1*7c478bd9Sstevel@tonic-gate /* 2*7c478bd9Sstevel@tonic-gate * Copyright (c) 1992, 1993 3*7c478bd9Sstevel@tonic-gate * The Regents of the University of California. All rights reserved. 4*7c478bd9Sstevel@tonic-gate * 5*7c478bd9Sstevel@tonic-gate * This software was developed by the Computer Systems Engineering group 6*7c478bd9Sstevel@tonic-gate * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7*7c478bd9Sstevel@tonic-gate * contributed to Berkeley. 8*7c478bd9Sstevel@tonic-gate * 9*7c478bd9Sstevel@tonic-gate * Redistribution and use in source and binary forms, with or without 10*7c478bd9Sstevel@tonic-gate * modification, are permitted provided that the following conditions 11*7c478bd9Sstevel@tonic-gate * are met: 12*7c478bd9Sstevel@tonic-gate * 1. Redistributions of source code must retain the above copyright 13*7c478bd9Sstevel@tonic-gate * notice, this list of conditions and the following disclaimer. 14*7c478bd9Sstevel@tonic-gate * 2. Redistributions in binary form must reproduce the above copyright 15*7c478bd9Sstevel@tonic-gate * notice, this list of conditions and the following disclaimer in the 16*7c478bd9Sstevel@tonic-gate * documentation and/or other materials provided with the distribution. 17*7c478bd9Sstevel@tonic-gate * 3. All advertising materials mentioning features or use of this software 18*7c478bd9Sstevel@tonic-gate * must display the following acknowledgement: 19*7c478bd9Sstevel@tonic-gate * This product includes software developed by the University of 20*7c478bd9Sstevel@tonic-gate * California, Berkeley and its contributors. 21*7c478bd9Sstevel@tonic-gate * 4. Neither the name of the University nor the names of its contributors 22*7c478bd9Sstevel@tonic-gate * may be used to endorse or promote products derived from this software 23*7c478bd9Sstevel@tonic-gate * without specific prior written permission. 24*7c478bd9Sstevel@tonic-gate * 25*7c478bd9Sstevel@tonic-gate * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26*7c478bd9Sstevel@tonic-gate * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27*7c478bd9Sstevel@tonic-gate * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28*7c478bd9Sstevel@tonic-gate * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29*7c478bd9Sstevel@tonic-gate * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30*7c478bd9Sstevel@tonic-gate * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31*7c478bd9Sstevel@tonic-gate * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32*7c478bd9Sstevel@tonic-gate * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33*7c478bd9Sstevel@tonic-gate * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34*7c478bd9Sstevel@tonic-gate * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35*7c478bd9Sstevel@tonic-gate * SUCH DAMAGE. 36*7c478bd9Sstevel@tonic-gate */ 37*7c478bd9Sstevel@tonic-gate 38*7c478bd9Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 39*7c478bd9Sstevel@tonic-gate 40*7c478bd9Sstevel@tonic-gate /* 41*7c478bd9Sstevel@tonic-gate * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 42*7c478bd9Sstevel@tonic-gate * section 4.3.1, pp. 257--259. 