1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/stropts.h> 27 #include <sys/debug.h> 28 #include <sys/isa_defs.h> 29 #include <sys/int_limits.h> 30 #include <sys/nvpair.h> 31 #include <sys/nvpair_impl.h> 32 #include <rpc/types.h> 33 #include <rpc/xdr.h> 34 35 #if defined(_KERNEL) && !defined(_BOOT) 36 #include <sys/varargs.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #else 40 #include <stdarg.h> 41 #include <stdlib.h> 42 #include <string.h> 43 #include <strings.h> 44 #endif 45 46 #ifndef offsetof 47 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 48 #endif 49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++ 50 51 /* 52 * nvpair.c - Provides kernel & userland interfaces for manipulating 53 * name-value pairs. 54 * 55 * Overview Diagram 56 * 57 * +--------------+ 58 * | nvlist_t | 59 * |--------------| 60 * | nvl_version | 61 * | nvl_nvflag | 62 * | nvl_priv -+-+ 63 * | nvl_flag | | 64 * | nvl_pad | | 65 * +--------------+ | 66 * V 67 * +--------------+ last i_nvp in list 68 * | nvpriv_t | +---------------------> 69 * |--------------| | 70 * +--+- nvp_list | | +------------+ 71 * | | nvp_last -+--+ + nv_alloc_t | 72 * | | nvp_curr | |------------| 73 * | | nvp_nva -+----> | nva_ops | 74 * | | nvp_stat | | nva_arg | 75 * | +--------------+ +------------+ 76 * | 77 * +-------+ 78 * V 79 * +---------------------+ +-------------------+ 80 * | i_nvp_t | +-->| i_nvp_t | +--> 81 * |---------------------| | |-------------------| | 82 * | nvi_next -+--+ | nvi_next -+--+ 83 * | nvi_prev (NULL) | <----+ nvi_prev | 84 * | . . . . . . . . . . | | . . . . . . . . . | 85 * | nvp (nvpair_t) | | nvp (nvpair_t) | 86 * | - nvp_size | | - nvp_size | 87 * | - nvp_name_sz | | - nvp_name_sz | 88 * | - nvp_value_elem | | - nvp_value_elem | 89 * | - nvp_type | | - nvp_type | 90 * | - data ... | | - data ... | 91 * +---------------------+ +-------------------+ 92 * 93 * 94 * 95 * +---------------------+ +---------------------+ 96 * | i_nvp_t | +--> +-->| i_nvp_t (last) | 97 * |---------------------| | | |---------------------| 98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) | 99 * <-+- nvi_prev |<-- ... <----+ nvi_prev | 100 * | . . . . . . . . . | | . . . . . . . . . | 101 * | nvp (nvpair_t) | | nvp (nvpair_t) | 102 * | - nvp_size | | - nvp_size | 103 * | - nvp_name_sz | | - nvp_name_sz | 104 * | - nvp_value_elem | | - nvp_value_elem | 105 * | - DATA_TYPE_NVLIST | | - nvp_type | 106 * | - data (embedded) | | - data ... | 107 * | nvlist name | +---------------------+ 108 * | +--------------+ | 109 * | | nvlist_t | | 110 * | |--------------| | 111 * | | nvl_version | | 112 * | | nvl_nvflag | | 113 * | | nvl_priv --+---+----> 114 * | | nvl_flag | | 115 * | | nvl_pad | | 116 * | +--------------+ | 117 * +---------------------+ 118 * 119 * 120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will 121 * allow value to be aligned on 8 byte boundary 122 * 123 * name_len is the length of the name string including the null terminator 124 * so it must be >= 1 125 */ 126 #define NVP_SIZE_CALC(name_len, data_len) \ 127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len)) 128 129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem); 130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type, 131 uint_t nelem, const void *data); 132 133 #define NV_STAT_EMBEDDED 0x1 134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp)) 135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp)) 136 137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz)) 138 #define NVPAIR2I_NVP(nvp) \ 139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp))) 140 141 142 int 143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...) 144 { 145 va_list valist; 146 int err = 0; 147 148 nva->nva_ops = nvo; 149 nva->nva_arg = NULL; 150 151 va_start(valist, nvo); 152 if (nva->nva_ops->nv_ao_init != NULL) 153 err = nva->nva_ops->nv_ao_init(nva, valist); 154 va_end(valist); 155 156 return (err); 157 } 158 159 void 160 nv_alloc_reset(nv_alloc_t *nva) 161 { 162 if (nva->nva_ops->nv_ao_reset != NULL) 163 nva->nva_ops->nv_ao_reset(nva); 164 } 165 166 void 167 nv_alloc_fini(nv_alloc_t *nva) 168 { 169 if (nva->nva_ops->nv_ao_fini != NULL) 170 nva->nva_ops->nv_ao_fini(nva); 171 } 172 173 nv_alloc_t * 174 nvlist_lookup_nv_alloc(nvlist_t *nvl) 175 { 176 nvpriv_t *priv; 177 178 if (nvl == NULL || 179 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 180 return (NULL); 181 182 return (priv->nvp_nva); 183 } 184 185 static void * 186 nv_mem_zalloc(nvpriv_t *nvp, size_t size) 187 { 188 nv_alloc_t *nva = nvp->nvp_nva; 189 void *buf; 190 191 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL) 192 bzero(buf, size); 193 194 return (buf); 195 } 196 197 static void 198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size) 199 { 200 nv_alloc_t *nva = nvp->nvp_nva; 201 202 nva->nva_ops->nv_ao_free(nva, buf, size); 203 } 204 205 static void 206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat) 207 { 208 bzero(priv, sizeof (nvpriv_t)); 209 210 priv->nvp_nva = nva; 211 priv->nvp_stat = stat; 212 } 213 214 static nvpriv_t * 215 nv_priv_alloc(nv_alloc_t *nva) 216 { 217 nvpriv_t *priv; 218 219 /* 220 * nv_mem_alloc() cannot called here because it needs the priv 221 * argument. 222 */ 223 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL) 224 return (NULL); 225 226 nv_priv_init(priv, nva, 0); 227 228 return (priv); 229 } 230 231 /* 232 * Embedded lists need their own nvpriv_t's. We create a new 233 * nvpriv_t using the parameters and allocator from the parent 234 * list's nvpriv_t. 235 */ 236 static nvpriv_t * 237 nv_priv_alloc_embedded(nvpriv_t *priv) 238 { 239 nvpriv_t *emb_priv; 240 241 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL) 242 return (NULL); 243 244 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED); 245 246 return (emb_priv); 247 } 248 249 static void 250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv) 251 { 252 nvl->nvl_version = NV_VERSION; 253 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE); 254 nvl->nvl_priv = (uint64_t)(uintptr_t)priv; 255 nvl->nvl_flag = 0; 256 nvl->nvl_pad = 0; 257 } 258 259 uint_t 260 nvlist_nvflag(nvlist_t *nvl) 261 { 262 return (nvl->nvl_nvflag); 263 } 264 265 /* 266 * nvlist_alloc - Allocate nvlist. 267 */ 268 /*ARGSUSED1*/ 269 int 270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag) 271 { 272 #if defined(_KERNEL) && !defined(_BOOT) 273 return (nvlist_xalloc(nvlp, nvflag, 274 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 275 #else 276 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep)); 277 #endif 278 } 279 280 int 281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva) 282 { 283 nvpriv_t *priv; 284 285 if (nvlp == NULL || nva == NULL) 286 return (EINVAL); 287 288 if ((priv = nv_priv_alloc(nva)) == NULL) 289 return (ENOMEM); 290 291 if ((*nvlp = nv_mem_zalloc(priv, 292 NV_ALIGN(sizeof (nvlist_t)))) == NULL) { 293 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 294 return (ENOMEM); 295 } 296 297 nvlist_init(*nvlp, nvflag, priv); 298 299 return (0); 300 } 301 302 /* 303 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair. 304 */ 305 static nvpair_t * 306 nvp_buf_alloc(nvlist_t *nvl, size_t len) 307 { 308 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 309 i_nvp_t *buf; 310 nvpair_t *nvp; 311 size_t nvsize; 312 313 /* 314 * Allocate the buffer 315 */ 316 nvsize = len + offsetof(i_nvp_t, nvi_nvp); 317 318 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL) 319 return (NULL); 320 321 nvp = &buf->nvi_nvp; 322 nvp->nvp_size = len; 323 324 return (nvp); 325 } 326 327 /* 328 * nvp_buf_free - de-Allocate an i_nvp_t. 329 */ 330 static void 331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp) 332 { 333 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 334 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp); 335 336 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize); 337 } 338 339 /* 340 * nvp_buf_link - link a new nv pair into the nvlist. 341 */ 342 static void 343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp) 344 { 345 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 346 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 347 348 /* Put element at end of nvlist */ 349 if (priv->nvp_list == NULL) { 350 priv->nvp_list = priv->nvp_last = curr; 351 } else { 352 curr->nvi_prev = priv->nvp_last; 353 priv->nvp_last->nvi_next = curr; 354 priv->nvp_last = curr; 355 } 356 } 357 358 /* 359 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist. 360 */ 361 static void 362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp) 363 { 364 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 365 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 366 367 /* 368 * protect nvlist_next_nvpair() against walking on freed memory. 369 */ 370 if (priv->nvp_curr == curr) 371 priv->nvp_curr = curr->nvi_next; 372 373 if (curr == priv->nvp_list) 374 priv->nvp_list = curr->nvi_next; 375 else 376 curr->nvi_prev->nvi_next = curr->nvi_next; 377 378 if (curr == priv->nvp_last) 379 priv->nvp_last = curr->nvi_prev; 380 else 381 curr->nvi_next->nvi_prev = curr->nvi_prev; 382 } 383 384 /* 385 * take a nvpair type and number of elements and make sure the are valid 386 */ 387 static int 388 i_validate_type_nelem(data_type_t type, uint_t nelem) 389 { 390 switch (type) { 391 case DATA_TYPE_BOOLEAN: 392 if (nelem != 0) 393 return (EINVAL); 394 break; 395 case DATA_TYPE_BOOLEAN_VALUE: 396 case DATA_TYPE_BYTE: 397 case DATA_TYPE_INT8: 398 case DATA_TYPE_UINT8: 399 case DATA_TYPE_INT16: 400 case DATA_TYPE_UINT16: 401 case DATA_TYPE_INT32: 402 case DATA_TYPE_UINT32: 403 case DATA_TYPE_INT64: 404 case DATA_TYPE_UINT64: 405 case DATA_TYPE_STRING: 406 case DATA_TYPE_HRTIME: 407 case DATA_TYPE_NVLIST: 408 #if !defined(_KERNEL) 409 case DATA_TYPE_DOUBLE: 410 #endif 411 if (nelem != 1) 412 return (EINVAL); 413 break; 414 case DATA_TYPE_BOOLEAN_ARRAY: 415 case DATA_TYPE_BYTE_ARRAY: 416 case DATA_TYPE_INT8_ARRAY: 417 case DATA_TYPE_UINT8_ARRAY: 418 case DATA_TYPE_INT16_ARRAY: 419 case DATA_TYPE_UINT16_ARRAY: 420 case DATA_TYPE_INT32_ARRAY: 421 case DATA_TYPE_UINT32_ARRAY: 422 case DATA_TYPE_INT64_ARRAY: 423 case DATA_TYPE_UINT64_ARRAY: 424 case DATA_TYPE_STRING_ARRAY: 425 case DATA_TYPE_NVLIST_ARRAY: 426 /* we allow arrays with 0 elements */ 427 break; 428 default: 429 return (EINVAL); 430 } 431 return (0); 432 } 433 434 /* 435 * Verify nvp_name_sz and check the name string length. 