preemption. 861 * no_preempt()/preempt() must be used in pairs but can be nested. 862 */ 863 void 864 no_preempt(ulwp_t *self) 865 { 866 volatile sc_shared_t *scp; 867 868 if (self->ul_preempt++ == 0) { 869 enter_critical(self); 870 if ((scp = self->ul_schedctl) != NULL || 871 (scp = setup_schedctl()) != NULL) { 872 /* 873 * Save the pre-existing preempt value. 874 */ 875 self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt; 876 scp->sc_preemptctl.sc_nopreempt = 1; 877 } 878 } 879 } 880 881 /* 882 * Undo the effects of no_preempt(). 883 */ 884 void 885 preempt(ulwp_t *self) 886 { 887 volatile sc_shared_t *scp; 888 889 ASSERT(self->ul_preempt > 0); 890 if (--self->ul_preempt == 0) { 891 if ((scp = self->ul_schedctl) != NULL) { 892 /* 893 * Restore the pre-existing preempt value. 894 */ 895 scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt; 896 if (scp->sc_preemptctl.sc_yield && 897 scp->sc_preemptctl.sc_nopreempt == 0) { 898 lwp_yield(); 899 if (scp->sc_preemptctl.sc_yield) { 900 /* 901 * Shouldn't happen. This is either 902 * a race condition or the thread 903 * just entered the real-time class. 904 */ 905 lwp_yield(); 906 scp->sc_preemptctl.sc_yield = 0; 907 } 908 } 909 } 910 exit_critical(self); 911 } 912 } 913 914 /* 915 * If a call to preempt() would cause the current thread to yield or to 916 * take deferred actions in exit_critical(), then unpark the specified 917 * lwp so it can run while we delay. Return the original lwpid if the 918 * unpark was not performed, else return zero. The tests are a repeat 919 * of some of the tests in preempt(), above. This is a statistical 920 * optimization solely for cond_sleep_queue(), below. 921 */ 922 static lwpid_t 923 preempt_unpark(ulwp_t *self, lwpid_t lwpid) 924 { 925 volatile sc_shared_t *scp = self->ul_schedctl; 926 927 ASSERT(self->ul_preempt == 1 && self->ul_critical > 0); 928 if ((scp != NULL && scp->sc_preemptctl.sc_yield) || 929 (self->ul_curplease && self->ul_critical == 1)) { 930 (void) __lwp_unpark(lwpid); 931 lwpid = 0; 932 } 933 return (lwpid); 934 } 935 936 /* 937 * Spin for a while, trying to grab the lock. We know that we 938 * failed set_lock_byte(&mp->mutex_lockw) once before coming here. 939 * If this fails, return EBUSY and let the caller deal with it. 940 * If this succeeds, return 0 with mutex_owner set to curthread. 941 */ 942 int 943 mutex_trylock_adaptive(mutex_t *mp) 944 { 945 ulwp_t *self = curthread; 946 ulwp_t *ulwp; 947 volatile sc_shared_t *scp; 948 volatile uint8_t *lockp; 949 volatile uint64_t *ownerp; 950 int count, max = self->ul_adaptive_spin; 951 952 ASSERT(!(mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))); 953 954 if (max == 0 || (mp->mutex_spinners >= self->ul_max_spinners)) 955 return (EBUSY); 956 957 lockp = (volatile uint8_t *)&mp->mutex_lockw; 958 ownerp = (volatile uint64_t *)&mp->mutex_owner; 959 960 DTRACE_PROBE1(plockstat, mutex__spin, mp); 961 962 /* 963 * This spin loop is unfair to lwps that have already dropped into 964 * the kernel to sleep. They will starve on a highly-contended mutex. 965 * This is just too bad. The adaptive spin algorithm is intended 966 * to allow programs with highly-contended locks (that is, broken 967 * programs) to execute with reasonable speed despite their contention. 968 * Being fair would reduce the speed of such programs and well-written 969 * programs will not suffer in any case. 970 */ 971 enter_critical(self); /* protects ul_schedctl */ 972 incr32(&mp->mutex_spinners); 973 for (count = 0; count < max; count++) { 974 if (*lockp == 0 && set_lock_byte(lockp) == 0) { 975 *ownerp = (uintptr_t)self; 976 decr32(&mp->mutex_spinners); 977 exit_critical(self); 978 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 979 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 980 return (0); 981 } 982 SMT_PAUSE(); 983 /* 984 * Stop spinning if the mutex owner is not running on 985 * a processor; it will not drop the lock any time soon 986 * and we would just be wasting time to keep spinning. 987 * 988 * Note that we are looking at another thread (ulwp_t) 989 * without ensuring that the other thread does not exit. 990 * The scheme relies on ulwp_t structures never being 991 * deallocated by the library (the library employs a free 992 * list of ulwp_t structs that are reused when new threads 993 * are created) and on schedctl shared memory never being 994 * deallocated once created via __schedctl(). 995 * 996 * Thus, the worst that can happen when the spinning thread 997 * looks at the owner's schedctl data is that it is looking 998 * at some other thread's schedctl data. This almost never 999 * happens and is benign when it does. 1000 */ 1001 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1002 ((scp = ulwp->ul_schedctl) == NULL || 1003 scp->sc_state != SC_ONPROC)) 1004 break; 1005 } 1006 decr32(&mp->mutex_spinners); 1007 exit_critical(self); 1008 1009 DTRACE_PROBE2(plockstat, mutex__spun, 0, count); 1010 1011 return (EBUSY); 1012 } 1013 1014 /* 1015 * Same as mutex_trylock_adaptive(), except specifically for queue locks. 1016 * The owner field is not set here; the caller (spin_lock_set()) sets it. 1017 */ 1018 int 1019 mutex_queuelock_adaptive(mutex_t *mp) 1020 { 1021 ulwp_t *ulwp; 1022 volatile sc_shared_t *scp; 1023 volatile uint8_t *lockp; 1024 volatile uint64_t *ownerp; 1025 int count = curthread->ul_queue_spin; 1026 1027 ASSERT(mp->mutex_type == USYNC_THREAD); 1028 1029 if (count == 0) 1030 return (EBUSY); 1031 1032 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1033 ownerp = (volatile uint64_t *)&mp->mutex_owner; 1034 while (--count >= 0) { 1035 if (*lockp == 0 && set_lock_byte(lockp) == 0) 1036 return (0); 1037 SMT_PAUSE(); 1038 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1039 ((scp = ulwp->ul_schedctl) == NULL || 1040 scp->sc_state != SC_ONPROC)) 1041 break; 1042 } 1043 1044 return (EBUSY); 1045 } 1046 1047 /* 1048 * Like mutex_trylock_adaptive(), but for process-shared mutexes. 1049 * Spin for a while, trying to grab the lock. We know that we 1050 * failed set_lock_byte(&mp->mutex_lockw) once before coming here. 1051 * If this fails, return EBUSY and let the caller deal with it. 1052 * If this succeeds, return 0 with mutex_owner set to curthread 1053 * and mutex_ownerpid set to the current pid. 1054 */ 1055 int 1056 mutex_trylock_process(mutex_t *mp) 1057 { 1058 ulwp_t *self = curthread; 1059 uberdata_t *udp = self->ul_uberdata; 1060 int count; 1061 volatile uint8_t *lockp; 1062 volatile uint64_t *ownerp; 1063 volatile int32_t *pidp; 1064 pid_t pid, newpid; 1065 uint64_t owner, newowner; 1066 1067 if ((count = ncpus) == 0) 1068 count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1069 count = (count > 1)? self->ul_adaptive_spin : 0; 1070 1071 ASSERT((mp->mutex_type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 1072 USYNC_PROCESS); 1073 1074 if (count == 0) 1075 return (EBUSY); 1076 1077 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1078 ownerp = (volatile uint64_t *)&mp->mutex_owner; 1079 pidp = (volatile int32_t *)&mp->mutex_ownerpid; 1080 owner = *ownerp; 1081 pid = *pidp; 1082 /* 1083 * This is a process-shared mutex. 1084 * We cannot know if the owner is running on a processor. 1085 * We just spin and hope that it is on a processor. 1086 */ 1087 while (--count >= 0) { 1088 if (*lockp == 0) { 1089 enter_critical(self); 1090 if (set_lock_byte(lockp) == 0) { 1091 *ownerp = (uintptr_t)self; 1092 *pidp = udp->pid; 1093 exit_critical(self); 1094 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1095 0, 0); 1096 return (0); 1097 } 1098 exit_critical(self); 1099 } else if ((newowner = *ownerp) == owner && 1100 (newpid = *pidp) == pid) { 1101 SMT_PAUSE(); 1102 continue; 1103 } 1104 /* 1105 * The owner of the lock changed; start the count over again. 1106 * This may be too aggressive; it needs testing. 1107 */ 1108 owner = newowner; 1109 pid = newpid; 1110 count = self->ul_adaptive_spin; 1111 } 1112 1113 return (EBUSY); 1114 } 1115 1116 /* 1117 * Mutex wakeup code for releasing a USYNC_THREAD mutex. 1118 * Returns the lwpid of the thread that was dequeued, if any. 1119 * The caller of mutex_wakeup() must call __lwp_unpark(lwpid) 1120 * to wake up the specified lwp. 1121 */ 1122 lwpid_t 1123 mutex_wakeup(mutex_t *mp) 1124 { 1125 lwpid_t lwpid = 0; 1126 queue_head_t *qp; 1127 ulwp_t *ulwp; 1128 int more; 1129 1130 /* 1131 * Dequeue a waiter from the sleep queue. Don't touch the mutex 1132 * waiters bit if no one was found on the queue because the mutex 1133 * might have been deallocated or reallocated for another purpose. 1134 */ 1135 qp = queue_lock(mp, MX); 1136 if ((ulwp = dequeue(qp, mp, &more)) != NULL) { 1137 lwpid = ulwp->ul_lwpid; 1138 mp->mutex_waiters = (more? 1 : 0); 1139 } 1140 queue_unlock(qp); 1141 return (lwpid); 1142 } 1143 1144 /* 1145 * Spin for a while, testing to see if the lock has been grabbed. 