43*7c478bd9Sstevel@tonic-gate */ 44*7c478bd9Sstevel@tonic-gate 45*7c478bd9Sstevel@tonic-gate #include "quadint.h" 46*7c478bd9Sstevel@tonic-gate 47*7c478bd9Sstevel@tonic-gate #define B (1 << HALF_BITS) /* digit base */ 48*7c478bd9Sstevel@tonic-gate 49*7c478bd9Sstevel@tonic-gate /* Combine two `digits' to make a single two-digit number. */ 50*7c478bd9Sstevel@tonic-gate #define COMBINE(a, b) (((ulong_t)(a) << HALF_BITS) | (b)) 51*7c478bd9Sstevel@tonic-gate 52*7c478bd9Sstevel@tonic-gate /* select a type for digits in base B: use unsigned short if they fit */ 53*7c478bd9Sstevel@tonic-gate #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff 54*7c478bd9Sstevel@tonic-gate typedef unsigned short digit; 55*7c478bd9Sstevel@tonic-gate #else 56*7c478bd9Sstevel@tonic-gate typedef ulong_t digit; 57*7c478bd9Sstevel@tonic-gate #endif 58*7c478bd9Sstevel@tonic-gate 59*7c478bd9Sstevel@tonic-gate /* 60*7c478bd9Sstevel@tonic-gate * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 61*7c478bd9Sstevel@tonic-gate * `fall out' the left (there never will be any such anyway). 62*7c478bd9Sstevel@tonic-gate * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 63*7c478bd9Sstevel@tonic-gate */ 64*7c478bd9Sstevel@tonic-gate static void 65*7c478bd9Sstevel@tonic-gate shl(digit *p, int len, int sh) 66*7c478bd9Sstevel@tonic-gate { 67*7c478bd9Sstevel@tonic-gate int i; 68*7c478bd9Sstevel@tonic-gate 69*7c478bd9Sstevel@tonic-gate for (i = 0; i < len; i++) 70*7c478bd9Sstevel@tonic-gate p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); 71*7c478bd9Sstevel@tonic-gate p[i] = LHALF(p[i] << sh); 72*7c478bd9Sstevel@tonic-gate } 73*7c478bd9Sstevel@tonic-gate 74*7c478bd9Sstevel@tonic-gate /* 75*7c478bd9Sstevel@tonic-gate * ___qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 76*7c478bd9Sstevel@tonic-gate * 77*7c478bd9Sstevel@tonic-gate * We do this in base 2-sup-HALF_BITS, so that all intermediate products 78*7c478bd9Sstevel@tonic-gate * fit within ulong_t. As a consequence, the maximum length dividend and 79*7c478bd9Sstevel@tonic-gate * divisor are 4 `digits' in this base (they are shorter if they have 80*7c478bd9Sstevel@tonic-gate * leading zeros). 81*7c478bd9Sstevel@tonic-gate */ 82*7c478bd9Sstevel@tonic-gate u_longlong_t 83*7c478bd9Sstevel@tonic-gate ___qdivrem(u_longlong_t uq, u_longlong_t vq, u_longlong_t *arq) 84*7c478bd9Sstevel@tonic-gate { 85*7c478bd9Sstevel@tonic-gate union uu tmp; 86*7c478bd9Sstevel@tonic-gate digit *u, *v, *q; 87*7c478bd9Sstevel@tonic-gate digit v1, v2; 88*7c478bd9Sstevel@tonic-gate ulong_t qhat, rhat, t; 89*7c478bd9Sstevel@tonic-gate int m, n, d, j, i; 90*7c478bd9Sstevel@tonic-gate digit uspace[5], vspace[5], qspace[5]; 91*7c478bd9Sstevel@tonic-gate 92*7c478bd9Sstevel@tonic-gate /* 93*7c478bd9Sstevel@tonic-gate * Take care of special cases: divide by zero, and u < v. 94*7c478bd9Sstevel@tonic-gate */ 95*7c478bd9Sstevel@tonic-gate if (vq == 0) { 96*7c478bd9Sstevel@tonic-gate /* divide by zero. */ 97*7c478bd9Sstevel@tonic-gate static volatile const unsigned int zero = 0; 98*7c478bd9Sstevel@tonic-gate 99*7c478bd9Sstevel@tonic-gate tmp.ul[H] = tmp.ul[L] = 1 / zero; 100*7c478bd9Sstevel@tonic-gate