436 */ 437 static int 438 i_validate_nvpair_name(nvpair_t *nvp) 439 { 440 if ((nvp->nvp_name_sz <= 0) || 441 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0))) 442 return (EFAULT); 443 444 /* verify the name string, make sure its terminated */ 445 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0') 446 return (EFAULT); 447 448 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT); 449 } 450 451 static int 452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data) 453 { 454 switch (type) { 455 case DATA_TYPE_BOOLEAN_VALUE: 456 if (*(boolean_t *)data != B_TRUE && 457 *(boolean_t *)data != B_FALSE) 458 return (EINVAL); 459 break; 460 case DATA_TYPE_BOOLEAN_ARRAY: { 461 int i; 462 463 for (i = 0; i < nelem; i++) 464 if (((boolean_t *)data)[i] != B_TRUE && 465 ((boolean_t *)data)[i] != B_FALSE) 466 return (EINVAL); 467 break; 468 } 469 default: 470 break; 471 } 472 473 return (0); 474 } 475 476 /* 477 * This function takes a pointer to what should be a nvpair and it's size 478 * and then verifies that all the nvpair fields make sense and can be 479 * trusted. This function is used when decoding packed nvpairs. 480 */ 481 static int 482 i_validate_nvpair(nvpair_t *nvp) 483 { 484 data_type_t type = NVP_TYPE(nvp); 485 int size1, size2; 486 487 /* verify nvp_name_sz, check the name string length */ 488 if (i_validate_nvpair_name(nvp) != 0) 489 return (EFAULT); 490 491 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0) 492 return (EFAULT); 493 494 /* 495 * verify nvp_type, nvp_value_elem, and also possibly 496 * verify string values and get the value size. 497 */ 498 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp)); 499 size1 = nvp->nvp_size - NVP_VALOFF(nvp); 500 if (size2 < 0 || size1 != NV_ALIGN(size2)) 501 return (EFAULT); 502 503 return (0); 504 } 505 506 static int 507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl) 508 { 509 nvpriv_t *priv; 510 i_nvp_t *curr; 511 512 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL) 513 return (EINVAL); 514 515 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 516 nvpair_t *nvp = &curr->nvi_nvp; 517 int err; 518 519 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp), 520 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0) 521 return (err); 522 } 523 524 return (0); 525 } 526 527 /* 528 * Frees all memory allocated for an nvpair (like embedded lists) with 529 * the exception of the nvpair buffer itself. 530 */ 531 static void 532 nvpair_free(nvpair_t *nvp) 533 { 534 switch (NVP_TYPE(nvp)) { 535 case DATA_TYPE_NVLIST: 536 nvlist_free(EMBEDDED_NVL(nvp)); 537 break; 538 case DATA_TYPE_NVLIST_ARRAY: { 539 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 540 int i; 541 542 for (i = 0; i < NVP_NELEM(nvp); i++) 543 if (nvlp[i] != NULL) 544 nvlist_free(nvlp[i]); 545 break; 546 } 547 default: 548 break; 549 } 550 } 551 552 /* 553 * nvlist_free - free an unpacked nvlist 554 */ 555 void 556 nvlist_free(nvlist_t *nvl) 557 { 558 nvpriv_t *priv; 559 i_nvp_t *curr; 560 561 if (nvl == NULL || 562 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 563 return; 564 565 /* 566 * Unpacked nvlist are linked through i_nvp_t 567 */ 568 curr = priv->nvp_list; 569 while (curr != NULL) { 570 nvpair_t *nvp = &curr->nvi_nvp; 571 curr = curr->nvi_next; 572 573 nvpair_free(nvp); 574 nvp_buf_free(nvl, nvp); 575 } 576 577 if (!(priv->nvp_stat & NV_STAT_EMBEDDED)) 578 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t))); 579 else 580 nvl->nvl_priv = 0; 581 582 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 583 } 584 585 static int 586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp) 587 { 588 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 589 i_nvp_t *curr; 590 591 if (nvp == NULL) 592 return (0); 593 594 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 595 if (&curr->nvi_nvp == nvp) 596 return (1); 597 598 return (0); 599 } 600 601 /* 602 * Make a copy of nvlist 603 */ 604 /*ARGSUSED1*/ 605 int 606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag) 607 { 608 #if defined(_KERNEL) && !defined(_BOOT) 609 return (nvlist_xdup(nvl, nvlp, 610 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 611 #else 612 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep)); 613 #endif 614 } 615 616 int 617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva) 618 { 619 int err; 620 nvlist_t *ret; 621 622 if (nvl == NULL || nvlp == NULL) 623 return (EINVAL); 624 625 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0) 626 return (err); 627 628 if ((err = nvlist_copy_pairs(nvl, ret)) != 0) 629 nvlist_free(ret); 630 else 631 *nvlp = ret; 632 633 return (err); 634 } 635 636 /* 637 * Remove all with matching name 638 */ 639 int 640 nvlist_remove_all(nvlist_t *nvl, const char *name) 641 { 642 nvpriv_t *priv; 643 i_nvp_t *curr; 644 int error = ENOENT; 645 646 if (nvl == NULL || name == NULL || 647 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 648 return (EINVAL); 649 650 curr = priv->nvp_list; 651 while (curr != NULL) { 652 nvpair_t *nvp = &curr->nvi_nvp; 653 654 curr = curr->nvi_next; 655 if (strcmp(name, NVP_NAME(nvp)) != 0) 656 continue; 657 658 nvp_buf_unlink(nvl, nvp); 659 nvpair_free(nvp); 660 nvp_buf_free(nvl, nvp); 661 662 error = 0; 663 } 664 665 return (error); 666 } 667 668 /* 669 * Remove first one with matching name and type 670 */ 671 int 672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type) 673 { 674 nvpriv_t *priv; 675 i_nvp_t *curr; 676 677 if (nvl == NULL || name == NULL || 678 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 679 return (EINVAL); 680 681 curr = priv->nvp_list; 682 while (curr != NULL) { 683 nvpair_t *nvp = &curr->nvi_nvp; 684 685 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) { 686 nvp_buf_unlink(nvl, nvp); 687 nvpair_free(nvp); 688 nvp_buf_free(nvl, nvp); 689 690 return (0); 691 } 692 curr = curr->nvi_next; 693 } 694 695 return (ENOENT); 696 } 697 698 int 699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp) 700 { 701 if (nvl == NULL || nvp == NULL) 702 return (EINVAL); 703 704 nvp_buf_unlink(nvl, nvp); 705 nvpair_free(nvp); 706 nvp_buf_free(nvl, nvp); 707 return (0); 708 } 709 710 /* 711 * This function calculates the size of an nvpair value. 712 * 713 * The data argument controls the behavior in case of the data types 714 * DATA_TYPE_STRING and 715 * DATA_TYPE_STRING_ARRAY 716 * Is data == NULL then the size of the string(s) is excluded. 717 */ 718 static int 719 i_get_value_size(data_type_t type, const void *data, uint_t nelem) 720 { 721 uint64_t value_sz; 722 723 if (i_validate_type_nelem(type, nelem) != 0) 724 return (-1); 725 726 /* Calculate required size for holding value */ 727 switch (type) { 728 case DATA_TYPE_BOOLEAN: 729 value_sz = 0; 730 break; 731 case DATA_TYPE_BOOLEAN_VALUE: 732 value_sz = sizeof (boolean_t); 733 break; 734 case DATA_TYPE_BYTE: 735 value_sz = sizeof (uchar_t); 736 break; 737 case DATA_TYPE_INT8: 738 value_sz = sizeof (int8_t); 739 break; 740 case DATA_TYPE_UINT8: 741 value_sz = sizeof (uint8_t); 742 break; 743 case DATA_TYPE_INT16: 744 value_sz = sizeof (int16_t); 745 break; 746 case DATA_TYPE_UINT16: 747 value_sz = sizeof (uint16_t); 748 break; 749 case DATA_TYPE_INT32: 750 value_sz = sizeof (int32_t); 751 break; 752 case DATA_TYPE_UINT32: 753 value_sz = sizeof (uint32_t); 754 break; 755 case DATA_TYPE_INT64: 756 value_sz = sizeof (int64_t); 757 break; 758 case DATA_TYPE_UINT64: 759 value_sz = sizeof (uint64_t); 760 break; 761 #if !defined(_KERNEL) 762 case DATA_TYPE_DOUBLE: 763 value_sz = sizeof (double); 764 break; 765 #endif 766 case DATA_TYPE_STRING: 767 if (data == NULL) 768 value_sz = 0; 769 else 770 value_sz = strlen(data) + 1; 771 break; 772 case DATA_TYPE_BOOLEAN_ARRAY: 773 value_sz = (uint64_t)nelem * sizeof (boolean_t); 774 break; 775 case DATA_TYPE_BYTE_ARRAY: 776 value_sz = (uint64_t)nelem * sizeof (uchar_t); 777 break; 778 case DATA_TYPE_INT8_ARRAY: 779 value_sz = (uint64_t)nelem * sizeof (int8_t); 780 break; 781 case DATA_TYPE_UINT8_ARRAY: 782 value_sz = (uint64_t)nelem * sizeof (uint8_t); 783 break; 784 case DATA_TYPE_INT16_ARRAY: 785 value_sz = (uint64_t)nelem * sizeof (int16_t); 786 break; 787 case DATA_TYPE_UINT16_ARRAY: 788 value_sz = (uint64_t)nelem * sizeof (uint16_t); 789 break; 790 case DATA_TYPE_INT32_ARRAY: 791 value_sz = (uint64_t)nelem * sizeof (int32_t); 792 break; 793 case DATA_TYPE_UINT32_ARRAY: 794 value_sz = (uint64_t)nelem * sizeof (uint32_t); 795 break; 796 case DATA_TYPE_INT64_ARRAY: 797 value_sz = (uint64_t)nelem * sizeof (int64_t); 798 break; 799 case DATA_TYPE_UINT64_ARRAY: 800 value_sz = (uint64_t)nelem * sizeof (uint64_t); 801 break; 802 case DATA_TYPE_STRING_ARRAY: 803 value_sz = (uint64_t)nelem * sizeof (uint64_t); 804 805 if (data != NULL) { 806 char *const *strs = data; 807 uint_t i; 808 809 /* no alignment requirement for strings */ 810 for (i = 0; i < nelem; i++) { 811 if (strs[i] == NULL) 812 return (-1); 813 value_sz += strlen(strs[i]) + 1; 814 } 815 } 816 break; 817 case DATA_TYPE_HRTIME: 818 value_sz = sizeof (hrtime_t); 819 break; 820 case DATA_TYPE_NVLIST: 821 value_sz = NV_ALIGN(sizeof (nvlist_t)); 822 break; 823 case DATA_TYPE_NVLIST_ARRAY: 824 value_sz = (uint64_t)nelem * sizeof (uint64_t) + 825 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t)); 826 break; 827 default: 828 return (-1); 829 } 830 831 return (value_sz > INT32_MAX ? -1 : (int)value_sz); 832 } 833 834 static int 835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl) 836 { 837 nvpriv_t *priv; 838 int err; 839 840 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t) 841 nvl->nvl_priv)) == NULL) 842 return (ENOMEM); 843 844 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv); 845 846 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) { 847 nvlist_free(emb_nvl); 848 emb_nvl->nvl_priv = 0; 849 } 850 851 return (err); 852 } 853 854 /* 855 * nvlist_add_common - Add new <name,value> pair to nvlist 856 */ 857 static int 858 nvlist_add_common(nvlist_t *nvl, const char *name, 859 data_type_t type, uint_t nelem, const void *data) 860 { 861 nvpair_t *nvp; 862 uint_t i; 863 864 int nvp_sz, name_sz, value_sz; 865 int err = 0; 866 867 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0) 868 return (EINVAL); 869 870 if (nelem != 0 && data == NULL) 871 return (EINVAL); 872 873 /* 874 * Verify type and nelem and get the value size. 875 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 876 * is the size of the string(s) included. 