1*7c478bd9Sstevel@tonic-gate /* 2*7c478bd9Sstevel@tonic-gate * Copyright (c) 1992, 1993 3*7c478bd9Sstevel@tonic-gate * The Regents of the University of California. All rights reserved. 4*7c478bd9Sstevel@tonic-gate * 5*7c478bd9Sstevel@tonic-gate * This software was developed by the Computer Systems Engineering group 6*7c478bd9Sstevel@tonic-gate * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7*7c478bd9Sstevel@tonic-gate * contributed to Berkeley. 8*7c478bd9Sstevel@tonic-gate * 9*7c478bd9Sstevel@tonic-gate * Redistribution and use in source and binary forms, with or without 10*7c478bd9Sstevel@tonic-gate * modification, are permitted provided that the following conditions 11*7c478bd9Sstevel@tonic-gate * are met: 12*7c478bd9Sstevel@tonic-gate * 1. Redistributions of source code must retain the above copyright 13*7c478bd9Sstevel@tonic-gate * notice, this list of conditions and the following disclaimer. 14*7c478bd9Sstevel@tonic-gate * 2. Redistributions in binary form must reproduce the above copyright 15*7c478bd9Sstevel@tonic-gate * notice, this list of conditions and the following disclaimer in the 16*7c478bd9Sstevel@tonic-gate * documentation and/or other materials provided with the distribution. 17*7c478bd9Sstevel@tonic-gate * 3. All advertising materials mentioning features or use of this software 18*7c478bd9Sstevel@tonic-gate * must display the following acknowledgement: 19*7c478bd9Sstevel@tonic-gate * This product includes software developed by the University of 20*7c478bd9Sstevel@tonic-gate * California, Berkeley and its contributors. 21*7c478bd9Sstevel@tonic-gate * 4. Neither the name of the University nor the names of its contributors 22*7c478bd9Sstevel@tonic-gate * may be used to endorse or promote products derived from this software 23*7c478bd9Sstevel@tonic-gate * without specific prior written permission. 24*7c478bd9Sstevel@tonic-gate * 25*7c478bd9Sstevel@tonic-gate * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26*7c478bd9Sstevel@tonic-gate * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27*7c478bd9Sstevel@tonic-gate * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28*7c478bd9Sstevel@tonic-gate * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29*7c478bd9Sstevel@tonic-gate * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30*7c478bd9Sstevel@tonic-gate * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31*7c478bd9Sstevel@tonic-gate * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32*7c478bd9Sstevel@tonic-gate * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33*7c478bd9Sstevel@tonic-gate * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34*7c478bd9Sstevel@tonic-gate * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35*7c478bd9Sstevel@tonic-gate * SUCH DAMAGE. 36*7c478bd9Sstevel@tonic-gate */ 37*7c478bd9Sstevel@tonic-gate 38*7c478bd9Sstevel@tonic-gate #pragma ident "%Z%%M% %I% %E% SMI" 39*7c478bd9Sstevel@tonic-gate 40*7c478bd9Sstevel@tonic-gate #include "quadint.h" 41*7c478bd9Sstevel@tonic-gate 42*7c478bd9Sstevel@tonic-gate #pragma weak __muldi3 = ___muldi3 43*7c478bd9Sstevel@tonic-gate 44*7c478bd9Sstevel@tonic-gate /* 45*7c478bd9Sstevel@tonic-gate * Multiply two quads. 