if (arq) 101*7c478bd9Sstevel@tonic-gate *arq = uq; 102*7c478bd9Sstevel@tonic-gate return (tmp.q); 103*7c478bd9Sstevel@tonic-gate } 104*7c478bd9Sstevel@tonic-gate if (uq < vq) { 105*7c478bd9Sstevel@tonic-gate if (arq) 106*7c478bd9Sstevel@tonic-gate *arq = uq; 107*7c478bd9Sstevel@tonic-gate return (0); 108*7c478bd9Sstevel@tonic-gate } 109*7c478bd9Sstevel@tonic-gate u = &uspace[0]; 110*7c478bd9Sstevel@tonic-gate v = &vspace[0]; 111*7c478bd9Sstevel@tonic-gate q = &qspace[0]; 112*7c478bd9Sstevel@tonic-gate 113*7c478bd9Sstevel@tonic-gate /* 114*7c478bd9Sstevel@tonic-gate * Break dividend and divisor into digits in base B, then 115*7c478bd9Sstevel@tonic-gate * count leading zeros to determine m and n. When done, we 116*7c478bd9Sstevel@tonic-gate * will have: 117*7c478bd9Sstevel@tonic-gate * u = (u[1]u[2]...u[m+n]) sub B 118*7c478bd9Sstevel@tonic-gate * v = (v[1]v[2]...v[n]) sub B 119*7c478bd9Sstevel@tonic-gate * v[1] != 0 120*7c478bd9Sstevel@tonic-gate * 1 < n <= 4 (if n = 1, we use a different division algorithm) 121*7c478bd9Sstevel@tonic-gate * m >= 0 (otherwise u < v, which we already checked) 122*7c478bd9Sstevel@tonic-gate * m + n = 4 123*7c478bd9Sstevel@tonic-gate * and thus 124*7c478bd9Sstevel@tonic-gate * m = 4 - n <= 2 125*7c478bd9Sstevel@tonic-gate */ 126*7c478bd9Sstevel@tonic-gate tmp.uq = uq; 127*7c478bd9Sstevel@tonic-gate u[0] = 0; 128*7c478bd9Sstevel@tonic-gate u[1] = HHALF(tmp.ul[H]); 129*7c478bd9Sstevel@tonic-gate u[2] = LHALF(tmp.ul[H]); 130*7c478bd9Sstevel@tonic-gate u[3] = HHALF(tmp.ul[L]); 131*7c478bd9Sstevel@tonic-gate u[4] = LHALF(tmp.ul[L]); 132*7c478bd9Sstevel@tonic-gate tmp.uq = vq; 133*7c478bd9Sstevel@tonic-gate v[1] = HHALF(tmp.ul[H]); 134*7c478bd9Sstevel@tonic-gate v[2] = LHALF(tmp.ul[H]); 135*7c478bd9Sstevel@tonic-gate v[3] = HHALF(tmp.ul[L]); 136*7c478bd9Sstevel@tonic-gate v[4] = LHALF(tmp.ul[L]); 137*7c478bd9Sstevel@tonic-gate for (n = 4; v[1] == 0; v++) { 138*7c478bd9Sstevel@tonic-gate if (--n == 1) { 139*7c478bd9Sstevel@tonic-gate ulong_t rbj; /* r*B+u[j] (not root boy jim) */ 140*7c478bd9Sstevel@tonic-gate digit q1, q2, q3, q4; 141*7c478bd9Sstevel@tonic-gate 142*7c478bd9Sstevel@tonic-gate /* 143*7c478bd9Sstevel@tonic-gate * Change of plan, per exercise 16. 144*7c478bd9Sstevel@tonic-gate * r = 0; 145*7c478bd9Sstevel@tonic-gate * for j = 1..4: 146*7c478bd9Sstevel@tonic-gate * q[j] = floor((r*B + u[j]) / v), 147*7c478bd9Sstevel@tonic-gate * r = (r*B + u[j]) % v; 148*7c478bd9Sstevel@tonic-gate * We unroll this completely here. 149*7c478bd9Sstevel@tonic-gate */ 150*7c478bd9Sstevel@tonic-gate t = v[2]; /* nonzero, by definition */ 151*7c478bd9Sstevel@tonic-gate q1 = u[1] / t; 152*7c478bd9Sstevel@tonic-gate rbj = COMBINE(u[1] % t, u[2]); 153*7c478bd9Sstevel@tonic-gate q2 = rbj / t; 154*7c478bd9Sstevel@tonic-gate rbj = COMBINE(rbj % t, u[3]); 155*7c478bd9Sstevel@tonic-gate q3 = rbj / t; 156*7c478bd9Sstevel@tonic-gate rbj = COMBINE(rbj % t, u[4]); 157*7c478bd9Sstevel@tonic-gate q4 = rbj / t; 158*7c478bd9Sstevel@tonic-gate if (arq) 159*7c478bd9Sstevel@tonic-gate *arq = rbj % t; 160*7c478bd9Sstevel@tonic-gate tmp.ul[H] = COMBINE(q1, q2); 