xref: /titanic_52/usr/src/lib/libc/port/threads/synch.c (revision 9a686fbc186e8e2a64e9a5094d44c7d6fa0ea167)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright 2015, Joyent, Inc.
26  */
27 
28 #include "lint.h"
29 #include "thr_uberdata.h"
30 #include <sys/rtpriocntl.h>
31 #include <sys/sdt.h>
32 #include <atomic.h>
33 
34 #if defined(THREAD_DEBUG)
35 #define	INCR32(x)	(((x) != UINT32_MAX)? (x)++ : 0)
36 #define	INCR(x)		((x)++)
37 #define	DECR(x)		((x)--)
38 #define	MAXINCR(m, x)	((m < ++x)? (m = x) : 0)
39 #else
40 #define	INCR32(x)
41 #define	INCR(x)
42 #define	DECR(x)
43 #define	MAXINCR(m, x)
44 #endif
45 
46 /*
47  * This mutex is initialized to be held by lwp#1.
48  * It is used to block a thread that has returned from a mutex_lock()
49  * of a LOCK_PRIO_INHERIT mutex with an unrecoverable error.
50  */
51 mutex_t	stall_mutex = DEFAULTMUTEX;
52 
53 static int shared_mutex_held(mutex_t *);
54 static int mutex_queuelock_adaptive(mutex_t *);
55 static void mutex_wakeup_all(mutex_t *);
56 
57 /*
58  * Lock statistics support functions.
59  */
60 void
61 record_begin_hold(tdb_mutex_stats_t *msp)
62 {
63 	tdb_incr(msp->mutex_lock);
64 	msp->mutex_begin_hold = gethrtime();
65 }
66 
67 hrtime_t
68 record_hold_time(tdb_mutex_stats_t *msp)
69 {
70 	hrtime_t now = gethrtime();
71 
72 	if (msp->mutex_begin_hold)
73 		msp->mutex_hold_time += now - msp->mutex_begin_hold;
74 	msp->mutex_begin_hold = 0;
75 	return (now);
76 }
77 
78 /*
79  * Called once at library initialization.
80  */
81 void
82 mutex_setup(void)
83 {
84 	if (set_lock_byte(&stall_mutex.mutex_lockw))
85 		thr_panic("mutex_setup() cannot acquire stall_mutex");
86 	stall_mutex.mutex_owner = (uintptr_t)curthread;
87 }
88 
89 /*
90  * The default spin count of 1000 is experimentally determined.
91  * On sun4u machines with any number of processors it could be raised
92  * to 10,000 but that (experimentally) makes almost no difference.
93  * The environment variable:
94  *	_THREAD_ADAPTIVE_SPIN=count
95  * can be used to override and set the count in the range [0 .. 1,000,000].
96  */
97 int	thread_adaptive_spin = 1000;
98 uint_t	thread_max_spinners = 100;
99 int	thread_queue_verify = 0;
100 static	int	ncpus;
101 
102 /*
103  * Distinguish spinning for queue locks from spinning for regular locks.
104  * We try harder to acquire queue locks by spinning.
105  * The environment variable:
106  *	_THREAD_QUEUE_SPIN=count
107  * can be used to override and set the count in the range [0 .. 1,000,000].
108  */
109 int	thread_queue_spin = 10000;
110 
111 #define	ALL_ATTRIBUTES				\
112 	(LOCK_RECURSIVE | LOCK_ERRORCHECK |	\
113 	LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT |	\
114 	LOCK_ROBUST)
115 
116 /*
117  * 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST,
118  * augmented by zero or more the flags:
119  *	LOCK_RECURSIVE
120  *	LOCK_ERRORCHECK
121  *	LOCK_PRIO_INHERIT
122  *	LOCK_PRIO_PROTECT
123  *	LOCK_ROBUST
124  */
125 #pragma weak _mutex_init = mutex_init
126 /* ARGSUSED2 */
127 int
128 mutex_init(mutex_t *mp, int type, void *arg)
129 {
130 	int basetype = (type & ~ALL_ATTRIBUTES);
131 	const pcclass_t *pccp;
132 	int error = 0;
133 	int ceil;
134 
135 	if (basetype == USYNC_PROCESS_ROBUST) {
136 		/*
137 		 * USYNC_PROCESS_ROBUST is a deprecated historical type.
138 		 * We change it into (USYNC_PROCESS | LOCK_ROBUST) but
139 		 * retain the USYNC_PROCESS_ROBUST flag so we can return
140 		 * ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST
141 		 * mutexes will ever draw ELOCKUNMAPPED).
142 		 */
143 		type |= (USYNC_PROCESS | LOCK_ROBUST);
144 		basetype = USYNC_PROCESS;
145 	}
146 
147 	if (type & LOCK_PRIO_PROTECT)
148 		pccp = get_info_by_policy(SCHED_FIFO);
149 	if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) ||
150 	    (type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT))
151 	    == (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) ||
152 	    ((type & LOCK_PRIO_PROTECT) &&
153 	    ((ceil = *(int *)arg) < pccp->pcc_primin ||
154 	    ceil > pccp->pcc_primax))) {
155 		error = EINVAL;
156 	} else if (type & LOCK_ROBUST) {
157 		/*
158 		 * Callers of mutex_init() with the LOCK_ROBUST attribute
159 		 * are required to pass an initially all-zero mutex.
160 		 * Multiple calls to mutex_init() are allowed; all but
161 		 * the first return EBUSY.  A call to mutex_init() is
162 		 * allowed to make an inconsistent robust lock consistent
163 		 * (for historical usage, even though the proper interface
164 		 * for this is mutex_consistent()).  Note that we use
165 		 * atomic_or_16() to set the LOCK_INITED flag so as
166 		 * not to disturb surrounding bits (LOCK_OWNERDEAD, etc).
167 		 */
168 		if (!(mp->mutex_flag & LOCK_INITED)) {
169 			mp->mutex_type = (uint8_t)type;
170 			atomic_or_16(&mp->mutex_flag, LOCK_INITED);
171 			mp->mutex_magic = MUTEX_MAGIC;
172 		} else if (type != mp->mutex_type ||
173 		    ((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) {
174 			error = EINVAL;
175 		} else if (mutex_consistent(mp) != 0) {
176 			error = EBUSY;
177 		}
178 		/* register a process robust mutex with the kernel */
179 		if (basetype == USYNC_PROCESS)
180 			register_lock(mp);
181 	} else {
182 		(void) memset(mp, 0, sizeof (*mp));
183 		mp->mutex_type = (uint8_t)type;
184 		mp->mutex_flag = LOCK_INITED;
185 		mp->mutex_magic = MUTEX_MAGIC;
186 	}
187 
188 	if (error == 0 && (type & LOCK_PRIO_PROTECT)) {
189 		mp->mutex_ceiling = ceil;
190 	}
191 
192 	/*
193 	 * This should be at the beginning of the function,
194 	 * but for the sake of old broken applications that
195 	 * do not have proper alignment for their mutexes
196 	 * (and don't check the return code from mutex_init),
197 	 * we put it here, after initializing the mutex regardless.
198 	 */
199 	if (error == 0 &&
200 	    ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
201 	    curthread->ul_misaligned == 0)
202 		error = EINVAL;
203 
204 	return (error);
205 }
206 
207 /*
208  * Delete mp from list of ceiling mutexes owned by curthread.
209  * Return 1 if the head of the chain was updated.
210  */
211 int
212 _ceil_mylist_del(mutex_t *mp)
213 {
214 	ulwp_t *self = curthread;
215 	mxchain_t **mcpp;
216 	mxchain_t *mcp;
217 
218 	for (mcpp = &self->ul_mxchain;
219 	    (mcp = *mcpp) != NULL;
220 	    mcpp = &mcp->mxchain_next) {
221 		if (mcp->mxchain_mx == mp) {
222 			*mcpp = mcp->mxchain_next;
223 			lfree(mcp, sizeof (*mcp));
224 			return (mcpp == &self->ul_mxchain);
225 		}
226 	}
227 	return (0);
228 }
229 
230 /*
231  * Add mp to the list of ceiling mutexes owned by curthread.
232  * Return ENOMEM if no memory could be allocated.
233  */
234 int
235 _ceil_mylist_add(mutex_t *mp)
236 {
237 	ulwp_t *self = curthread;
238 	mxchain_t *mcp;
239 
240 	if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
241 		return (ENOMEM);
242 	mcp->mxchain_mx = mp;
243 	mcp->mxchain_next = self->ul_mxchain;
244 	self->ul_mxchain = mcp;
245 	return (0);
246 }
247 
248 /*
249  * Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below.
250  */
251 static void
252 set_rt_priority(ulwp_t *self, int prio)
253 {
254 	pcparms_t pcparm;
255 
256 	pcparm.pc_cid = self->ul_rtclassid;
257 	((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE;
258 	((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio;
259 	(void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm);
260 }
261 
262 /*
263  * Inherit priority from ceiling.
264  * This changes the effective priority, not the assigned priority.
265  */
266 void
267 _ceil_prio_inherit(int prio)
268 {
269 	ulwp_t *self = curthread;
270 
271 	self->ul_epri = prio;
272 	set_rt_priority(self, prio);
273 }
274 
275 /*
276  * Waive inherited ceiling priority.  Inherit from head of owned ceiling locks
277  * if holding at least one ceiling lock.  If no ceiling locks are held at this
278  * point, disinherit completely, reverting back to assigned priority.
279  */
280 void
281 _ceil_prio_waive(void)
282 {
283 	ulwp_t *self = curthread;
284 	mxchain_t *mcp = self->ul_mxchain;
285 	int prio;
286 
287 	if (mcp == NULL) {
288 		prio = self->ul_pri;
289 		self->ul_epri = 0;
290 	} else {
291 		prio = mcp->mxchain_mx->mutex_ceiling;
292 		self->ul_epri = prio;
293 	}
294 	set_rt_priority(self, prio);
295 }
296 
297 /*
298  * Clear the lock byte.  Retain the waiters byte and the spinners byte.
299  * Return the old value of the lock word.
300  */
301 static uint32_t
302 clear_lockbyte(volatile uint32_t *lockword)
303 {
304 	uint32_t old;
305 	uint32_t new;
306 
307 	do {
308 		old = *lockword;
309 		new = old & ~LOCKMASK;
310 	} while (atomic_cas_32(lockword, old, new) != old);
311 
312 	return (old);
313 }
314 
315 /*
316  * Same as clear_lockbyte(), but operates on mutex_lockword64.
317  * The mutex_ownerpid field is cleared along with the lock byte.
318  */
319 static uint64_t
320 clear_lockbyte64(volatile uint64_t *lockword64)
321 {
322 	uint64_t old;
323 	uint64_t new;
324 
325 	do {
326 		old = *lockword64;
327 		new = old & ~LOCKMASK64;
328 	} while (atomic_cas_64(lockword64, old, new) != old);
329 
330 	return (old);
331 }
332 
333 /*
334  * Similar to set_lock_byte(), which only tries to set the lock byte.
335  * Here, we attempt to set the lock byte AND the mutex_ownerpid, keeping
336  * the remaining bytes constant.  This atomic operation is required for the
337  * correctness of process-shared robust locks, otherwise there would be
338  * a window or vulnerability in which the lock byte had been set but the
339  * mutex_ownerpid had not yet been set.  If the process were to die in
340  * this window of vulnerability (due to some other thread calling exit()
341  * or the process receiving a fatal signal), the mutex would be left locked
342  * but without a process-ID to determine which process was holding the lock.
343  * The kernel would then be unable to mark the robust mutex as LOCK_OWNERDEAD
344  * when the process died.  For all other cases of process-shared locks, this
345  * operation is just a convenience, for the sake of common code.
346  *
347  * This operation requires process-shared robust locks to be properly
348  * aligned on an 8-byte boundary, at least on sparc machines, lest the
349  * operation incur an alignment fault.  This is automatic when locks
350  * are declared properly using the mutex_t or pthread_mutex_t data types
351  * and the application does not allocate dynamic memory on less than an
352  * 8-byte boundary.  See the 'horrible hack' comments below for cases
353  * dealing with such broken applications.
354  */
355 static int
356 set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid)
357 {
358 	uint64_t old;
359 	uint64_t new;
360 
361 	old = *lockword64 & ~LOCKMASK64;
362 	new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64;
363 	if (atomic_cas_64(lockword64, old, new) == old)
364 		return (LOCKCLEAR);
365 
366 	return (LOCKSET);
367 }
368 
369 /*
370  * Increment the spinners count in the mutex lock word.
371  * Return 0 on success.  Return -1 if the count would overflow.
372  */
373 static int
374 spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners)
375 {
376 	uint32_t old;
377 	uint32_t new;
378 
379 	do {
380 		old = *lockword;
381 		if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners)
382 			return (-1);
383 		new = old + (1 << SPINNERSHIFT);
384 	} while (atomic_cas_32(lockword, old, new) != old);
385 
386 	return (0);
387 }
388 
389 /*
390  * Decrement the spinners count in the mutex lock word.
391  * Return the new value of the lock word.
392  */
393 static uint32_t
394 spinners_decr(volatile uint32_t *lockword)
395 {
396 	uint32_t old;
397 	uint32_t new;
398 
399 	do {
400 		new = old = *lockword;
401 		if (new & SPINNERMASK)
402 			new -= (1 << SPINNERSHIFT);
403 	} while (atomic_cas_32(lockword, old, new) != old);
404 
405 	return (new);
406 }
407 
408 /*
409  * Non-preemptive spin locks.  Used by queue_lock().
410  * No lock statistics are gathered for these locks.
411  * No DTrace probes are provided for these locks.
412  */
413 void
414 spin_lock_set(mutex_t *mp)
415 {
416 	ulwp_t *self = curthread;
417 
418 	no_preempt(self);
419 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
420 		mp->mutex_owner = (uintptr_t)self;
421 		return;
422 	}
423 	/*
424 	 * Spin for a while, attempting to acquire the lock.
425 	 */
426 	INCR32(self->ul_spin_lock_spin);
427 	if (mutex_queuelock_adaptive(mp) == 0 ||
428 	    set_lock_byte(&mp->mutex_lockw) == 0) {
429 		mp->mutex_owner = (uintptr_t)self;
430 		return;
431 	}
432 	/*
433 	 * Try harder if we were previously at a no premption level.
434 	 */
435 	if (self->ul_preempt > 1) {
436 		INCR32(self->ul_spin_lock_spin2);
437 		if (mutex_queuelock_adaptive(mp) == 0 ||
438 		    set_lock_byte(&mp->mutex_lockw) == 0) {
439 			mp->mutex_owner = (uintptr_t)self;
440 			return;
441 		}
442 	}
443 	/*
444 	 * Give up and block in the kernel for the mutex.
445 	 */
446 	INCR32(self->ul_spin_lock_sleep);
447 	(void) ___lwp_mutex_timedlock(mp, NULL, self);
448 }
449 
450 void
451 spin_lock_clear(mutex_t *mp)
452 {
453 	ulwp_t *self = curthread;
454 
455 	mp->mutex_owner = 0;
456 	if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) {
457 		(void) ___lwp_mutex_wakeup(mp, 0);
458 		INCR32(self->ul_spin_lock_wakeup);
459 	}
460 	preempt(self);
461 }
462 
463 /*
464  * Allocate the sleep queue hash table.
465  */
466 void
467 queue_alloc(void)
468 {
469 	ulwp_t *self = curthread;
470 	uberdata_t *udp = self->ul_uberdata;
471 	queue_head_t *qp;
472 	void *data;
473 	int i;
474 
475 	/*
476 	 * No locks are needed; we call here only when single-threaded.
477 	 */
478 	ASSERT(self == udp->ulwp_one);
479 	ASSERT(!udp->uberflags.uf_mt);
480 	if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
481 	    PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
482 	    == MAP_FAILED)
483 		thr_panic("cannot allocate thread queue_head table");
484 	udp->queue_head = qp = (queue_head_t *)data;
485 	for (i = 0; i < 2 * QHASHSIZE; qp++, i++) {
486 		qp->qh_type = (i < QHASHSIZE)? MX : CV;
487 		qp->qh_lock.mutex_flag = LOCK_INITED;
488 		qp->qh_lock.mutex_magic = MUTEX_MAGIC;
489 		qp->qh_hlist = &qp->qh_def_root;
490 #if defined(THREAD_DEBUG)
491 		qp->qh_hlen = 1;
492 		qp->qh_hmax = 1;
493 #endif
494 	}
495 }
496 
497 #if defined(THREAD_DEBUG)
498 
499 /*
500  * Debugging: verify correctness of a sleep queue.
501  */
502 void
503 QVERIFY(queue_head_t *qp)
504 {
505 	ulwp_t *self = curthread;
506 	uberdata_t *udp = self->ul_uberdata;
507 	queue_root_t *qrp;
508 	ulwp_t *ulwp;
509 	ulwp_t *prev;
510 	uint_t index;
511 	uint32_t cnt;
512 	char qtype;
513 	void *wchan;
514 
515 	ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
516 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
517 	for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
518 		cnt++;
519 		ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) ||
520 		    (qrp->qr_head == NULL && qrp->qr_tail == NULL));
521 	}
522 	ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt);
523 	qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
524 	ASSERT(qp->qh_type == qtype);
525 	if (!thread_queue_verify)
526 		return;
527 	/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
528 	for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) {
529 		for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL;
530 		    prev = ulwp, ulwp = ulwp->ul_link) {
531 			cnt++;
532 			if (ulwp->ul_writer)
533 				ASSERT(prev == NULL || prev->ul_writer);
534 			ASSERT(ulwp->ul_qtype == qtype);
535 			ASSERT(ulwp->ul_wchan != NULL);
536 			ASSERT(ulwp->ul_sleepq == qp);
537 			wchan = ulwp->ul_wchan;
538 			ASSERT(qrp->qr_wchan == wchan);
539 			index = QUEUE_HASH(wchan, qtype);
540 			ASSERT(&udp->queue_head[index] == qp);
541 		}
542 		ASSERT(qrp->qr_tail == prev);
543 	}
544 	ASSERT(qp->qh_qlen == cnt);
545 }
546 
547 #else	/* THREAD_DEBUG */
548 
549 #define	QVERIFY(qp)
550 
551 #endif	/* THREAD_DEBUG */
552 
553 /*
554  * Acquire a queue head.