1146 * If this fails, call mutex_wakeup() to release a waiter. 1147 */ 1148 lwpid_t 1149 mutex_unlock_queue(mutex_t *mp) 1150 { 1151 ulwp_t *self = curthread; 1152 uint32_t *lockw = &mp->mutex_lockword; 1153 lwpid_t lwpid; 1154 volatile uint8_t *lockp; 1155 volatile uint32_t *spinp; 1156 int count; 1157 1158 /* 1159 * We use the swap primitive to clear the lock, but we must 1160 * atomically retain the waiters bit for the remainder of this 1161 * code to work. We first check to see if the waiters bit is 1162 * set and if so clear the lock by swapping in a word containing 1163 * only the waiters bit. This could produce a false positive test 1164 * for whether there are waiters that need to be waked up, but 1165 * this just causes an extra call to mutex_wakeup() to do nothing. 1166 * The opposite case is more delicate: If there are no waiters, 1167 * we swap in a zero lock byte and a zero waiters bit. The result 1168 * of the swap could indicate that there really was a waiter so in 1169 * this case we go directly to mutex_wakeup() without performing 1170 * any of the adaptive code because the waiter bit has been cleared 1171 * and the adaptive code is unreliable in this case. 1172 */ 1173 if (!(*lockw & WAITERMASK)) { /* no waiter exists right now */ 1174 mp->mutex_owner = 0; 1175 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1176 if (!(swap32(lockw, 0) & WAITERMASK)) /* still no waiters */ 1177 return (0); 1178 no_preempt(self); /* ensure a prompt wakeup */ 1179 lwpid = mutex_wakeup(mp); 1180 } else { 1181 no_preempt(self); /* ensure a prompt wakeup */ 1182 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1183 spinp = (volatile uint32_t *)&mp->mutex_spinners; 1184 mp->mutex_owner = 0; 1185 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1186 (void) swap32(lockw, WAITER); /* clear lock, retain waiter */ 1187 1188 /* 1189 * We spin here fewer times than mutex_trylock_adaptive(). 1190 * We are trying to balance two conflicting goals: 1191 * 1. Avoid waking up anyone if a spinning thread 1192 * grabs the lock. 1193 * 2. Wake up a sleeping thread promptly to get on 1194 * with useful work. 1195 * We don't spin at all if there is no acquiring spinner; 1196 * (mp->mutex_spinners is non-zero if there are spinners). 1197 */ 1198 for (count = self->ul_release_spin; 1199 *spinp && count > 0; count--) { 1200 /* 1201 * There is a waiter that we will have to wake 1202 * up unless someone else grabs the lock while 1203 * we are busy spinning. Like the spin loop in 1204 * mutex_trylock_adaptive(), this spin loop is 1205 * unfair to lwps that have already dropped into 1206 * the kernel to sleep. They will starve on a 1207 * highly-contended mutex. Too bad. 1208 */ 1209 if (*lockp != 0) { /* somebody grabbed the lock */ 1210 preempt(self); 1211 return (0); 1212 } 1213 SMT_PAUSE(); 1214 } 1215 1216 /* 1217 * No one grabbed the lock. 1218 * Wake up some lwp that is waiting for it. 1219 */ 1220 mp->mutex_waiters = 0; 1221 lwpid = mutex_wakeup(mp); 1222 } 1223 1224 if (lwpid == 0) 1225 preempt(self); 1226 return (lwpid); 1227 } 1228 1229 /* 1230 * Like mutex_unlock_queue(), but for process-shared mutexes. 1231 * We tested the waiters field before calling here and it was non-zero. 1232 */ 1233 void 1234 mutex_unlock_process(mutex_t *mp) 1235 { 1236 ulwp_t *self = curthread; 1237 int count; 1238 volatile uint8_t *lockp; 1239 1240 /* 1241 * See the comments in mutex_unlock_queue(), above. 1242 */ 1243 if ((count = ncpus) == 0) 1244 count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1245 count = (count > 1)? self->ul_release_spin : 0; 1246 no_preempt(self); 1247 mp->mutex_owner = 0; 1248 mp->mutex_ownerpid = 0; 1249 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1250 if (count == 0) { 1251 /* clear lock, test waiter */ 1252 if (!(swap32(&mp->mutex_lockword, 0) & WAITERMASK)) { 1253 /* no waiters now */ 1254 preempt(self); 1255 return; 1256 } 1257 } else { 1258 /* clear lock, retain waiter */ 1259 (void) swap32(&mp->mutex_lockword, WAITER); 1260 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1261 while (--count >= 0) { 1262 if (*lockp != 0) { 1263 /* somebody grabbed the lock */ 1264 preempt(self); 1265 return; 1266 } 1267 SMT_PAUSE(); 1268 } 1269 /* 1270 * We must clear the waiters field before going 1271 * to the kernel, else it could remain set forever. 1272 */ 1273 mp->mutex_waiters = 0; 1274 } 1275 (void) ___lwp_mutex_wakeup(mp); 1276 preempt(self); 1277 } 1278 1279 /* 1280 * Return the real priority of a thread. 1281 */ 1282 int 1283 real_priority(ulwp_t *ulwp) 1284 { 1285 if (ulwp->ul_epri == 0) 1286 return (ulwp->ul_mappedpri? ulwp->ul_mappedpri : ulwp->ul_pri); 1287 return (ulwp->ul_emappedpri? ulwp->ul_emappedpri : ulwp->ul_epri); 1288 } 1289 1290 void 1291 stall(void) 1292 { 1293 for (;;) 1294 (void) mutex_lock_kernel(&stall_mutex, NULL, NULL); 1295 } 1296 1297 /* 1298 * Acquire a USYNC_THREAD mutex via user-level sleep queues. 1299 * We failed set_lock_byte(&mp->mutex_lockw) before coming here. 1300 * Returns with mutex_owner set correctly. 1301 */ 1302 int 1303 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp, 1304 timespec_t *tsp) 1305 { 1306 uberdata_t *udp = curthread->ul_uberdata; 1307 queue_head_t *qp; 1308 hrtime_t begin_sleep; 1309 int error = 0; 1310 1311 self->ul_sp = stkptr(); 1312 if (__td_event_report(self, TD_SLEEP, udp)) { 1313 self->ul_wchan = mp; 1314 self->ul_td_evbuf.eventnum = TD_SLEEP; 1315 self->ul_td_evbuf.eventdata = mp; 1316 tdb_event(TD_SLEEP, udp); 1317 } 1318 if (msp) { 1319 tdb_incr(msp->mutex_sleep); 1320 begin_sleep = gethrtime(); 1321 } 1322 1323 DTRACE_PROBE1(plockstat, mutex__block, mp); 1324 1325 /* 1326 * Put ourself on the sleep queue, and while we are 1327 * unable to grab the lock, go park in the kernel. 1328 * Take ourself off the sleep queue after we acquire the lock. 1329 * The waiter bit can be set/cleared only while holding the queue lock. 1330 */ 1331 qp = queue_lock(mp, MX); 1332 enqueue(qp, self, mp, MX); 1333 mp->mutex_waiters = 1; 1334 for (;;) { 1335 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1336 mp->mutex_owner = (uintptr_t)self; 1337 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1338 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1339 mp->mutex_waiters = dequeue_self(qp, mp); 1340 break; 1341 } 1342 set_parking_flag(self, 1); 1343 queue_unlock(qp); 1344 /* 1345 * __lwp_park() will return the residual time in tsp 1346 * if we are unparked before the timeout expires. 1347 */ 1348 if ((error = __lwp_park(tsp, 0)) == EINTR) 1349 error = 0; 1350 set_parking_flag(self, 0); 1351 /* 1352 * We could have taken a signal or suspended ourself. 1353 * If we did, then we removed ourself from the queue. 1354 * Someone else may have removed us from the queue 1355 * as a consequence of mutex_unlock(). We may have 1356 * gotten a timeout from __lwp_park(). Or we may still 1357 * be on the queue and this is just a spurious wakeup. 1358 */ 1359 qp = queue_lock(mp, MX); 1360 if (self->ul_sleepq == NULL) { 1361 if (error) { 1362 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1363 DTRACE_PROBE2(plockstat, mutex__error, mp, 1364 error); 1365 break; 1366 } 1367 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1368 mp->mutex_owner = (uintptr_t)self; 1369 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1370 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1371 0, 0); 1372 break; 1373 } 1374 enqueue(qp, self, mp, MX); 1375 mp->mutex_waiters = 1; 1376 } 1377 ASSERT(self->ul_sleepq == qp && 1378 self->ul_qtype == MX && 1379 self->ul_wchan == mp); 1380 if (error) { 1381 mp->mutex_waiters = dequeue_self(qp, mp); 1382 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1383 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1384 break; 1385 } 1386 } 1387 1388 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 1389 self->ul_wchan == NULL); 1390 self->ul_sp = 0; 1391 1392 queue_unlock(qp); 1393 if (msp) 1394 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1395 1396 ASSERT(error == 0 || error == EINVAL || error == ETIME); 1397 return (error); 1398 } 1399 1400 /* 1401 * Returns with mutex_owner set correctly. 