161*7c478bd9Sstevel@tonic-gate tmp.ul[L] = COMBINE(q3, q4); 162*7c478bd9Sstevel@tonic-gate return (tmp.q); 163*7c478bd9Sstevel@tonic-gate } 164*7c478bd9Sstevel@tonic-gate } 165*7c478bd9Sstevel@tonic-gate 166*7c478bd9Sstevel@tonic-gate /* 167*7c478bd9Sstevel@tonic-gate * By adjusting q once we determine m, we can guarantee that 168*7c478bd9Sstevel@tonic-gate * there is a complete four-digit quotient at &qspace[1] when 169*7c478bd9Sstevel@tonic-gate * we finally stop. 170*7c478bd9Sstevel@tonic-gate */ 171*7c478bd9Sstevel@tonic-gate for (m = 4 - n; u[1] == 0; u++) 172*7c478bd9Sstevel@tonic-gate m--; 173*7c478bd9Sstevel@tonic-gate for (i = 4 - m; --i >= 0; ) 174*7c478bd9Sstevel@tonic-gate q[i] = 0; 175*7c478bd9Sstevel@tonic-gate q += 4 - m; 176*7c478bd9Sstevel@tonic-gate 177*7c478bd9Sstevel@tonic-gate /* 178*7c478bd9Sstevel@tonic-gate * Here we run Program D, translated from MIX to C and acquiring 179*7c478bd9Sstevel@tonic-gate * a few minor changes. 180*7c478bd9Sstevel@tonic-gate * 181*7c478bd9Sstevel@tonic-gate * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 182*7c478bd9Sstevel@tonic-gate */ 183*7c478bd9Sstevel@tonic-gate d = 0; 184*7c478bd9Sstevel@tonic-gate for (t = v[1]; t < B / 2; t <<= 1) 185*7c478bd9Sstevel@tonic-gate d++; 186*7c478bd9Sstevel@tonic-gate if (d > 0) { 187*7c478bd9Sstevel@tonic-gate shl(&u[0], m + n, d); /* u <<= d */ 188*7c478bd9Sstevel@tonic-gate shl(&v[1], n - 1, d); /* v <<= d */ 189*7c478bd9Sstevel@tonic-gate } 190*7c478bd9Sstevel@tonic-gate /* 191*7c478bd9Sstevel@tonic-gate * D2: j = 0. 192*7c478bd9Sstevel@tonic-gate */ 193*7c478bd9Sstevel@tonic-gate j = 0; 194*7c478bd9Sstevel@tonic-gate v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 195*7c478bd9Sstevel@tonic-gate v2 = v[2]; /* for D3 */ 196*7c478bd9Sstevel@tonic-gate do { 197*7c478bd9Sstevel@tonic-gate digit uj0, uj1, uj2; 198*7c478bd9Sstevel@tonic-gate 199*7c478bd9Sstevel@tonic-gate /* 200*7c478bd9Sstevel@tonic-gate * D3: Calculate qhat (\^q, in TeX notation). 201*7c478bd9Sstevel@tonic-gate * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 202*7c478bd9Sstevel@tonic-gate * let rhat = (u[j]*B + u[j+1]) mod v[1]. 203*7c478bd9Sstevel@tonic-gate * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 204*7c478bd9Sstevel@tonic-gate * decrement qhat and increase rhat correspondingly. 205*7c478bd9Sstevel@tonic-gate * Note that if rhat >= B, v[2]*qhat < rhat*B. 206*7c478bd9Sstevel@tonic-gate */ 207*7c478bd9Sstevel@tonic-gate uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 208*7c478bd9Sstevel@tonic-gate uj1 = u[j + 1]; /* for D3 only */ 209*7c478bd9Sstevel@tonic-gate uj2 = u[j + 2]; /* for D3 only */ 210*7c478bd9Sstevel@tonic-gate if (uj0 == v1) { 211*7c478bd9Sstevel@tonic-gate qhat = B; 212*7c478bd9Sstevel@tonic-gate rhat = uj1; 213*7c478bd9Sstevel@tonic-gate goto qhat_too_big; 214*7c478bd9Sstevel@tonic-gate } else { 215*7c478bd9Sstevel@tonic-gate ulong_t n = COMBINE(uj0, uj1); 216*7c478bd9Sstevel@tonic-gate qhat = n / v1; 217*7c478bd9Sstevel@tonic-gate rhat = n % v1; 218*7c478bd9Sstevel@tonic-gate } 219*7c478bd9Sstevel@tonic-gate while (v2 * qhat > COMBINE(rhat, uj2)) { 220*7c478bd9Sstevel@tonic-gate qhat_too_big: 221*7c478bd9Sstevel@tonic-gate qhat--; 222*7c478bd9Sstevel@tonic-gate if ((rhat += v1) >= B) 223*7c478bd9Sstevel@tonic-gate break; 224*7c478bd9Sstevel@tonic-gate } 225*7c478bd9Sstevel@tonic-gate /* 226*7c478bd9Sstevel@tonic-gate * D4: Multiply and subtract. 