555  */
556 queue_head_t *
557 queue_lock(void *wchan, int qtype)
558 {
559 	uberdata_t *udp = curthread->ul_uberdata;
560 	queue_head_t *qp;
561 	queue_root_t *qrp;
562 
563 	ASSERT(qtype == MX || qtype == CV);
564 
565 	/*
566 	 * It is possible that we could be called while still single-threaded.
567 	 * If so, we call queue_alloc() to allocate the queue_head[] array.
568 	 */
569 	if ((qp = udp->queue_head) == NULL) {
570 		queue_alloc();
571 		qp = udp->queue_head;
572 	}
573 	qp += QUEUE_HASH(wchan, qtype);
574 	spin_lock_set(&qp->qh_lock);
575 	for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next)
576 		if (qrp->qr_wchan == wchan)
577 			break;
578 	if (qrp == NULL && qp->qh_def_root.qr_head == NULL) {
579 		/* the default queue root is available; use it */
580 		qrp = &qp->qh_def_root;
581 		qrp->qr_wchan = wchan;
582 		ASSERT(qrp->qr_next == NULL);
583 		ASSERT(qrp->qr_tail == NULL &&
584 		    qrp->qr_rtcount == 0 && qrp->qr_qlen == 0);
585 	}
586 	qp->qh_wchan = wchan;	/* valid until queue_unlock() is called */
587 	qp->qh_root = qrp;	/* valid until queue_unlock() is called */
588 	INCR32(qp->qh_lockcount);
589 	QVERIFY(qp);
590 	return (qp);
591 }
592 
593 /*
594  * Release a queue head.
595  */
596 void
597 queue_unlock(queue_head_t *qp)
598 {
599 	QVERIFY(qp);
600 	spin_lock_clear(&qp->qh_lock);
601 }
602 
603 /*
604  * For rwlock queueing, we must queue writers ahead of readers of the
605  * same priority.  We do this by making writers appear to have a half
606  * point higher priority for purposes of priority comparisons below.
607  */
608 #define	CMP_PRIO(ulwp)	((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
609 
610 void
611 enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo)
612 {
613 	queue_root_t *qrp;
614 	ulwp_t **ulwpp;
615 	ulwp_t *next;
616 	int pri = CMP_PRIO(ulwp);
617 
618 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
619 	ASSERT(ulwp->ul_sleepq != qp);
620 
621 	if ((qrp = qp->qh_root) == NULL) {
622 		/* use the thread's queue root for the linkage */
623 		qrp = &ulwp->ul_queue_root;
624 		qrp->qr_next = qp->qh_hlist;
625 		qrp->qr_prev = NULL;
626 		qrp->qr_head = NULL;
627 		qrp->qr_tail = NULL;
628 		qrp->qr_wchan = qp->qh_wchan;
629 		qrp->qr_rtcount = 0;
630 		qrp->qr_qlen = 0;
631 		qrp->qr_qmax = 0;
632 		qp->qh_hlist->qr_prev = qrp;
633 		qp->qh_hlist = qrp;
634 		qp->qh_root = qrp;
635 		MAXINCR(qp->qh_hmax, qp->qh_hlen);
636 	}
637 
638 	/*
639 	 * LIFO queue ordering is unfair and can lead to starvation,
640 	 * but it gives better performance for heavily contended locks.
641 	 * We use thread_queue_fifo (range is 0..8) to determine
642 	 * the frequency of FIFO vs LIFO queuing:
643 	 *	0 : every 256th time	(almost always LIFO)
644 	 *	1 : every 128th time
645 	 *	2 : every 64th  time
646 	 *	3 : every 32nd  time
647 	 *	4 : every 16th  time	(the default value, mostly LIFO)
648 	 *	5 : every 8th   time
649 	 *	6 : every 4th   time
650 	 *	7 : every 2nd   time
651 	 *	8 : every time		(never LIFO, always FIFO)
652 	 * Note that there is always some degree of FIFO ordering.
653 	 * This breaks live lock conditions that occur in applications
654 	 * that are written assuming (incorrectly) that threads acquire
655 	 * locks fairly, that is, in roughly round-robin order.
656 	 * In any event, the queue is maintained in kernel priority order.
657 	 *
658 	 * If force_fifo is non-zero, fifo queueing is forced.
659 	 * SUSV3 requires this for semaphores.
660 	 */
661 	if (qrp->qr_head == NULL) {
662 		/*
663 		 * The queue is empty.  LIFO/FIFO doesn't matter.
664 		 */
665 		ASSERT(qrp->qr_tail == NULL);
666 		ulwpp = &qrp->qr_head;
667 	} else if (force_fifo |
668 	    (((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) {
669 		/*
670 		 * Enqueue after the last thread whose priority is greater
671 		 * than or equal to the priority of the thread being queued.
672 		 * Attempt first to go directly onto the tail of the queue.
673 		 */
674 		if (pri <= CMP_PRIO(qrp->qr_tail))
675 			ulwpp = &qrp->qr_tail->ul_link;
676 		else {
677 			for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
678 			    ulwpp = &next->ul_link)
679 				if (pri > CMP_PRIO(next))
680 					break;
681 		}
682 	} else {
683 		/*
684 		 * Enqueue before the first thread whose priority is less
685 		 * than or equal to the priority of the thread being queued.
686 		 * Hopefully we can go directly onto the head of the queue.
687 		 */
688 		for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL;
689 		    ulwpp = &next->ul_link)
690 			if (pri >= CMP_PRIO(next))
691 				break;
692 	}
693 	if ((ulwp->ul_link = *ulwpp) == NULL)
694 		qrp->qr_tail = ulwp;
695 	*ulwpp = ulwp;
696 
697 	ulwp->ul_sleepq = qp;
698 	ulwp->ul_wchan = qp->qh_wchan;
699 	ulwp->ul_qtype = qp->qh_type;
700 	if ((ulwp->ul_schedctl != NULL &&
701 	    ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) |
702 	    ulwp->ul_pilocks) {
703 		ulwp->ul_rtqueued = 1;
704 		qrp->qr_rtcount++;
705 	}
706 	MAXINCR(qrp->qr_qmax, qrp->qr_qlen);
707 	MAXINCR(qp->qh_qmax, qp->qh_qlen);
708 }
709 
710 /*
711  * Helper function for queue_slot() and queue_slot_rt().
712  * Try to find a non-suspended thread on the queue.
713  */
714 static ulwp_t **
715 queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt)
716 {
717 	ulwp_t *ulwp;
718 	ulwp_t **foundpp = NULL;
719 	int priority = -1;
720 	ulwp_t *prev;
721 	int tpri;
722 
723 	for (prev = NULL;
724 	    (ulwp = *ulwpp) != NULL;
725 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
726 		if (ulwp->ul_stop)	/* skip suspended threads */
727 			continue;
728 		tpri = rt? CMP_PRIO(ulwp) : 0;
729 		if (tpri > priority) {
730 			foundpp = ulwpp;
731 			*prevp = prev;
732 			priority = tpri;
733 			if (!rt)
734 				break;
735 		}
736 	}
737 	return (foundpp);
738 }
739 
740 /*
741  * For real-time, we search the entire queue because the dispatch
742  * (kernel) priorities may have changed since enqueueing.
743  */
744 static ulwp_t **
745 queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp)
746 {
747 	ulwp_t **ulwpp = ulwpp_org;
748 	ulwp_t *ulwp = *ulwpp;
749 	ulwp_t **foundpp = ulwpp;
750 	int priority = CMP_PRIO(ulwp);
751 	ulwp_t *prev;
752 	int tpri;
753 
754 	for (prev = ulwp, ulwpp = &ulwp->ul_link;
755 	    (ulwp = *ulwpp) != NULL;
756 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
757 		tpri = CMP_PRIO(ulwp);
758 		if (tpri > priority) {
759 			foundpp = ulwpp;
760 			*prevp = prev;
761 			priority = tpri;
762 		}
763 	}
764 	ulwp = *foundpp;
765 
766 	/*
767 	 * Try not to return a suspended thread.
768 	 * This mimics the old libthread's behavior.
769 	 */
770 	if (ulwp->ul_stop &&
771 	    (ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) {
772 		foundpp = ulwpp;
773 		ulwp = *foundpp;
774 	}
775 	ulwp->ul_rt = 1;
776 	return (foundpp);
777 }
778 
779 ulwp_t **
780 queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more)
781 {
782 	queue_root_t *qrp;
783 	ulwp_t **ulwpp;
784 	ulwp_t *ulwp;
785 	int rt;
786 
787 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
788 
789 	if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) {
790 		*more = 0;
791 		return (NULL);		/* no lwps on the queue */
792 	}
793 	rt = (qrp->qr_rtcount != 0);
794 	*prevp = NULL;
795 	if (ulwp->ul_link == NULL) {	/* only one lwp on the queue */
796 		*more = 0;
797 		ulwp->ul_rt = rt;
798 		return (&qrp->qr_head);
799 	}
800 	*more = 1;
801 
802 	if (rt)		/* real-time queue */
803 		return (queue_slot_rt(&qrp->qr_head, prevp));
804 	/*
805 	 * Try not to return a suspended thread.
806 	 * This mimics the old libthread's behavior.
807 	 */
808 	if (ulwp->ul_stop &&
809 	    (ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) {
810 		ulwp = *ulwpp;
811 		ulwp->ul_rt = 0;
812 		return (ulwpp);
813 	}
814 	/*
815 	 * The common case; just pick the first thread on the queue.
816 	 */
817 	ulwp->ul_rt = 0;
818 	return (&qrp->qr_head);
819 }
820 
821 /*
822  * Common code for unlinking an lwp from a user-level sleep queue.
823  */
824 void
825 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev)
826 {
827 	queue_root_t *qrp = qp->qh_root;
828 	queue_root_t *nqrp;
829 	ulwp_t *ulwp = *ulwpp;
830 	ulwp_t *next;
831 
832 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
833 	ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan);
834 
835 	DECR(qp->qh_qlen);
836 	DECR(qrp->qr_qlen);
837 	if (ulwp->ul_rtqueued) {
838 		ulwp->ul_rtqueued = 0;
839 		qrp->qr_rtcount--;
840 	}
841 	next = ulwp->ul_link;
842 	*ulwpp = next;
843 	ulwp->ul_link = NULL;
844 	if (qrp->qr_tail == ulwp)
845 		qrp->qr_tail = prev;
846 	if (qrp == &ulwp->ul_queue_root) {
847 		/*
848 		 * We can't continue to use the unlinked thread's
849 		 * queue root for the linkage.
850 		 */
851 		queue_root_t *qr_next = qrp->qr_next;
852 		queue_root_t *qr_prev = qrp->qr_prev;
853 
854 		if (qrp->qr_tail) {
855 			/* switch to using the last thread's queue root */
856 			ASSERT(qrp->qr_qlen != 0);
857 			nqrp = &qrp->qr_tail->ul_queue_root;
858 			*nqrp = *qrp;
859 			if (qr_next)
860 				qr_next->qr_prev = nqrp;
861 			if (qr_prev)
862 				qr_prev->qr_next = nqrp;
863 			else
864 				qp->qh_hlist = nqrp;
865 			qp->qh_root = nqrp;
866 		} else {
867 			/* empty queue root; just delete from the hash list */
868 			ASSERT(qrp->qr_qlen == 0);
869 			if (qr_next)
870 				qr_next->qr_prev = qr_prev;
871 			if (qr_prev)
872 				qr_prev->qr_next = qr_next;
873 			else
874 				qp->qh_hlist = qr_next;
875 			qp->qh_root = NULL;
876 			DECR(qp->qh_hlen);
877 		}
878 	}
879 }
880 
881 ulwp_t *
882 dequeue(queue_head_t *qp, int *more)
883 {
884 	ulwp_t **ulwpp;
885 	ulwp_t *ulwp;
886 	ulwp_t *prev;
887 
888 	if ((ulwpp = queue_slot(qp, &prev, more)) == NULL)
889 		return (NULL);
890 	ulwp = *ulwpp;
891 	queue_unlink(qp, ulwpp, prev);
892 	ulwp->ul_sleepq = NULL;
893 	ulwp->ul_wchan = NULL;
894 	return (ulwp);
895 }
896 
897 /*
898  * Return a pointer to the highest priority thread sleeping on wchan.
899  */
900 ulwp_t *
901 queue_waiter(queue_head_t *qp)
902 {
903 	ulwp_t **ulwpp;
904 	ulwp_t *prev;
905 	int more;
906 
907 	if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL)
908 		return (NULL);
909 	return (*ulwpp);
910 }
911 
912 int
913 dequeue_self(queue_head_t *qp)
914 {
915 	ulwp_t *self = curthread;
916 	queue_root_t *qrp;
917 	ulwp_t **ulwpp;
918 	ulwp_t *ulwp;
919 	ulwp_t *prev;
920 	int found = 0;
921 
922 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
923 
924 	/* find self on the sleep queue */
925 	if ((qrp = qp->qh_root) != NULL) {
926 		for (prev = NULL, ulwpp = &qrp->qr_head;
927 		    (ulwp = *ulwpp) != NULL;
928 		    prev = ulwp, ulwpp = &ulwp->ul_link) {
929 			if (ulwp == self) {
930 				queue_unlink(qp, ulwpp, prev);
931 				self->ul_cvmutex = NULL;
932 				self->ul_sleepq = NULL;
933 				self->ul_wchan = NULL;
934 				found = 1;
935 				break;
936 			}
937 		}
938 	}
939 
940 	if (!found)
941 		thr_panic("dequeue_self(): curthread not found on queue");
942 
943 	return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL);
944 }
945 
946 /*
947  * Called from call_user_handler() and _thrp_suspend() to take
948  * ourself off of our sleep queue so we can grab locks.
949  */
950 void
951 unsleep_self(void)
952 {
953 	ulwp_t *self = curthread;
954 	queue_head_t *qp;
955 
956 	/*
957 	 * Calling enter_critical()/exit_critical() here would lead
958 	 * to recursion.  Just manipulate self->ul_critical directly.
959 	 */
960 	self->ul_critical++;
961 	while (self->ul_sleepq != NULL) {
962 		qp = queue_lock(self->ul_wchan, self->ul_qtype);
963 		/*
964 		 * We may have been moved from a CV queue to a
965 		 * mutex queue while we were attempting queue_lock().
966 		 * If so, just loop around and try again.
967 		 * dequeue_self() clears self->ul_sleepq.
968 		 */
969 		if (qp == self->ul_sleepq)
970 			(void) dequeue_self(qp);
971 		queue_unlock(qp);
972 	}
973 	self->ul_writer = 0;
974 	self->ul_critical--;
975 }
976 
977 /*
978  * Common code for calling the the ___lwp_mutex_timedlock() system call.
979  * Returns with mutex_owner and mutex_ownerpid set correctly.
980  */
981 static int
982 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
983 {
984 	ulwp_t *self = curthread;
985 	uberdata_t *udp = self->ul_uberdata;
986 	int mtype = mp->mutex_type;
987 	hrtime_t begin_sleep;
988 	int acquired;
989 	int error;
990 
991 	self->ul_sp = stkptr();
992 	self->ul_wchan = mp;
993 	if (__td_event_report(self, TD_SLEEP, udp)) {
994 		self->ul_td_evbuf.eventnum = TD_SLEEP;
995 		self->ul_td_evbuf.eventdata = mp;
996 		tdb_event(TD_SLEEP, udp);
997 	}
998 	if (msp) {
999 		tdb_incr(msp->mutex_sleep);
1000 		begin_sleep = gethrtime();
1001 	}
1002 
1003 	DTRACE_PROBE1(plockstat, mutex__block, mp);
1004 
1005 	for (;;) {
1006 		/*
1007 		 * A return value of EOWNERDEAD or ELOCKUNMAPPED
1008 		 * means we successfully acquired the lock.
1009 		 */
1010 		if ((error = ___lwp_mutex_timedlock(mp, tsp, self)) != 0 &&
1011 		    error != EOWNERDEAD && error != ELOCKUNMAPPED) {
1012 			acquired = 0;
1013 			break;
1014 		}
1015 
1016 		if (mtype & USYNC_PROCESS) {
1017 			/*
1018 			 * Defend against forkall().  We may be the child,
1019 			 * in which case we don't actually own the mutex.
1020 			 */
1021 			enter_critical(self);
1022 			if (mp->mutex_ownerpid == udp->pid) {
1023 				exit_critical(self);
1024 				acquired = 1;
1025 				break;
1026 			}
1027 			exit_critical(self);
1028 		} else {
1029 			acquired = 1;
1030 			break;
1031 		}
1032 	}
1033 
1034 	if (msp)
1035 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
1036 	self->ul_wchan = NULL;
1037 	self->ul_sp = 0;
1038 
1039 	if (acquired) {
1040 		ASSERT(mp->mutex_owner == (uintptr_t)self);
1041 		DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1042 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1043 	} else {
1044 		DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1045 		DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1046 	}
1047 
1048 	return (error);
1049 }
1050 
1051 /*
1052  * Common code for calling the ___lwp_mutex_trylock() system call.