877 */ 878 if ((value_sz = i_get_value_size(type, data, nelem)) < 0) 879 return (EINVAL); 880 881 if (i_validate_nvpair_value(type, nelem, data) != 0) 882 return (EINVAL); 883 884 /* 885 * If we're adding an nvlist or nvlist array, ensure that we are not 886 * adding the input nvlist to itself, which would cause recursion, 887 * and ensure that no NULL nvlist pointers are present. 888 */ 889 switch (type) { 890 case DATA_TYPE_NVLIST: 891 if (data == nvl || data == NULL) 892 return (EINVAL); 893 break; 894 case DATA_TYPE_NVLIST_ARRAY: { 895 nvlist_t **onvlp = (nvlist_t **)data; 896 for (i = 0; i < nelem; i++) { 897 if (onvlp[i] == nvl || onvlp[i] == NULL) 898 return (EINVAL); 899 } 900 break; 901 } 902 default: 903 break; 904 } 905 906 /* calculate sizes of the nvpair elements and the nvpair itself */ 907 name_sz = strlen(name) + 1; 908 909 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz); 910 911 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL) 912 return (ENOMEM); 913 914 ASSERT(nvp->nvp_size == nvp_sz); 915 nvp->nvp_name_sz = name_sz; 916 nvp->nvp_value_elem = nelem; 917 nvp->nvp_type = type; 918 bcopy(name, NVP_NAME(nvp), name_sz); 919 920 switch (type) { 921 case DATA_TYPE_BOOLEAN: 922 break; 923 case DATA_TYPE_STRING_ARRAY: { 924 char *const *strs = data; 925 char *buf = NVP_VALUE(nvp); 926 char **cstrs = (void *)buf; 927 928 /* skip pre-allocated space for pointer array */ 929 buf += nelem * sizeof (uint64_t); 930 for (i = 0; i < nelem; i++) { 931 int slen = strlen(strs[i]) + 1; 932 bcopy(strs[i], buf, slen); 933 cstrs[i] = buf; 934 buf += slen; 935 } 936 break; 937 } 938 case DATA_TYPE_NVLIST: { 939 nvlist_t *nnvl = EMBEDDED_NVL(nvp); 940 nvlist_t *onvl = (nvlist_t *)data; 941 942 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) { 943 nvp_buf_free(nvl, nvp); 944 return (err); 945 } 946 break; 947 } 948 case DATA_TYPE_NVLIST_ARRAY: { 949 nvlist_t **onvlp = (nvlist_t **)data; 950 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 951 nvlist_t *embedded = (nvlist_t *) 952 ((uintptr_t)nvlp + nelem * sizeof (uint64_t)); 953 954 for (i = 0; i < nelem; i++) { 955 if ((err = nvlist_copy_embedded(nvl, 956 onvlp[i], embedded)) != 0) { 957 /* 958 * Free any successfully created lists 959 */ 960 nvpair_free(nvp); 961 nvp_buf_free(nvl, nvp); 962 return (err); 963 } 964 965 nvlp[i] = embedded++; 966 } 967 break; 968 } 969 default: 970 bcopy(data, NVP_VALUE(nvp), value_sz); 971 } 972 973 /* if unique name, remove before add */ 974 if (nvl->nvl_nvflag & NV_UNIQUE_NAME) 975 (void) nvlist_remove_all(nvl, name); 976 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE) 977 (void) nvlist_remove(nvl, name, type); 978 979 nvp_buf_link(nvl, nvp); 980 981 return (0); 982 } 983 984 int 985 nvlist_add_boolean(nvlist_t *nvl, const char *name) 986 { 987 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL)); 988 } 989 990 int 991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val) 992 { 993 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val)); 994 } 995 996 int 997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val) 998 { 999 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val)); 1000 } 1001 1002 int 1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val) 1004 { 1005 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val)); 1006 } 1007 1008 int 1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val) 1010 { 1011 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val)); 1012 } 1013 1014 int 1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val) 1016 { 1017 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val)); 1018 } 1019 1020 int 1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val) 1022 { 1023 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val)); 1024 } 1025 1026 int 1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val) 1028 { 1029 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val)); 1030 } 1031 1032 int 1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val) 1034 { 1035 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val)); 1036 } 1037 1038 int 1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val) 1040 { 1041 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val)); 1042 } 1043 1044 int 1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val) 1046 { 1047 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val)); 1048 } 1049 1050 #if !defined(_KERNEL) 1051 int 1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val) 1053 { 1054 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val)); 1055 } 1056 #endif 1057 1058 int 1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val) 1060 { 1061 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val)); 1062 } 1063 1064 int 1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name, 1066 boolean_t *a, uint_t n) 1067 { 1068 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1069 } 1070 1071 int 1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n) 1073 { 1074 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1075 } 1076 1077 int 1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n) 1079 { 1080 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1081 } 1082 1083 int 1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n) 1085 { 1086 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1087 } 1088 1089 int 1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n) 1091 { 1092 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1093 } 1094 1095 int 1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n) 1097 { 1098 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1099 } 1100 1101 int 1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n) 1103 { 1104 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1105 } 1106 1107 int 1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n) 1109 { 1110 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1111 } 1112 1113 int 1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n) 1115 { 1116 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1117 } 1118 1119 int 1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n) 1121 { 1122 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1123 } 1124 1125 int 1126 nvlist_add_string_array(nvlist_t *nvl, const char *name, 1127 char *const *a, uint_t n) 1128 { 1129 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1130 } 1131 1132 int 1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val) 1134 { 1135 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val)); 1136 } 1137 1138 int 1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val) 1140 { 1141 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val)); 1142 } 1143 1144 int 1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n) 1146 { 1147 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1148 } 1149 1150 /* reading name-value pairs */ 1151 nvpair_t * 1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1153 { 1154 nvpriv_t *priv; 1155 i_nvp_t *curr; 1156 1157 if (nvl == NULL || 1158 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1159 return (NULL); 1160 1161 curr = NVPAIR2I_NVP(nvp); 1162 1163 /* 1164 * Ensure that nvp is a valid nvpair on this nvlist. 1165 * NB: nvp_curr is used only as a hint so that we don't always 1166 * have to walk the list to determine if nvp is still on the list. 1167 */ 1168 if (nvp == NULL) 1169 curr = priv->nvp_list; 1170 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1171 curr = curr->nvi_next; 1172 else 1173 curr = NULL; 1174 1175 priv->nvp_curr = curr; 1176 1177 return (curr != NULL ? &curr->nvi_nvp : NULL); 1178 } 1179 1180 nvpair_t * 1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1182 { 1183 nvpriv_t *priv; 1184 i_nvp_t *curr; 1185 1186 if (nvl == NULL || 1187 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1188 return (NULL); 1189 1190 curr = NVPAIR2I_NVP(nvp); 1191 1192 if (nvp == NULL) 1193 curr = priv->nvp_last; 1194 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1195 curr = curr->nvi_prev; 1196 else 1197 curr = NULL; 1198 1199 priv->nvp_curr = curr; 1200 1201 return (curr != NULL ? &curr->nvi_nvp : NULL); 1202 } 1203 1204 boolean_t 1205 nvlist_empty(nvlist_t *nvl) 1206 { 1207 nvpriv_t *priv; 1208 1209 if (nvl == NULL || 1210 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1211 return (B_TRUE); 1212 1213 return (priv->nvp_list == NULL); 1214 } 1215 1216 char * 1217 nvpair_name(nvpair_t *nvp) 1218 { 1219 return (NVP_NAME(nvp)); 1220 } 1221 1222 data_type_t 1223 nvpair_type(nvpair_t *nvp) 1224 { 1225 return (NVP_TYPE(nvp)); 1226 } 1227 1228 int 1229 nvpair_type_is_array(nvpair_t *nvp) 1230 { 1231 data_type_t type = NVP_TYPE(nvp); 1232 1233 if ((type == DATA_TYPE_BYTE_ARRAY) || 1234 (type == DATA_TYPE_INT8_ARRAY) || 1235 (type == DATA_TYPE_UINT8_ARRAY) || 1236 (type == DATA_TYPE_INT16_ARRAY) || 1237 (type == DATA_TYPE_UINT16_ARRAY) || 1238 (type == DATA_TYPE_INT32_ARRAY) || 1239 (type == DATA_TYPE_UINT32_ARRAY) || 1240 (type == DATA_TYPE_INT64_ARRAY) || 1241 (type == DATA_TYPE_UINT64_ARRAY) || 1242 (type == DATA_TYPE_BOOLEAN_ARRAY) || 1243 (type == DATA_TYPE_STRING_ARRAY) || 1244 (type == DATA_TYPE_NVLIST_ARRAY)) 1245 return (1); 1246 return (0); 1247 1248 } 1249 1250 static int 1251 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data) 1252 { 1253 if (nvp == NULL || nvpair_type(nvp) != type) 1254 return (EINVAL); 1255 1256 /* 1257 * For non-array types, we copy the data. 1258 * For array types (including string), we set a pointer. 