1402 */ 1403 int 1404 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try) 1405 { 1406 ulwp_t *self = curthread; 1407 uberdata_t *udp = self->ul_uberdata; 1408 int mtype = mp->mutex_type; 1409 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 1410 int error = 0; 1411 1412 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 1413 1414 if (!self->ul_schedctl_called) 1415 (void) setup_schedctl(); 1416 1417 if (msp && try == MUTEX_TRY) 1418 tdb_incr(msp->mutex_try); 1419 1420 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_is_held(mp)) { 1421 if (mtype & LOCK_RECURSIVE) { 1422 if (mp->mutex_rcount == RECURSION_MAX) { 1423 error = EAGAIN; 1424 } else { 1425 mp->mutex_rcount++; 1426 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1427 1, 0); 1428 return (0); 1429 } 1430 } else if (try == MUTEX_TRY) { 1431 return (EBUSY); 1432 } else { 1433 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1434 return (EDEADLK); 1435 } 1436 } 1437 1438 if (self->ul_error_detection && try == MUTEX_LOCK && 1439 tsp == NULL && mutex_is_held(mp)) 1440 lock_error(mp, "mutex_lock", NULL, NULL); 1441 1442 if (mtype & 1443 (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) { 1444 uint8_t ceil; 1445 int myprio; 1446 1447 if (mtype & PTHREAD_PRIO_PROTECT) { 1448 ceil = mp->mutex_ceiling; 1449 ASSERT(_validate_rt_prio(SCHED_FIFO, ceil) == 0); 1450 myprio = real_priority(self); 1451 if (myprio > ceil) { 1452 DTRACE_PROBE2(plockstat, mutex__error, mp, 1453 EINVAL); 1454 return (EINVAL); 1455 } 1456 if ((error = _ceil_mylist_add(mp)) != 0) { 1457 DTRACE_PROBE2(plockstat, mutex__error, mp, 1458 error); 1459 return (error); 1460 } 1461 if (myprio < ceil) 1462 _ceil_prio_inherit(ceil); 1463 } 1464 1465 if (mtype & PTHREAD_PRIO_INHERIT) { 1466 /* go straight to the kernel */ 1467 if (try == MUTEX_TRY) 1468 error = mutex_trylock_kernel(mp); 1469 else /* MUTEX_LOCK */ 1470 error = mutex_lock_kernel(mp, tsp, msp); 1471 /* 1472 * The kernel never sets or clears the lock byte 1473 * for PTHREAD_PRIO_INHERIT mutexes. 1474 * Set it here for debugging consistency. 1475 */ 1476 switch (error) { 1477 case 0: 1478 case EOWNERDEAD: 1479 mp->mutex_lockw = LOCKSET; 1480 break; 1481 } 1482 } else if (mtype & USYNC_PROCESS_ROBUST) { 1483 /* go straight to the kernel */ 1484 if (try == MUTEX_TRY) 1485 error = mutex_trylock_kernel(mp); 1486 else /* MUTEX_LOCK */ 1487 error = mutex_lock_kernel(mp, tsp, msp); 1488 } else { /* PTHREAD_PRIO_PROTECT */ 1489 /* 1490 * Try once at user level before going to the kernel. 1491 * If this is a process shared mutex then protect 1492 * against forkall() while setting mp->mutex_ownerpid. 1493 */ 1494 if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) { 1495 enter_critical(self); 1496 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1497 mp->mutex_owner = (uintptr_t)self; 1498 mp->mutex_ownerpid = udp->pid; 1499 exit_critical(self); 1500 DTRACE_PROBE3(plockstat, 1501 mutex__acquire, mp, 0, 0); 1502 } else { 1503 exit_critical(self); 1504 error = EBUSY; 1505 } 1506 } else { 1507 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1508 mp->mutex_owner = (uintptr_t)self; 1509 DTRACE_PROBE3(plockstat, 1510 mutex__acquire, mp, 0, 0); 1511 } else { 1512 error = EBUSY; 1513 } 1514 } 1515 if (error && try == MUTEX_LOCK) 1516 error = mutex_lock_kernel(mp, tsp, msp); 1517 } 1518 1519 if (error) { 1520 if (mtype & PTHREAD_PRIO_INHERIT) { 1521 switch (error) { 1522 case EOWNERDEAD: 1523 case ENOTRECOVERABLE: 1524 if (mtype & PTHREAD_MUTEX_ROBUST_NP) 1525 break; 1526 if (error == EOWNERDEAD) { 1527 /* 1528 * We own the mutex; unlock it. 1529 * It becomes ENOTRECOVERABLE. 1530 * All waiters are waked up. 1531 */ 1532 mp->mutex_owner = 0; 1533 mp->mutex_ownerpid = 0; 1534 DTRACE_PROBE2(plockstat, 1535 mutex__release, mp, 0); 1536 mp->mutex_lockw = LOCKCLEAR; 1537 (void) ___lwp_mutex_unlock(mp); 1538 } 1539 /* FALLTHROUGH */ 1540 case EDEADLK: 1541 if (try == MUTEX_LOCK) 1542 stall(); 1543 error = EBUSY; 1544 break; 1545 } 1546 } 1547 if ((mtype & PTHREAD_PRIO_PROTECT) && 1548 error != EOWNERDEAD) { 1549 (void) _ceil_mylist_del(mp); 1550 if (myprio < ceil) 1551 _ceil_prio_waive(); 1552 } 1553 } 1554 } else if (mtype & USYNC_PROCESS) { 1555 /* 1556 * This is a process shared mutex. Protect against 1557 * forkall() while setting mp->mutex_ownerpid. 1558 */ 1559 enter_critical(self); 1560 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1561 mp->mutex_owner = (uintptr_t)self; 1562 mp->mutex_ownerpid = udp->pid; 1563 exit_critical(self); 1564 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1565 } else { 1566 /* try a little harder */ 1567 exit_critical(self); 1568 error = mutex_trylock_process(mp); 1569 } 1570 if (error && try == MUTEX_LOCK) 1571 error = mutex_lock_kernel(mp, tsp, msp); 1572 } else { /* USYNC_THREAD */ 1573 /* try once */ 1574 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1575 mp->mutex_owner = (uintptr_t)self; 1576 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1577 } else { 1578 /* try a little harder if we don't own the mutex */ 1579 error = EBUSY; 1580 if (MUTEX_OWNER(mp) != self) 1581 error = mutex_trylock_adaptive(mp); 1582 if (error && try == MUTEX_LOCK) /* go park */ 1583 error = mutex_lock_queue(self, msp, mp, tsp); 1584 } 1585 } 1586 1587 switch (error) { 1588 case EOWNERDEAD: 1589 case ELOCKUNMAPPED: 1590 mp->mutex_owner = (uintptr_t)self; 1591 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1592 /* FALLTHROUGH */ 1593 case 0: 1594 if (msp) 1595 record_begin_hold(msp); 1596 break; 1597 default: 1598 if (try == MUTEX_TRY) { 1599 if (msp) 1600 tdb_incr(msp->mutex_try_fail); 1601 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 1602 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 1603 tdb_event(TD_LOCK_TRY, udp); 1604 } 1605 } 1606 break; 1607 } 1608 1609 return (error); 1610 } 1611 1612 int 1613 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try) 1614 { 1615 ulwp_t *self = curthread; 1616 uberdata_t *udp = self->ul_uberdata; 1617 1618 /* 1619 * We know that USYNC_PROCESS is set in mtype and that 1620 * zero, one, or both of the flags LOCK_RECURSIVE and 1621 * LOCK_ERRORCHECK are set, and that no other flags are set. 1622 */ 1623 enter_critical(self); 1624 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1625 mp->mutex_owner = (uintptr_t)self; 1626 mp->mutex_ownerpid = udp->pid; 1627 exit_critical(self); 1628 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1629 return (0); 1630 } 1631 exit_critical(self); 1632 1633 if ((mtype & ~USYNC_PROCESS) && shared_mutex_held(mp)) { 1634 if (mtype & LOCK_RECURSIVE) { 1635 if (mp->mutex_rcount == RECURSION_MAX) 1636 return (EAGAIN); 1637 mp->mutex_rcount++; 1638 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0); 1639 return (0); 1640 } 1641 if (try == MUTEX_LOCK) { 1642 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1643 return (EDEADLK); 1644 } 1645 return (EBUSY); 1646 } 1647 1648 /* try a little harder if we don't own the mutex */ 1649 if (!shared_mutex_held(mp) && mutex_trylock_process(mp) == 0) 1650 return (0); 1651 1652 if (try == MUTEX_LOCK) 1653 return (mutex_lock_kernel(mp, tsp, NULL)); 1654 1655 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 1656 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 1657 tdb_event(TD_LOCK_TRY, udp); 1658 } 1659 return (EBUSY); 1660 } 1661 1662 static int 1663 slow_lock(ulwp_t *self, mutex_t *mp, timespec_t *tsp) 1664 { 1665 int error = 0; 1666 1667 if (MUTEX_OWNER(mp) == self || mutex_trylock_adaptive(mp) != 0) 1668 error = mutex_lock_queue(self, NULL, mp, tsp); 1669 return (error); 1670 } 1671 1672 int 1673 mutex_lock_impl(mutex_t *mp, timespec_t *tsp) 1674 { 1675 ulwp_t *self = curthread; 1676 uberdata_t *udp = self->ul_uberdata; 1677 uberflags_t *gflags; 1678 int mtype; 1679 1680 /* 1681 * Optimize the case of USYNC_THREAD, including 1682 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 1683 * no error detection, no lock statistics, 1684 * and the process has only a single thread. 1685 * (Most likely a traditional single-threaded application.) 1686 */ 1687 if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 1688 udp->uberflags.uf_all) == 0) { 1689 /* 1690 * Only one thread exists so we don't need an atomic operation. 1691 */ 1692 if (mp->mutex_lockw == 0) { 1693 mp->mutex_lockw = LOCKSET; 1694 mp->mutex_owner = (uintptr_t)self; 1695 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1696 return (0); 1697 } 1698 if (mtype && MUTEX_OWNER(mp) == self) { 1699 /* 1700 * LOCK_RECURSIVE, LOCK_ERRORCHECK, or both. 1701 */ 1702 if (mtype & LOCK_RECURSIVE) { 1703 if (mp->mutex_rcount == RECURSION_MAX) 1704 return (EAGAIN); 1705 mp->mutex_rcount++; 1706 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1707 1, 0); 1708 return (0); 1709 } 1710 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1711 return (EDEADLK); /* LOCK_ERRORCHECK */ 1712 } 1713 /* 1714 * We have reached a deadlock, probably because the 1715 * process is executing non-async-signal-safe code in 1716 * a signal handler and is attempting to acquire a lock 1717 * that it already owns. This is not surprising, given 1718 * bad programming practices over the years that has 1719 * resulted in applications calling printf() and such 1720 * in their signal handlers. Unless the user has told 1721 * us that the signal handlers are safe by setting: 1722 * export _THREAD_ASYNC_SAFE=1 1723 * we return EDEADLK rather than actually deadlocking. 