1053  * Returns with mutex_owner and mutex_ownerpid set correctly.
1054  */
1055 int
1056 mutex_trylock_kernel(mutex_t *mp)
1057 {
1058 	ulwp_t *self = curthread;
1059 	uberdata_t *udp = self->ul_uberdata;
1060 	int mtype = mp->mutex_type;
1061 	int error;
1062 	int acquired;
1063 
1064 	for (;;) {
1065 		/*
1066 		 * A return value of EOWNERDEAD or ELOCKUNMAPPED
1067 		 * means we successfully acquired the lock.
1068 		 */
1069 		if ((error = ___lwp_mutex_trylock(mp, self)) != 0 &&
1070 		    error != EOWNERDEAD && error != ELOCKUNMAPPED) {
1071 			acquired = 0;
1072 			break;
1073 		}
1074 
1075 		if (mtype & USYNC_PROCESS) {
1076 			/*
1077 			 * Defend against forkall().  We may be the child,
1078 			 * in which case we don't actually own the mutex.
1079 			 */
1080 			enter_critical(self);
1081 			if (mp->mutex_ownerpid == udp->pid) {
1082 				exit_critical(self);
1083 				acquired = 1;
1084 				break;
1085 			}
1086 			exit_critical(self);
1087 		} else {
1088 			acquired = 1;
1089 			break;
1090 		}
1091 	}
1092 
1093 	if (acquired) {
1094 		ASSERT(mp->mutex_owner == (uintptr_t)self);
1095 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1096 	} else if (error != EBUSY) {
1097 		DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1098 	}
1099 
1100 	return (error);
1101 }
1102 
1103 volatile sc_shared_t *
1104 setup_schedctl(void)
1105 {
1106 	ulwp_t *self = curthread;
1107 	volatile sc_shared_t *scp;
1108 	sc_shared_t *tmp;
1109 
1110 	if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
1111 	    !self->ul_vfork &&			/* not a child of vfork() */
1112 	    !self->ul_schedctl_called) {	/* haven't been called before */
1113 		enter_critical(self);
1114 		self->ul_schedctl_called = &self->ul_uberdata->uberflags;
1115 		if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
1116 			self->ul_schedctl = scp = tmp;
1117 		exit_critical(self);
1118 	}
1119 	/*
1120 	 * Unless the call to setup_schedctl() is surrounded
1121 	 * by enter_critical()/exit_critical(), the address
1122 	 * we are returning could be invalid due to a forkall()
1123 	 * having occurred in another thread.
1124 	 */
1125 	return (scp);
1126 }
1127 
1128 /*
1129  * Interfaces from libsched, incorporated into libc.
1130  * libsched.so.1 is now a filter library onto libc.
1131  */
1132 #pragma weak schedctl_lookup = schedctl_init
1133 schedctl_t *
1134 schedctl_init(void)
1135 {
1136 	volatile sc_shared_t *scp = setup_schedctl();
1137 	return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
1138 }
1139 
1140 void
1141 schedctl_exit(void)
1142 {
1143 }
1144 
1145 /*
1146  * Contract private interface for java.
1147  * Set up the schedctl data if it doesn't exist yet.
1148  * Return a pointer to the pointer to the schedctl data.
1149  */
1150 volatile sc_shared_t *volatile *
1151 _thr_schedctl(void)
1152 {
1153 	ulwp_t *self = curthread;
1154 	volatile sc_shared_t *volatile *ptr;
1155 
1156 	if (self->ul_vfork)
1157 		return (NULL);
1158 	if (*(ptr = &self->ul_schedctl) == NULL)
1159 		(void) setup_schedctl();
1160 	return (ptr);
1161 }
1162 
1163 /*
1164  * Block signals and attempt to block preemption.
1165  * no_preempt()/preempt() must be used in pairs but can be nested.
1166  */
1167 void
1168 no_preempt(ulwp_t *self)
1169 {
1170 	volatile sc_shared_t *scp;
1171 
1172 	if (self->ul_preempt++ == 0) {
1173 		enter_critical(self);
1174 		if ((scp = self->ul_schedctl) != NULL ||
1175 		    (scp = setup_schedctl()) != NULL) {
1176 			/*
1177 			 * Save the pre-existing preempt value.
1178 			 */
1179 			self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
1180 			scp->sc_preemptctl.sc_nopreempt = 1;
1181 		}
1182 	}
1183 }
1184 
1185 /*
1186  * Undo the effects of no_preempt().
1187  */
1188 void
1189 preempt(ulwp_t *self)
1190 {
1191 	volatile sc_shared_t *scp;
1192 
1193 	ASSERT(self->ul_preempt > 0);
1194 	if (--self->ul_preempt == 0) {
1195 		if ((scp = self->ul_schedctl) != NULL) {
1196 			/*
1197 			 * Restore the pre-existing preempt value.
1198 			 */
1199 			scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
1200 			if (scp->sc_preemptctl.sc_yield &&
1201 			    scp->sc_preemptctl.sc_nopreempt == 0) {
1202 				yield();
1203 				if (scp->sc_preemptctl.sc_yield) {
1204 					/*
1205 					 * Shouldn't happen.  This is either
1206 					 * a race condition or the thread
1207 					 * just entered the real-time class.
1208 					 */
1209 					yield();
1210 					scp->sc_preemptctl.sc_yield = 0;
1211 				}
1212 			}
1213 		}
1214 		exit_critical(self);
1215 	}
1216 }
1217 
1218 /*
1219  * If a call to preempt() would cause the current thread to yield or to
1220  * take deferred actions in exit_critical(), then unpark the specified
1221  * lwp so it can run while we delay.  Return the original lwpid if the
1222  * unpark was not performed, else return zero.  The tests are a repeat
1223  * of some of the tests in preempt(), above.  This is a statistical
1224  * optimization solely for cond_sleep_queue(), below.
1225  */
1226 static lwpid_t
1227 preempt_unpark(ulwp_t *self, lwpid_t lwpid)
1228 {
1229 	volatile sc_shared_t *scp = self->ul_schedctl;
1230 
1231 	ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
1232 	if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
1233 	    (self->ul_curplease && self->ul_critical == 1)) {
1234 		(void) __lwp_unpark(lwpid);
1235 		lwpid = 0;
1236 	}
1237 	return (lwpid);
1238 }
1239 
1240 /*
1241  * Spin for a while (if 'tryhard' is true), trying to grab the lock.
1242  * If this fails, return EBUSY and let the caller deal with it.
1243  * If this succeeds, return 0 with mutex_owner set to curthread.
1244  */
1245 static int
1246 mutex_trylock_adaptive(mutex_t *mp, int tryhard)
1247 {
1248 	ulwp_t *self = curthread;
1249 	int error = EBUSY;
1250 	ulwp_t *ulwp;
1251 	volatile sc_shared_t *scp;
1252 	volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
1253 	volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner;
1254 	uint32_t new_lockword;
1255 	int count = 0;
1256 	int max_count;
1257 	uint8_t max_spinners;
1258 
1259 	ASSERT(!(mp->mutex_type & USYNC_PROCESS));
1260 
1261 	if (MUTEX_OWNED(mp, self))
1262 		return (EBUSY);
1263 
1264 	enter_critical(self);
1265 
1266 	/* short-cut, not definitive (see below) */
1267 	if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
1268 		ASSERT(mp->mutex_type & LOCK_ROBUST);
1269 		error = ENOTRECOVERABLE;
1270 		goto done;
1271 	}
1272 
1273 	/*
1274 	 * Make one attempt to acquire the lock before
1275 	 * incurring the overhead of the spin loop.
1276 	 */
1277 	if (set_lock_byte(lockp) == 0) {
1278 		*ownerp = (uintptr_t)self;
1279 		error = 0;
1280 		goto done;
1281 	}
1282 	if (!tryhard)
1283 		goto done;
1284 	if (ncpus == 0)
1285 		ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1286 	if ((max_spinners = self->ul_max_spinners) >= ncpus)
1287 		max_spinners = ncpus - 1;
1288 	max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
1289 	if (max_count == 0)
1290 		goto done;
1291 
1292 	/*
1293 	 * This spin loop is unfair to lwps that have already dropped into
1294 	 * the kernel to sleep.  They will starve on a highly-contended mutex.
1295 	 * This is just too bad.  The adaptive spin algorithm is intended
1296 	 * to allow programs with highly-contended locks (that is, broken
1297 	 * programs) to execute with reasonable speed despite their contention.
1298 	 * Being fair would reduce the speed of such programs and well-written
1299 	 * programs will not suffer in any case.
1300 	 */
1301 	if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1)
1302 		goto done;
1303 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
1304 	for (count = 1; ; count++) {
1305 		if (*lockp == 0 && set_lock_byte(lockp) == 0) {
1306 			*ownerp = (uintptr_t)self;
1307 			error = 0;
1308 			break;
1309 		}
1310 		if (count == max_count)
1311 			break;
1312 		SMT_PAUSE();
1313 		/*
1314 		 * Stop spinning if the mutex owner is not running on
1315 		 * a processor; it will not drop the lock any time soon
1316 		 * and we would just be wasting time to keep spinning.
1317 		 *
1318 		 * Note that we are looking at another thread (ulwp_t)
1319 		 * without ensuring that the other thread does not exit.
1320 		 * The scheme relies on ulwp_t structures never being
1321 		 * deallocated by the library (the library employs a free
1322 		 * list of ulwp_t structs that are reused when new threads
1323 		 * are created) and on schedctl shared memory never being
1324 		 * deallocated once created via __schedctl().
1325 		 *
1326 		 * Thus, the worst that can happen when the spinning thread
1327 		 * looks at the owner's schedctl data is that it is looking
1328 		 * at some other thread's schedctl data.  This almost never
1329 		 * happens and is benign when it does.
1330 		 */
1331 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1332 		    ((scp = ulwp->ul_schedctl) == NULL ||
1333 		    scp->sc_state != SC_ONPROC))
1334 			break;
1335 	}
1336 	new_lockword = spinners_decr(&mp->mutex_lockword);
1337 	if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
1338 		/*
1339 		 * We haven't yet acquired the lock, the lock
1340 		 * is free, and there are no other spinners.
1341 		 * Make one final attempt to acquire the lock.
1342 		 *
1343 		 * This isn't strictly necessary since mutex_lock_queue()
1344 		 * (the next action this thread will take if it doesn't
1345 		 * acquire the lock here) makes one attempt to acquire
1346 		 * the lock before putting the thread to sleep.
1347 		 *
1348 		 * If the next action for this thread (on failure here)
1349 		 * were not to call mutex_lock_queue(), this would be
1350 		 * necessary for correctness, to avoid ending up with an
1351 		 * unheld mutex with waiters but no one to wake them up.
1352 		 */
1353 		if (set_lock_byte(lockp) == 0) {
1354 			*ownerp = (uintptr_t)self;
1355 			error = 0;
1356 		}
1357 		count++;
1358 	}
1359 
1360 done:
1361 	if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1362 		ASSERT(mp->mutex_type & LOCK_ROBUST);
1363 		/*
1364 		 * We shouldn't own the mutex.
1365 		 * Just clear the lock; everyone has already been waked up.
1366 		 */
1367 		*ownerp = 0;
1368 		(void) clear_lockbyte(&mp->mutex_lockword);
1369 		error = ENOTRECOVERABLE;
1370 	}
1371 
1372 	exit_critical(self);
1373 
1374 	if (error) {
1375 		if (count) {
1376 			DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count);
1377 		}
1378 		if (error != EBUSY) {
1379 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1380 		}
1381 	} else {
1382 		if (count) {
1383 			DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
1384 		}
1385 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
1386 		if (mp->mutex_flag & LOCK_OWNERDEAD) {
1387 			ASSERT(mp->mutex_type & LOCK_ROBUST);
1388 			error = EOWNERDEAD;
1389 		}
1390 	}
1391 
1392 	return (error);
1393 }
1394 
1395 /*
1396  * Same as mutex_trylock_adaptive(), except specifically for queue locks.
1397  * The owner field is not set here; the caller (spin_lock_set()) sets it.
1398  */
1399 static int
1400 mutex_queuelock_adaptive(mutex_t *mp)
1401 {
1402 	ulwp_t *ulwp;
1403 	volatile sc_shared_t *scp;
1404 	volatile uint8_t *lockp;
1405 	volatile uint64_t *ownerp;
1406 	int count = curthread->ul_queue_spin;
1407 
1408 	ASSERT(mp->mutex_type == USYNC_THREAD);
1409 
1410 	if (count == 0)
1411 		return (EBUSY);
1412 
1413 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1414 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1415 	while (--count >= 0) {
1416 		if (*lockp == 0 && set_lock_byte(lockp) == 0)
1417 			return (0);
1418 		SMT_PAUSE();
1419 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1420 		    ((scp = ulwp->ul_schedctl) == NULL ||
1421 		    scp->sc_state != SC_ONPROC))
1422 			break;
1423 	}
1424 
1425 	return (EBUSY);
1426 }
1427 
1428 /*
1429  * Like mutex_trylock_adaptive(), but for process-shared mutexes.
1430  * Spin for a while (if 'tryhard' is true), trying to grab the lock.
1431  * If this fails, return EBUSY and let the caller deal with it.
1432  * If this succeeds, return 0 with mutex_owner set to curthread
1433  * and mutex_ownerpid set to the current pid.
1434  */
1435 static int
1436 mutex_trylock_process(mutex_t *mp, int tryhard)
1437 {
1438 	ulwp_t *self = curthread;
1439 	uberdata_t *udp = self->ul_uberdata;
1440 	int error = EBUSY;
1441 	volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64;
1442 	uint32_t new_lockword;
1443 	int count = 0;
1444 	int max_count;
1445 	uint8_t max_spinners;
1446 
1447 #if defined(__sparc) && !defined(_LP64)
1448 	/* horrible hack, necessary only on 32-bit sparc */
1449 	int fix_alignment_problem =
1450 	    (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
1451 	    self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST));
1452 #endif
1453 
1454 	ASSERT(mp->mutex_type & USYNC_PROCESS);
1455 
1456 	if (shared_mutex_held(mp))
1457 		return (EBUSY);
1458 
1459 	enter_critical(self);
1460 
1461 	/* short-cut, not definitive (see below) */
1462 	if (mp->mutex_flag & LOCK_NOTRECOVERABLE) {
1463 		ASSERT(mp->mutex_type & LOCK_ROBUST);
1464 		error = ENOTRECOVERABLE;
1465 		goto done;
1466 	}
1467 
1468 	/*
1469 	 * Make one attempt to acquire the lock before
1470 	 * incurring the overhead of the spin loop.
1471 	 */
1472 #if defined(__sparc) && !defined(_LP64)
1473 	/* horrible hack, necessary only on 32-bit sparc */
1474 	if (fix_alignment_problem) {
1475 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1476 			mp->mutex_ownerpid = udp->pid;
1477 			mp->mutex_owner = (uintptr_t)self;
1478 			error = 0;
1479 			goto done;
1480 		}
1481 	} else
1482 #endif
1483 	if (set_lock_byte64(lockp, udp->pid) == 0) {
1484 		mp->mutex_owner = (uintptr_t)self;
1485 		/* mp->mutex_ownerpid was set by set_lock_byte64() */
1486 		error = 0;
1487 		goto done;
1488 	}
1489 	if (!tryhard)
1490 		goto done;
1491 	if (ncpus == 0)
1492 		ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1493 	if ((max_spinners = self->ul_max_spinners) >= ncpus)
1494 		max_spinners = ncpus - 1;
1495 	max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0;
1496 	if (max_count == 0)
1497 		goto done;
1498 
1499 	/*
1500 	 * This is a process-shared mutex.
1501 	 * We cannot know if the owner is running on a processor.
1502 	 * We just spin and hope that it is on a processor.
1503 	 */
1504 	if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1)
1505 		goto done;
1506 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
1507 	for (count = 1; ; count++) {
1508 #if defined(__sparc) && !defined(_LP64)
1509 		/* horrible hack, necessary only on 32-bit sparc */
1510 		if (fix_alignment_problem) {
1511 			if ((*lockp & LOCKMASK64) == 0 &&
1512 			    set_lock_byte(&mp->mutex_lockw) == 0) {
1513 				mp->mutex_ownerpid = udp->pid;
1514 				mp->mutex_owner = (uintptr_t)self;
1515 				error = 0;
1516 				break;
1517 			}
1518 		} else
1519 #endif
1520 		if ((*lockp & LOCKMASK64) == 0 &&
1521 		    set_lock_byte64(lockp, udp->pid) == 0) {
1522 			mp->mutex_owner = (uintptr_t)self;
1523 			/* mp->mutex_ownerpid was set by set_lock_byte64() */
1524 			error = 0;
1525 			break;
1526 		}
1527 		if (count == max_count)
1528 			break;
1529 		SMT_PAUSE();
1530 	}
1531 	new_lockword = spinners_decr(&mp->mutex_lockword);
1532 	if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) {
1533 		/*
1534 		 * We haven't yet acquired the lock, the lock
1535 		 * is free, and there are no other spinners.
1536 		 * Make one final attempt to acquire the lock.