1259 */ 1260 switch (type) { 1261 case DATA_TYPE_BOOLEAN: 1262 if (nelem != NULL) 1263 *nelem = 0; 1264 break; 1265 1266 case DATA_TYPE_BOOLEAN_VALUE: 1267 case DATA_TYPE_BYTE: 1268 case DATA_TYPE_INT8: 1269 case DATA_TYPE_UINT8: 1270 case DATA_TYPE_INT16: 1271 case DATA_TYPE_UINT16: 1272 case DATA_TYPE_INT32: 1273 case DATA_TYPE_UINT32: 1274 case DATA_TYPE_INT64: 1275 case DATA_TYPE_UINT64: 1276 case DATA_TYPE_HRTIME: 1277 #if !defined(_KERNEL) 1278 case DATA_TYPE_DOUBLE: 1279 #endif 1280 if (data == NULL) 1281 return (EINVAL); 1282 bcopy(NVP_VALUE(nvp), data, 1283 (size_t)i_get_value_size(type, NULL, 1)); 1284 if (nelem != NULL) 1285 *nelem = 1; 1286 break; 1287 1288 case DATA_TYPE_NVLIST: 1289 case DATA_TYPE_STRING: 1290 if (data == NULL) 1291 return (EINVAL); 1292 *(void **)data = (void *)NVP_VALUE(nvp); 1293 if (nelem != NULL) 1294 *nelem = 1; 1295 break; 1296 1297 case DATA_TYPE_BOOLEAN_ARRAY: 1298 case DATA_TYPE_BYTE_ARRAY: 1299 case DATA_TYPE_INT8_ARRAY: 1300 case DATA_TYPE_UINT8_ARRAY: 1301 case DATA_TYPE_INT16_ARRAY: 1302 case DATA_TYPE_UINT16_ARRAY: 1303 case DATA_TYPE_INT32_ARRAY: 1304 case DATA_TYPE_UINT32_ARRAY: 1305 case DATA_TYPE_INT64_ARRAY: 1306 case DATA_TYPE_UINT64_ARRAY: 1307 case DATA_TYPE_STRING_ARRAY: 1308 case DATA_TYPE_NVLIST_ARRAY: 1309 if (nelem == NULL || data == NULL) 1310 return (EINVAL); 1311 if ((*nelem = NVP_NELEM(nvp)) != 0) 1312 *(void **)data = (void *)NVP_VALUE(nvp); 1313 else 1314 *(void **)data = NULL; 1315 break; 1316 1317 default: 1318 return (ENOTSUP); 1319 } 1320 1321 return (0); 1322 } 1323 1324 static int 1325 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type, 1326 uint_t *nelem, void *data) 1327 { 1328 nvpriv_t *priv; 1329 nvpair_t *nvp; 1330 i_nvp_t *curr; 1331 1332 if (name == NULL || nvl == NULL || 1333 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1334 return (EINVAL); 1335 1336 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE))) 1337 return (ENOTSUP); 1338 1339 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1340 nvp = &curr->nvi_nvp; 1341 1342 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) 1343 return (nvpair_value_common(nvp, type, nelem, data)); 1344 } 1345 1346 return (ENOENT); 1347 } 1348 1349 int 1350 nvlist_lookup_boolean(nvlist_t *nvl, const char *name) 1351 { 1352 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL)); 1353 } 1354 1355 int 1356 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val) 1357 { 1358 return (nvlist_lookup_common(nvl, name, 1359 DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1360 } 1361 1362 int 1363 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val) 1364 { 1365 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val)); 1366 } 1367 1368 int 1369 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val) 1370 { 1371 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val)); 1372 } 1373 1374 int 1375 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val) 1376 { 1377 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val)); 1378 } 1379 1380 int 1381 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val) 1382 { 1383 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val)); 1384 } 1385 1386 int 1387 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val) 1388 { 1389 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val)); 1390 } 1391 1392 int 1393 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val) 1394 { 1395 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val)); 1396 } 1397 1398 int 1399 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val) 1400 { 1401 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val)); 1402 } 1403 1404 int 1405 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val) 1406 { 1407 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val)); 1408 } 1409 1410 int 1411 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val) 1412 { 1413 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val)); 1414 } 1415 1416 #if !defined(_KERNEL) 1417 int 1418 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val) 1419 { 1420 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val)); 1421 } 1422 #endif 1423 1424 int 1425 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val) 1426 { 1427 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val)); 1428 } 1429 1430 int 1431 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val) 1432 { 1433 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val)); 1434 } 1435 1436 int 1437 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name, 1438 boolean_t **a, uint_t *n) 1439 { 1440 return (nvlist_lookup_common(nvl, name, 1441 DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1442 } 1443 1444 int 1445 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name, 1446 uchar_t **a, uint_t *n) 1447 { 1448 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1449 } 1450 1451 int 1452 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n) 1453 { 1454 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1455 } 1456 1457 int 1458 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name, 1459 uint8_t **a, uint_t *n) 1460 { 1461 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1462 } 1463 1464 int 1465 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name, 1466 int16_t **a, uint_t *n) 1467 { 1468 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1469 } 1470 1471 int 1472 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name, 1473 uint16_t **a, uint_t *n) 1474 { 1475 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1476 } 1477 1478 int 1479 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name, 1480 int32_t **a, uint_t *n) 1481 { 1482 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1483 } 1484 1485 int 1486 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name, 1487 uint32_t **a, uint_t *n) 1488 { 1489 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1490 } 1491 1492 int 1493 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name, 1494 int64_t **a, uint_t *n) 1495 { 1496 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1497 } 1498 1499 int 1500 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name, 1501 uint64_t **a, uint_t *n) 1502 { 1503 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1504 } 1505 1506 int 1507 nvlist_lookup_string_array(nvlist_t *nvl, const char *name, 1508 char ***a, uint_t *n) 1509 { 1510 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1511 } 1512 1513 int 1514 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name, 1515 nvlist_t ***a, uint_t *n) 1516 { 1517 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1518 } 1519 1520 int 1521 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val) 1522 { 1523 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val)); 1524 } 1525 1526 int 1527 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...) 1528 { 1529 va_list ap; 1530 char *name; 1531 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0); 1532 int ret = 0; 1533 1534 va_start(ap, flag); 1535 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 1536 data_type_t type; 1537 void *val; 1538 uint_t *nelem; 1539 1540 switch (type = va_arg(ap, data_type_t)) { 1541 case DATA_TYPE_BOOLEAN: 1542 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL); 1543 break; 1544 1545 case DATA_TYPE_BOOLEAN_VALUE: 1546 case DATA_TYPE_BYTE: 1547 case DATA_TYPE_INT8: 1548 case DATA_TYPE_UINT8: 1549 case DATA_TYPE_INT16: 1550 case DATA_TYPE_UINT16: 1551 case DATA_TYPE_INT32: 1552 case DATA_TYPE_UINT32: 1553 case DATA_TYPE_INT64: 1554 case DATA_TYPE_UINT64: 1555 case DATA_TYPE_HRTIME: 1556 case DATA_TYPE_STRING: 1557 case DATA_TYPE_NVLIST: 1558 #if !defined(_KERNEL) 1559 case DATA_TYPE_DOUBLE: 1560 #endif 1561 val = va_arg(ap, void *); 1562 ret = nvlist_lookup_common(nvl, name, type, NULL, val); 1563 break; 1564 1565 case DATA_TYPE_BYTE_ARRAY: 1566 case DATA_TYPE_BOOLEAN_ARRAY: 1567 case DATA_TYPE_INT8_ARRAY: 1568 case DATA_TYPE_UINT8_ARRAY: 1569 case DATA_TYPE_INT16_ARRAY: 1570 case DATA_TYPE_UINT16_ARRAY: 1571 case DATA_TYPE_INT32_ARRAY: 1572 case DATA_TYPE_UINT32_ARRAY: 1573 case DATA_TYPE_INT64_ARRAY: 1574 case DATA_TYPE_UINT64_ARRAY: 1575 case DATA_TYPE_STRING_ARRAY: 1576 case DATA_TYPE_NVLIST_ARRAY: 1577 val = va_arg(ap, void *); 1578 nelem = va_arg(ap, uint_t *); 1579 ret = nvlist_lookup_common(nvl, name, type, nelem, val); 1580 break; 1581 1582 default: 1583 ret = EINVAL; 1584 } 1585 1586 if (ret == ENOENT && noentok) 1587 ret = 0; 1588 } 1589 va_end(ap); 1590 1591 return (ret); 1592 } 1593 1594 /* 1595 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function 1596 * returns zero and a pointer to the matching nvpair is returned in '*ret' 1597 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate 1598 * multiple levels of embedded nvlists, with 'sep' as the separator. As an 1599 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or 1600 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience, 1601 * code also supports "a.d[3]e[1]" syntax). 1602 * 1603 * If 'ip' is non-NULL and the last name component is an array, return the 1604 * value of the "...[index]" array index in *ip. For an array reference that 1605 * is not indexed, *ip will be returned as -1. If there is a syntax error in 1606 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location 1607 * inside the 'name' string where the syntax error was detected. 1608 */ 1609 static int 1610 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep, 1611 nvpair_t **ret, int *ip, char **ep) 1612 { 1613 nvpair_t *nvp; 1614 const char *np; 1615 char *sepp; 1616 char *idxp, *idxep; 1617 nvlist_t **nva; 1618 long idx; 1619 int n; 1620 1621 if (ip) 1622 *ip = -1; /* not indexed */ 1623 if (ep) 1624 *ep = NULL; 1625 1626 if ((nvl == NULL) || (name == NULL)) 1627 return (EINVAL); 1628 1629 sepp = NULL; 1630 idx = 0; 1631 /* step through components of name */ 1632 for (np = name; np && *np; np = sepp) { 1633 /* ensure unique names */ 1634 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME)) 1635 return (ENOTSUP); 1636 1637 /* skip white space */ 1638 skip_whitespace(np); 1639 if (*np == 0) 1640 break; 1641 1642 /* set 'sepp' to end of current component 'np' */ 1643 if (sep) 1644 sepp = strchr(np, sep); 1645 else 1646 sepp = NULL; 1647 1648 /* find start of next "[ index ]..." */ 1649 idxp = strchr(np, '['); 1650 1651 /* if sepp comes first, set idxp to NULL */ 1652 if (sepp && idxp && (sepp < idxp)) 1653 idxp = NULL; 1654 1655 /* 1656 * At this point 'idxp' is set if there is an index 1657 * expected for the current component. 