1724 */ 1725 if (tsp == NULL && 1726 MUTEX_OWNER(mp) == self && !self->ul_async_safe) { 1727 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1728 return (EDEADLK); 1729 } 1730 } 1731 1732 /* 1733 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 1734 * no error detection, and no lock statistics. 1735 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 1736 */ 1737 if ((gflags = self->ul_schedctl_called) != NULL && 1738 (gflags->uf_trs_ted | 1739 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 1740 1741 if (mtype & USYNC_PROCESS) 1742 return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK)); 1743 1744 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1745 mp->mutex_owner = (uintptr_t)self; 1746 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1747 return (0); 1748 } 1749 1750 if (mtype && MUTEX_OWNER(mp) == self) { 1751 if (mtype & LOCK_RECURSIVE) { 1752 if (mp->mutex_rcount == RECURSION_MAX) 1753 return (EAGAIN); 1754 mp->mutex_rcount++; 1755 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1756 1, 0); 1757 return (0); 1758 } 1759 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1760 return (EDEADLK); /* LOCK_ERRORCHECK */ 1761 } 1762 1763 return (slow_lock(self, mp, tsp)); 1764 } 1765 1766 /* else do it the long way */ 1767 return (mutex_lock_internal(mp, tsp, MUTEX_LOCK)); 1768 } 1769 1770 #pragma weak _private_mutex_lock = __mutex_lock 1771 #pragma weak mutex_lock = __mutex_lock 1772 #pragma weak _mutex_lock = __mutex_lock 1773 #pragma weak pthread_mutex_lock = __mutex_lock 1774 #pragma weak _pthread_mutex_lock = __mutex_lock 1775 int 1776 __mutex_lock(mutex_t *mp) 1777 { 1778 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 1779 return (mutex_lock_impl(mp, NULL)); 1780 } 1781 1782 #pragma weak pthread_mutex_timedlock = _pthread_mutex_timedlock 1783 int 1784 _pthread_mutex_timedlock(mutex_t *mp, const timespec_t *abstime) 1785 { 1786 timespec_t tslocal; 1787 int error; 1788 1789 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 1790 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal); 1791 error = mutex_lock_impl(mp, &tslocal); 1792 if (error == ETIME) 1793 error = ETIMEDOUT; 1794 return (error); 1795 } 1796 1797 #pragma weak pthread_mutex_reltimedlock_np = _pthread_mutex_reltimedlock_np 1798 int 1799 _pthread_mutex_reltimedlock_np(mutex_t *mp, const timespec_t *reltime) 1800 { 1801 timespec_t tslocal; 1802 int error; 1803 1804 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 1805 tslocal = *reltime; 1806 error = mutex_lock_impl(mp, &tslocal); 1807 if (error == ETIME) 1808 error = ETIMEDOUT; 1809 return (error); 1810 } 1811 1812 static int 1813 slow_trylock(mutex_t *mp, ulwp_t *self) 1814 { 1815 if (MUTEX_OWNER(mp) == self || 1816 mutex_trylock_adaptive(mp) != 0) { 1817 uberdata_t *udp = self->ul_uberdata; 1818 1819 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 1820 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 1821 tdb_event(TD_LOCK_TRY, udp); 1822 } 1823 return (EBUSY); 1824 } 1825 return (0); 1826 } 1827 1828 #pragma weak _private_mutex_trylock = __mutex_trylock 1829 #pragma weak mutex_trylock = __mutex_trylock 1830 #pragma weak _mutex_trylock = __mutex_trylock 1831 #pragma weak pthread_mutex_trylock = __mutex_trylock 1832 #pragma weak _pthread_mutex_trylock = __mutex_trylock 1833 int 1834 __mutex_trylock(mutex_t *mp) 1835 { 1836 ulwp_t *self = curthread; 1837 uberdata_t *udp = self->ul_uberdata; 1838 uberflags_t *gflags; 1839 int mtype; 1840 1841 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 1842 /* 1843 * Optimize the case of USYNC_THREAD, including 1844 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 1845 * no error detection, no lock statistics, 1846 * and the process has only a single thread. 1847 * (Most likely a traditional single-threaded application.) 1848 */ 1849 if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 1850 udp->uberflags.uf_all) == 0) { 1851 /* 1852 * Only one thread exists so we don't need an atomic operation. 1853 */ 1854 if (mp->mutex_lockw == 0) { 1855 mp->mutex_lockw = LOCKSET; 1856 mp->mutex_owner = (uintptr_t)self; 1857 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1858 return (0); 1859 } 1860 if (mtype && MUTEX_OWNER(mp) == self) { 1861 if (mtype & LOCK_RECURSIVE) { 1862 if (mp->mutex_rcount == RECURSION_MAX) 1863 return (EAGAIN); 1864 mp->mutex_rcount++; 1865 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1866 1, 0); 1867 return (0); 1868 } 1869 return (EDEADLK); /* LOCK_ERRORCHECK */ 1870 } 1871 return (EBUSY); 1872 } 1873 1874 /* 1875 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 1876 * no error detection, and no lock statistics. 1877 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 1878 */ 1879 if ((gflags = self->ul_schedctl_called) != NULL && 1880 (gflags->uf_trs_ted | 1881 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 1882 1883 if (mtype & USYNC_PROCESS) 1884 return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY)); 1885 1886 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1887 mp->mutex_owner = (uintptr_t)self; 1888 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1889 return (0); 1890 } 1891 1892 if (mtype && MUTEX_OWNER(mp) == self) { 1893 if (mtype & LOCK_RECURSIVE) { 1894 if (mp->mutex_rcount == RECURSION_MAX) 1895 return (EAGAIN); 1896 mp->mutex_rcount++; 1897 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1898 1, 0); 1899 return (0); 1900 } 1901 return (EBUSY); /* LOCK_ERRORCHECK */ 1902 } 1903 1904 return (slow_trylock(mp, self)); 1905 } 1906 1907 /* else do it the long way */ 1908 return (mutex_lock_internal(mp, NULL, MUTEX_TRY)); 1909 } 1910 1911 int 1912 mutex_unlock_internal(mutex_t *mp) 1913 { 1914 ulwp_t *self = curthread; 1915 uberdata_t *udp = self->ul_uberdata; 1916 int mtype = mp->mutex_type; 1917 tdb_mutex_stats_t *msp; 1918 int error; 1919 lwpid_t lwpid; 1920 1921 if ((mtype & LOCK_ERRORCHECK) && !mutex_is_held(mp)) 1922 return (EPERM); 1923 1924 if (self->ul_error_detection && !mutex_is_held(mp)) 1925 lock_error(mp, "mutex_unlock", NULL, NULL); 1926 1927 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 1928 mp->mutex_rcount--; 1929 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 1930 return (0); 1931 } 1932 1933 if ((msp = MUTEX_STATS(mp, udp)) != NULL) 1934 (void) record_hold_time(msp); 1935 1936 if (mtype & 1937 (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) { 1938 no_preempt(self); 1939 mp->mutex_owner = 0; 1940 mp->mutex_ownerpid = 0; 1941 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1942 if (mtype & PTHREAD_PRIO_INHERIT) { 1943 mp->mutex_lockw = LOCKCLEAR; 1944 error = ___lwp_mutex_unlock(mp); 1945 } else if (mtype & USYNC_PROCESS_ROBUST) { 1946 error = ___lwp_mutex_unlock(mp); 1947 } else { 1948 if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) 1949 (void) ___lwp_mutex_wakeup(mp); 1950 error = 0; 1951 } 1952 if (mtype & PTHREAD_PRIO_PROTECT) { 1953 if (_ceil_mylist_del(mp)) 1954 _ceil_prio_waive(); 1955 } 1956 preempt(self); 1957 } else if (mtype & USYNC_PROCESS) { 1958 if (mp->mutex_lockword & WAITERMASK) 1959 mutex_unlock_process(mp); 1960 else { 1961 mp->mutex_owner = 0; 1962 mp->mutex_ownerpid = 0; 1963 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1964 if (swap32(&mp->mutex_lockword, 0) & WAITERMASK) { 1965 no_preempt(self); 1966 (void) ___lwp_mutex_wakeup(mp); 1967 preempt(self); 1968 } 1969 } 1970 error = 0; 1971 } else { /* USYNC_THREAD */ 1972 if ((lwpid = mutex_unlock_queue(mp)) != 0) { 1973 (void) __lwp_unpark(lwpid); 1974 preempt(self); 1975 } 1976 error = 0; 1977 } 1978 1979 return (error); 1980 } 1981 1982 #pragma weak _private_mutex_unlock = __mutex_unlock 1983 #pragma weak mutex_unlock = __mutex_unlock 1984 #pragma weak _mutex_unlock = __mutex_unlock 1985 #pragma weak pthread_mutex_unlock = __mutex_unlock 1986 #pragma weak _pthread_mutex_unlock = __mutex_unlock 1987 int 1988 __mutex_unlock(mutex_t *mp) 1989 { 1990 ulwp_t *self = curthread; 1991 uberdata_t *udp = self->ul_uberdata; 1992 uberflags_t *gflags; 1993 lwpid_t lwpid; 1994 int mtype; 1995 short el; 1996 1997 /* 1998 * Optimize the case of USYNC_THREAD, including 1999 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2000 * no error detection, no lock statistics, 2001 * and the process has only a single thread. 2002 * (Most likely a traditional single-threaded application.) 2003 */ 2004 if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2005 udp->uberflags.uf_all) == 0) { 2006 if (mtype) { 2007 /* 2008 * At this point we know that one or both of the 2009 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2010 */ 2011 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2012 return (EPERM); 2013 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2014 mp->mutex_rcount--; 2015 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2016 return (0); 2017 } 2018 } 2019 /* 2020 * Only one thread exists so we don't need an atomic operation. 2021 * Also, there can be no waiters. 