46*7c478bd9Sstevel@tonic-gate * 47*7c478bd9Sstevel@tonic-gate * Our algorithm is based on the following. Split incoming quad values 48*7c478bd9Sstevel@tonic-gate * u and v (where u,v >= 0) into 49*7c478bd9Sstevel@tonic-gate * 50*7c478bd9Sstevel@tonic-gate * u = 2^n u1 * u0 (n = number of bits in `u_long', usu. 32) 51*7c478bd9Sstevel@tonic-gate * 52*7c478bd9Sstevel@tonic-gate * and 53*7c478bd9Sstevel@tonic-gate * 54*7c478bd9Sstevel@tonic-gate * v = 2^n v1 * v0 55*7c478bd9Sstevel@tonic-gate * 56*7c478bd9Sstevel@tonic-gate * Then 57*7c478bd9Sstevel@tonic-gate * 58*7c478bd9Sstevel@tonic-gate * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0 59*7c478bd9Sstevel@tonic-gate * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0 60*7c478bd9Sstevel@tonic-gate * 61*7c478bd9Sstevel@tonic-gate * Now add 2^n u1 v1 to the first term and subtract it from the middle, 62*7c478bd9Sstevel@tonic-gate * and add 2^n u0 v0 to the last term and subtract it from the middle. 63*7c478bd9Sstevel@tonic-gate * This gives: 64*7c478bd9Sstevel@tonic-gate * 65*7c478bd9Sstevel@tonic-gate * uv = (2^2n + 2^n) (u1 v1) + 66*7c478bd9Sstevel@tonic-gate * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) + 67*7c478bd9Sstevel@tonic-gate * (2^n + 1) (u0 v0) 68*7c478bd9Sstevel@tonic-gate * 69*7c478bd9Sstevel@tonic-gate * Factoring the middle a bit gives us: 70*7c478bd9Sstevel@tonic-gate * 71*7c478bd9Sstevel@tonic-gate * uv = (2^2n + 2^n) (u1 v1) + [u1v1 = high] 72*7c478bd9Sstevel@tonic-gate * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid] 73*7c478bd9Sstevel@tonic-gate * (2^n + 1) (u0 v0) [u0v0 = low] 74*7c478bd9Sstevel@tonic-gate * 75*7c478bd9Sstevel@tonic-gate * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done 76*7c478bd9Sstevel@tonic-gate * in just half the precision of the original. (Note that either or both 77*7c478bd9Sstevel@tonic-gate * of (u1 - u0) or (v0 - v1) may be negative.) 78*7c478bd9Sstevel@tonic-gate * 79*7c478bd9Sstevel@tonic-gate * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278. 80*7c478bd9Sstevel@tonic-gate * 81*7c478bd9Sstevel@tonic-gate * Since C does not give us a `long * long = quad' operator, we split 82*7c478bd9Sstevel@tonic-gate * our input quads into two longs, then split the two longs into two 83*7c478bd9Sstevel@tonic-gate * shorts. We can then calculate `short * short = long' in native 84*7c478bd9Sstevel@tonic-gate * arithmetic. 85*7c478bd9Sstevel@tonic-gate * 86*7c478bd9Sstevel@tonic-gate * Our product should, strictly speaking, be a `long quad', with 128 87*7c478bd9Sstevel@tonic-gate * bits, but we are going to discard the upper 64. In other words, 88*7c478bd9Sstevel@tonic-gate * we are not interested in uv, but rather in (uv mod 2^2n). This 89*7c478bd9Sstevel@tonic-gate * makes some of the terms above vanish, and we get: 90*7c478bd9Sstevel@tonic-gate * 91*7c478bd9Sstevel@tonic-gate * (2^n)(high) + (2^n)(mid) + (2^n + 1)(low) 92*7c478bd9Sstevel@tonic-gate * 93*7c478bd9Sstevel@tonic-gate * or 94*7c478bd9Sstevel@tonic-gate * 95*7c478bd9Sstevel@tonic-gate * (2^n)(high + mid + low) + low 96*7c478bd9Sstevel@tonic-gate * 97*7c478bd9Sstevel@tonic-gate * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor 98*7c478bd9Sstevel@tonic-gate * of 2^n in either one will also vanish. Only `low' need be computed 99*7c478bd9Sstevel@tonic-gate * mod 2^2n, and only because of the final term above. 100*7c478bd9Sstevel@tonic-gate */ 101*7c478bd9Sstevel@tonic-gate static longlong_t __lmulq(ulong_t, ulong_t); 102*7c478bd9Sstevel@tonic-gate 103*7c478bd9Sstevel@tonic-gate longlong_t 104*7c478bd9Sstevel@tonic-gate ___muldi3(longlong_t a, longlong_t b) 105*7c478bd9Sstevel@tonic-gate { 106*7c478bd9Sstevel@tonic-gate union uu u, v, low, prod; 107*7c478bd9Sstevel@tonic-gate ulong_t high, mid, udiff, vdiff; 108*7c478bd9Sstevel@tonic-gate int negall, negmid; 109*7c478bd9Sstevel@tonic-gate #define u1 u.ul[H] 110*7c478bd9Sstevel@tonic-gate #define u0 u.ul[L] 111*7c478bd9Sstevel@tonic-gate #define v1 v.ul[H] 112*7c478bd9Sstevel@tonic-gate #define v0 v.ul[L] 113*7c478bd9Sstevel@tonic-gate 114*7c478bd9Sstevel@tonic-gate /* 115*7c478bd9Sstevel@tonic-gate * Get u and v such that u, v >= 0. When this is finished, 116*7c478bd9Sstevel@tonic-gate * u1, u0, v1, and v0 will be directly accessible through the 117*7c478bd9Sstevel@tonic-gate * longword fields. 