1658 */ 1659 if (idxp) { 1660 /* set 'n' to length of current 'np' name component */ 1661 n = idxp++ - np; 1662 1663 /* keep sepp up to date for *ep use as we advance */ 1664 skip_whitespace(idxp); 1665 sepp = idxp; 1666 1667 /* determine the index value */ 1668 #if defined(_KERNEL) && !defined(_BOOT) 1669 if (ddi_strtol(idxp, &idxep, 0, &idx)) 1670 goto fail; 1671 #else 1672 idx = strtol(idxp, &idxep, 0); 1673 #endif 1674 if (idxep == idxp) 1675 goto fail; 1676 1677 /* keep sepp up to date for *ep use as we advance */ 1678 sepp = idxep; 1679 1680 /* skip white space index value and check for ']' */ 1681 skip_whitespace(sepp); 1682 if (*sepp++ != ']') 1683 goto fail; 1684 1685 /* for embedded arrays, support C syntax: "a[1].b" */ 1686 skip_whitespace(sepp); 1687 if (sep && (*sepp == sep)) 1688 sepp++; 1689 } else if (sepp) { 1690 n = sepp++ - np; 1691 } else { 1692 n = strlen(np); 1693 } 1694 1695 /* trim trailing whitespace by reducing length of 'np' */ 1696 if (n == 0) 1697 goto fail; 1698 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--) 1699 ; 1700 n++; 1701 1702 /* skip whitespace, and set sepp to NULL if complete */ 1703 if (sepp) { 1704 skip_whitespace(sepp); 1705 if (*sepp == 0) 1706 sepp = NULL; 1707 } 1708 1709 /* 1710 * At this point: 1711 * o 'n' is the length of current 'np' component. 1712 * o 'idxp' is set if there was an index, and value 'idx'. 1713 * o 'sepp' is set to the beginning of the next component, 1714 * and set to NULL if we have no more components. 1715 * 1716 * Search for nvpair with matching component name. 1717 */ 1718 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 1719 nvp = nvlist_next_nvpair(nvl, nvp)) { 1720 1721 /* continue if no match on name */ 1722 if (strncmp(np, nvpair_name(nvp), n) || 1723 (strlen(nvpair_name(nvp)) != n)) 1724 continue; 1725 1726 /* if indexed, verify type is array oriented */ 1727 if (idxp && !nvpair_type_is_array(nvp)) 1728 goto fail; 1729 1730 /* 1731 * Full match found, return nvp and idx if this 1732 * was the last component. 1733 */ 1734 if (sepp == NULL) { 1735 if (ret) 1736 *ret = nvp; 1737 if (ip && idxp) 1738 *ip = (int)idx; /* return index */ 1739 return (0); /* found */ 1740 } 1741 1742 /* 1743 * More components: current match must be 1744 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY 1745 * to support going deeper. 1746 */ 1747 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) { 1748 nvl = EMBEDDED_NVL(nvp); 1749 break; 1750 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) { 1751 (void) nvpair_value_nvlist_array(nvp, 1752 &nva, (uint_t *)&n); 1753 if ((n < 0) || (idx >= n)) 1754 goto fail; 1755 nvl = nva[idx]; 1756 break; 1757 } 1758 1759 /* type does not support more levels */ 1760 goto fail; 1761 } 1762 if (nvp == NULL) 1763 goto fail; /* 'name' not found */ 1764 1765 /* search for match of next component in embedded 'nvl' list */ 1766 } 1767 1768 fail: if (ep && sepp) 1769 *ep = sepp; 1770 return (EINVAL); 1771 } 1772 1773 /* 1774 * Return pointer to nvpair with specified 'name'. 1775 */ 1776 int 1777 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret) 1778 { 1779 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL)); 1780 } 1781 1782 /* 1783 * Determine if named nvpair exists in nvlist (use embedded separator of '.' 1784 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed 1785 * description. 1786 */ 1787 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl, 1788 const char *name, nvpair_t **ret, int *ip, char **ep) 1789 { 1790 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep)); 1791 } 1792 1793 boolean_t 1794 nvlist_exists(nvlist_t *nvl, const char *name) 1795 { 1796 nvpriv_t *priv; 1797 nvpair_t *nvp; 1798 i_nvp_t *curr; 1799 1800 if (name == NULL || nvl == NULL || 1801 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1802 return (B_FALSE); 1803 1804 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1805 nvp = &curr->nvi_nvp; 1806 1807 if (strcmp(name, NVP_NAME(nvp)) == 0) 1808 return (B_TRUE); 1809 } 1810 1811 return (B_FALSE); 1812 } 1813 1814 int 1815 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val) 1816 { 1817 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1818 } 1819 1820 int 1821 nvpair_value_byte(nvpair_t *nvp, uchar_t *val) 1822 { 1823 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val)); 1824 } 1825 1826 int 1827 nvpair_value_int8(nvpair_t *nvp, int8_t *val) 1828 { 1829 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val)); 1830 } 1831 1832 int 1833 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val) 1834 { 1835 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val)); 1836 } 1837 1838 int 1839 nvpair_value_int16(nvpair_t *nvp, int16_t *val) 1840 { 1841 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val)); 1842 } 1843 1844 int 1845 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val) 1846 { 1847 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val)); 1848 } 1849 1850 int 1851 nvpair_value_int32(nvpair_t *nvp, int32_t *val) 1852 { 1853 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val)); 1854 } 1855 1856 int 1857 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val) 1858 { 1859 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val)); 1860 } 1861 1862 int 1863 nvpair_value_int64(nvpair_t *nvp, int64_t *val) 1864 { 1865 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val)); 1866 } 1867 1868 int 1869 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val) 1870 { 1871 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val)); 1872 } 1873 1874 #if !defined(_KERNEL) 1875 int 1876 nvpair_value_double(nvpair_t *nvp, double *val) 1877 { 1878 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val)); 1879 } 1880 #endif 1881 1882 int 1883 nvpair_value_string(nvpair_t *nvp, char **val) 1884 { 1885 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val)); 1886 } 1887 1888 int 1889 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val) 1890 { 1891 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val)); 1892 } 1893 1894 int 1895 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem) 1896 { 1897 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val)); 1898 } 1899 1900 int 1901 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem) 1902 { 1903 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val)); 1904 } 1905 1906 int 1907 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem) 1908 { 1909 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val)); 1910 } 1911 1912 int 1913 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem) 1914 { 1915 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val)); 1916 } 1917 1918 int 1919 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem) 1920 { 1921 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val)); 1922 } 1923 1924 int 1925 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem) 1926 { 1927 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val)); 1928 } 1929 1930 int 1931 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem) 1932 { 1933 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val)); 1934 } 1935 1936 int 1937 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem) 1938 { 1939 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val)); 1940 } 1941 1942 int 1943 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem) 1944 { 1945 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val)); 1946 } 1947 1948 int 1949 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem) 1950 { 1951 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val)); 1952 } 1953 1954 int 1955 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem) 1956 { 1957 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val)); 1958 } 1959 1960 int 1961 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem) 1962 { 1963 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val)); 1964 } 1965 1966 int 1967 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val) 1968 { 1969 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val)); 1970 } 1971 1972 /* 1973 * Add specified pair to the list. 1974 */ 1975 int 1976 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1977 { 1978 if (nvl == NULL || nvp == NULL) 1979 return (EINVAL); 1980 1981 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp), 1982 NVP_NELEM(nvp), NVP_VALUE(nvp))); 1983 } 1984 1985 /* 1986 * Merge the supplied nvlists and put the result in dst. 1987 * The merged list will contain all names specified in both lists, 1988 * the values are taken from nvl in the case of duplicates. 1989 * Return 0 on success. 1990 */ 1991 /*ARGSUSED*/ 1992 int 1993 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag) 1994 { 1995 if (nvl == NULL || dst == NULL) 1996 return (EINVAL); 1997 1998 if (dst != nvl) 1999 return (nvlist_copy_pairs(nvl, dst)); 2000 2001 return (0); 2002 } 2003 2004 /* 2005 * Encoding related routines 2006 */ 2007 #define NVS_OP_ENCODE 0 2008 #define NVS_OP_DECODE 1 2009 #define NVS_OP_GETSIZE 2 2010 2011 typedef struct nvs_ops nvs_ops_t; 2012 2013 typedef struct { 2014 int nvs_op; 2015 const nvs_ops_t *nvs_ops; 2016 void *nvs_private; 2017 nvpriv_t *nvs_priv; 2018 } nvstream_t; 2019 2020 /* 2021 * nvs operations are: 2022 * - nvs_nvlist 2023 * encoding / decoding of a nvlist header (nvlist_t) 2024 * calculates the size used for header and end detection 2025 * 2026 * - nvs_nvpair 2027 * responsible for the first part of encoding / decoding of an nvpair 2028 * calculates the decoded size of an nvpair 2029 * 2030 * - nvs_nvp_op 2031 * second part of encoding / decoding of an nvpair 2032 * 2033 * - nvs_nvp_size 2034 * calculates the encoding size of an nvpair 2035 * 2036 * - nvs_nvl_fini 2037 * encodes the end detection mark (zeros). 