2022 */ 2023 mp->mutex_owner = 0; 2024 mp->mutex_lockword = 0; 2025 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2026 return (0); 2027 } 2028 2029 /* 2030 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2031 * no error detection, and no lock statistics. 2032 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2033 */ 2034 if ((gflags = self->ul_schedctl_called) != NULL) { 2035 if (((el = gflags->uf_trs_ted) | mtype) == 0) { 2036 fast_unlock: 2037 if (!(mp->mutex_lockword & WAITERMASK)) { 2038 /* no waiter exists right now */ 2039 mp->mutex_owner = 0; 2040 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2041 if (swap32(&mp->mutex_lockword, 0) & 2042 WAITERMASK) { 2043 /* a waiter suddenly appeared */ 2044 no_preempt(self); 2045 if ((lwpid = mutex_wakeup(mp)) != 0) 2046 (void) __lwp_unpark(lwpid); 2047 preempt(self); 2048 } 2049 } else if ((lwpid = mutex_unlock_queue(mp)) != 0) { 2050 (void) __lwp_unpark(lwpid); 2051 preempt(self); 2052 } 2053 return (0); 2054 } 2055 if (el) /* error detection or lock statistics */ 2056 goto slow_unlock; 2057 if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2058 /* 2059 * At this point we know that one or both of the 2060 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2061 */ 2062 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2063 return (EPERM); 2064 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2065 mp->mutex_rcount--; 2066 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2067 return (0); 2068 } 2069 goto fast_unlock; 2070 } 2071 if ((mtype & 2072 ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2073 /* 2074 * At this point we know that zero, one, or both of the 2075 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and 2076 * that the USYNC_PROCESS flag is set. 2077 */ 2078 if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp)) 2079 return (EPERM); 2080 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2081 mp->mutex_rcount--; 2082 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2083 return (0); 2084 } 2085 if (mp->mutex_lockword & WAITERMASK) 2086 mutex_unlock_process(mp); 2087 else { 2088 mp->mutex_owner = 0; 2089 mp->mutex_ownerpid = 0; 2090 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2091 if (swap32(&mp->mutex_lockword, 0) & 2092 WAITERMASK) { 2093 no_preempt(self); 2094 (void) ___lwp_mutex_wakeup(mp); 2095 preempt(self); 2096 } 2097 } 2098 return (0); 2099 } 2100 } 2101 2102 /* else do it the long way */ 2103 slow_unlock: 2104 return (mutex_unlock_internal(mp)); 2105 } 2106 2107 /* 2108 * Internally to the library, almost all mutex lock/unlock actions 2109 * go through these lmutex_ functions, to protect critical regions. 2110 * We replicate a bit of code from __mutex_lock() and __mutex_unlock() 2111 * to make these functions faster since we know that the mutex type 2112 * of all internal locks is USYNC_THREAD. We also know that internal 2113 * locking can never fail, so we panic if it does. 2114 */ 2115 void 2116 lmutex_lock(mutex_t *mp) 2117 { 2118 ulwp_t *self = curthread; 2119 uberdata_t *udp = self->ul_uberdata; 2120 2121 ASSERT(mp->mutex_type == USYNC_THREAD); 2122 2123 enter_critical(self); 2124 /* 2125 * Optimize the case of no lock statistics and only a single thread. 2126 * (Most likely a traditional single-threaded application.) 2127 */ 2128 if (udp->uberflags.uf_all == 0) { 2129 /* 2130 * Only one thread exists; the mutex must be free. 2131 */ 2132 ASSERT(mp->mutex_lockw == 0); 2133 mp->mutex_lockw = LOCKSET; 2134 mp->mutex_owner = (uintptr_t)self; 2135 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2136 } else { 2137 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2138 2139 if (!self->ul_schedctl_called) 2140 (void) setup_schedctl(); 2141 2142 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2143 mp->mutex_owner = (uintptr_t)self; 2144 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2145 } else if (mutex_trylock_adaptive(mp) != 0) { 2146 (void) mutex_lock_queue(self, msp, mp, NULL); 2147 } 2148 2149 if (msp) 2150 record_begin_hold(msp); 2151 } 2152 } 2153 2154 void 2155 lmutex_unlock(mutex_t *mp) 2156 { 2157 ulwp_t *self = curthread; 2158 uberdata_t *udp = self->ul_uberdata; 2159 2160 ASSERT(mp->mutex_type == USYNC_THREAD); 2161 2162 /* 2163 * Optimize the case of no lock statistics and only a single thread. 2164 * (Most likely a traditional single-threaded application.) 2165 */ 2166 if (udp->uberflags.uf_all == 0) { 2167 /* 2168 * Only one thread exists so there can be no waiters. 2169 */ 2170 mp->mutex_owner = 0; 2171 mp->mutex_lockword = 0; 2172 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2173 } else { 2174 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2175 lwpid_t lwpid; 2176 2177 if (msp) 2178 (void) record_hold_time(msp); 2179 if ((lwpid = mutex_unlock_queue(mp)) != 0) { 2180 (void) __lwp_unpark(lwpid); 2181 preempt(self); 2182 } 2183 } 2184 exit_critical(self); 2185 } 2186 2187 static int 2188 shared_mutex_held(mutex_t *mparg) 2189 { 2190 /* 2191 * There is an inherent data race in the current ownership design. 2192 * The mutex_owner and mutex_ownerpid fields cannot be set or tested 2193 * atomically as a pair. The original implementation tested each 2194 * field just once. This was exposed to trivial false positives in 2195 * the case of multiple multithreaded processes with thread addresses 2196 * in common. To close the window to an acceptable level we now use a 2197 * sequence of five tests: pid-thr-pid-thr-pid. This ensures that any 2198 * single interruption will still leave one uninterrupted sequence of 2199 * pid-thr-pid tests intact. 2200 * 2201 * It is assumed that all updates are always ordered thr-pid and that 2202 * we have TSO hardware. 2203 */ 2204 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2205 ulwp_t *self = curthread; 2206 uberdata_t *udp = self->ul_uberdata; 2207 2208 if (mp->mutex_ownerpid != udp->pid) 2209 return (0); 2210 2211 if (!MUTEX_OWNED(mp, self)) 2212 return (0); 2213 2214 if (mp->mutex_ownerpid != udp->pid) 2215 return (0); 2216 2217 if (!MUTEX_OWNED(mp, self)) 2218 return (0); 2219 2220 if (mp->mutex_ownerpid != udp->pid) 2221 return (0); 2222 2223 return (1); 2224 } 2225 2226 /* 2227 * Some crufty old programs define their own version of _mutex_held() 2228 * to be simply return(1). This breaks internal libc logic, so we 2229 * define a private version for exclusive use by libc, mutex_is_held(), 2230 * and also a new public function, __mutex_held(), to be used in new 2231 * code to circumvent these crufty old programs. 2232 */ 2233 #pragma weak mutex_held = mutex_is_held 2234 #pragma weak _mutex_held = mutex_is_held 2235 #pragma weak __mutex_held = mutex_is_held 2236 int 2237 mutex_is_held(mutex_t *mp) 2238 { 2239 if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) 2240 return (shared_mutex_held(mp)); 2241 return (MUTEX_OWNED(mp, curthread)); 2242 } 2243 2244 #pragma weak _private_mutex_destroy = __mutex_destroy 2245 #pragma weak mutex_destroy = __mutex_destroy 2246 #pragma weak _mutex_destroy = __mutex_destroy 2247 #pragma weak pthread_mutex_destroy = __mutex_destroy 2248 #pragma weak _pthread_mutex_destroy = __mutex_destroy 2249 int 2250 __mutex_destroy(mutex_t *mp) 2251 { 2252 mp->mutex_magic = 0; 2253 mp->mutex_flag &= ~LOCK_INITED; 2254 tdb_sync_obj_deregister(mp); 2255 return (0); 2256 } 2257 2258 /* 2259 * Spin locks are separate from ordinary mutexes, 2260 * but we use the same data structure for them. 2261 */ 2262 2263 #pragma weak pthread_spin_init = _pthread_spin_init 2264 int 2265 _pthread_spin_init(pthread_spinlock_t *lock, int pshared) 2266 { 2267 mutex_t *mp = (mutex_t *)lock; 2268 2269 (void) _memset(mp, 0, sizeof (*mp)); 2270 if (pshared == PTHREAD_PROCESS_SHARED) 2271 mp->mutex_type = USYNC_PROCESS; 2272 else 2273 mp->mutex_type = USYNC_THREAD; 2274 mp->mutex_flag = LOCK_INITED; 2275 mp->mutex_magic = MUTEX_MAGIC; 2276 return (0); 2277 } 2278 2279 #pragma weak pthread_spin_destroy = _pthread_spin_destroy 2280 int 2281 _pthread_spin_destroy(pthread_spinlock_t *lock) 2282 { 2283 (void) _memset(lock, 0, sizeof (*lock)); 2284 return (0); 2285 } 2286 2287 #pragma weak pthread_spin_trylock = _pthread_spin_trylock 2288 int 2289 _pthread_spin_trylock(pthread_spinlock_t *lock) 2290 { 2291 mutex_t *mp = (mutex_t *)lock; 2292 ulwp_t *self = curthread; 2293 int error = 0; 2294 2295 no_preempt(self); 2296 if (set_lock_byte(&mp->mutex_lockw) != 0) 2297 error = EBUSY; 2298 else { 2299 mp->mutex_owner = (uintptr_t)self; 2300 if (mp->mutex_type == USYNC_PROCESS) 2301 mp->mutex_ownerpid = self->ul_uberdata->pid; 2302 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2303 } 2304 preempt(self); 2305 return (error); 2306 } 2307 2308 #pragma weak pthread_spin_lock = _pthread_spin_lock 2309 int 2310 _pthread_spin_lock(pthread_spinlock_t *lock) 2311 { 2312 volatile uint8_t *lockp = 2313 (volatile uint8_t *)&((mutex_t *)lock)->mutex_lockw; 2314 2315 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2316 /* 2317 * We don't care whether the owner is running on a processor. 