227*7c478bd9Sstevel@tonic-gate * The variable `t' holds any borrows across the loop. 228*7c478bd9Sstevel@tonic-gate * We split this up so that we do not require v[0] = 0, 229*7c478bd9Sstevel@tonic-gate * and to eliminate a final special case. 230*7c478bd9Sstevel@tonic-gate */ 231*7c478bd9Sstevel@tonic-gate for (t = 0, i = n; i > 0; i--) { 232*7c478bd9Sstevel@tonic-gate t = u[i + j] - v[i] * qhat - t; 233*7c478bd9Sstevel@tonic-gate u[i + j] = LHALF(t); 234*7c478bd9Sstevel@tonic-gate t = (B - HHALF(t)) & (B - 1); 235*7c478bd9Sstevel@tonic-gate } 236*7c478bd9Sstevel@tonic-gate t = u[j] - t; 237*7c478bd9Sstevel@tonic-gate u[j] = LHALF(t); 238*7c478bd9Sstevel@tonic-gate /* 239*7c478bd9Sstevel@tonic-gate * D5: test remainder. 240*7c478bd9Sstevel@tonic-gate * There is a borrow if and only if HHALF(t) is nonzero; 241*7c478bd9Sstevel@tonic-gate * in that (rare) case, qhat was too large (by exactly 1). 242*7c478bd9Sstevel@tonic-gate * Fix it by adding v[1..n] to u[j..j+n]. 243*7c478bd9Sstevel@tonic-gate */ 244*7c478bd9Sstevel@tonic-gate if (HHALF(t)) { 245*7c478bd9Sstevel@tonic-gate qhat--; 246*7c478bd9Sstevel@tonic-gate for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 247*7c478bd9Sstevel@tonic-gate t += u[i + j] + v[i]; 248*7c478bd9Sstevel@tonic-gate u[i + j] = LHALF(t); 249*7c478bd9Sstevel@tonic-gate t = HHALF(t); 250*7c478bd9Sstevel@tonic-gate } 251*7c478bd9Sstevel@tonic-gate u[j] = LHALF(u[j] + t); 252*7c478bd9Sstevel@tonic-gate } 253*7c478bd9Sstevel@tonic-gate q[j] = (digit)qhat; 254*7c478bd9Sstevel@tonic-gate } while (++j <= m); /* D7: loop on j. */ 255*7c478bd9Sstevel@tonic-gate 256*7c478bd9Sstevel@tonic-gate /* 257*7c478bd9Sstevel@tonic-gate * If caller wants the remainder, we have to calculate it as 258*7c478bd9Sstevel@tonic-gate * u[m..m+n] >> d (this is at most n digits and thus fits in 259*7c478bd9Sstevel@tonic-gate * u[m+1..m+n], but we may need more source digits). 260*7c478bd9Sstevel@tonic-gate */ 261*7c478bd9Sstevel@tonic-gate if (arq) { 262*7c478bd9Sstevel@tonic-gate if (d) { 263*7c478bd9Sstevel@tonic-gate for (i = m + n; i > m; --i) 264*7c478bd9Sstevel@tonic-gate u[i] = (u[i] >> d) | 265*7c478bd9Sstevel@tonic-gate LHALF(u[i - 1] << (HALF_BITS - d)); 266*7c478bd9Sstevel@tonic-gate u[i] = 0; 267*7c478bd9Sstevel@tonic-gate } 268*7c478bd9Sstevel@tonic-gate tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 269*7c478bd9Sstevel@tonic-gate tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 270*7c478bd9Sstevel@tonic-gate *arq = tmp.q; 271*7c478bd9Sstevel@tonic-gate } 272*7c478bd9Sstevel@tonic-gate 273*7c478bd9Sstevel@tonic-gate tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 274*7c478bd9Sstevel@tonic-gate tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 275*7c478bd9Sstevel@tonic-gate return (tmp.q); 276*7c478bd9Sstevel@tonic-gate } 277