2038 */ 2039 struct nvs_ops { 2040 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *); 2041 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *); 2042 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *); 2043 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *); 2044 int (*nvs_nvl_fini)(nvstream_t *); 2045 }; 2046 2047 typedef struct { 2048 char nvh_encoding; /* nvs encoding method */ 2049 char nvh_endian; /* nvs endian */ 2050 char nvh_reserved1; /* reserved for future use */ 2051 char nvh_reserved2; /* reserved for future use */ 2052 } nvs_header_t; 2053 2054 static int 2055 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2056 { 2057 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2058 i_nvp_t *curr; 2059 2060 /* 2061 * Walk nvpair in list and encode each nvpair 2062 */ 2063 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 2064 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0) 2065 return (EFAULT); 2066 2067 return (nvs->nvs_ops->nvs_nvl_fini(nvs)); 2068 } 2069 2070 static int 2071 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2072 { 2073 nvpair_t *nvp; 2074 size_t nvsize; 2075 int err; 2076 2077 /* 2078 * Get decoded size of next pair in stream, alloc 2079 * memory for nvpair_t, then decode the nvpair 2080 */ 2081 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) { 2082 if (nvsize == 0) /* end of list */ 2083 break; 2084 2085 /* make sure len makes sense */ 2086 if (nvsize < NVP_SIZE_CALC(1, 0)) 2087 return (EFAULT); 2088 2089 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL) 2090 return (ENOMEM); 2091 2092 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) { 2093 nvp_buf_free(nvl, nvp); 2094 return (err); 2095 } 2096 2097 if (i_validate_nvpair(nvp) != 0) { 2098 nvpair_free(nvp); 2099 nvp_buf_free(nvl, nvp); 2100 return (EFAULT); 2101 } 2102 2103 nvp_buf_link(nvl, nvp); 2104 } 2105 return (err); 2106 } 2107 2108 static int 2109 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2110 { 2111 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2112 i_nvp_t *curr; 2113 uint64_t nvsize = *buflen; 2114 size_t size; 2115 2116 /* 2117 * Get encoded size of nvpairs in nvlist 2118 */ 2119 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 2120 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0) 2121 return (EINVAL); 2122 2123 if ((nvsize += size) > INT32_MAX) 2124 return (EINVAL); 2125 } 2126 2127 *buflen = nvsize; 2128 return (0); 2129 } 2130 2131 static int 2132 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2133 { 2134 int err; 2135 2136 if (nvl->nvl_priv == 0) 2137 return (EFAULT); 2138 2139 /* 2140 * Perform the operation, starting with header, then each nvpair 2141 */ 2142 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0) 2143 return (err); 2144 2145 switch (nvs->nvs_op) { 2146 case NVS_OP_ENCODE: 2147 err = nvs_encode_pairs(nvs, nvl); 2148 break; 2149 2150 case NVS_OP_DECODE: 2151 err = nvs_decode_pairs(nvs, nvl); 2152 break; 2153 2154 case NVS_OP_GETSIZE: 2155 err = nvs_getsize_pairs(nvs, nvl, buflen); 2156 break; 2157 2158 default: 2159 err = EINVAL; 2160 } 2161 2162 return (err); 2163 } 2164 2165 static int 2166 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded) 2167 { 2168 switch (nvs->nvs_op) { 2169 case NVS_OP_ENCODE: 2170 return (nvs_operation(nvs, embedded, NULL)); 2171 2172 case NVS_OP_DECODE: { 2173 nvpriv_t *priv; 2174 int err; 2175 2176 if (embedded->nvl_version != NV_VERSION) 2177 return (ENOTSUP); 2178 2179 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL) 2180 return (ENOMEM); 2181 2182 nvlist_init(embedded, embedded->nvl_nvflag, priv); 2183 2184 if ((err = nvs_operation(nvs, embedded, NULL)) != 0) 2185 nvlist_free(embedded); 2186 return (err); 2187 } 2188 default: 2189 break; 2190 } 2191 2192 return (EINVAL); 2193 } 2194 2195 static int 2196 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2197 { 2198 size_t nelem = NVP_NELEM(nvp); 2199 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 2200 int i; 2201 2202 switch (nvs->nvs_op) { 2203 case NVS_OP_ENCODE: 2204 for (i = 0; i < nelem; i++) 2205 if (nvs_embedded(nvs, nvlp[i]) != 0) 2206 return (EFAULT); 2207 break; 2208 2209 case NVS_OP_DECODE: { 2210 size_t len = nelem * sizeof (uint64_t); 2211 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len); 2212 2213 bzero(nvlp, len); /* don't trust packed data */ 2214 for (i = 0; i < nelem; i++) { 2215 if (nvs_embedded(nvs, embedded) != 0) { 2216 nvpair_free(nvp); 2217 return (EFAULT); 2218 } 2219 2220 nvlp[i] = embedded++; 2221 } 2222 break; 2223 } 2224 case NVS_OP_GETSIZE: { 2225 uint64_t nvsize = 0; 2226 2227 for (i = 0; i < nelem; i++) { 2228 size_t nvp_sz = 0; 2229 2230 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0) 2231 return (EINVAL); 2232 2233 if ((nvsize += nvp_sz) > INT32_MAX) 2234 return (EINVAL); 2235 } 2236 2237 *size = nvsize; 2238 break; 2239 } 2240 default: 2241 return (EINVAL); 2242 } 2243 2244 return (0); 2245 } 2246 2247 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *); 2248 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *); 2249 2250 /* 2251 * Common routine for nvlist operations: 2252 * encode, decode, getsize (encoded size). 2253 */ 2254 static int 2255 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding, 2256 int nvs_op) 2257 { 2258 int err = 0; 2259 nvstream_t nvs; 2260 int nvl_endian; 2261 #ifdef _LITTLE_ENDIAN 2262 int host_endian = 1; 2263 #else 2264 int host_endian = 0; 2265 #endif /* _LITTLE_ENDIAN */ 2266 nvs_header_t *nvh = (void *)buf; 2267 2268 if (buflen == NULL || nvl == NULL || 2269 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 2270 return (EINVAL); 2271 2272 nvs.nvs_op = nvs_op; 2273 2274 /* 2275 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and 2276 * a buffer is allocated. The first 4 bytes in the buffer are 2277 * used for encoding method and host endian. 2278 */ 2279 switch (nvs_op) { 2280 case NVS_OP_ENCODE: 2281 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2282 return (EINVAL); 2283 2284 nvh->nvh_encoding = encoding; 2285 nvh->nvh_endian = nvl_endian = host_endian; 2286 nvh->nvh_reserved1 = 0; 2287 nvh->nvh_reserved2 = 0; 2288 break; 2289 2290 case NVS_OP_DECODE: 2291 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2292 return (EINVAL); 2293 2294 /* get method of encoding from first byte */ 2295 encoding = nvh->nvh_encoding; 2296 nvl_endian = nvh->nvh_endian; 2297 break; 2298 2299 case NVS_OP_GETSIZE: 2300 nvl_endian = host_endian; 2301 2302 /* 2303 * add the size for encoding 2304 */ 2305 *buflen = sizeof (nvs_header_t); 2306 break; 2307 2308 default: 2309 return (ENOTSUP); 2310 } 2311 2312 /* 2313 * Create an nvstream with proper encoding method 2314 */ 2315 switch (encoding) { 2316 case NV_ENCODE_NATIVE: 2317 /* 2318 * check endianness, in case we are unpacking 2319 * from a file 2320 */ 2321 if (nvl_endian != host_endian) 2322 return (ENOTSUP); 2323 err = nvs_native(&nvs, nvl, buf, buflen); 2324 break; 2325 case NV_ENCODE_XDR: 2326 err = nvs_xdr(&nvs, nvl, buf, buflen); 2327 break; 2328 default: 2329 err = ENOTSUP; 2330 break; 2331 } 2332 2333 return (err); 2334 } 2335 2336 int 2337 nvlist_size(nvlist_t *nvl, size_t *size, int encoding) 2338 { 2339 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE)); 2340 } 2341 2342 /* 2343 * Pack nvlist into contiguous memory 2344 */ 2345 /*ARGSUSED1*/ 2346 int 2347 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2348 int kmflag) 2349 { 2350 #if defined(_KERNEL) && !defined(_BOOT) 2351 return (nvlist_xpack(nvl, bufp, buflen, encoding, 2352 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2353 #else 2354 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep)); 2355 #endif 2356 } 2357 2358 int 2359 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2360 nv_alloc_t *nva) 2361 { 2362 nvpriv_t nvpriv; 2363 size_t alloc_size; 2364 char *buf; 2365 int err; 2366 2367 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL) 2368 return (EINVAL); 2369 2370 if (*bufp != NULL) 2371 return (nvlist_common(nvl, *bufp, buflen, encoding, 2372 NVS_OP_ENCODE)); 2373 2374 /* 2375 * Here is a difficult situation: 2376 * 1. The nvlist has fixed allocator properties. 2377 * All other nvlist routines (like nvlist_add_*, ...) use 2378 * these properties. 2379 * 2. When using nvlist_pack() the user can specify his own 2380 * allocator properties (e.g. by using KM_NOSLEEP). 2381 * 2382 * We use the user specified properties (2). A clearer solution 2383 * will be to remove the kmflag from nvlist_pack(), but we will 2384 * not change the interface. 2385 */ 2386 nv_priv_init(&nvpriv, nva, 0); 2387 2388 if ((err = nvlist_size(nvl, &alloc_size, encoding))) 2389 return (err); 2390 2391 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL) 2392 return (ENOMEM); 2393 2394 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding, 2395 NVS_OP_ENCODE)) != 0) { 2396 nv_mem_free(&nvpriv, buf, alloc_size); 2397 } else { 2398 *buflen = alloc_size; 2399 *bufp = buf; 2400 } 2401 2402 return (err); 2403 } 2404 2405 /* 2406 * Unpack buf into an nvlist_t 2407 */ 2408 /*ARGSUSED1*/ 2409 int 2410 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag) 2411 { 2412 #if defined(_KERNEL) && !defined(_BOOT) 2413 return (nvlist_xunpack(buf, buflen, nvlp, 2414 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2415 #else 2416 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep)); 2417 #endif 2418 } 2419 2420 int 2421 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva) 2422 { 2423 nvlist_t *nvl; 2424 int err; 2425 2426 if (nvlp == NULL) 2427 return (EINVAL); 2428 2429 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0) 2430 return (err); 2431 2432 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0) 2433 nvlist_free(nvl); 2434 else 2435 *nvlp = nvl; 2436 2437 return (err); 2438 } 2439 2440 /* 2441 * Native encoding functions 2442 */ 2443 typedef struct { 2444 /* 2445 * This structure is used when decoding a packed nvpair in 2446 * the native format. n_base points to a buffer containing the 2447 * packed nvpair. n_end is a pointer to the end of the buffer. 2448 * (n_end actually points to the first byte past the end of the 2449 * buffer.) n_curr is a pointer that lies between n_base and n_end. 2450 * It points to the current data that we are decoding. 2451 * The amount of data left in the buffer is equal to n_end - n_curr. 2452 * n_flag is used to recognize a packed embedded list. 2453 */ 2454 caddr_t n_base; 2455 caddr_t n_end; 2456 caddr_t n_curr; 2457 uint_t n_flag; 2458 } nvs_native_t; 2459 2460 static int 2461 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf, 2462 size_t buflen) 2463 { 2464 switch (nvs->nvs_op) { 2465 case NVS_OP_ENCODE: 2466 case NVS_OP_DECODE: 2467 nvs->nvs_private = native; 2468 native->n_curr = native->n_base = buf; 2469 native->n_end = buf + buflen; 2470 native->n_flag = 0; 2471 return (0); 2472 2473 case NVS_OP_GETSIZE: 2474 nvs->nvs_private = native; 2475 native->n_curr = native->n_base = native->n_end = NULL; 2476 native->n_flag = 0; 2477 return (0); 2478 default: 2479 return (EINVAL); 2480 } 2481 } 2482 2483 /*ARGSUSED*/ 2484 static void 2485 nvs_native_destroy(nvstream_t *nvs) 2486 { 2487 } 2488 2489 static int 2490 native_cp(nvstream_t *nvs, void *buf, size_t size) 2491 { 2492 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2493 2494 if (native->n_curr + size > native->n_end) 2495 return (EFAULT); 2496 2497 /* 2498 * The bcopy() below eliminates alignment requirement 2499 * on the buffer (stream) and is preferred over direct access. 