1537 		 *
1538 		 * This isn't strictly necessary since mutex_lock_kernel()
1539 		 * (the next action this thread will take if it doesn't
1540 		 * acquire the lock here) makes one attempt to acquire
1541 		 * the lock before putting the thread to sleep.
1542 		 *
1543 		 * If the next action for this thread (on failure here)
1544 		 * were not to call mutex_lock_kernel(), this would be
1545 		 * necessary for correctness, to avoid ending up with an
1546 		 * unheld mutex with waiters but no one to wake them up.
1547 		 */
1548 #if defined(__sparc) && !defined(_LP64)
1549 		/* horrible hack, necessary only on 32-bit sparc */
1550 		if (fix_alignment_problem) {
1551 			if (set_lock_byte(&mp->mutex_lockw) == 0) {
1552 				mp->mutex_ownerpid = udp->pid;
1553 				mp->mutex_owner = (uintptr_t)self;
1554 				error = 0;
1555 			}
1556 		} else
1557 #endif
1558 		if (set_lock_byte64(lockp, udp->pid) == 0) {
1559 			mp->mutex_owner = (uintptr_t)self;
1560 			/* mp->mutex_ownerpid was set by set_lock_byte64() */
1561 			error = 0;
1562 		}
1563 		count++;
1564 	}
1565 
1566 done:
1567 	if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1568 		ASSERT(mp->mutex_type & LOCK_ROBUST);
1569 		/*
1570 		 * We shouldn't own the mutex.
1571 		 * Just clear the lock; everyone has already been waked up.
1572 		 */
1573 		mp->mutex_owner = 0;
1574 		/* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
1575 		(void) clear_lockbyte64(&mp->mutex_lockword64);
1576 		error = ENOTRECOVERABLE;
1577 	}
1578 
1579 	exit_critical(self);
1580 
1581 	if (error) {
1582 		if (count) {
1583 			DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count);
1584 		}
1585 		if (error != EBUSY) {
1586 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1587 		}
1588 	} else {
1589 		if (count) {
1590 			DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
1591 		}
1592 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
1593 		if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1594 			ASSERT(mp->mutex_type & LOCK_ROBUST);
1595 			if (mp->mutex_flag & LOCK_OWNERDEAD)
1596 				error = EOWNERDEAD;
1597 			else if (mp->mutex_type & USYNC_PROCESS_ROBUST)
1598 				error = ELOCKUNMAPPED;
1599 			else
1600 				error = EOWNERDEAD;
1601 		}
1602 	}
1603 
1604 	return (error);
1605 }
1606 
1607 /*
1608  * Mutex wakeup code for releasing a USYNC_THREAD mutex.
1609  * Returns the lwpid of the thread that was dequeued, if any.
1610  * The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
1611  * to wake up the specified lwp.
1612  */
1613 static lwpid_t
1614 mutex_wakeup(mutex_t *mp)
1615 {
1616 	lwpid_t lwpid = 0;
1617 	int more;
1618 	queue_head_t *qp;
1619 	ulwp_t *ulwp;
1620 
1621 	/*
1622 	 * Dequeue a waiter from the sleep queue.  Don't touch the mutex
1623 	 * waiters bit if no one was found on the queue because the mutex
1624 	 * might have been deallocated or reallocated for another purpose.
1625 	 */
1626 	qp = queue_lock(mp, MX);
1627 	if ((ulwp = dequeue(qp, &more)) != NULL) {
1628 		lwpid = ulwp->ul_lwpid;
1629 		mp->mutex_waiters = more;
1630 	}
1631 	queue_unlock(qp);
1632 	return (lwpid);
1633 }
1634 
1635 /*
1636  * Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex.
1637  */
1638 static void
1639 mutex_wakeup_all(mutex_t *mp)
1640 {
1641 	queue_head_t *qp;
1642 	queue_root_t *qrp;
1643 	int nlwpid = 0;
1644 	int maxlwps = MAXLWPS;
1645 	ulwp_t *ulwp;
1646 	lwpid_t buffer[MAXLWPS];
1647 	lwpid_t *lwpid = buffer;
1648 
1649 	/*
1650 	 * Walk the list of waiters and prepare to wake up all of them.
1651 	 * The waiters flag has already been cleared from the mutex.
1652 	 *
1653 	 * We keep track of lwpids that are to be unparked in lwpid[].
1654 	 * __lwp_unpark_all() is called to unpark all of them after
1655 	 * they have been removed from the sleep queue and the sleep
1656 	 * queue lock has been dropped.  If we run out of space in our
1657 	 * on-stack buffer, we need to allocate more but we can't call
1658 	 * lmalloc() because we are holding a queue lock when the overflow
1659 	 * occurs and lmalloc() acquires a lock.  We can't use alloca()
1660 	 * either because the application may have allocated a small
1661 	 * stack and we don't want to overrun the stack.  So we call
1662 	 * alloc_lwpids() to allocate a bigger buffer using the mmap()
1663 	 * system call directly since that path acquires no locks.
1664 	 */
1665 	qp = queue_lock(mp, MX);
1666 	for (;;) {
1667 		if ((qrp = qp->qh_root) == NULL ||
1668 		    (ulwp = qrp->qr_head) == NULL)
1669 			break;
1670 		ASSERT(ulwp->ul_wchan == mp);
1671 		queue_unlink(qp, &qrp->qr_head, NULL);
1672 		ulwp->ul_sleepq = NULL;
1673 		ulwp->ul_wchan = NULL;
1674 		if (nlwpid == maxlwps)
1675 			lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
1676 		lwpid[nlwpid++] = ulwp->ul_lwpid;
1677 	}
1678 
1679 	if (nlwpid == 0) {
1680 		queue_unlock(qp);
1681 	} else {
1682 		mp->mutex_waiters = 0;
1683 		no_preempt(curthread);
1684 		queue_unlock(qp);
1685 		if (nlwpid == 1)
1686 			(void) __lwp_unpark(lwpid[0]);
1687 		else
1688 			(void) __lwp_unpark_all(lwpid, nlwpid);
1689 		preempt(curthread);
1690 	}
1691 
1692 	if (lwpid != buffer)
1693 		(void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
1694 }
1695 
1696 /*
1697  * Release a process-private mutex.
1698  * As an optimization, if there are waiters but there are also spinners
1699  * attempting to acquire the mutex, then don't bother waking up a waiter;
1700  * one of the spinners will acquire the mutex soon and it would be a waste
1701  * of resources to wake up some thread just to have it spin for a while
1702  * and then possibly go back to sleep.  See mutex_trylock_adaptive().
1703  */
1704 static lwpid_t
1705 mutex_unlock_queue(mutex_t *mp, int release_all)
1706 {
1707 	ulwp_t *self = curthread;
1708 	lwpid_t lwpid = 0;
1709 	uint32_t old_lockword;
1710 
1711 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1712 	sigoff(self);
1713 	mp->mutex_owner = 0;
1714 	old_lockword = clear_lockbyte(&mp->mutex_lockword);
1715 	if ((old_lockword & WAITERMASK) &&
1716 	    (release_all || (old_lockword & SPINNERMASK) == 0)) {
1717 		no_preempt(self);	/* ensure a prompt wakeup */
1718 		if (release_all)
1719 			mutex_wakeup_all(mp);
1720 		else
1721 			lwpid = mutex_wakeup(mp);
1722 		if (lwpid == 0)
1723 			preempt(self);
1724 	}
1725 	sigon(self);
1726 	return (lwpid);
1727 }
1728 
1729 /*
1730  * Like mutex_unlock_queue(), but for process-shared mutexes.
1731  */
1732 static void
1733 mutex_unlock_process(mutex_t *mp, int release_all)
1734 {
1735 	ulwp_t *self = curthread;
1736 	uint64_t old_lockword64;
1737 
1738 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1739 	sigoff(self);
1740 	mp->mutex_owner = 0;
1741 #if defined(__sparc) && !defined(_LP64)
1742 	/* horrible hack, necessary only on 32-bit sparc */
1743 	if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
1744 	    self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)) {
1745 		uint32_t old_lockword;
1746 		mp->mutex_ownerpid = 0;
1747 		old_lockword = clear_lockbyte(&mp->mutex_lockword);
1748 		if ((old_lockword & WAITERMASK) &&
1749 		    (release_all || (old_lockword & SPINNERMASK) == 0)) {
1750 			no_preempt(self);	/* ensure a prompt wakeup */
1751 			(void) ___lwp_mutex_wakeup(mp, release_all);
1752 			preempt(self);
1753 		}
1754 		sigon(self);
1755 		return;
1756 	}
1757 #endif
1758 	/* mp->mutex_ownerpid is cleared by clear_lockbyte64() */
1759 	old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64);
1760 	if ((old_lockword64 & WAITERMASK64) &&
1761 	    (release_all || (old_lockword64 & SPINNERMASK64) == 0)) {
1762 		no_preempt(self);	/* ensure a prompt wakeup */
1763 		(void) ___lwp_mutex_wakeup(mp, release_all);
1764 		preempt(self);
1765 	}
1766 	sigon(self);
1767 }
1768 
1769 void
1770 stall(void)
1771 {
1772 	for (;;)
1773 		(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
1774 }
1775 
1776 /*
1777  * Acquire a USYNC_THREAD mutex via user-level sleep queues.
1778  * We failed set_lock_byte(&mp->mutex_lockw) before coming here.
1779  * If successful, returns with mutex_owner set correctly.
1780  */
1781 int
1782 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
1783 	timespec_t *tsp)
1784 {
1785 	uberdata_t *udp = curthread->ul_uberdata;
1786 	queue_head_t *qp;
1787 	hrtime_t begin_sleep;
1788 	int error = 0;
1789 
1790 	self->ul_sp = stkptr();
1791 	if (__td_event_report(self, TD_SLEEP, udp)) {
1792 		self->ul_wchan = mp;
1793 		self->ul_td_evbuf.eventnum = TD_SLEEP;
1794 		self->ul_td_evbuf.eventdata = mp;
1795 		tdb_event(TD_SLEEP, udp);
1796 	}
1797 	if (msp) {
1798 		tdb_incr(msp->mutex_sleep);
1799 		begin_sleep = gethrtime();
1800 	}
1801 
1802 	DTRACE_PROBE1(plockstat, mutex__block, mp);
1803 
1804 	/*
1805 	 * Put ourself on the sleep queue, and while we are
1806 	 * unable to grab the lock, go park in the kernel.
1807 	 * Take ourself off the sleep queue after we acquire the lock.
1808 	 * The waiter bit can be set/cleared only while holding the queue lock.
1809 	 */
1810 	qp = queue_lock(mp, MX);
1811 	enqueue(qp, self, 0);
1812 	mp->mutex_waiters = 1;
1813 	for (;;) {
1814 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1815 			mp->mutex_owner = (uintptr_t)self;
1816 			mp->mutex_waiters = dequeue_self(qp);
1817 			break;
1818 		}
1819 		set_parking_flag(self, 1);
1820 		queue_unlock(qp);
1821 		/*
1822 		 * __lwp_park() will return the residual time in tsp
1823 		 * if we are unparked before the timeout expires.
1824 		 */
1825 		error = __lwp_park(tsp, 0);
1826 		set_parking_flag(self, 0);
1827 		/*
1828 		 * We could have taken a signal or suspended ourself.
1829 		 * If we did, then we removed ourself from the queue.
1830 		 * Someone else may have removed us from the queue
1831 		 * as a consequence of mutex_unlock().  We may have
1832 		 * gotten a timeout from __lwp_park().  Or we may still
1833 		 * be on the queue and this is just a spurious wakeup.
1834 		 */
1835 		qp = queue_lock(mp, MX);
1836 		if (self->ul_sleepq == NULL) {
1837 			if (error) {
1838 				mp->mutex_waiters = queue_waiter(qp)? 1 : 0;
1839 				if (error != EINTR)
1840 					break;
1841 				error = 0;
1842 			}
1843 			if (set_lock_byte(&mp->mutex_lockw) == 0) {
1844 				mp->mutex_owner = (uintptr_t)self;
1845 				break;
1846 			}
1847 			enqueue(qp, self, 0);
1848 			mp->mutex_waiters = 1;
1849 		}
1850 		ASSERT(self->ul_sleepq == qp &&
1851 		    self->ul_qtype == MX &&
1852 		    self->ul_wchan == mp);
1853 		if (error) {
1854 			if (error != EINTR) {
1855 				mp->mutex_waiters = dequeue_self(qp);
1856 				break;
1857 			}
1858 			error = 0;
1859 		}
1860 	}
1861 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
1862 	    self->ul_wchan == NULL);
1863 	self->ul_sp = 0;
1864 
1865 	ASSERT(error == 0 || error == EINVAL || error == ETIME);
1866 
1867 	if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) {
1868 		ASSERT(mp->mutex_type & LOCK_ROBUST);
1869 		/*
1870 		 * We shouldn't own the mutex.
1871 		 * Just clear the lock; everyone has already been waked up.
1872 		 */
1873 		mp->mutex_owner = 0;
1874 		(void) clear_lockbyte(&mp->mutex_lockword);
1875 		error = ENOTRECOVERABLE;
1876 	}
1877 
1878 	queue_unlock(qp);
1879 
1880 	if (msp)
1881 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
1882 
1883 	if (error) {
1884 		DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1885 		DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1886 	} else {
1887 		DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1888 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1889 		if (mp->mutex_flag & LOCK_OWNERDEAD) {
1890 			ASSERT(mp->mutex_type & LOCK_ROBUST);
1891 			error = EOWNERDEAD;
1892 		}
1893 	}
1894 
1895 	return (error);
1896 }
1897 
1898 static int
1899 mutex_recursion(mutex_t *mp, int mtype, int try)
1900 {
1901 	ASSERT(mutex_held(mp));
1902 	ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK));
1903 	ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
1904 
1905 	if (mtype & LOCK_RECURSIVE) {
1906 		if (mp->mutex_rcount == RECURSION_MAX) {
1907 			DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN);
1908 			return (EAGAIN);
1909 		}
1910 		mp->mutex_rcount++;
1911 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
1912 		return (0);
1913 	}
1914 	if (try == MUTEX_LOCK) {
1915 		DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1916 		return (EDEADLK);
1917 	}
1918 	return (EBUSY);
1919 }
1920 
1921 /*
1922  * Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so
1923  * it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary.
1924  * We use tdb_hash_lock here and in the synch object tracking code in
1925  * the tdb_agent.c file.  There is no conflict between these two usages.
1926  */
1927 void
1928 register_lock(mutex_t *mp)
1929 {
1930 	uberdata_t *udp = curthread->ul_uberdata;
1931 	uint_t hash = LOCK_HASH(mp);
1932 	robust_t *rlp;
1933 	robust_t *invalid;
1934 	robust_t **rlpp;
1935 	robust_t **table;
1936 
1937 	if ((table = udp->robustlocks) == NULL) {
1938 		lmutex_lock(&udp->tdb_hash_lock);
1939 		if ((table = udp->robustlocks) == NULL) {
1940 			table = lmalloc(LOCKHASHSZ * sizeof (robust_t *));
1941 			membar_producer();
1942 			udp->robustlocks = table;
1943 		}
1944 		lmutex_unlock(&udp->tdb_hash_lock);
1945 	}
1946 	membar_consumer();
1947 
1948 	/*
1949 	 * First search the registered table with no locks held.
1950 	 * This is safe because the table never shrinks
1951 	 * and we can only get a false negative.
1952 	 */
1953 	for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) {
1954 		if (rlp->robust_lock == mp)	/* already registered */
1955 			return;
1956 	}
1957 
1958 	/*
1959 	 * The lock was not found.
1960 	 * Repeat the operation with tdb_hash_lock held.
1961 	 */
1962 	lmutex_lock(&udp->tdb_hash_lock);
1963 
1964 	invalid = NULL;
1965 	for (rlpp = &table[hash];
1966 	    (rlp = *rlpp) != NULL;
1967 	    rlpp = &rlp->robust_next) {
1968 		if (rlp->robust_lock == mp) {	/* already registered */
1969 			lmutex_unlock(&udp->tdb_hash_lock);
1970 			return;
1971 		}
1972 		/* remember the first invalid entry, if any */
1973 		if (rlp->robust_lock == INVALID_ADDR && invalid == NULL)
1974 			invalid = rlp;
1975 	}
1976 
1977 	/*
1978 	 * The lock has never been registered.
1979 	 * Add it to the table and register it now.
1980 	 */
1981 	if ((rlp = invalid) != NULL) {
1982 		/*
1983 		 * Reuse the invalid entry we found above.
1984 		 * The linkages are still correct.
1985 		 */
1986 		rlp->robust_lock = mp;
1987 		membar_producer();
1988 	} else {
1989 		/*
1990 		 * Allocate a new entry and add it to
1991 		 * the hash table and to the global list.
1992 		 */
1993 		rlp = lmalloc(sizeof (*rlp));
1994 		rlp->robust_lock = mp;
1995 		rlp->robust_next = NULL;
1996 		rlp->robust_list = udp->robustlist;
1997 		udp->robustlist = rlp;
1998 		membar_producer();
1999 		*rlpp = rlp;
2000 	}
2001 
2002 	lmutex_unlock(&udp->tdb_hash_lock);
2003 
2004 	(void) ___lwp_mutex_register(mp, &rlp->robust_lock);
2005 }
2006 
2007 /*
2008  * This is called in the child of fork()/forkall() to start over
2009  * with a clean slate.  (Each process must register its own locks.)
2010  * No locks are needed because all other threads are suspended or gone.