118*7c478bd9Sstevel@tonic-gate */ 119*7c478bd9Sstevel@tonic-gate if (a >= 0) 120*7c478bd9Sstevel@tonic-gate u.q = a, negall = 0; 121*7c478bd9Sstevel@tonic-gate else 122*7c478bd9Sstevel@tonic-gate u.q = -a, negall = 1; 123*7c478bd9Sstevel@tonic-gate if (b >= 0) 124*7c478bd9Sstevel@tonic-gate v.q = b; 125*7c478bd9Sstevel@tonic-gate else 126*7c478bd9Sstevel@tonic-gate v.q = -b, negall ^= 1; 127*7c478bd9Sstevel@tonic-gate 128*7c478bd9Sstevel@tonic-gate if (u1 == 0 && v1 == 0) { 129*7c478bd9Sstevel@tonic-gate /* 130*7c478bd9Sstevel@tonic-gate * An (I hope) important optimization occurs when u1 and v1 131*7c478bd9Sstevel@tonic-gate * are both 0. This should be common since most numbers 132*7c478bd9Sstevel@tonic-gate * are small. Here the product is just u0*v0. 133*7c478bd9Sstevel@tonic-gate */ 134*7c478bd9Sstevel@tonic-gate prod.q = __lmulq(u0, v0); 135*7c478bd9Sstevel@tonic-gate } else { 136*7c478bd9Sstevel@tonic-gate /* 137*7c478bd9Sstevel@tonic-gate * Compute the three intermediate products, remembering 138*7c478bd9Sstevel@tonic-gate * whether the middle term is negative. We can discard 139*7c478bd9Sstevel@tonic-gate * any upper bits in high and mid, so we can use native 140*7c478bd9Sstevel@tonic-gate * ulong_t * ulong_t => ulong_t arithmetic. 141*7c478bd9Sstevel@tonic-gate */ 142*7c478bd9Sstevel@tonic-gate low.q = __lmulq(u0, v0); 143*7c478bd9Sstevel@tonic-gate 144*7c478bd9Sstevel@tonic-gate if (u1 >= u0) 145*7c478bd9Sstevel@tonic-gate negmid = 0, udiff = u1 - u0; 146*7c478bd9Sstevel@tonic-gate else 147*7c478bd9Sstevel@tonic-gate negmid = 1, udiff = u0 - u1; 148*7c478bd9Sstevel@tonic-gate if (v0 >= v1) 149*7c478bd9Sstevel@tonic-gate vdiff = v0 - v1; 150*7c478bd9Sstevel@tonic-gate else 151*7c478bd9Sstevel@tonic-gate vdiff = v1 - v0, negmid ^= 1; 152*7c478bd9Sstevel@tonic-gate mid = udiff * vdiff; 153*7c478bd9Sstevel@tonic-gate 154*7c478bd9Sstevel@tonic-gate high = u1 * v1; 155*7c478bd9Sstevel@tonic-gate 156*7c478bd9Sstevel@tonic-gate /* 157*7c478bd9Sstevel@tonic-gate * Assemble the final product. 158*7c478bd9Sstevel@tonic-gate */ 159*7c478bd9Sstevel@tonic-gate prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] + 160*7c478bd9Sstevel@tonic-gate low.ul[H]; 161*7c478bd9Sstevel@tonic-gate prod.ul[L] = low.ul[L]; 162*7c478bd9Sstevel@tonic-gate } 163*7c478bd9Sstevel@tonic-gate return (negall ? -prod.q : prod.q); 164*7c478bd9Sstevel@tonic-gate #undef u1 165*7c478bd9Sstevel@tonic-gate #undef u0 166*7c478bd9Sstevel@tonic-gate #undef v1 167*7c478bd9Sstevel@tonic-gate #undef v0 168*7c478bd9Sstevel@tonic-gate } 169*7c478bd9Sstevel@tonic-gate 170*7c478bd9Sstevel@tonic-gate /* 171*7c478bd9Sstevel@tonic-gate * Multiply two 2N-bit longs to produce a 4N-bit quad, where N is half 172*7c478bd9Sstevel@tonic-gate * the number of bits in a long (whatever that is---the code below 173*7c478bd9Sstevel@tonic-gate * does not care as long as quad.h does its part of the bargain---but 174*7c478bd9Sstevel@tonic-gate * typically N==16). 