2500 */ 2501 switch (nvs->nvs_op) { 2502 case NVS_OP_ENCODE: 2503 bcopy(buf, native->n_curr, size); 2504 break; 2505 case NVS_OP_DECODE: 2506 bcopy(native->n_curr, buf, size); 2507 break; 2508 default: 2509 return (EINVAL); 2510 } 2511 2512 native->n_curr += size; 2513 return (0); 2514 } 2515 2516 /* 2517 * operate on nvlist_t header 2518 */ 2519 static int 2520 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2521 { 2522 nvs_native_t *native = nvs->nvs_private; 2523 2524 switch (nvs->nvs_op) { 2525 case NVS_OP_ENCODE: 2526 case NVS_OP_DECODE: 2527 if (native->n_flag) 2528 return (0); /* packed embedded list */ 2529 2530 native->n_flag = 1; 2531 2532 /* copy version and nvflag of the nvlist_t */ 2533 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 || 2534 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0) 2535 return (EFAULT); 2536 2537 return (0); 2538 2539 case NVS_OP_GETSIZE: 2540 /* 2541 * if calculate for packed embedded list 2542 * 4 for end of the embedded list 2543 * else 2544 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag 2545 * and 4 for end of the entire list 2546 */ 2547 if (native->n_flag) { 2548 *size += 4; 2549 } else { 2550 native->n_flag = 1; 2551 *size += 2 * sizeof (int32_t) + 4; 2552 } 2553 2554 return (0); 2555 2556 default: 2557 return (EINVAL); 2558 } 2559 } 2560 2561 static int 2562 nvs_native_nvl_fini(nvstream_t *nvs) 2563 { 2564 if (nvs->nvs_op == NVS_OP_ENCODE) { 2565 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2566 /* 2567 * Add 4 zero bytes at end of nvlist. They are used 2568 * for end detection by the decode routine. 2569 */ 2570 if (native->n_curr + sizeof (int) > native->n_end) 2571 return (EFAULT); 2572 2573 bzero(native->n_curr, sizeof (int)); 2574 native->n_curr += sizeof (int); 2575 } 2576 2577 return (0); 2578 } 2579 2580 static int 2581 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp) 2582 { 2583 if (nvs->nvs_op == NVS_OP_ENCODE) { 2584 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2585 nvlist_t *packed = (void *) 2586 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2587 /* 2588 * Null out the pointer that is meaningless in the packed 2589 * structure. The address may not be aligned, so we have 2590 * to use bzero. 2591 */ 2592 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2593 } 2594 2595 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp))); 2596 } 2597 2598 static int 2599 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp) 2600 { 2601 if (nvs->nvs_op == NVS_OP_ENCODE) { 2602 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2603 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp); 2604 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t); 2605 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len); 2606 int i; 2607 /* 2608 * Null out pointers that are meaningless in the packed 2609 * structure. The addresses may not be aligned, so we have 2610 * to use bzero. 2611 */ 2612 bzero(value, len); 2613 2614 for (i = 0; i < NVP_NELEM(nvp); i++, packed++) 2615 /* 2616 * Null out the pointer that is meaningless in the 2617 * packed structure. The address may not be aligned, 2618 * so we have to use bzero. 2619 */ 2620 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2621 } 2622 2623 return (nvs_embedded_nvl_array(nvs, nvp, NULL)); 2624 } 2625 2626 static void 2627 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp) 2628 { 2629 switch (nvs->nvs_op) { 2630 case NVS_OP_ENCODE: { 2631 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2632 uint64_t *strp = (void *) 2633 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2634 /* 2635 * Null out pointers that are meaningless in the packed 2636 * structure. The addresses may not be aligned, so we have 2637 * to use bzero. 2638 */ 2639 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t)); 2640 break; 2641 } 2642 case NVS_OP_DECODE: { 2643 char **strp = (void *)NVP_VALUE(nvp); 2644 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t)); 2645 int i; 2646 2647 for (i = 0; i < NVP_NELEM(nvp); i++) { 2648 strp[i] = buf; 2649 buf += strlen(buf) + 1; 2650 } 2651 break; 2652 } 2653 } 2654 } 2655 2656 static int 2657 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2658 { 2659 data_type_t type; 2660 int value_sz; 2661 int ret = 0; 2662 2663 /* 2664 * We do the initial bcopy of the data before we look at 2665 * the nvpair type, because when we're decoding, we won't 2666 * have the correct values for the pair until we do the bcopy. 2667 */ 2668 switch (nvs->nvs_op) { 2669 case NVS_OP_ENCODE: 2670 case NVS_OP_DECODE: 2671 if (native_cp(nvs, nvp, nvp->nvp_size) != 0) 2672 return (EFAULT); 2673 break; 2674 default: 2675 return (EINVAL); 2676 } 2677 2678 /* verify nvp_name_sz, check the name string length */ 2679 if (i_validate_nvpair_name(nvp) != 0) 2680 return (EFAULT); 2681 2682 type = NVP_TYPE(nvp); 2683 2684 /* 2685 * Verify type and nelem and get the value size. 2686 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2687 * is the size of the string(s) excluded. 2688 */ 2689 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0) 2690 return (EFAULT); 2691 2692 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size) 2693 return (EFAULT); 2694 2695 switch (type) { 2696 case DATA_TYPE_NVLIST: 2697 ret = nvpair_native_embedded(nvs, nvp); 2698 break; 2699 case DATA_TYPE_NVLIST_ARRAY: 2700 ret = nvpair_native_embedded_array(nvs, nvp); 2701 break; 2702 case DATA_TYPE_STRING_ARRAY: 2703 nvpair_native_string_array(nvs, nvp); 2704 break; 2705 default: 2706 break; 2707 } 2708 2709 return (ret); 2710 } 2711 2712 static int 2713 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2714 { 2715 uint64_t nvp_sz = nvp->nvp_size; 2716 2717 switch (NVP_TYPE(nvp)) { 2718 case DATA_TYPE_NVLIST: { 2719 size_t nvsize = 0; 2720 2721 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0) 2722 return (EINVAL); 2723 2724 nvp_sz += nvsize; 2725 break; 2726 } 2727 case DATA_TYPE_NVLIST_ARRAY: { 2728 size_t nvsize; 2729 2730 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0) 2731 return (EINVAL); 2732 2733 nvp_sz += nvsize; 2734 break; 2735 } 2736 default: 2737 break; 2738 } 2739 2740 if (nvp_sz > INT32_MAX) 2741 return (EINVAL); 2742 2743 *size = nvp_sz; 2744 2745 return (0); 2746 } 2747 2748 static int 2749 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2750 { 2751 switch (nvs->nvs_op) { 2752 case NVS_OP_ENCODE: 2753 return (nvs_native_nvp_op(nvs, nvp)); 2754 2755 case NVS_OP_DECODE: { 2756 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2757 int32_t decode_len; 2758 2759 /* try to read the size value from the stream */ 2760 if (native->n_curr + sizeof (int32_t) > native->n_end) 2761 return (EFAULT); 2762 bcopy(native->n_curr, &decode_len, sizeof (int32_t)); 2763 2764 /* sanity check the size value */ 2765 if (decode_len < 0 || 2766 decode_len > native->n_end - native->n_curr) 2767 return (EFAULT); 2768 2769 *size = decode_len; 2770 2771 /* 2772 * If at the end of the stream then move the cursor 2773 * forward, otherwise nvpair_native_op() will read 2774 * the entire nvpair at the same cursor position. 2775 */ 2776 if (*size == 0) 2777 native->n_curr += sizeof (int32_t); 2778 break; 2779 } 2780 2781 default: 2782 return (EINVAL); 2783 } 2784 2785 return (0); 2786 } 2787 2788 static const nvs_ops_t nvs_native_ops = { 2789 nvs_native_nvlist, 2790 nvs_native_nvpair, 2791 nvs_native_nvp_op, 2792 nvs_native_nvp_size, 2793 nvs_native_nvl_fini 2794 }; 2795 2796 static int 2797 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2798 { 2799 nvs_native_t native; 2800 int err; 2801 2802 nvs->nvs_ops = &nvs_native_ops; 2803 2804 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t), 2805 *buflen - sizeof (nvs_header_t))) != 0) 2806 return (err); 2807 2808 err = nvs_operation(nvs, nvl, buflen); 2809 2810 nvs_native_destroy(nvs); 2811 2812 return (err); 2813 } 2814 2815 /* 2816 * XDR encoding functions 2817 * 2818 * An xdr packed nvlist is encoded as: 2819 * 2820 * - encoding methode and host endian (4 bytes) 2821 * - nvl_version (4 bytes) 2822 * - nvl_nvflag (4 bytes) 2823 * 2824 * - encoded nvpairs, the format of one xdr encoded nvpair is: 2825 * - encoded size of the nvpair (4 bytes) 2826 * - decoded size of the nvpair (4 bytes) 2827 * - name string, (4 + sizeof(NV_ALIGN4(string)) 2828 * a string is coded as size (4 bytes) and data 2829 * - data type (4 bytes) 2830 * - number of elements in the nvpair (4 bytes) 2831 * - data 2832 * 2833 * - 2 zero's for end of the entire list (8 bytes) 2834 */ 2835 static int 2836 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen) 2837 { 2838 /* xdr data must be 4 byte aligned */ 2839 if ((ulong_t)buf % 4 != 0) 2840 return (EFAULT); 2841 2842 switch (nvs->nvs_op) { 2843 case NVS_OP_ENCODE: 2844 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE); 2845 nvs->nvs_private = xdr; 2846 return (0); 2847 case NVS_OP_DECODE: 2848 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE); 2849 nvs->nvs_private = xdr; 2850 return (0); 2851 case NVS_OP_GETSIZE: 2852 nvs->nvs_private = NULL; 2853 return (0); 2854 default: 2855 return (EINVAL); 2856 } 2857 } 2858 2859 static void 2860 nvs_xdr_destroy(nvstream_t *nvs) 2861 { 2862 switch (nvs->nvs_op) { 2863 case NVS_OP_ENCODE: 2864 case NVS_OP_DECODE: 2865 xdr_destroy((XDR *)nvs->nvs_private); 2866 break; 2867 default: 2868 break; 2869 } 2870 } 2871 2872 static int 2873 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2874 { 2875 switch (nvs->nvs_op) { 2876 case NVS_OP_ENCODE: 2877 case NVS_OP_DECODE: { 2878 XDR *xdr = nvs->nvs_private; 2879 2880 if (!xdr_int(xdr, &nvl->nvl_version) || 2881 !xdr_u_int(xdr, &nvl->nvl_nvflag)) 2882 return (EFAULT); 2883 break; 2884 } 2885 case NVS_OP_GETSIZE: { 2886 /* 2887 * 2 * 4 for nvl_version + nvl_nvflag 2888 * and 8 for end of the entire list 2889 */ 2890 *size += 2 * 4 + 8; 2891 break; 2892 } 2893 default: 2894 return (EINVAL); 2895 } 2896 return (0); 2897 } 2898 2899 static int 2900 nvs_xdr_nvl_fini(nvstream_t *nvs) 2901 { 2902 if (nvs->nvs_op == NVS_OP_ENCODE) { 2903 XDR *xdr = nvs->nvs_private; 2904 int zero = 0; 2905 2906 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero)) 2907 return (EFAULT); 2908 } 2909 2910 return (0); 2911 } 2912 2913 /* 2914 * The format of xdr encoded nvpair is: 2915 * encode_size, decode_size, name string, data type, nelem, data 2916 */ 2917 static int 2918 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2919 { 2920 data_type_t type; 2921 char *buf; 2922 char *buf_end = (char *)nvp + nvp->nvp_size; 2923 int value_sz; 2924 uint_t nelem, buflen; 2925 bool_t ret = FALSE; 2926 XDR *xdr = nvs->nvs_private; 2927 2928 ASSERT(xdr != NULL && nvp != NULL); 2929 2930 /* name string */ 2931 if ((buf = NVP_NAME(nvp)) >= buf_end) 2932 return (EFAULT); 2933 buflen = buf_end - buf; 2934 2935 if (!xdr_string(xdr, &buf, buflen - 1)) 2936 return (EFAULT); 2937 nvp->nvp_name_sz = strlen(buf) + 1; 2938 2939 /* type and nelem */ 2940 if (!xdr_int(xdr, (int *)&nvp->nvp_type) || 2941 !xdr_int(xdr, &nvp->nvp_value_elem)) 2942 return (EFAULT); 2943 2944 type = NVP_TYPE(nvp); 2945 nelem = nvp->nvp_value_elem; 2946 2947 /* 2948 * Verify type and nelem and get the value size. 2949 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2950 * is the size of the string(s) excluded. 