2011  */
2012 void
2013 unregister_locks(void)
2014 {
2015 	uberdata_t *udp = curthread->ul_uberdata;
2016 	robust_t **table;
2017 	robust_t *rlp;
2018 	robust_t *next;
2019 
2020 	/*
2021 	 * Do this first, before calling lfree().
2022 	 */
2023 	table = udp->robustlocks;
2024 	udp->robustlocks = NULL;
2025 	rlp = udp->robustlist;
2026 	udp->robustlist = NULL;
2027 
2028 	/*
2029 	 * Do this by traversing the global list, not the hash table.
2030 	 */
2031 	while (rlp != NULL) {
2032 		next = rlp->robust_list;
2033 		lfree(rlp, sizeof (*rlp));
2034 		rlp = next;
2035 	}
2036 	if (table != NULL)
2037 		lfree(table, LOCKHASHSZ * sizeof (robust_t *));
2038 }
2039 
2040 /*
2041  * Returns with mutex_owner set correctly.
2042  */
2043 int
2044 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
2045 {
2046 	ulwp_t *self = curthread;
2047 	uberdata_t *udp = self->ul_uberdata;
2048 	int mtype = mp->mutex_type;
2049 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2050 	int error = 0;
2051 	int noceil = try & MUTEX_NOCEIL;
2052 	uint8_t ceil;
2053 	int myprio;
2054 
2055 	try &= ~MUTEX_NOCEIL;
2056 	ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
2057 
2058 	if (!self->ul_schedctl_called)
2059 		(void) setup_schedctl();
2060 
2061 	if (msp && try == MUTEX_TRY)
2062 		tdb_incr(msp->mutex_try);
2063 
2064 	if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp))
2065 		return (mutex_recursion(mp, mtype, try));
2066 
2067 	if (self->ul_error_detection && try == MUTEX_LOCK &&
2068 	    tsp == NULL && mutex_held(mp))
2069 		lock_error(mp, "mutex_lock", NULL, NULL);
2070 
2071 	if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
2072 		update_sched(self);
2073 		if (self->ul_cid != self->ul_rtclassid) {
2074 			DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM);
2075 			return (EPERM);
2076 		}
2077 		ceil = mp->mutex_ceiling;
2078 		myprio = self->ul_epri? self->ul_epri : self->ul_pri;
2079 		if (myprio > ceil) {
2080 			DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL);
2081 			return (EINVAL);
2082 		}
2083 		if ((error = _ceil_mylist_add(mp)) != 0) {
2084 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
2085 			return (error);
2086 		}
2087 		if (myprio < ceil)
2088 			_ceil_prio_inherit(ceil);
2089 	}
2090 
2091 	if ((mtype & (USYNC_PROCESS | LOCK_ROBUST))
2092 	    == (USYNC_PROCESS | LOCK_ROBUST))
2093 		register_lock(mp);
2094 
2095 	if (mtype & LOCK_PRIO_INHERIT) {
2096 		/* go straight to the kernel */
2097 		if (try == MUTEX_TRY)
2098 			error = mutex_trylock_kernel(mp);
2099 		else	/* MUTEX_LOCK */
2100 			error = mutex_lock_kernel(mp, tsp, msp);
2101 		/*
2102 		 * The kernel never sets or clears the lock byte
2103 		 * for LOCK_PRIO_INHERIT mutexes.
2104 		 * Set it here for consistency.
2105 		 */
2106 		switch (error) {
2107 		case 0:
2108 			self->ul_pilocks++;
2109 			mp->mutex_lockw = LOCKSET;
2110 			break;
2111 		case EOWNERDEAD:
2112 		case ELOCKUNMAPPED:
2113 			self->ul_pilocks++;
2114 			mp->mutex_lockw = LOCKSET;
2115 			/* FALLTHROUGH */
2116 		case ENOTRECOVERABLE:
2117 			ASSERT(mtype & LOCK_ROBUST);
2118 			break;
2119 		case EDEADLK:
2120 			if (try == MUTEX_TRY) {
2121 				error = EBUSY;
2122 			} else if (tsp != NULL) {	/* simulate a timeout */
2123 				/*
2124 				 * Note: mutex_timedlock() never returns EINTR.
2125 				 */
2126 				timespec_t ts = *tsp;
2127 				timespec_t rts;
2128 
2129 				while (__nanosleep(&ts, &rts) == EINTR)
2130 					ts = rts;
2131 				error = ETIME;
2132 			} else {		/* simulate a deadlock */
2133 				stall();
2134 			}
2135 			break;
2136 		}
2137 	} else if (mtype & USYNC_PROCESS) {
2138 		error = mutex_trylock_process(mp, try == MUTEX_LOCK);
2139 		if (error == EBUSY && try == MUTEX_LOCK)
2140 			error = mutex_lock_kernel(mp, tsp, msp);
2141 	} else {	/* USYNC_THREAD */
2142 		error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK);
2143 		if (error == EBUSY && try == MUTEX_LOCK)
2144 			error = mutex_lock_queue(self, msp, mp, tsp);
2145 	}
2146 
2147 	switch (error) {
2148 	case 0:
2149 	case EOWNERDEAD:
2150 	case ELOCKUNMAPPED:
2151 		if (mtype & LOCK_ROBUST)
2152 			remember_lock(mp);
2153 		if (msp)
2154 			record_begin_hold(msp);
2155 		break;
2156 	default:
2157 		if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) {
2158 			(void) _ceil_mylist_del(mp);
2159 			if (myprio < ceil)
2160 				_ceil_prio_waive();
2161 		}
2162 		if (try == MUTEX_TRY) {
2163 			if (msp)
2164 				tdb_incr(msp->mutex_try_fail);
2165 			if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2166 				self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2167 				tdb_event(TD_LOCK_TRY, udp);
2168 			}
2169 		}
2170 		break;
2171 	}
2172 
2173 	return (error);
2174 }
2175 
2176 int
2177 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
2178 {
2179 	ulwp_t *self = curthread;
2180 	uberdata_t *udp = self->ul_uberdata;
2181 
2182 	/*
2183 	 * We know that USYNC_PROCESS is set in mtype and that
2184 	 * zero, one, or both of the flags LOCK_RECURSIVE and
2185 	 * LOCK_ERRORCHECK are set, and that no other flags are set.
2186 	 */
2187 	ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0);
2188 	enter_critical(self);
2189 #if defined(__sparc) && !defined(_LP64)
2190 	/* horrible hack, necessary only on 32-bit sparc */
2191 	if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2192 	    self->ul_misaligned) {
2193 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2194 			mp->mutex_ownerpid = udp->pid;
2195 			mp->mutex_owner = (uintptr_t)self;
2196 			exit_critical(self);
2197 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2198 			return (0);
2199 		}
2200 	} else
2201 #endif
2202 	if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) {
2203 		mp->mutex_owner = (uintptr_t)self;
2204 		/* mp->mutex_ownerpid was set by set_lock_byte64() */
2205 		exit_critical(self);
2206 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2207 		return (0);
2208 	}
2209 	exit_critical(self);
2210 
2211 	if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp))
2212 		return (mutex_recursion(mp, mtype, try));
2213 
2214 	if (try == MUTEX_LOCK) {
2215 		if (mutex_trylock_process(mp, 1) == 0)
2216 			return (0);
2217 		return (mutex_lock_kernel(mp, tsp, NULL));
2218 	}
2219 
2220 	if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2221 		self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2222 		tdb_event(TD_LOCK_TRY, udp);
2223 	}
2224 	return (EBUSY);
2225 }
2226 
2227 static int
2228 mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
2229 {
2230 	ulwp_t *self = curthread;
2231 	int mtype = mp->mutex_type;
2232 	uberflags_t *gflags;
2233 
2234 	if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2235 	    self->ul_error_detection && self->ul_misaligned == 0)
2236 		lock_error(mp, "mutex_lock", NULL, "mutex is misaligned");
2237 
2238 	/*
2239 	 * Optimize the case of USYNC_THREAD, including
2240 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2241 	 * no error detection, no lock statistics,
2242 	 * and the process has only a single thread.
2243 	 * (Most likely a traditional single-threaded application.)
2244 	 */
2245 	if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2246 	    self->ul_uberdata->uberflags.uf_all) == 0) {
2247 		/*
2248 		 * Only one thread exists so we don't need an atomic operation.
2249 		 * We do, however, need to protect against signals.
2250 		 */
2251 		if (mp->mutex_lockw == 0) {
2252 			sigoff(self);
2253 			mp->mutex_lockw = LOCKSET;
2254 			mp->mutex_owner = (uintptr_t)self;
2255 			sigon(self);
2256 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2257 			return (0);
2258 		}
2259 		if (mtype && MUTEX_OWNER(mp) == self)
2260 			return (mutex_recursion(mp, mtype, MUTEX_LOCK));
2261 		/*
2262 		 * We have reached a deadlock, probably because the
2263 		 * process is executing non-async-signal-safe code in
2264 		 * a signal handler and is attempting to acquire a lock
2265 		 * that it already owns.  This is not surprising, given
2266 		 * bad programming practices over the years that has
2267 		 * resulted in applications calling printf() and such
2268 		 * in their signal handlers.  Unless the user has told
2269 		 * us that the signal handlers are safe by setting:
2270 		 *	export _THREAD_ASYNC_SAFE=1
2271 		 * we return EDEADLK rather than actually deadlocking.
2272 		 */
2273 		if (tsp == NULL &&
2274 		    MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
2275 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
2276 			return (EDEADLK);
2277 		}
2278 	}
2279 
2280 	/*
2281 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2282 	 * no error detection, and no lock statistics.
2283 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2284 	 */
2285 	if ((gflags = self->ul_schedctl_called) != NULL &&
2286 	    (gflags->uf_trs_ted |
2287 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
2288 		if (mtype & USYNC_PROCESS)
2289 			return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
2290 		sigoff(self);
2291 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2292 			mp->mutex_owner = (uintptr_t)self;
2293 			sigon(self);
2294 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2295 			return (0);
2296 		}
2297 		sigon(self);
2298 		if (mtype && MUTEX_OWNER(mp) == self)
2299 			return (mutex_recursion(mp, mtype, MUTEX_LOCK));
2300 		if (mutex_trylock_adaptive(mp, 1) != 0)
2301 			return (mutex_lock_queue(self, NULL, mp, tsp));
2302 		return (0);
2303 	}
2304 
2305 	/* else do it the long way */
2306 	return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
2307 }
2308 
2309 #pragma weak pthread_mutex_lock = mutex_lock
2310 #pragma weak _mutex_lock = mutex_lock
2311 int
2312 mutex_lock(mutex_t *mp)
2313 {
2314 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2315 	return (mutex_lock_impl(mp, NULL));
2316 }
2317 
2318 void
2319 mutex_enter(mutex_t *mp)
2320 {
2321 	int ret;
2322 	int attr = mp->mutex_type & ALL_ATTRIBUTES;
2323 
2324 	/*
2325 	 * Require LOCK_ERRORCHECK, accept LOCK_RECURSIVE.
2326 	 */
2327 	if (attr != LOCK_ERRORCHECK &&
2328 	    attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) {
2329 		mutex_panic(mp, "mutex_enter: bad mutex type");
2330 	}
2331 	ret = mutex_lock(mp);
2332 	if (ret == EDEADLK) {
2333 		mutex_panic(mp, "recursive mutex_enter");
2334 	} else if (ret == EAGAIN) {
2335 		mutex_panic(mp, "excessive recursive mutex_enter");
2336 	} else if (ret != 0) {
2337 		mutex_panic(mp, "unknown mutex_enter failure");
2338 	}
2339 }
2340 
2341 int
2342 pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp,
2343 	const struct timespec *_RESTRICT_KYWD abstime)
2344 {
2345 	timespec_t tslocal;
2346 	int error;
2347 
2348 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2349 	abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
2350 	error = mutex_lock_impl((mutex_t *)mp, &tslocal);
2351 	if (error == ETIME)
2352 		error = ETIMEDOUT;
2353 	return (error);
2354 }
2355 
2356 int
2357 pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp,
2358 	const struct timespec *_RESTRICT_KYWD reltime)
2359 {
2360 	timespec_t tslocal;
2361 	int error;
2362 
2363 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2364 	tslocal = *reltime;
2365 	error = mutex_lock_impl((mutex_t *)mp, &tslocal);
2366 	if (error == ETIME)
2367 		error = ETIMEDOUT;
2368 	return (error);
2369 }
2370 
2371 #pragma weak pthread_mutex_trylock = mutex_trylock
2372 int
2373 mutex_trylock(mutex_t *mp)
2374 {
2375 	ulwp_t *self = curthread;
2376 	uberdata_t *udp = self->ul_uberdata;
2377 	int mtype = mp->mutex_type;
2378 	uberflags_t *gflags;
2379 
2380 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2381 
2382 	/*
2383 	 * Optimize the case of USYNC_THREAD, including
2384 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2385 	 * no error detection, no lock statistics,
2386 	 * and the process has only a single thread.
2387 	 * (Most likely a traditional single-threaded application.)
2388 	 */
2389 	if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2390 	    udp->uberflags.uf_all) == 0) {
2391 		/*
2392 		 * Only one thread exists so we don't need an atomic operation.
2393 		 * We do, however, need to protect against signals.
2394 		 */
2395 		if (mp->mutex_lockw == 0) {
2396 			sigoff(self);
2397 			mp->mutex_lockw = LOCKSET;
2398 			mp->mutex_owner = (uintptr_t)self;
2399 			sigon(self);
2400 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2401 			return (0);
2402 		}
2403 		if (mtype && MUTEX_OWNER(mp) == self)
2404 			return (mutex_recursion(mp, mtype, MUTEX_TRY));
2405 		return (EBUSY);
2406 	}
2407 
2408 	/*
2409 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2410 	 * no error detection, and no lock statistics.
2411 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2412 	 */
2413 	if ((gflags = self->ul_schedctl_called) != NULL &&
2414 	    (gflags->uf_trs_ted |
2415 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
2416 		if (mtype & USYNC_PROCESS)
2417 			return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
2418 		sigoff(self);
2419 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2420 			mp->mutex_owner = (uintptr_t)self;
2421 			sigon(self);
2422 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2423 			return (0);
2424 		}
2425 		sigon(self);
2426 		if (mtype && MUTEX_OWNER(mp) == self)
2427 			return (mutex_recursion(mp, mtype, MUTEX_TRY));
2428 		if (__td_event_report(self, TD_LOCK_TRY, udp)) {
2429 			self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
2430 			tdb_event(TD_LOCK_TRY, udp);
2431 		}
2432 		return (EBUSY);
2433 	}
2434 
2435 	/* else do it the long way */
2436 	return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
2437 }
2438 
2439 int
2440 mutex_unlock_internal(mutex_t *mp, int retain_robust_flags)
2441 {
2442 	ulwp_t *self = curthread;
2443 	uberdata_t *udp = self->ul_uberdata;
2444 	int mtype = mp->mutex_type;
2445 	tdb_mutex_stats_t *msp;
2446 	int error = 0;
2447 	int release_all;
2448 	lwpid_t lwpid;
2449 
2450 	if ((mtype & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
2451 	    !mutex_held(mp))
2452 		return (EPERM);
2453 
2454 	if (self->ul_error_detection && !mutex_held(mp))
2455 		lock_error(mp, "mutex_unlock", NULL, NULL);
2456 
2457 	if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2458 		mp->mutex_rcount--;
2459 		DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2460 		return (0);
2461 	}
2462 
2463 	if ((msp = MUTEX_STATS(mp, udp)) != NULL)
2464 		(void) record_hold_time(msp);
2465 
2466 	if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) &&
2467 	    (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
2468 		ASSERT(mtype & LOCK_ROBUST);
2469 		mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
2470 		mp->mutex_flag |= LOCK_NOTRECOVERABLE;
2471 	}
2472 	release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
2473 
2474 	if (mtype & LOCK_PRIO_INHERIT) {
2475 		no_preempt(self);
2476 		mp->mutex_owner = 0;
2477 		/* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */
2478 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2479 		mp->mutex_lockw = LOCKCLEAR;
2480 		self->ul_pilocks--;
2481 		error = ___lwp_mutex_unlock(mp);
2482 		preempt(self);
2483 	} else if (mtype & USYNC_PROCESS) {
2484 		mutex_unlock_process(mp, release_all);
2485 	} else {	/* USYNC_THREAD */
2486 		if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) {
2487 			(void) __lwp_unpark(lwpid);
2488 			preempt(self);
2489 		}
2490 	}
2491 
2492 	if (mtype & LOCK_ROBUST)
2493 		forget_lock(mp);
2494 
2495 	if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
2496 		_ceil_prio_waive();
2497 
2498 	return (error);
2499 }
2500 
2501 #pragma weak pthread_mutex_unlock = mutex_unlock
2502 #pragma weak _mutex_unlock = mutex_unlock
2503 int
2504 mutex_unlock(mutex_t *mp)
2505 {
2506 	ulwp_t *self = curthread;
2507 	int mtype = mp->mutex_type;
2508 	uberflags_t *gflags;
2509 	lwpid_t lwpid;
2510 	short el;
2511 
2512 	/*
2513 	 * Optimize the case of USYNC_THREAD, including
2514 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2515 	 * no error detection, no lock statistics,
2516 	 * and the process has only a single thread.
2517 	 * (Most likely a traditional single-threaded application.)
2518 	 */
2519 	if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2520 	    self->ul_uberdata->uberflags.uf_all) == 0) {
2521 		if (mtype) {
2522 			/*
2523 			 * At this point we know that one or both of the
2524 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2525 			 */
2526 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2527 				return (EPERM);
2528 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2529 				mp->mutex_rcount--;
2530 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2531 				return (0);
2532 			}
2533 		}
2534 		/*
2535 		 * Only one thread exists so we don't need an atomic operation.