2318 * We just spin because that's what this interface requires. 2319 */ 2320 for (;;) { 2321 if (*lockp == 0) { /* lock byte appears to be clear */ 2322 if (_pthread_spin_trylock(lock) == 0) 2323 return (0); 2324 } 2325 SMT_PAUSE(); 2326 } 2327 } 2328 2329 #pragma weak pthread_spin_unlock = _pthread_spin_unlock 2330 int 2331 _pthread_spin_unlock(pthread_spinlock_t *lock) 2332 { 2333 mutex_t *mp = (mutex_t *)lock; 2334 ulwp_t *self = curthread; 2335 2336 no_preempt(self); 2337 mp->mutex_owner = 0; 2338 mp->mutex_ownerpid = 0; 2339 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2340 (void) swap32(&mp->mutex_lockword, 0); 2341 preempt(self); 2342 return (0); 2343 } 2344 2345 #pragma weak cond_init = _cond_init 2346 /* ARGSUSED2 */ 2347 int 2348 _cond_init(cond_t *cvp, int type, void *arg) 2349 { 2350 if (type != USYNC_THREAD && type != USYNC_PROCESS) 2351 return (EINVAL); 2352 (void) _memset(cvp, 0, sizeof (*cvp)); 2353 cvp->cond_type = (uint16_t)type; 2354 cvp->cond_magic = COND_MAGIC; 2355 return (0); 2356 } 2357 2358 /* 2359 * cond_sleep_queue(): utility function for cond_wait_queue(). 2360 * 2361 * Go to sleep on a condvar sleep queue, expect to be waked up 2362 * by someone calling cond_signal() or cond_broadcast() or due 2363 * to receiving a UNIX signal or being cancelled, or just simply 2364 * due to a spurious wakeup (like someome calling forkall()). 2365 * 2366 * The associated mutex is *not* reacquired before returning. 2367 * That must be done by the caller of cond_sleep_queue(). 2368 */ 2369 int 2370 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 2371 { 2372 ulwp_t *self = curthread; 2373 queue_head_t *qp; 2374 queue_head_t *mqp; 2375 lwpid_t lwpid; 2376 int signalled; 2377 int error; 2378 2379 /* 2380 * Put ourself on the CV sleep queue, unlock the mutex, then 2381 * park ourself and unpark a candidate lwp to grab the mutex. 2382 * We must go onto the CV sleep queue before dropping the 2383 * mutex in order to guarantee atomicity of the operation. 2384 */ 2385 self->ul_sp = stkptr(); 2386 qp = queue_lock(cvp, CV); 2387 enqueue(qp, self, cvp, CV); 2388 cvp->cond_waiters_user = 1; 2389 self->ul_cvmutex = mp; 2390 self->ul_cv_wake = (tsp != NULL); 2391 self->ul_signalled = 0; 2392 lwpid = mutex_unlock_queue(mp); 2393 for (;;) { 2394 set_parking_flag(self, 1); 2395 queue_unlock(qp); 2396 if (lwpid != 0) { 2397 lwpid = preempt_unpark(self, lwpid); 2398 preempt(self); 2399 } 2400 /* 2401 * We may have a deferred signal present, 2402 * in which case we should return EINTR. 2403 * Also, we may have received a SIGCANCEL; if so 2404 * and we are cancelable we should return EINTR. 2405 * We force an immediate EINTR return from 2406 * __lwp_park() by turning our parking flag off. 2407 */ 2408 if (self->ul_cursig != 0 || 2409 (self->ul_cancelable && self->ul_cancel_pending)) 2410 set_parking_flag(self, 0); 2411 /* 2412 * __lwp_park() will return the residual time in tsp 2413 * if we are unparked before the timeout expires. 2414 */ 2415 error = __lwp_park(tsp, lwpid); 2416 set_parking_flag(self, 0); 2417 lwpid = 0; /* unpark the other lwp only once */ 2418 /* 2419 * We were waked up by cond_signal(), cond_broadcast(), 2420 * by an interrupt or timeout (EINTR or ETIME), 2421 * or we may just have gotten a spurious wakeup. 2422 */ 2423 qp = queue_lock(cvp, CV); 2424 mqp = queue_lock(mp, MX); 2425 if (self->ul_sleepq == NULL) 2426 break; 2427 /* 2428 * We are on either the condvar sleep queue or the 2429 * mutex sleep queue. Break out of the sleep if we 2430 * were interrupted or we timed out (EINTR or ETIME). 2431 * Else this is a spurious wakeup; continue the loop. 2432 */ 2433 if (self->ul_sleepq == mqp) { /* mutex queue */ 2434 if (error) { 2435 mp->mutex_waiters = dequeue_self(mqp, mp); 2436 break; 2437 } 2438 tsp = NULL; /* no more timeout */ 2439 } else if (self->ul_sleepq == qp) { /* condvar queue */ 2440 if (error) { 2441 cvp->cond_waiters_user = dequeue_self(qp, cvp); 2442 break; 2443 } 2444 /* 2445 * Else a spurious wakeup on the condvar queue. 2446 * __lwp_park() has already adjusted the timeout. 2447 */ 2448 } else { 2449 thr_panic("cond_sleep_queue(): thread not on queue"); 2450 } 2451 queue_unlock(mqp); 2452 } 2453 2454 self->ul_sp = 0; 2455 ASSERT(self->ul_cvmutex == NULL && self->ul_cv_wake == 0); 2456 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 2457 self->ul_wchan == NULL); 2458 2459 signalled = self->ul_signalled; 2460 self->ul_signalled = 0; 2461 queue_unlock(qp); 2462 queue_unlock(mqp); 2463 2464 /* 2465 * If we were concurrently cond_signal()d and any of: 2466 * received a UNIX signal, were cancelled, or got a timeout, 2467 * then perform another cond_signal() to avoid consuming it. 2468 */ 2469 if (error && signalled) 2470 (void) cond_signal_internal(cvp); 2471 2472 return (error); 2473 } 2474 2475 int 2476 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp, 2477 tdb_mutex_stats_t *msp) 2478 { 2479 ulwp_t *self = curthread; 2480 int error; 2481 2482 /* 2483 * The old thread library was programmed to defer signals 2484 * while in cond_wait() so that the associated mutex would 2485 * be guaranteed to be held when the application signal 2486 * handler was invoked. 2487 * 2488 * We do not behave this way by default; the state of the 2489 * associated mutex in the signal handler is undefined. 2490 * 2491 * To accommodate applications that depend on the old 2492 * behavior, the _THREAD_COND_WAIT_DEFER environment 2493 * variable can be set to 1 and we will behave in the 2494 * old way with respect to cond_wait(). 2495 */ 2496 if (self->ul_cond_wait_defer) 2497 sigoff(self); 2498 2499 error = cond_sleep_queue(cvp, mp, tsp); 2500 2501 /* 2502 * Reacquire the mutex. 2503 */ 2504 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2505 mp->mutex_owner = (uintptr_t)self; 2506 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2507 } else if (mutex_trylock_adaptive(mp) != 0) { 2508 (void) mutex_lock_queue(self, msp, mp, NULL); 2509 } 2510 2511 if (msp) 2512 record_begin_hold(msp); 2513 2514 /* 2515 * Take any deferred signal now, after we have reacquired the mutex. 2516 */ 2517 if (self->ul_cond_wait_defer) 2518 sigon(self); 2519 2520 return (error); 2521 } 2522 2523 /* 2524 * cond_sleep_kernel(): utility function for cond_wait_kernel(). 2525 * See the comment ahead of cond_sleep_queue(), above. 2526 */ 2527 int 2528 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 2529 { 2530 int mtype = mp->mutex_type; 2531 ulwp_t *self = curthread; 2532 int error; 2533 2534 if (mtype & PTHREAD_PRIO_PROTECT) { 2535 if (_ceil_mylist_del(mp)) 2536 _ceil_prio_waive(); 2537 } 2538 2539 self->ul_sp = stkptr(); 2540 self->ul_wchan = cvp; 2541 mp->mutex_owner = 0; 2542 mp->mutex_ownerpid = 0; 2543 if (mtype & PTHREAD_PRIO_INHERIT) 2544 mp->mutex_lockw = LOCKCLEAR; 2545 /* 2546 * ___lwp_cond_wait() returns immediately with EINTR if 2547 * set_parking_flag(self,0) is called on this lwp before it 2548 * goes to sleep in the kernel. sigacthandler() calls this 2549 * when a deferred signal is noted. This assures that we don't 2550 * get stuck in ___lwp_cond_wait() with all signals blocked 2551 * due to taking a deferred signal before going to sleep. 2552 */ 2553 set_parking_flag(self, 1); 2554 if (self->ul_cursig != 0 || 2555 (self->ul_cancelable && self->ul_cancel_pending)) 2556 set_parking_flag(self, 0); 2557 error = ___lwp_cond_wait(cvp, mp, tsp, 1); 2558 set_parking_flag(self, 0); 2559 self->ul_sp = 0; 2560 self->ul_wchan = NULL; 2561 return (error); 2562 } 2563 2564 int 2565 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 2566 { 2567 ulwp_t *self = curthread; 2568 int error; 2569 int merror; 2570 2571 /* 2572 * See the large comment in cond_wait_queue(), above. 2573 */ 2574 if (self->ul_cond_wait_defer) 2575 sigoff(self); 2576 2577 error = cond_sleep_kernel(cvp, mp, tsp); 2578 2579 /* 2580 * Override the return code from ___lwp_cond_wait() 2581 * with any non-zero return code from mutex_lock(). 2582 * This addresses robust lock failures in particular; 2583 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE 2584 * errors in order to take corrective action. 2585 */ 2586 if ((merror = _private_mutex_lock(mp)) != 0) 2587 error = merror; 2588 2589 /* 2590 * Take any deferred signal now, after we have reacquired the mutex. 