2951 */ 2952 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0) 2953 return (EFAULT); 2954 2955 /* if there is no data to extract then return */ 2956 if (nelem == 0) 2957 return (0); 2958 2959 /* value */ 2960 if ((buf = NVP_VALUE(nvp)) >= buf_end) 2961 return (EFAULT); 2962 buflen = buf_end - buf; 2963 2964 if (buflen < value_sz) 2965 return (EFAULT); 2966 2967 switch (type) { 2968 case DATA_TYPE_NVLIST: 2969 if (nvs_embedded(nvs, (void *)buf) == 0) 2970 return (0); 2971 break; 2972 2973 case DATA_TYPE_NVLIST_ARRAY: 2974 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0) 2975 return (0); 2976 break; 2977 2978 case DATA_TYPE_BOOLEAN: 2979 ret = TRUE; 2980 break; 2981 2982 case DATA_TYPE_BYTE: 2983 case DATA_TYPE_INT8: 2984 case DATA_TYPE_UINT8: 2985 ret = xdr_char(xdr, buf); 2986 break; 2987 2988 case DATA_TYPE_INT16: 2989 ret = xdr_short(xdr, (void *)buf); 2990 break; 2991 2992 case DATA_TYPE_UINT16: 2993 ret = xdr_u_short(xdr, (void *)buf); 2994 break; 2995 2996 case DATA_TYPE_BOOLEAN_VALUE: 2997 case DATA_TYPE_INT32: 2998 ret = xdr_int(xdr, (void *)buf); 2999 break; 3000 3001 case DATA_TYPE_UINT32: 3002 ret = xdr_u_int(xdr, (void *)buf); 3003 break; 3004 3005 case DATA_TYPE_INT64: 3006 ret = xdr_longlong_t(xdr, (void *)buf); 3007 break; 3008 3009 case DATA_TYPE_UINT64: 3010 ret = xdr_u_longlong_t(xdr, (void *)buf); 3011 break; 3012 3013 case DATA_TYPE_HRTIME: 3014 /* 3015 * NOTE: must expose the definition of hrtime_t here 3016 */ 3017 ret = xdr_longlong_t(xdr, (void *)buf); 3018 break; 3019 #if !defined(_KERNEL) 3020 case DATA_TYPE_DOUBLE: 3021 ret = xdr_double(xdr, (void *)buf); 3022 break; 3023 #endif 3024 case DATA_TYPE_STRING: 3025 ret = xdr_string(xdr, &buf, buflen - 1); 3026 break; 3027 3028 case DATA_TYPE_BYTE_ARRAY: 3029 ret = xdr_opaque(xdr, buf, nelem); 3030 break; 3031 3032 case DATA_TYPE_INT8_ARRAY: 3033 case DATA_TYPE_UINT8_ARRAY: 3034 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t), 3035 (xdrproc_t)xdr_char); 3036 break; 3037 3038 case DATA_TYPE_INT16_ARRAY: 3039 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t), 3040 sizeof (int16_t), (xdrproc_t)xdr_short); 3041 break; 3042 3043 case DATA_TYPE_UINT16_ARRAY: 3044 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t), 3045 sizeof (uint16_t), (xdrproc_t)xdr_u_short); 3046 break; 3047 3048 case DATA_TYPE_BOOLEAN_ARRAY: 3049 case DATA_TYPE_INT32_ARRAY: 3050 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t), 3051 sizeof (int32_t), (xdrproc_t)xdr_int); 3052 break; 3053 3054 case DATA_TYPE_UINT32_ARRAY: 3055 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t), 3056 sizeof (uint32_t), (xdrproc_t)xdr_u_int); 3057 break; 3058 3059 case DATA_TYPE_INT64_ARRAY: 3060 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t), 3061 sizeof (int64_t), (xdrproc_t)xdr_longlong_t); 3062 break; 3063 3064 case DATA_TYPE_UINT64_ARRAY: 3065 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t), 3066 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t); 3067 break; 3068 3069 case DATA_TYPE_STRING_ARRAY: { 3070 size_t len = nelem * sizeof (uint64_t); 3071 char **strp = (void *)buf; 3072 int i; 3073 3074 if (nvs->nvs_op == NVS_OP_DECODE) 3075 bzero(buf, len); /* don't trust packed data */ 3076 3077 for (i = 0; i < nelem; i++) { 3078 if (buflen <= len) 3079 return (EFAULT); 3080 3081 buf += len; 3082 buflen -= len; 3083 3084 if (xdr_string(xdr, &buf, buflen - 1) != TRUE) 3085 return (EFAULT); 3086 3087 if (nvs->nvs_op == NVS_OP_DECODE) 3088 strp[i] = buf; 3089 len = strlen(buf) + 1; 3090 } 3091 ret = TRUE; 3092 break; 3093 } 3094 default: 3095 break; 3096 } 3097 3098 return (ret == TRUE ? 0 : EFAULT); 3099 } 3100 3101 static int 3102 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3103 { 3104 data_type_t type = NVP_TYPE(nvp); 3105 /* 3106 * encode_size + decode_size + name string size + data type + nelem 3107 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) 3108 */ 3109 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4; 3110 3111 switch (type) { 3112 case DATA_TYPE_BOOLEAN: 3113 break; 3114 3115 case DATA_TYPE_BOOLEAN_VALUE: 3116 case DATA_TYPE_BYTE: 3117 case DATA_TYPE_INT8: 3118 case DATA_TYPE_UINT8: 3119 case DATA_TYPE_INT16: 3120 case DATA_TYPE_UINT16: 3121 case DATA_TYPE_INT32: 3122 case DATA_TYPE_UINT32: 3123 nvp_sz += 4; /* 4 is the minimum xdr unit */ 3124 break; 3125 3126 case DATA_TYPE_INT64: 3127 case DATA_TYPE_UINT64: 3128 case DATA_TYPE_HRTIME: 3129 #if !defined(_KERNEL) 3130 case DATA_TYPE_DOUBLE: 3131 #endif 3132 nvp_sz += 8; 3133 break; 3134 3135 case DATA_TYPE_STRING: 3136 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp))); 3137 break; 3138 3139 case DATA_TYPE_BYTE_ARRAY: 3140 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp)); 3141 break; 3142 3143 case DATA_TYPE_BOOLEAN_ARRAY: 3144 case DATA_TYPE_INT8_ARRAY: 3145 case DATA_TYPE_UINT8_ARRAY: 3146 case DATA_TYPE_INT16_ARRAY: 3147 case DATA_TYPE_UINT16_ARRAY: 3148 case DATA_TYPE_INT32_ARRAY: 3149 case DATA_TYPE_UINT32_ARRAY: 3150 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp); 3151 break; 3152 3153 case DATA_TYPE_INT64_ARRAY: 3154 case DATA_TYPE_UINT64_ARRAY: 3155 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp); 3156 break; 3157 3158 case DATA_TYPE_STRING_ARRAY: { 3159 int i; 3160 char **strs = (void *)NVP_VALUE(nvp); 3161 3162 for (i = 0; i < NVP_NELEM(nvp); i++) 3163 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i])); 3164 3165 break; 3166 } 3167 3168 case DATA_TYPE_NVLIST: 3169 case DATA_TYPE_NVLIST_ARRAY: { 3170 size_t nvsize = 0; 3171 int old_nvs_op = nvs->nvs_op; 3172 int err; 3173 3174 nvs->nvs_op = NVS_OP_GETSIZE; 3175 if (type == DATA_TYPE_NVLIST) 3176 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize); 3177 else 3178 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize); 3179 nvs->nvs_op = old_nvs_op; 3180 3181 if (err != 0) 3182 return (EINVAL); 3183 3184 nvp_sz += nvsize; 3185 break; 3186 } 3187 3188 default: 3189 return (EINVAL); 3190 } 3191 3192 if (nvp_sz > INT32_MAX) 3193 return (EINVAL); 3194 3195 *size = nvp_sz; 3196 3197 return (0); 3198 } 3199 3200 3201 /* 3202 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates 3203 * the largest nvpair that could be encoded in the buffer. 3204 * 3205 * See comments above nvpair_xdr_op() for the format of xdr encoding. 3206 * The size of a xdr packed nvpair without any data is 5 words. 3207 * 3208 * Using the size of the data directly as an estimate would be ok 3209 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY 3210 * then the actual nvpair has space for an array of pointers to index 3211 * the strings. These pointers are not encoded into the packed xdr buffer. 3212 * 3213 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are 3214 * of length 0, then each string is endcoded in xdr format as a single word. 3215 * Therefore when expanded to an nvpair there will be 2.25 word used for 3216 * each string. (a int64_t allocated for pointer usage, and a single char 3217 * for the null termination.) 3218 * 3219 * This is the calculation performed by the NVS_XDR_MAX_LEN macro. 3220 */ 3221 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4)) 3222 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \ 3223 0 : ((size_t)(y) - NVS_XDR_HDR_LEN)) 3224 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \ 3225 (NVS_XDR_DATA_LEN(x) * 2) + \ 3226 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4))) 3227 3228 static int 3229 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3230 { 3231 XDR *xdr = nvs->nvs_private; 3232 int32_t encode_len, decode_len; 3233 3234 switch (nvs->nvs_op) { 3235 case NVS_OP_ENCODE: { 3236 size_t nvsize; 3237 3238 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0) 3239 return (EFAULT); 3240 3241 decode_len = nvp->nvp_size; 3242 encode_len = nvsize; 3243 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3244 return (EFAULT); 3245 3246 return (nvs_xdr_nvp_op(nvs, nvp)); 3247 } 3248 case NVS_OP_DECODE: { 3249 struct xdr_bytesrec bytesrec; 3250 3251 /* get the encode and decode size */ 3252 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3253 return (EFAULT); 3254 *size = decode_len; 3255 3256 /* are we at the end of the stream? */ 3257 if (*size == 0) 3258 return (0); 3259 3260 /* sanity check the size parameter */ 3261 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec)) 3262 return (EFAULT); 3263 3264 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail)) 3265 return (EFAULT); 3266 break; 3267 } 3268 3269 default: 3270 return (EINVAL); 3271 } 3272 return (0); 3273 } 3274 3275 static const struct nvs_ops nvs_xdr_ops = { 3276 nvs_xdr_nvlist, 3277 nvs_xdr_nvpair, 3278 nvs_xdr_nvp_op, 3279 nvs_xdr_nvp_size, 3280 nvs_xdr_nvl_fini 3281 }; 3282 3283 static int 3284 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 3285 { 3286 XDR xdr; 3287 int err; 3288 3289 nvs->nvs_ops = &nvs_xdr_ops; 3290 3291 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t), 3292 *buflen - sizeof (nvs_header_t))) != 0) 3293 return (err); 3294 3295 err = nvs_operation(nvs, nvl, buflen); 3296 3297 nvs_xdr_destroy(nvs); 3298 3299 return (err); 3300 } 3301