2536 		 * Also, there can be no waiters.
2537 		 */
2538 		sigoff(self);
2539 		mp->mutex_owner = 0;
2540 		mp->mutex_lockword = 0;
2541 		sigon(self);
2542 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2543 		return (0);
2544 	}
2545 
2546 	/*
2547 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2548 	 * no error detection, and no lock statistics.
2549 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2550 	 */
2551 	if ((gflags = self->ul_schedctl_called) != NULL) {
2552 		if (((el = gflags->uf_trs_ted) | mtype) == 0) {
2553 fast_unlock:
2554 			if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
2555 				(void) __lwp_unpark(lwpid);
2556 				preempt(self);
2557 			}
2558 			return (0);
2559 		}
2560 		if (el)		/* error detection or lock statistics */
2561 			goto slow_unlock;
2562 		if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2563 			/*
2564 			 * At this point we know that one or both of the
2565 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2566 			 */
2567 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2568 				return (EPERM);
2569 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2570 				mp->mutex_rcount--;
2571 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2572 				return (0);
2573 			}
2574 			goto fast_unlock;
2575 		}
2576 		if ((mtype &
2577 		    ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2578 			/*
2579 			 * At this point we know that zero, one, or both of the
2580 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
2581 			 * that the USYNC_PROCESS flag is set.
2582 			 */
2583 			if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
2584 				return (EPERM);
2585 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2586 				mp->mutex_rcount--;
2587 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2588 				return (0);
2589 			}
2590 			mutex_unlock_process(mp, 0);
2591 			return (0);
2592 		}
2593 	}
2594 
2595 	/* else do it the long way */
2596 slow_unlock:
2597 	return (mutex_unlock_internal(mp, 0));
2598 }
2599 
2600 void
2601 mutex_exit(mutex_t *mp)
2602 {
2603 	int ret;
2604 	int attr = mp->mutex_type & ALL_ATTRIBUTES;
2605 
2606 	if (attr != LOCK_ERRORCHECK &&
2607 	    attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) {
2608 		mutex_panic(mp, "mutex_exit: bad mutex type");
2609 	}
2610 	ret = mutex_unlock(mp);
2611 	if (ret == EPERM) {
2612 		mutex_panic(mp, "mutex_exit: not owner");
2613 	} else if (ret != 0) {
2614 		mutex_panic(mp, "unknown mutex_exit failure");
2615 	}
2616 
2617 }
2618 
2619 /*
2620  * Internally to the library, almost all mutex lock/unlock actions
2621  * go through these lmutex_ functions, to protect critical regions.
2622  * We replicate a bit of code from mutex_lock() and mutex_unlock()
2623  * to make these functions faster since we know that the mutex type
2624  * of all internal locks is USYNC_THREAD.  We also know that internal
2625  * locking can never fail, so we panic if it does.
2626  */
2627 void
2628 lmutex_lock(mutex_t *mp)
2629 {
2630 	ulwp_t *self = curthread;
2631 	uberdata_t *udp = self->ul_uberdata;
2632 
2633 	ASSERT(mp->mutex_type == USYNC_THREAD);
2634 
2635 	enter_critical(self);
2636 	/*
2637 	 * Optimize the case of no lock statistics and only a single thread.
2638 	 * (Most likely a traditional single-threaded application.)
2639 	 */
2640 	if (udp->uberflags.uf_all == 0) {
2641 		/*
2642 		 * Only one thread exists; the mutex must be free.
2643 		 */
2644 		ASSERT(mp->mutex_lockw == 0);
2645 		mp->mutex_lockw = LOCKSET;
2646 		mp->mutex_owner = (uintptr_t)self;
2647 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2648 	} else {
2649 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2650 
2651 		if (!self->ul_schedctl_called)
2652 			(void) setup_schedctl();
2653 
2654 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2655 			mp->mutex_owner = (uintptr_t)self;
2656 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2657 		} else if (mutex_trylock_adaptive(mp, 1) != 0) {
2658 			(void) mutex_lock_queue(self, msp, mp, NULL);
2659 		}
2660 
2661 		if (msp)
2662 			record_begin_hold(msp);
2663 	}
2664 }
2665 
2666 void
2667 lmutex_unlock(mutex_t *mp)
2668 {
2669 	ulwp_t *self = curthread;
2670 	uberdata_t *udp = self->ul_uberdata;
2671 
2672 	ASSERT(mp->mutex_type == USYNC_THREAD);
2673 
2674 	/*
2675 	 * Optimize the case of no lock statistics and only a single thread.
2676 	 * (Most likely a traditional single-threaded application.)
2677 	 */
2678 	if (udp->uberflags.uf_all == 0) {
2679 		/*
2680 		 * Only one thread exists so there can be no waiters.
2681 		 */
2682 		mp->mutex_owner = 0;
2683 		mp->mutex_lockword = 0;
2684 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2685 	} else {
2686 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2687 		lwpid_t lwpid;
2688 
2689 		if (msp)
2690 			(void) record_hold_time(msp);
2691 		if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) {
2692 			(void) __lwp_unpark(lwpid);
2693 			preempt(self);
2694 		}
2695 	}
2696 	exit_critical(self);
2697 }
2698 
2699 /*
2700  * For specialized code in libc, like the asynchronous i/o code,
2701  * the following sig_*() locking primitives are used in order
2702  * to make the code asynchronous signal safe.  Signals are
2703  * deferred while locks acquired by these functions are held.
2704  */
2705 void
2706 sig_mutex_lock(mutex_t *mp)
2707 {
2708 	ulwp_t *self = curthread;
2709 
2710 	sigoff(self);
2711 	(void) mutex_lock(mp);
2712 }
2713 
2714 void
2715 sig_mutex_unlock(mutex_t *mp)
2716 {
2717 	ulwp_t *self = curthread;
2718 
2719 	(void) mutex_unlock(mp);
2720 	sigon(self);
2721 }
2722 
2723 int
2724 sig_mutex_trylock(mutex_t *mp)
2725 {
2726 	ulwp_t *self = curthread;
2727 	int error;
2728 
2729 	sigoff(self);
2730 	if ((error = mutex_trylock(mp)) != 0)
2731 		sigon(self);
2732 	return (error);
2733 }
2734 
2735 /*
2736  * sig_cond_wait() is a cancellation point.
2737  */
2738 int
2739 sig_cond_wait(cond_t *cv, mutex_t *mp)
2740 {
2741 	int error;
2742 
2743 	ASSERT(curthread->ul_sigdefer != 0);
2744 	pthread_testcancel();
2745 	error = __cond_wait(cv, mp);
2746 	if (error == EINTR && curthread->ul_cursig) {
2747 		sig_mutex_unlock(mp);
2748 		/* take the deferred signal here */
2749 		sig_mutex_lock(mp);
2750 	}
2751 	pthread_testcancel();
2752 	return (error);
2753 }
2754 
2755 /*
2756  * sig_cond_reltimedwait() is a cancellation point.
2757  */
2758 int
2759 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
2760 {
2761 	int error;
2762 
2763 	ASSERT(curthread->ul_sigdefer != 0);
2764 	pthread_testcancel();
2765 	error = __cond_reltimedwait(cv, mp, ts);
2766 	if (error == EINTR && curthread->ul_cursig) {
2767 		sig_mutex_unlock(mp);
2768 		/* take the deferred signal here */
2769 		sig_mutex_lock(mp);
2770 	}
2771 	pthread_testcancel();
2772 	return (error);
2773 }
2774 
2775 /*
2776  * For specialized code in libc, like the stdio code.
2777  * the following cancel_safe_*() locking primitives are used in
2778  * order to make the code cancellation-safe.  Cancellation is
2779  * deferred while locks acquired by these functions are held.
2780  */
2781 void
2782 cancel_safe_mutex_lock(mutex_t *mp)
2783 {
2784 	(void) mutex_lock(mp);
2785 	curthread->ul_libc_locks++;
2786 }
2787 
2788 int
2789 cancel_safe_mutex_trylock(mutex_t *mp)
2790 {
2791 	int error;
2792 
2793 	if ((error = mutex_trylock(mp)) == 0)
2794 		curthread->ul_libc_locks++;
2795 	return (error);
2796 }
2797 
2798 void
2799 cancel_safe_mutex_unlock(mutex_t *mp)
2800 {
2801 	ulwp_t *self = curthread;
2802 
2803 	ASSERT(self->ul_libc_locks != 0);
2804 
2805 	(void) mutex_unlock(mp);
2806 
2807 	/*
2808 	 * Decrement the count of locks held by cancel_safe_mutex_lock().
2809 	 * If we are then in a position to terminate cleanly and
2810 	 * if there is a pending cancellation and cancellation
2811 	 * is not disabled and we received EINTR from a recent
2812 	 * system call then perform the cancellation action now.
2813 	 */
2814 	if (--self->ul_libc_locks == 0 &&
2815 	    !(self->ul_vfork | self->ul_nocancel |
2816 	    self->ul_critical | self->ul_sigdefer) &&
2817 	    cancel_active())
2818 		pthread_exit(PTHREAD_CANCELED);
2819 }
2820 
2821 static int
2822 shared_mutex_held(mutex_t *mparg)
2823 {
2824 	/*
2825 	 * The 'volatile' is necessary to make sure the compiler doesn't
2826 	 * reorder the tests of the various components of the mutex.
2827 	 * They must be tested in this order:
2828 	 *	mutex_lockw
2829 	 *	mutex_owner
2830 	 *	mutex_ownerpid
2831 	 * This relies on the fact that everywhere mutex_lockw is cleared,
2832 	 * mutex_owner and mutex_ownerpid are cleared before mutex_lockw
2833 	 * is cleared, and that everywhere mutex_lockw is set, mutex_owner
2834 	 * and mutex_ownerpid are set after mutex_lockw is set, and that
2835 	 * mutex_lockw is set or cleared with a memory barrier.
2836 	 */
2837 	volatile mutex_t *mp = (volatile mutex_t *)mparg;
2838 	ulwp_t *self = curthread;
2839 	uberdata_t *udp = self->ul_uberdata;
2840 
2841 	return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid);
2842 }
2843 
2844 #pragma weak _mutex_held = mutex_held
2845 int
2846 mutex_held(mutex_t *mparg)
2847 {
2848 	volatile mutex_t *mp = (volatile mutex_t *)mparg;
2849 
2850 	if (mparg->mutex_type & USYNC_PROCESS)
2851 		return (shared_mutex_held(mparg));
2852 	return (MUTEX_OWNED(mp, curthread));
2853 }
2854 
2855 #pragma weak pthread_mutex_destroy = mutex_destroy
2856 #pragma weak _mutex_destroy = mutex_destroy
2857 int
2858 mutex_destroy(mutex_t *mp)
2859 {
2860 	if (mp->mutex_type & USYNC_PROCESS)
2861 		forget_lock(mp);
2862 	(void) memset(mp, 0, sizeof (*mp));
2863 	tdb_sync_obj_deregister(mp);
2864 	return (0);
2865 }
2866 
2867 #pragma weak pthread_mutex_consistent_np = mutex_consistent
2868 #pragma weak pthread_mutex_consistent = mutex_consistent
2869 int
2870 mutex_consistent(mutex_t *mp)
2871 {
2872 	/*
2873 	 * Do this only for an inconsistent, initialized robust lock
2874 	 * that we hold.  For all other cases, return EINVAL.
2875 	 */
2876 	if (mutex_held(mp) &&
2877 	    (mp->mutex_type & LOCK_ROBUST) &&
2878 	    (mp->mutex_flag & LOCK_INITED) &&
2879 	    (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) {
2880 		mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
2881 		mp->mutex_rcount = 0;
2882 		return (0);
2883 	}
2884 	return (EINVAL);
2885 }
2886 
2887 /*
2888  * Spin locks are separate from ordinary mutexes,
2889  * but we use the same data structure for them.
2890  */
2891 
2892 int
2893 pthread_spin_init(pthread_spinlock_t *lock, int pshared)
2894 {
2895 	mutex_t *mp = (mutex_t *)lock;
2896 
2897 	(void) memset(mp, 0, sizeof (*mp));
2898 	if (pshared == PTHREAD_PROCESS_SHARED)
2899 		mp->mutex_type = USYNC_PROCESS;
2900 	else
2901 		mp->mutex_type = USYNC_THREAD;
2902 	mp->mutex_flag = LOCK_INITED;
2903 	mp->mutex_magic = MUTEX_MAGIC;
2904 
2905 	/*
2906 	 * This should be at the beginning of the function,
2907 	 * but for the sake of old broken applications that
2908 	 * do not have proper alignment for their mutexes
2909 	 * (and don't check the return code from pthread_spin_init),
2910 	 * we put it here, after initializing the mutex regardless.
2911 	 */
2912 	if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) &&
2913 	    curthread->ul_misaligned == 0)
2914 		return (EINVAL);
2915 
2916 	return (0);
2917 }
2918 
2919 int
2920 pthread_spin_destroy(pthread_spinlock_t *lock)
2921 {
2922 	(void) memset(lock, 0, sizeof (*lock));
2923 	return (0);
2924 }
2925 
2926 int
2927 pthread_spin_trylock(pthread_spinlock_t *lock)
2928 {
2929 	mutex_t *mp = (mutex_t *)lock;
2930 	ulwp_t *self = curthread;
2931 	int error = 0;
2932 
2933 	no_preempt(self);
2934 	if (set_lock_byte(&mp->mutex_lockw) != 0)
2935 		error = EBUSY;
2936 	else {
2937 		mp->mutex_owner = (uintptr_t)self;
2938 		if (mp->mutex_type == USYNC_PROCESS)
2939 			mp->mutex_ownerpid = self->ul_uberdata->pid;
2940 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2941 	}
2942 	preempt(self);
2943 	return (error);
2944 }
2945 
2946 int
2947 pthread_spin_lock(pthread_spinlock_t *lock)
2948 {
2949 	mutex_t *mp = (mutex_t *)lock;
2950 	ulwp_t *self = curthread;
2951 	volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw;
2952 	int count = 0;
2953 
2954 	ASSERT(!self->ul_critical || self->ul_bindflags);
2955 
2956 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
2957 
2958 	/*
2959 	 * We don't care whether the owner is running on a processor.
2960 	 * We just spin because that's what this interface requires.
2961 	 */
2962 	for (;;) {
2963 		if (*lockp == 0) {	/* lock byte appears to be clear */
2964 			no_preempt(self);
2965 			if (set_lock_byte(lockp) == 0)
2966 				break;
2967 			preempt(self);
2968 		}
2969 		if (count < INT_MAX)
2970 			count++;
2971 		SMT_PAUSE();
2972 	}
2973 	mp->mutex_owner = (uintptr_t)self;
2974 	if (mp->mutex_type == USYNC_PROCESS)
2975 		mp->mutex_ownerpid = self->ul_uberdata->pid;
2976 	preempt(self);
2977 	if (count) {
2978 		DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count);
2979 	}
2980 	DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
2981 	return (0);
2982 }
2983 
2984 int
2985 pthread_spin_unlock(pthread_spinlock_t *lock)
2986 {
2987 	mutex_t *mp = (mutex_t *)lock;
2988 	ulwp_t *self = curthread;
2989 
2990 	no_preempt(self);
2991 	mp->mutex_owner = 0;
2992 	mp->mutex_ownerpid = 0;
2993 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2994 	(void) atomic_swap_32(&mp->mutex_lockword, 0);
2995 	preempt(self);
2996 	return (0);
2997 }
2998 
2999 #define	INITIAL_LOCKS	8	/* initial size of ul_heldlocks.array */
3000 
3001 /*
3002  * Find/allocate an entry for 'lock' in our array of held locks.
3003  */
3004 static mutex_t **
3005 find_lock_entry(mutex_t *lock)
3006 {
3007 	ulwp_t *self = curthread;
3008 	mutex_t **remembered = NULL;
3009 	mutex_t **lockptr;
3010 	uint_t nlocks;
3011 
3012 	if ((nlocks = self->ul_heldlockcnt) != 0)
3013 		lockptr = self->ul_heldlocks.array;
3014 	else {
3015 		nlocks = 1;
3016 		lockptr = &self->ul_heldlocks.single;
3017 	}
3018 
3019 	for (; nlocks; nlocks--, lockptr++) {
3020 		if (*lockptr == lock)
3021 			return (lockptr);
3022 		if (*lockptr == NULL && remembered == NULL)
3023 			remembered = lockptr;
3024 	}
3025 	if (remembered != NULL) {
3026 		*remembered = lock;
3027 		return (remembered);
3028 	}
3029 
3030 	/*
3031 	 * No entry available.  Allocate more space, converting
3032 	 * the single entry into an array of entries if necessary.
3033 	 */
3034 	if ((nlocks = self->ul_heldlockcnt) == 0) {
3035 		/*
3036 		 * Initial allocation of the array.
3037 		 * Convert the single entry into an array.
3038 		 */
3039 		self->ul_heldlockcnt = nlocks = INITIAL_LOCKS;
3040 		lockptr = lmalloc(nlocks * sizeof (mutex_t *));
3041 		/*
3042 		 * The single entry becomes the first entry in the array.
3043 		 */
3044 		*lockptr = self->ul_heldlocks.single;
3045 		self->ul_heldlocks.array = lockptr;
3046 		/*
3047 		 * Return the next available entry in the array.