2591 */ 2592 if (self->ul_cond_wait_defer) 2593 sigon(self); 2594 2595 return (error); 2596 } 2597 2598 /* 2599 * Common code for _cond_wait() and _cond_timedwait() 2600 */ 2601 int 2602 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 2603 { 2604 int mtype = mp->mutex_type; 2605 hrtime_t begin_sleep = 0; 2606 ulwp_t *self = curthread; 2607 uberdata_t *udp = self->ul_uberdata; 2608 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 2609 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2610 uint8_t rcount; 2611 int error = 0; 2612 2613 /* 2614 * The SUSV3 Posix spec for pthread_cond_timedwait() states: 2615 * Except in the case of [ETIMEDOUT], all these error checks 2616 * shall act as if they were performed immediately at the 2617 * beginning of processing for the function and shall cause 2618 * an error return, in effect, prior to modifying the state 2619 * of the mutex specified by mutex or the condition variable 2620 * specified by cond. 2621 * Therefore, we must return EINVAL now if the timout is invalid. 2622 */ 2623 if (tsp != NULL && 2624 (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC)) 2625 return (EINVAL); 2626 2627 if (__td_event_report(self, TD_SLEEP, udp)) { 2628 self->ul_sp = stkptr(); 2629 self->ul_wchan = cvp; 2630 self->ul_td_evbuf.eventnum = TD_SLEEP; 2631 self->ul_td_evbuf.eventdata = cvp; 2632 tdb_event(TD_SLEEP, udp); 2633 self->ul_sp = 0; 2634 } 2635 if (csp) { 2636 if (tsp) 2637 tdb_incr(csp->cond_timedwait); 2638 else 2639 tdb_incr(csp->cond_wait); 2640 } 2641 if (msp) 2642 begin_sleep = record_hold_time(msp); 2643 else if (csp) 2644 begin_sleep = gethrtime(); 2645 2646 if (self->ul_error_detection) { 2647 if (!mutex_is_held(mp)) 2648 lock_error(mp, "cond_wait", cvp, NULL); 2649 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) 2650 lock_error(mp, "recursive mutex in cond_wait", 2651 cvp, NULL); 2652 if (cvp->cond_type & USYNC_PROCESS) { 2653 if (!(mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))) 2654 lock_error(mp, "cond_wait", cvp, 2655 "condvar process-shared, " 2656 "mutex process-private"); 2657 } else { 2658 if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) 2659 lock_error(mp, "cond_wait", cvp, 2660 "condvar process-private, " 2661 "mutex process-shared"); 2662 } 2663 } 2664 2665 /* 2666 * We deal with recursive mutexes by completely 2667 * dropping the lock and restoring the recursion 2668 * count after waking up. This is arguably wrong, 2669 * but it obeys the principle of least astonishment. 2670 */ 2671 rcount = mp->mutex_rcount; 2672 mp->mutex_rcount = 0; 2673 if ((mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST | 2674 PTHREAD_PRIO_INHERIT | PTHREAD_PRIO_PROTECT)) | 2675 (cvp->cond_type & USYNC_PROCESS)) 2676 error = cond_wait_kernel(cvp, mp, tsp); 2677 else 2678 error = cond_wait_queue(cvp, mp, tsp, msp); 2679 mp->mutex_rcount = rcount; 2680 2681 if (csp) { 2682 hrtime_t lapse = gethrtime() - begin_sleep; 2683 if (tsp == NULL) 2684 csp->cond_wait_sleep_time += lapse; 2685 else { 2686 csp->cond_timedwait_sleep_time += lapse; 2687 if (error == ETIME) 2688 tdb_incr(csp->cond_timedwait_timeout); 2689 } 2690 } 2691 return (error); 2692 } 2693 2694 /* 2695 * cond_wait() is a cancellation point but _cond_wait() is not. 2696 * System libraries call the non-cancellation version. 2697 * It is expected that only applications call the cancellation version. 2698 */ 2699 int 2700 _cond_wait(cond_t *cvp, mutex_t *mp) 2701 { 2702 ulwp_t *self = curthread; 2703 uberdata_t *udp = self->ul_uberdata; 2704 uberflags_t *gflags; 2705 2706 /* 2707 * Optimize the common case of USYNC_THREAD plus 2708 * no error detection, no lock statistics, and no event tracing. 2709 */ 2710 if ((gflags = self->ul_schedctl_called) != NULL && 2711 (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted | 2712 self->ul_td_events_enable | 2713 udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0) 2714 return (cond_wait_queue(cvp, mp, NULL, NULL)); 2715 2716 /* 2717 * Else do it the long way. 2718 */ 2719 return (cond_wait_common(cvp, mp, NULL)); 2720 } 2721 2722 int 2723 cond_wait(cond_t *cvp, mutex_t *mp) 2724 { 2725 int error; 2726 2727 _cancelon(); 2728 error = _cond_wait(cvp, mp); 2729 if (error == EINTR) 2730 _canceloff(); 2731 else 2732 _canceloff_nocancel(); 2733 return (error); 2734 } 2735 2736 #pragma weak pthread_cond_wait = _pthread_cond_wait 2737 int 2738 _pthread_cond_wait(cond_t *cvp, mutex_t *mp) 2739 { 2740 int error; 2741 2742 error = cond_wait(cvp, mp); 2743 return ((error == EINTR)? 0 : error); 2744 } 2745 2746 /* 2747 * cond_timedwait() is a cancellation point but _cond_timedwait() is not. 2748 * System libraries call the non-cancellation version. 2749 * It is expected that only applications call the cancellation version. 2750 */ 2751 int 2752 _cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 2753 { 2754 clockid_t clock_id = cvp->cond_clockid; 2755 timespec_t reltime; 2756 int error; 2757 2758 if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES) 2759 clock_id = CLOCK_REALTIME; 2760 abstime_to_reltime(clock_id, abstime, &reltime); 2761 error = cond_wait_common(cvp, mp, &reltime); 2762 if (error == ETIME && clock_id == CLOCK_HIGHRES) { 2763 /* 2764 * Don't return ETIME if we didn't really get a timeout. 2765 * This can happen if we return because someone resets 2766 * the system clock. Just return zero in this case, 2767 * giving a spurious wakeup but not a timeout. 2768 */ 2769 if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC + 2770 abstime->tv_nsec > gethrtime()) 2771 error = 0; 2772 } 2773 return (error); 2774 } 2775 2776 int 2777 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 2778 { 2779 int error; 2780 2781 _cancelon(); 2782 error = _cond_timedwait(cvp, mp, abstime); 2783 if (error == EINTR) 2784 _canceloff(); 2785 else 2786 _canceloff_nocancel(); 2787 return (error); 2788 } 2789 2790 #pragma weak pthread_cond_timedwait = _pthread_cond_timedwait 2791 int 2792 _pthread_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 2793 { 2794 int error; 2795 2796 error = cond_timedwait(cvp, mp, abstime); 2797 if (error == ETIME) 2798 error = ETIMEDOUT; 2799 else if (error == EINTR) 2800 error = 0; 2801 return (error); 2802 } 2803 2804 /* 2805 * cond_reltimedwait() is a cancellation point but _cond_reltimedwait() 2806 * is not. System libraries call the non-cancellation version. 2807 * It is expected that only applications call the cancellation version. 2808 */ 2809 int 2810 _cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 2811 { 2812 timespec_t tslocal = *reltime; 2813 2814 return (cond_wait_common(cvp, mp, &tslocal)); 2815 } 2816 2817 #pragma weak cond_reltimedwait = _cond_reltimedwait_cancel 2818 int 2819 _cond_reltimedwait_cancel(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 2820 { 2821 int error; 2822 2823 _cancelon(); 2824 error = _cond_reltimedwait(cvp, mp, reltime); 2825 if (error == EINTR) 2826 _canceloff(); 2827 else 2828 _canceloff_nocancel(); 2829 return (error); 2830 } 2831 2832 #pragma weak pthread_cond_reltimedwait_np = _pthread_cond_reltimedwait_np 2833 int 2834 _pthread_cond_reltimedwait_np(cond_t *cvp, mutex_t *mp, 2835 const timespec_t *reltime) 2836 { 2837 int error; 2838 2839 error = _cond_reltimedwait_cancel(cvp, mp, reltime); 2840 if (error == ETIME) 2841 error = ETIMEDOUT; 2842 else if (error == EINTR) 2843 error = 0; 2844 return (error); 2845 } 2846 2847 #pragma weak pthread_cond_signal = cond_signal_internal 2848 #pragma weak _pthread_cond_signal = cond_signal_internal 2849 #pragma weak cond_signal = cond_signal_internal 2850 #pragma weak _cond_signal = cond_signal_internal 2851 int 2852 cond_signal_internal(cond_t *cvp) 2853 { 2854 ulwp_t *self = curthread; 2855 uberdata_t *udp = self->ul_uberdata; 2856 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 2857 int error = 0; 2858 queue_head_t *qp; 2859 mutex_t *mp; 2860 queue_head_t *mqp; 2861 ulwp_t **ulwpp; 2862 ulwp_t *ulwp; 2863 ulwp_t *prev = NULL; 2864 ulwp_t *next; 2865 ulwp_t **suspp = NULL; 2866 ulwp_t *susprev; 2867 2868 if (csp) 2869 tdb_incr(csp->cond_signal); 2870 2871 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 2872 error = __lwp_cond_signal(cvp); 2873 2874 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 2875 return (error); 2876 2877 /* 2878 * Move someone from the condvar sleep queue to the mutex sleep 2879 * queue for the mutex that he will acquire on being waked up. 2880 * We can do this only if we own the mutex he will acquire. 2881 * If we do not own the mutex, or if his ul_cv_wake flag 2882 * is set, just dequeue and unpark him. 2883 */ 2884 qp = queue_lock(cvp, CV); 2885 for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL; 2886 prev = ulwp, ulwpp = &ulwp->ul_link) { 2887 if (ulwp->ul_wchan == cvp) { 2888 if (!ulwp->ul_stop) 2889 break; 2890 /* 2891 * Try not to dequeue a suspended thread. 2892 * This mimics the old libthread's behavior. 2893 */ 2894 if (suspp == NULL) { 2895 suspp = ulwpp; 2896 susprev = prev; 2897 } 2898 } 2899 } 2900 if (ulwp == NULL && suspp != NULL) { 2901 ulwp = *(ulwpp = suspp); 2902 prev = susprev; 2903 suspp = NULL; 2904 } 2905 if (ulwp == NULL) { /* no one on the sleep queue */ 2906 cvp->cond_waiters_user = 0; 2907 queue_unlock(qp); 2908 return (error); 2909 } 2910 /* 2911 * Scan the remainder of the CV queue for another waiter. 