175*7c478bd9Sstevel@tonic-gate * 176*7c478bd9Sstevel@tonic-gate * We use the same algorithm from Knuth, but this time the modulo refinement 177*7c478bd9Sstevel@tonic-gate * does not apply. On the other hand, since N is half the size of a long, 178*7c478bd9Sstevel@tonic-gate * we can get away with native multiplication---none of our input terms 179*7c478bd9Sstevel@tonic-gate * exceeds (ULONG_MAX >> 1). 180*7c478bd9Sstevel@tonic-gate * 181*7c478bd9Sstevel@tonic-gate * Note that, for ulong_t l, the quad-precision result 182*7c478bd9Sstevel@tonic-gate * 183*7c478bd9Sstevel@tonic-gate * l << N 184*7c478bd9Sstevel@tonic-gate * 185*7c478bd9Sstevel@tonic-gate * splits into high and low longs as HHALF(l) and LHUP(l) respectively. 186*7c478bd9Sstevel@tonic-gate */ 187*7c478bd9Sstevel@tonic-gate static longlong_t 188*7c478bd9Sstevel@tonic-gate __lmulq(ulong_t u, ulong_t v) 189*7c478bd9Sstevel@tonic-gate { 190*7c478bd9Sstevel@tonic-gate ulong_t u1, u0, v1, v0, udiff, vdiff, high, mid, low; 191*7c478bd9Sstevel@tonic-gate ulong_t prodh, prodl, was; 192*7c478bd9Sstevel@tonic-gate union uu prod; 193*7c478bd9Sstevel@tonic-gate int neg; 194*7c478bd9Sstevel@tonic-gate 195*7c478bd9Sstevel@tonic-gate u1 = HHALF(u); 196*7c478bd9Sstevel@tonic-gate u0 = LHALF(u); 197*7c478bd9Sstevel@tonic-gate v1 = HHALF(v); 198*7c478bd9Sstevel@tonic-gate v0 = LHALF(v); 199*7c478bd9Sstevel@tonic-gate 200*7c478bd9Sstevel@tonic-gate low = u0 * v0; 201*7c478bd9Sstevel@tonic-gate 202*7c478bd9Sstevel@tonic-gate /* This is the same small-number optimization as before. */ 203*7c478bd9Sstevel@tonic-gate if (u1 == 0 && v1 == 0) 204*7c478bd9Sstevel@tonic-gate return (low); 205*7c478bd9Sstevel@tonic-gate 206*7c478bd9Sstevel@tonic-gate if (u1 >= u0) 207*7c478bd9Sstevel@tonic-gate udiff = u1 - u0, neg = 0; 208*7c478bd9Sstevel@tonic-gate else 209*7c478bd9Sstevel@tonic-gate udiff = u0 - u1, neg = 1; 210*7c478bd9Sstevel@tonic-gate if (v0 >= v1) 211*7c478bd9Sstevel@tonic-gate vdiff = v0 - v1; 212*7c478bd9Sstevel@tonic-gate else 213*7c478bd9Sstevel@tonic-gate vdiff = v1 - v0, neg ^= 1; 214*7c478bd9Sstevel@tonic-gate mid = udiff * vdiff; 215*7c478bd9Sstevel@tonic-gate 216*7c478bd9Sstevel@tonic-gate high = u1 * v1; 217*7c478bd9Sstevel@tonic-gate 218*7c478bd9Sstevel@tonic-gate /* prod = (high << 2N) + (high << N); */ 219*7c478bd9Sstevel@tonic-gate prodh = high + HHALF(high); 220*7c478bd9Sstevel@tonic-gate prodl = LHUP(high); 221*7c478bd9Sstevel@tonic-gate 222*7c478bd9Sstevel@tonic-gate /* if (neg) prod -= mid << N; else prod += mid << N; */ 223*7c478bd9Sstevel@tonic-gate if (neg) { 224*7c478bd9Sstevel@tonic-gate was = prodl; 225*7c478bd9Sstevel@tonic-gate prodl -= LHUP(mid); 226*7c478bd9Sstevel@tonic-gate prodh -= HHALF(mid) + (prodl > was); 227*7c478bd9Sstevel@tonic-gate } else { 228*7c478bd9Sstevel@tonic-gate was = prodl; 229*7c478bd9Sstevel@tonic-gate prodl += LHUP(mid); 230*7c478bd9Sstevel@tonic-gate prodh += HHALF(mid) + (prodl < was); 231*7c478bd9Sstevel@tonic-gate } 232*7c478bd9Sstevel@tonic-gate 233*7c478bd9Sstevel@tonic-gate /* prod += low << N */ 234*7c478bd9Sstevel@tonic-gate was = prodl; 235*7c478bd9Sstevel@tonic-gate prodl += LHUP(low); 236*7c478bd9Sstevel@tonic-gate prodh += HHALF(low) + (prodl < was); 237*7c478bd9Sstevel@tonic-gate /* ... + low; */ 238*7c478bd9Sstevel@tonic-gate if ((prodl += low) < low) 239*7c478bd9Sstevel@tonic-gate prodh++; 240*7c478bd9Sstevel@tonic-gate 241*7c478bd9Sstevel@tonic-gate /* return 4N-bit product */ 242*7c478bd9Sstevel@tonic-gate prod.ul[H] = prodh; 243*7c478bd9Sstevel@tonic-gate prod.ul[L] = prodl; 244*7c478bd9Sstevel@tonic-gate return (prod.q); 245*7c478bd9Sstevel@tonic-gate } 246