3048 		 */
3049 		*++lockptr = lock;
3050 		return (lockptr);
3051 	}
3052 	/*
3053 	 * Reallocate the array, double the size each time.
3054 	 */
3055 	lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *));
3056 	(void) memcpy(lockptr, self->ul_heldlocks.array,
3057 	    nlocks * sizeof (mutex_t *));
3058 	lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
3059 	self->ul_heldlocks.array = lockptr;
3060 	self->ul_heldlockcnt *= 2;
3061 	/*
3062 	 * Return the next available entry in the newly allocated array.
3063 	 */
3064 	*(lockptr += nlocks) = lock;
3065 	return (lockptr);
3066 }
3067 
3068 /*
3069  * Insert 'lock' into our list of held locks.
3070  * Currently only used for LOCK_ROBUST mutexes.
3071  */
3072 void
3073 remember_lock(mutex_t *lock)
3074 {
3075 	(void) find_lock_entry(lock);
3076 }
3077 
3078 /*
3079  * Remove 'lock' from our list of held locks.
3080  * Currently only used for LOCK_ROBUST mutexes.
3081  */
3082 void
3083 forget_lock(mutex_t *lock)
3084 {
3085 	*find_lock_entry(lock) = NULL;
3086 }
3087 
3088 /*
3089  * Free the array of held locks.
3090  */
3091 void
3092 heldlock_free(ulwp_t *ulwp)
3093 {
3094 	uint_t nlocks;
3095 
3096 	if ((nlocks = ulwp->ul_heldlockcnt) != 0)
3097 		lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *));
3098 	ulwp->ul_heldlockcnt = 0;
3099 	ulwp->ul_heldlocks.array = NULL;
3100 }
3101 
3102 /*
3103  * Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD.
3104  * Called from _thrp_exit() to deal with abandoned locks.
3105  */
3106 void
3107 heldlock_exit(void)
3108 {
3109 	ulwp_t *self = curthread;
3110 	mutex_t **lockptr;
3111 	uint_t nlocks;
3112 	mutex_t *mp;
3113 
3114 	if ((nlocks = self->ul_heldlockcnt) != 0)
3115 		lockptr = self->ul_heldlocks.array;
3116 	else {
3117 		nlocks = 1;
3118 		lockptr = &self->ul_heldlocks.single;
3119 	}
3120 
3121 	for (; nlocks; nlocks--, lockptr++) {
3122 		/*
3123 		 * The kernel takes care of transitioning held
3124 		 * LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD.
3125 		 * We avoid that case here.
3126 		 */
3127 		if ((mp = *lockptr) != NULL &&
3128 		    mutex_held(mp) &&
3129 		    (mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) ==
3130 		    LOCK_ROBUST) {
3131 			mp->mutex_rcount = 0;
3132 			if (!(mp->mutex_flag & LOCK_UNMAPPED))
3133 				mp->mutex_flag |= LOCK_OWNERDEAD;
3134 			(void) mutex_unlock_internal(mp, 1);
3135 		}
3136 	}
3137 
3138 	heldlock_free(self);
3139 }
3140 
3141 #pragma weak _cond_init = cond_init
3142 /* ARGSUSED2 */
3143 int
3144 cond_init(cond_t *cvp, int type, void *arg)
3145 {
3146 	if (type != USYNC_THREAD && type != USYNC_PROCESS)
3147 		return (EINVAL);
3148 	(void) memset(cvp, 0, sizeof (*cvp));
3149 	cvp->cond_type = (uint16_t)type;
3150 	cvp->cond_magic = COND_MAGIC;
3151 
3152 	/*
3153 	 * This should be at the beginning of the function,
3154 	 * but for the sake of old broken applications that
3155 	 * do not have proper alignment for their condvars
3156 	 * (and don't check the return code from cond_init),
3157 	 * we put it here, after initializing the condvar regardless.
3158 	 */
3159 	if (((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) &&
3160 	    curthread->ul_misaligned == 0)
3161 		return (EINVAL);
3162 
3163 	return (0);
3164 }
3165 
3166 /*
3167  * cond_sleep_queue(): utility function for cond_wait_queue().
3168  *
3169  * Go to sleep on a condvar sleep queue, expect to be waked up
3170  * by someone calling cond_signal() or cond_broadcast() or due
3171  * to receiving a UNIX signal or being cancelled, or just simply
3172  * due to a spurious wakeup (like someome calling forkall()).
3173  *
3174  * The associated mutex is *not* reacquired before returning.
3175  * That must be done by the caller of cond_sleep_queue().
3176  */
3177 static int
3178 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3179 {
3180 	ulwp_t *self = curthread;
3181 	queue_head_t *qp;
3182 	queue_head_t *mqp;
3183 	lwpid_t lwpid;
3184 	int signalled;
3185 	int error;
3186 	int cv_wake;
3187 	int release_all;
3188 
3189 	/*
3190 	 * Put ourself on the CV sleep queue, unlock the mutex, then
3191 	 * park ourself and unpark a candidate lwp to grab the mutex.
3192 	 * We must go onto the CV sleep queue before dropping the
3193 	 * mutex in order to guarantee atomicity of the operation.
3194 	 */
3195 	self->ul_sp = stkptr();
3196 	qp = queue_lock(cvp, CV);
3197 	enqueue(qp, self, 0);
3198 	cvp->cond_waiters_user = 1;
3199 	self->ul_cvmutex = mp;
3200 	self->ul_cv_wake = cv_wake = (tsp != NULL);
3201 	self->ul_signalled = 0;
3202 	if (mp->mutex_flag & LOCK_OWNERDEAD) {
3203 		mp->mutex_flag &= ~LOCK_OWNERDEAD;
3204 		mp->mutex_flag |= LOCK_NOTRECOVERABLE;
3205 	}
3206 	release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0);
3207 	lwpid = mutex_unlock_queue(mp, release_all);
3208 	for (;;) {
3209 		set_parking_flag(self, 1);
3210 		queue_unlock(qp);
3211 		if (lwpid != 0) {
3212 			lwpid = preempt_unpark(self, lwpid);
3213 			preempt(self);
3214 		}
3215 		/*
3216 		 * We may have a deferred signal present,
3217 		 * in which case we should return EINTR.
3218 		 * Also, we may have received a SIGCANCEL; if so
3219 		 * and we are cancelable we should return EINTR.
3220 		 * We force an immediate EINTR return from
3221 		 * __lwp_park() by turning our parking flag off.
3222 		 */
3223 		if (self->ul_cursig != 0 ||
3224 		    (self->ul_cancelable && self->ul_cancel_pending))
3225 			set_parking_flag(self, 0);
3226 		/*
3227 		 * __lwp_park() will return the residual time in tsp
3228 		 * if we are unparked before the timeout expires.
3229 		 */
3230 		error = __lwp_park(tsp, lwpid);
3231 		set_parking_flag(self, 0);
3232 		lwpid = 0;	/* unpark the other lwp only once */
3233 		/*
3234 		 * We were waked up by cond_signal(), cond_broadcast(),
3235 		 * by an interrupt or timeout (EINTR or ETIME),
3236 		 * or we may just have gotten a spurious wakeup.
3237 		 */
3238 		qp = queue_lock(cvp, CV);
3239 		if (!cv_wake)
3240 			mqp = queue_lock(mp, MX);
3241 		if (self->ul_sleepq == NULL)
3242 			break;
3243 		/*
3244 		 * We are on either the condvar sleep queue or the
3245 		 * mutex sleep queue.  Break out of the sleep if we
3246 		 * were interrupted or we timed out (EINTR or ETIME).
3247 		 * Else this is a spurious wakeup; continue the loop.
3248 		 */
3249 		if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */
3250 			if (error) {
3251 				mp->mutex_waiters = dequeue_self(mqp);
3252 				break;
3253 			}
3254 			tsp = NULL;	/* no more timeout */
3255 		} else if (self->ul_sleepq == qp) {	/* condvar queue */
3256 			if (error) {
3257 				cvp->cond_waiters_user = dequeue_self(qp);
3258 				break;
3259 			}
3260 			/*
3261 			 * Else a spurious wakeup on the condvar queue.
3262 			 * __lwp_park() has already adjusted the timeout.
3263 			 */
3264 		} else {
3265 			thr_panic("cond_sleep_queue(): thread not on queue");
3266 		}
3267 		if (!cv_wake)
3268 			queue_unlock(mqp);
3269 	}
3270 
3271 	self->ul_sp = 0;
3272 	self->ul_cv_wake = 0;
3273 	ASSERT(self->ul_cvmutex == NULL);
3274 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
3275 	    self->ul_wchan == NULL);
3276 
3277 	signalled = self->ul_signalled;
3278 	self->ul_signalled = 0;
3279 	queue_unlock(qp);
3280 	if (!cv_wake)
3281 		queue_unlock(mqp);
3282 
3283 	/*
3284 	 * If we were concurrently cond_signal()d and any of:
3285 	 * received a UNIX signal, were cancelled, or got a timeout,
3286 	 * then perform another cond_signal() to avoid consuming it.
3287 	 */
3288 	if (error && signalled)
3289 		(void) cond_signal(cvp);
3290 
3291 	return (error);
3292 }
3293 
3294 static void
3295 cond_wait_check_alignment(cond_t *cvp, mutex_t *mp)
3296 {
3297 	if ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1))
3298 		lock_error(mp, "cond_wait", cvp, "mutex is misaligned");
3299 	if ((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1))
3300 		lock_error(mp, "cond_wait", cvp, "condvar is misaligned");
3301 }
3302 
3303 int
3304 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3305 {
3306 	ulwp_t *self = curthread;
3307 	int error;
3308 	int merror;
3309 
3310 	if (self->ul_error_detection && self->ul_misaligned == 0)
3311 		cond_wait_check_alignment(cvp, mp);
3312 
3313 	/*
3314 	 * The old thread library was programmed to defer signals
3315 	 * while in cond_wait() so that the associated mutex would
3316 	 * be guaranteed to be held when the application signal
3317 	 * handler was invoked.
3318 	 *
3319 	 * We do not behave this way by default; the state of the
3320 	 * associated mutex in the signal handler is undefined.
3321 	 *
3322 	 * To accommodate applications that depend on the old
3323 	 * behavior, the _THREAD_COND_WAIT_DEFER environment
3324 	 * variable can be set to 1 and we will behave in the
3325 	 * old way with respect to cond_wait().
3326 	 */
3327 	if (self->ul_cond_wait_defer)
3328 		sigoff(self);
3329 
3330 	error = cond_sleep_queue(cvp, mp, tsp);
3331 
3332 	/*
3333 	 * Reacquire the mutex.
3334 	 */
3335 	if ((merror = mutex_lock_impl(mp, NULL)) != 0)
3336 		error = merror;
3337 
3338 	/*
3339 	 * Take any deferred signal now, after we have reacquired the mutex.
3340 	 */
3341 	if (self->ul_cond_wait_defer)
3342 		sigon(self);
3343 
3344 	return (error);
3345 }
3346 
3347 /*
3348  * cond_sleep_kernel(): utility function for cond_wait_kernel().
3349  * See the comment ahead of cond_sleep_queue(), above.
3350  */
3351 static int
3352 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3353 {
3354 	int mtype = mp->mutex_type;
3355 	ulwp_t *self = curthread;
3356 	int error;
3357 
3358 	if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp))
3359 		_ceil_prio_waive();
3360 
3361 	self->ul_sp = stkptr();
3362 	self->ul_wchan = cvp;
3363 	sigoff(self);
3364 	mp->mutex_owner = 0;
3365 	/* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */
3366 	if (mtype & LOCK_PRIO_INHERIT) {
3367 		mp->mutex_lockw = LOCKCLEAR;
3368 		self->ul_pilocks--;
3369 	}
3370 	/*
3371 	 * ___lwp_cond_wait() returns immediately with EINTR if
3372 	 * set_parking_flag(self,0) is called on this lwp before it
3373 	 * goes to sleep in the kernel.  sigacthandler() calls this
3374 	 * when a deferred signal is noted.  This assures that we don't
3375 	 * get stuck in ___lwp_cond_wait() with all signals blocked
3376 	 * due to taking a deferred signal before going to sleep.
3377 	 */
3378 	set_parking_flag(self, 1);
3379 	if (self->ul_cursig != 0 ||
3380 	    (self->ul_cancelable && self->ul_cancel_pending))
3381 		set_parking_flag(self, 0);
3382 	error = ___lwp_cond_wait(cvp, mp, tsp, 1);
3383 	set_parking_flag(self, 0);
3384 	sigon(self);
3385 	self->ul_sp = 0;
3386 	self->ul_wchan = NULL;
3387 	return (error);
3388 }
3389 
3390 int
3391 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3392 {
3393 	ulwp_t *self = curthread;
3394 	int error;
3395 	int merror;
3396 
3397 	if (self->ul_error_detection && self->ul_misaligned == 0)
3398 		cond_wait_check_alignment(cvp, mp);
3399 
3400 	/*
3401 	 * See the large comment in cond_wait_queue(), above.
3402 	 */
3403 	if (self->ul_cond_wait_defer)
3404 		sigoff(self);
3405 
3406 	error = cond_sleep_kernel(cvp, mp, tsp);
3407 
3408 	/*
3409 	 * Override the return code from ___lwp_cond_wait()
3410 	 * with any non-zero return code from mutex_lock().
3411 	 * This addresses robust lock failures in particular;
3412 	 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE
3413 	 * errors in order to take corrective action.
3414 	 */
3415 	if ((merror = mutex_lock_impl(mp, NULL)) != 0)
3416 		error = merror;
3417 
3418 	/*
3419 	 * Take any deferred signal now, after we have reacquired the mutex.
3420 	 */
3421 	if (self->ul_cond_wait_defer)
3422 		sigon(self);
3423 
3424 	return (error);
3425 }
3426 
3427 /*
3428  * Common code for cond_wait() and cond_timedwait()
3429  */
3430 int
3431 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
3432 {
3433 	int mtype = mp->mutex_type;
3434 	hrtime_t begin_sleep = 0;
3435 	ulwp_t *self = curthread;
3436 	uberdata_t *udp = self->ul_uberdata;
3437 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3438 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
3439 	uint8_t rcount;
3440 	int error = 0;
3441 
3442 	/*
3443 	 * The SUSV3 Posix spec for pthread_cond_timedwait() states:
3444 	 *	Except in the case of [ETIMEDOUT], all these error checks
3445 	 *	shall act as if they were performed immediately at the
3446 	 *	beginning of processing for the function and shall cause
3447 	 *	an error return, in effect, prior to modifying the state
3448 	 *	of the mutex specified by mutex or the condition variable
3449 	 *	specified by cond.
3450 	 * Therefore, we must return EINVAL now if the timout is invalid.
3451 	 */
3452 	if (tsp != NULL &&
3453 	    (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
3454 		return (EINVAL);
3455 
3456 	if (__td_event_report(self, TD_SLEEP, udp)) {
3457 		self->ul_sp = stkptr();
3458 		self->ul_wchan = cvp;
3459 		self->ul_td_evbuf.eventnum = TD_SLEEP;
3460 		self->ul_td_evbuf.eventdata = cvp;
3461 		tdb_event(TD_SLEEP, udp);
3462 		self->ul_sp = 0;
3463 	}
3464 	if (csp) {
3465 		if (tsp)
3466 			tdb_incr(csp->cond_timedwait);
3467 		else
3468 			tdb_incr(csp->cond_wait);
3469 	}
3470 	if (msp)
3471 		begin_sleep = record_hold_time(msp);
3472 	else if (csp)
3473 		begin_sleep = gethrtime();
3474 
3475 	if (self->ul_error_detection) {
3476 		if (!mutex_held(mp))
3477 			lock_error(mp, "cond_wait", cvp, NULL);
3478 		if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
3479 			lock_error(mp, "recursive mutex in cond_wait",
3480 			    cvp, NULL);
3481 		if (cvp->cond_type & USYNC_PROCESS) {
3482 			if (!(mtype & USYNC_PROCESS))
3483 				lock_error(mp, "cond_wait", cvp,
3484 				    "condvar process-shared, "
3485 				    "mutex process-private");
3486 		} else {
3487 			if (mtype & USYNC_PROCESS)
3488 				lock_error(mp, "cond_wait", cvp,
3489 				    "condvar process-private, "
3490 				    "mutex process-shared");
3491 		}
3492 	}
3493 
3494 	/*
3495 	 * We deal with recursive mutexes by completely
3496 	 * dropping the lock and restoring the recursion
3497 	 * count after waking up.  This is arguably wrong,
3498 	 * but it obeys the principle of least astonishment.
3499 	 */
3500 	rcount = mp->mutex_rcount;
3501 	mp->mutex_rcount = 0;
3502 	if ((mtype &
3503 	    (USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) |
3504 	    (cvp->cond_type & USYNC_PROCESS))
3505 		error = cond_wait_kernel(cvp, mp, tsp);
3506 	else
3507 		error = cond_wait_queue(cvp, mp, tsp);
3508 	mp->mutex_rcount = rcount;
3509 
3510 	if (csp) {
3511 		hrtime_t lapse = gethrtime() - begin_sleep;
3512 		if (tsp == NULL)
3513 			csp->cond_wait_sleep_time += lapse;
3514 		else {
3515 			csp->cond_timedwait_sleep_time += lapse;
3516 			if (error == ETIME)
3517 				tdb_incr(csp->cond_timedwait_timeout);
3518 		}
3519 	}
3520 	return (error);
3521 }
3522 
3523 /*
3524  * cond_wait() is a cancellation point but __cond_wait() is not.