2912 */ 2913 if (suspp != NULL) { 2914 next = *suspp; 2915 } else { 2916 for (next = ulwp->ul_link; next != NULL; next = next->ul_link) 2917 if (next->ul_wchan == cvp) 2918 break; 2919 } 2920 if (next == NULL) 2921 cvp->cond_waiters_user = 0; 2922 2923 /* 2924 * Inform the thread that he was the recipient of a cond_signal(). 2925 * This lets him deal with cond_signal() and, concurrently, 2926 * one or more of a cancellation, a UNIX signal, or a timeout. 2927 * These latter conditions must not consume a cond_signal(). 2928 */ 2929 ulwp->ul_signalled = 1; 2930 2931 /* 2932 * Dequeue the waiter but leave his ul_sleepq non-NULL 2933 * while we move him to the mutex queue so that he can 2934 * deal properly with spurious wakeups. 2935 */ 2936 *ulwpp = ulwp->ul_link; 2937 if (qp->qh_tail == ulwp) 2938 qp->qh_tail = prev; 2939 qp->qh_qlen--; 2940 ulwp->ul_link = NULL; 2941 2942 mp = ulwp->ul_cvmutex; /* the mutex he will acquire */ 2943 ulwp->ul_cvmutex = NULL; 2944 ASSERT(mp != NULL); 2945 2946 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 2947 lwpid_t lwpid = ulwp->ul_lwpid; 2948 2949 no_preempt(self); 2950 ulwp->ul_sleepq = NULL; 2951 ulwp->ul_wchan = NULL; 2952 ulwp->ul_cv_wake = 0; 2953 queue_unlock(qp); 2954 (void) __lwp_unpark(lwpid); 2955 preempt(self); 2956 } else { 2957 mqp = queue_lock(mp, MX); 2958 enqueue(mqp, ulwp, mp, MX); 2959 mp->mutex_waiters = 1; 2960 queue_unlock(mqp); 2961 queue_unlock(qp); 2962 } 2963 2964 return (error); 2965 } 2966 2967 #define MAXLWPS 128 /* max remembered lwpids before overflow */ 2968 #define NEWLWPS 2048 /* max remembered lwpids at first overflow */ 2969 2970 #pragma weak pthread_cond_broadcast = cond_broadcast_internal 2971 #pragma weak _pthread_cond_broadcast = cond_broadcast_internal 2972 #pragma weak cond_broadcast = cond_broadcast_internal 2973 #pragma weak _cond_broadcast = cond_broadcast_internal 2974 int 2975 cond_broadcast_internal(cond_t *cvp) 2976 { 2977 ulwp_t *self = curthread; 2978 uberdata_t *udp = self->ul_uberdata; 2979 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 2980 int error = 0; 2981 queue_head_t *qp; 2982 mutex_t *mp; 2983 queue_head_t *mqp; 2984 mutex_t *mp_cache = NULL; 2985 queue_head_t *mqp_cache = NULL; 2986 ulwp_t **ulwpp; 2987 ulwp_t *ulwp; 2988 ulwp_t *prev = NULL; 2989 lwpid_t buffer[MAXLWPS]; 2990 lwpid_t *lwpid = buffer; 2991 int nlwpid = 0; 2992 int maxlwps = MAXLWPS; 2993 2994 if (csp) 2995 tdb_incr(csp->cond_broadcast); 2996 2997 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 2998 error = __lwp_cond_broadcast(cvp); 2999 3000 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3001 return (error); 3002 3003 /* 3004 * Move everyone from the condvar sleep queue to the mutex sleep 3005 * queue for the mutex that they will acquire on being waked up. 3006 * We can do this only if we own the mutex they will acquire. 3007 * If we do not own the mutex, or if their ul_cv_wake flag 3008 * is set, just dequeue and unpark them. 3009 * 3010 * We keep track of lwpids that are to be unparked in lwpid[]. 3011 * __lwp_unpark_all() is called to unpark all of them after 3012 * they have been removed from the sleep queue and the sleep 3013 * queue lock has been dropped. If we run out of space in our 3014 * on-stack buffer, we need to allocate more but we can't call 3015 * lmalloc() because we are holding a queue lock when the overflow 3016 * occurs and lmalloc() acquires a lock. We can't use alloca() 3017 * either because the application may have allocated a small stack 3018 * and we don't want to overrun the stack. So we use the mmap() 3019 * system call directly since that path acquires no locks. 3020 */ 3021 qp = queue_lock(cvp, CV); 3022 cvp->cond_waiters_user = 0; 3023 ulwpp = &qp->qh_head; 3024 while ((ulwp = *ulwpp) != NULL) { 3025 3026 if (ulwp->ul_wchan != cvp) { 3027 prev = ulwp; 3028 ulwpp = &ulwp->ul_link; 3029 continue; 3030 } 3031 3032 *ulwpp = ulwp->ul_link; 3033 if (qp->qh_tail == ulwp) 3034 qp->qh_tail = prev; 3035 qp->qh_qlen--; 3036 ulwp->ul_link = NULL; 3037 3038 mp = ulwp->ul_cvmutex; /* his mutex */ 3039 ulwp->ul_cvmutex = NULL; 3040 ASSERT(mp != NULL); 3041 3042 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3043 ulwp->ul_sleepq = NULL; 3044 ulwp->ul_wchan = NULL; 3045 ulwp->ul_cv_wake = 0; 3046 if (nlwpid == maxlwps) { 3047 /* 3048 * Allocate NEWLWPS ids on the first overflow. 3049 * Double the allocation each time after that. 3050 */ 3051 int newlwps = (lwpid == buffer)? NEWLWPS : 3052 2 * maxlwps; 3053 void *vaddr = _private_mmap(NULL, 3054 newlwps * sizeof (lwpid_t), 3055 PROT_READ|PROT_WRITE, 3056 MAP_PRIVATE|MAP_ANON, -1, (off_t)0); 3057 if (vaddr == MAP_FAILED) { 3058 /* 3059 * Let's hope this never happens. 3060 * If it does, then we have a terrible 3061 * thundering herd on our hands. 3062 */ 3063 (void) __lwp_unpark_all(lwpid, nlwpid); 3064 nlwpid = 0; 3065 } else { 3066 (void) _memcpy(vaddr, lwpid, 3067 maxlwps * sizeof (lwpid_t)); 3068 if (lwpid != buffer) 3069 (void) _private_munmap(lwpid, 3070 maxlwps * sizeof (lwpid_t)); 3071 lwpid = vaddr; 3072 maxlwps = newlwps; 3073 } 3074 } 3075 lwpid[nlwpid++] = ulwp->ul_lwpid; 3076 } else { 3077 if (mp != mp_cache) { 3078 if (mqp_cache != NULL) 3079 queue_unlock(mqp_cache); 3080 mqp_cache = queue_lock(mp, MX); 3081 mp_cache = mp; 3082 } 3083 mqp = mqp_cache; 3084 enqueue(mqp, ulwp, mp, MX); 3085 mp->mutex_waiters = 1; 3086 } 3087 } 3088 if (mqp_cache != NULL) 3089 queue_unlock(mqp_cache); 3090 queue_unlock(qp); 3091 if (nlwpid) { 3092 if (nlwpid == 1) 3093 (void) __lwp_unpark(lwpid[0]); 3094 else 3095 (void) __lwp_unpark_all(lwpid, nlwpid); 3096 } 3097 if (lwpid != buffer) 3098 (void) _private_munmap(lwpid, maxlwps * sizeof (lwpid_t)); 3099 3100 return (error); 3101 } 3102 3103 #pragma weak pthread_cond_destroy = _cond_destroy 3104 #pragma weak _pthread_cond_destroy = _cond_destroy 3105 #pragma weak cond_destroy = _cond_destroy 3106 int 3107 _cond_destroy(cond_t *cvp) 3108 { 3109 cvp->cond_magic = 0; 3110 tdb_sync_obj_deregister(cvp); 3111 return (0); 3112 } 3113 3114 #if defined(THREAD_DEBUG) 3115 void 3116 assert_no_libc_locks_held(void) 3117 { 3118 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 3119 } 3120 #endif 3121 3122 /* protected by link_lock */ 3123 uint64_t spin_lock_spin; 3124 uint64_t spin_lock_spin2; 3125 uint64_t spin_lock_sleep; 3126 uint64_t spin_lock_wakeup; 3127 3128 /* 3129 * Record spin lock statistics. 3130 * Called by a thread exiting itself in thrp_exit(). 3131 * Also called via atexit() from the thread calling 3132 * exit() to do all the other threads as well. 3133 */ 3134 void 3135 record_spin_locks(ulwp_t *ulwp) 3136 { 3137 spin_lock_spin += ulwp->ul_spin_lock_spin; 3138 spin_lock_spin2 += ulwp->ul_spin_lock_spin2; 3139 spin_lock_sleep += ulwp->ul_spin_lock_sleep; 3140 spin_lock_wakeup += ulwp->ul_spin_lock_wakeup; 3141 ulwp->ul_spin_lock_spin = 0; 3142 ulwp->ul_spin_lock_spin2 = 0; 3143 ulwp->ul_spin_lock_sleep = 0; 3144 ulwp->ul_spin_lock_wakeup = 0; 3145 } 3146 3147 /* 3148 * atexit function: dump the queue statistics to stderr. 3149 */ 3150 #if !defined(__lint) 3151 #define fprintf _fprintf 3152 #endif 3153 #include <stdio.h> 3154 void 3155 dump_queue_statistics(void) 3156 { 3157 uberdata_t *udp = curthread->ul_uberdata; 3158 queue_head_t *qp; 3159 int qn; 3160 uint64_t spin_lock_total = 0; 3161 3162 if (udp->queue_head == NULL || thread_queue_dump == 0) 3163 return; 3164 3165 if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 || 3166 fprintf(stderr, "queue# lockcount max qlen\n") < 0) 3167 return; 3168 for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) { 3169 if (qp->qh_lockcount == 0) 3170 continue; 3171 spin_lock_total += qp->qh_lockcount; 3172 if (fprintf(stderr, "%5d %12llu%12u\n", qn, 3173 (u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0) 3174 return; 3175 } 3176 3177 if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 || 3178 fprintf(stderr, "queue# lockcount max qlen\n") < 0) 3179 return; 3180 for (qn = 0; qn < QHASHSIZE; qn++, qp++) { 3181 if (qp->qh_lockcount == 0) 3182 continue; 3183 spin_lock_total += qp->qh_lockcount; 3184 if (fprintf(stderr, "%5d %12llu%12u\n", qn, 3185 (u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0) 3186 return; 3187 } 3188 3189 (void) fprintf(stderr, "\n spin_lock_total = %10llu\n", 3190 (u_longlong_t)spin_lock_total); 3191 (void) fprintf(stderr, " spin_lock_spin = %10llu\n", 3192 (u_longlong_t)spin_lock_spin); 3193 (void) fprintf(stderr, " spin_lock_spin2 = %10llu\n", 3194 (u_longlong_t)spin_lock_spin2); 3195 (void) fprintf(stderr, " spin_lock_sleep = %10llu\n", 3196 (u_longlong_t)spin_lock_sleep); 3197 (void) fprintf(stderr, " spin_lock_wakeup = %10llu\n", 3198 (u_longlong_t)spin_lock_wakeup); 3199 } 3200