3525  * Internally, libc calls the non-cancellation version.
3526  * Other libraries need to use pthread_setcancelstate(), as appropriate,
3527  * since __cond_wait() is not exported from libc.
3528  */
3529 int
3530 __cond_wait(cond_t *cvp, mutex_t *mp)
3531 {
3532 	ulwp_t *self = curthread;
3533 	uberdata_t *udp = self->ul_uberdata;
3534 	uberflags_t *gflags;
3535 
3536 	if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3537 	    !mutex_held(mp))
3538 		return (EPERM);
3539 
3540 	/*
3541 	 * Optimize the common case of USYNC_THREAD plus
3542 	 * no error detection, no lock statistics, and no event tracing.
3543 	 */
3544 	if ((gflags = self->ul_schedctl_called) != NULL &&
3545 	    (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
3546 	    self->ul_td_events_enable |
3547 	    udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
3548 		return (cond_wait_queue(cvp, mp, NULL));
3549 
3550 	/*
3551 	 * Else do it the long way.
3552 	 */
3553 	return (cond_wait_common(cvp, mp, NULL));
3554 }
3555 
3556 #pragma weak _cond_wait = cond_wait
3557 int
3558 cond_wait(cond_t *cvp, mutex_t *mp)
3559 {
3560 	int error;
3561 
3562 	_cancelon();
3563 	error = __cond_wait(cvp, mp);
3564 	if (error == EINTR)
3565 		_canceloff();
3566 	else
3567 		_canceloff_nocancel();
3568 	return (error);
3569 }
3570 
3571 /*
3572  * pthread_cond_wait() is a cancellation point.
3573  */
3574 int
3575 pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp,
3576 	pthread_mutex_t *_RESTRICT_KYWD mp)
3577 {
3578 	int error;
3579 
3580 	error = cond_wait((cond_t *)cvp, (mutex_t *)mp);
3581 	return ((error == EINTR)? 0 : error);
3582 }
3583 
3584 /*
3585  * cond_timedwait() is a cancellation point but __cond_timedwait() is not.
3586  */
3587 int
3588 __cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
3589 {
3590 	clockid_t clock_id = cvp->cond_clockid;
3591 	timespec_t reltime;
3592 	int error;
3593 
3594 	if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3595 	    !mutex_held(mp))
3596 		return (EPERM);
3597 
3598 	if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
3599 		clock_id = CLOCK_REALTIME;
3600 	abstime_to_reltime(clock_id, abstime, &reltime);
3601 	error = cond_wait_common(cvp, mp, &reltime);
3602 	if (error == ETIME && clock_id == CLOCK_HIGHRES) {
3603 		/*
3604 		 * Don't return ETIME if we didn't really get a timeout.
3605 		 * This can happen if we return because someone resets
3606 		 * the system clock.  Just return zero in this case,
3607 		 * giving a spurious wakeup but not a timeout.
3608 		 */
3609 		if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
3610 		    abstime->tv_nsec > gethrtime())
3611 			error = 0;
3612 	}
3613 	return (error);
3614 }
3615 
3616 int
3617 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
3618 {
3619 	int error;
3620 
3621 	_cancelon();
3622 	error = __cond_timedwait(cvp, mp, abstime);
3623 	if (error == EINTR)
3624 		_canceloff();
3625 	else
3626 		_canceloff_nocancel();
3627 	return (error);
3628 }
3629 
3630 /*
3631  * pthread_cond_timedwait() is a cancellation point.
3632  */
3633 int
3634 pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp,
3635 	pthread_mutex_t *_RESTRICT_KYWD mp,
3636 	const struct timespec *_RESTRICT_KYWD abstime)
3637 {
3638 	int error;
3639 
3640 	error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime);
3641 	if (error == ETIME)
3642 		error = ETIMEDOUT;
3643 	else if (error == EINTR)
3644 		error = 0;
3645 	return (error);
3646 }
3647 
3648 /*
3649  * cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not.
3650  */
3651 int
3652 __cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
3653 {
3654 	timespec_t tslocal = *reltime;
3655 
3656 	if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) &&
3657 	    !mutex_held(mp))
3658 		return (EPERM);
3659 
3660 	return (cond_wait_common(cvp, mp, &tslocal));
3661 }
3662 
3663 int
3664 cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
3665 {
3666 	int error;
3667 
3668 	_cancelon();
3669 	error = __cond_reltimedwait(cvp, mp, reltime);
3670 	if (error == EINTR)
3671 		_canceloff();
3672 	else
3673 		_canceloff_nocancel();
3674 	return (error);
3675 }
3676 
3677 int
3678 pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp,
3679 	pthread_mutex_t *_RESTRICT_KYWD mp,
3680 	const struct timespec *_RESTRICT_KYWD reltime)
3681 {
3682 	int error;
3683 
3684 	error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime);
3685 	if (error == ETIME)
3686 		error = ETIMEDOUT;
3687 	else if (error == EINTR)
3688 		error = 0;
3689 	return (error);
3690 }
3691 
3692 #pragma weak pthread_cond_signal = cond_signal
3693 #pragma weak _cond_signal = cond_signal
3694 int
3695 cond_signal(cond_t *cvp)
3696 {
3697 	ulwp_t *self = curthread;
3698 	uberdata_t *udp = self->ul_uberdata;
3699 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3700 	int error = 0;
3701 	int more;
3702 	lwpid_t lwpid;
3703 	queue_head_t *qp;
3704 	mutex_t *mp;
3705 	queue_head_t *mqp;
3706 	ulwp_t **ulwpp;
3707 	ulwp_t *ulwp;
3708 	ulwp_t *prev;
3709 
3710 	if (csp)
3711 		tdb_incr(csp->cond_signal);
3712 
3713 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
3714 		error = _lwp_cond_signal(cvp);
3715 
3716 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
3717 		return (error);
3718 
3719 	/*
3720 	 * Move someone from the condvar sleep queue to the mutex sleep
3721 	 * queue for the mutex that he will acquire on being waked up.
3722 	 * We can do this only if we own the mutex he will acquire.
3723 	 * If we do not own the mutex, or if his ul_cv_wake flag
3724 	 * is set, just dequeue and unpark him.
3725 	 */
3726 	qp = queue_lock(cvp, CV);
3727 	ulwpp = queue_slot(qp, &prev, &more);
3728 	cvp->cond_waiters_user = more;
3729 	if (ulwpp == NULL) {	/* no one on the sleep queue */
3730 		queue_unlock(qp);
3731 		return (error);
3732 	}
3733 	ulwp = *ulwpp;
3734 
3735 	/*
3736 	 * Inform the thread that he was the recipient of a cond_signal().
3737 	 * This lets him deal with cond_signal() and, concurrently,
3738 	 * one or more of a cancellation, a UNIX signal, or a timeout.
3739 	 * These latter conditions must not consume a cond_signal().
3740 	 */
3741 	ulwp->ul_signalled = 1;
3742 
3743 	/*
3744 	 * Dequeue the waiter but leave his ul_sleepq non-NULL
3745 	 * while we move him to the mutex queue so that he can
3746 	 * deal properly with spurious wakeups.
3747 	 */
3748 	queue_unlink(qp, ulwpp, prev);
3749 
3750 	mp = ulwp->ul_cvmutex;		/* the mutex he will acquire */
3751 	ulwp->ul_cvmutex = NULL;
3752 	ASSERT(mp != NULL);
3753 
3754 	if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3755 		/* just wake him up */
3756 		lwpid = ulwp->ul_lwpid;
3757 		no_preempt(self);
3758 		ulwp->ul_sleepq = NULL;
3759 		ulwp->ul_wchan = NULL;
3760 		queue_unlock(qp);
3761 		(void) __lwp_unpark(lwpid);
3762 		preempt(self);
3763 	} else {
3764 		/* move him to the mutex queue */
3765 		mqp = queue_lock(mp, MX);
3766 		enqueue(mqp, ulwp, 0);
3767 		mp->mutex_waiters = 1;
3768 		queue_unlock(mqp);
3769 		queue_unlock(qp);
3770 	}
3771 
3772 	return (error);
3773 }
3774 
3775 /*
3776  * Utility function called by mutex_wakeup_all(), cond_broadcast(),
3777  * and rw_queue_release() to (re)allocate a big buffer to hold the
3778  * lwpids of all the threads to be set running after they are removed
3779  * from their sleep queues.  Since we are holding a queue lock, we
3780  * cannot call any function that might acquire a lock.  mmap(), munmap(),
3781  * lwp_unpark_all() are simple system calls and are safe in this regard.
3782  */
3783 lwpid_t *
3784 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr)
3785 {
3786 	/*
3787 	 * Allocate NEWLWPS ids on the first overflow.
3788 	 * Double the allocation each time after that.
3789 	 */
3790 	int nlwpid = *nlwpid_ptr;
3791 	int maxlwps = *maxlwps_ptr;
3792 	int first_allocation;
3793 	int newlwps;
3794 	void *vaddr;
3795 
3796 	ASSERT(nlwpid == maxlwps);
3797 
3798 	first_allocation = (maxlwps == MAXLWPS);
3799 	newlwps = first_allocation? NEWLWPS : 2 * maxlwps;
3800 	vaddr = mmap(NULL, newlwps * sizeof (lwpid_t),
3801 	    PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0);
3802 
3803 	if (vaddr == MAP_FAILED) {
3804 		/*
3805 		 * Let's hope this never happens.
3806 		 * If it does, then we have a terrible
3807 		 * thundering herd on our hands.
3808 		 */
3809 		(void) __lwp_unpark_all(lwpid, nlwpid);
3810 		*nlwpid_ptr = 0;
3811 	} else {
3812 		(void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t));
3813 		if (!first_allocation)
3814 			(void) munmap((caddr_t)lwpid,
3815 			    maxlwps * sizeof (lwpid_t));
3816 		lwpid = vaddr;
3817 		*maxlwps_ptr = newlwps;
3818 	}
3819 
3820 	return (lwpid);
3821 }
3822 
3823 #pragma weak pthread_cond_broadcast = cond_broadcast
3824 #pragma weak _cond_broadcast = cond_broadcast
3825 int
3826 cond_broadcast(cond_t *cvp)
3827 {
3828 	ulwp_t *self = curthread;
3829 	uberdata_t *udp = self->ul_uberdata;
3830 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3831 	int error = 0;
3832 	queue_head_t *qp;
3833 	queue_root_t *qrp;
3834 	mutex_t *mp;
3835 	mutex_t *mp_cache = NULL;
3836 	queue_head_t *mqp = NULL;
3837 	ulwp_t *ulwp;
3838 	int nlwpid = 0;
3839 	int maxlwps = MAXLWPS;
3840 	lwpid_t buffer[MAXLWPS];
3841 	lwpid_t *lwpid = buffer;
3842 
3843 	if (csp)
3844 		tdb_incr(csp->cond_broadcast);
3845 
3846 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
3847 		error = _lwp_cond_broadcast(cvp);
3848 
3849 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
3850 		return (error);
3851 
3852 	/*
3853 	 * Move everyone from the condvar sleep queue to the mutex sleep
3854 	 * queue for the mutex that they will acquire on being waked up.
3855 	 * We can do this only if we own the mutex they will acquire.
3856 	 * If we do not own the mutex, or if their ul_cv_wake flag
3857 	 * is set, just dequeue and unpark them.
3858 	 *
3859 	 * We keep track of lwpids that are to be unparked in lwpid[].
3860 	 * __lwp_unpark_all() is called to unpark all of them after
3861 	 * they have been removed from the sleep queue and the sleep
3862 	 * queue lock has been dropped.  If we run out of space in our
3863 	 * on-stack buffer, we need to allocate more but we can't call
3864 	 * lmalloc() because we are holding a queue lock when the overflow
3865 	 * occurs and lmalloc() acquires a lock.  We can't use alloca()
3866 	 * either because the application may have allocated a small
3867 	 * stack and we don't want to overrun the stack.  So we call
3868 	 * alloc_lwpids() to allocate a bigger buffer using the mmap()
3869 	 * system call directly since that path acquires no locks.
3870 	 */
3871 	qp = queue_lock(cvp, CV);
3872 	cvp->cond_waiters_user = 0;
3873 	for (;;) {
3874 		if ((qrp = qp->qh_root) == NULL ||
3875 		    (ulwp = qrp->qr_head) == NULL)
3876 			break;
3877 		ASSERT(ulwp->ul_wchan == cvp);
3878 		queue_unlink(qp, &qrp->qr_head, NULL);
3879 		mp = ulwp->ul_cvmutex;		/* his mutex */
3880 		ulwp->ul_cvmutex = NULL;
3881 		ASSERT(mp != NULL);
3882 		if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3883 			/* just wake him up */
3884 			ulwp->ul_sleepq = NULL;
3885 			ulwp->ul_wchan = NULL;
3886 			if (nlwpid == maxlwps)
3887 				lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
3888 			lwpid[nlwpid++] = ulwp->ul_lwpid;
3889 		} else {
3890 			/* move him to the mutex queue */
3891 			if (mp != mp_cache) {
3892 				mp_cache = mp;
3893 				if (mqp != NULL)
3894 					queue_unlock(mqp);
3895 				mqp = queue_lock(mp, MX);
3896 			}
3897 			enqueue(mqp, ulwp, 0);
3898 			mp->mutex_waiters = 1;
3899 		}
3900 	}
3901 	if (mqp != NULL)
3902 		queue_unlock(mqp);
3903 	if (nlwpid == 0) {
3904 		queue_unlock(qp);
3905 	} else {
3906 		no_preempt(self);
3907 		queue_unlock(qp);
3908 		if (nlwpid == 1)
3909 			(void) __lwp_unpark(lwpid[0]);
3910 		else
3911 			(void) __lwp_unpark_all(lwpid, nlwpid);
3912 		preempt(self);
3913 	}
3914 	if (lwpid != buffer)
3915 		(void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
3916 	return (error);
3917 }
3918 
3919 #pragma weak pthread_cond_destroy = cond_destroy
3920 int
3921 cond_destroy(cond_t *cvp)
3922 {
3923 	cvp->cond_magic = 0;
3924 	tdb_sync_obj_deregister(cvp);
3925 	return (0);
3926 }
3927 
3928 #if defined(THREAD_DEBUG)
3929 void
3930 assert_no_libc_locks_held(void)
3931 {
3932 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
3933 }
3934 
3935 /* protected by link_lock */
3936 uint64_t spin_lock_spin;
3937 uint64_t spin_lock_spin2;
3938 uint64_t spin_lock_sleep;
3939 uint64_t spin_lock_wakeup;
3940 
3941 /*
3942  * Record spin lock statistics.
3943  * Called by a thread exiting itself in thrp_exit().
3944  * Also called via atexit() from the thread calling
3945  * exit() to do all the other threads as well.
3946  */
3947 void
3948 record_spin_locks(ulwp_t *ulwp)
3949 {
3950 	spin_lock_spin += ulwp->ul_spin_lock_spin;
3951 	spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
3952 	spin_lock_sleep += ulwp->ul_spin_lock_sleep;
3953 	spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
3954 	ulwp->ul_spin_lock_spin = 0;
3955 	ulwp->ul_spin_lock_spin2 = 0;
3956 	ulwp->ul_spin_lock_sleep = 0;
3957 	ulwp->ul_spin_lock_wakeup = 0;
3958 }
3959 
3960 /*
3961  * atexit function:  dump the queue statistics to stderr.
3962  */
3963 #include <stdio.h>
3964 void
3965 dump_queue_statistics(void)
3966 {
3967 	uberdata_t *udp = curthread->ul_uberdata;
3968 	queue_head_t *qp;
3969 	int qn;
3970 	uint64_t spin_lock_total = 0;
3971 
3972 	if (udp->queue_head == NULL || thread_queue_dump == 0)
3973 		return;
3974 
3975 	if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
3976 	    fprintf(stderr, "queue#   lockcount    max qlen    max hlen\n") < 0)
3977 		return;
3978 	for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
3979 		if (qp->qh_lockcount == 0)
3980 			continue;
3981 		spin_lock_total += qp->qh_lockcount;
3982 		if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
3983 		    (u_longlong_t)qp->qh_lockcount,
3984 		    qp->qh_qmax, qp->qh_hmax) < 0)
3985 			return;
3986 	}
3987 
3988 	if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
3989 	    fprintf(stderr, "queue#   lockcount    max qlen    max hlen\n") < 0)
3990 		return;
3991 	for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
3992 		if (qp->qh_lockcount == 0)
3993 			continue;
3994 		spin_lock_total += qp->qh_lockcount;
3995 		if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn,
3996 		    (u_longlong_t)qp->qh_lockcount,
3997 		    qp->qh_qmax, qp->qh_hmax) < 0)
3998 			return;
3999 	}
4000 
4001 	(void) fprintf(stderr, "\n  spin_lock_total  = %10llu\n",
4002 	    (u_longlong_t)spin_lock_total);
4003 	(void) fprintf(stderr, "  spin_lock_spin   = %10llu\n",
4004 	    (u_longlong_t)spin_lock_spin);
4005 	(void) fprintf(stderr, "  spin_lock_spin2  = %10llu\n",
4006 	    (u_longlong_t)spin_lock_spin2);
4007 	(void) fprintf(stderr, "  spin_lock_sleep  = %10llu\n",
4008 	    (u_longlong_t)spin_lock_sleep);
4009 	(void) fprintf(stderr, "  spin_lock_wakeup = %10llu\n",
4010 	    (u_longlong_t)spin_lock_wakeup);
4011 }
4012 #endif
4013