xref: /titanic_52/usr/src/common/crypto/md5/md5.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Cleaned-up and optimized version of MD5, based on the reference
8  * implementation provided in RFC 1321.  See RSA Copyright information
9  * below.
10  *
11  * NOTE:  All compiler data was gathered with SC4.2, and verified with SC5.x,
12  *	  as used to build Solaris 2.7.  Hopefully the compiler behavior won't
13  *	  change for the worse in subsequent Solaris builds.
14  */
15 
16 #pragma ident	"%Z%%M%	%I%	%E% SMI"
17 
18 /*
19  * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
20  */
21 
22 /*
23  * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
24  * rights reserved.
25  *
26  * License to copy and use this software is granted provided that it
27  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
28  * Algorithm" in all material mentioning or referencing this software
29  * or this function.
30  *
31  * License is also granted to make and use derivative works provided
32  * that such works are identified as "derived from the RSA Data
33  * Security, Inc. MD5 Message-Digest Algorithm" in all material
34  * mentioning or referencing the derived work.
35  *
36  * RSA Data Security, Inc. makes no representations concerning either
37  * the merchantability of this software or the suitability of this
38  * software for any particular purpose. It is provided "as is"
39  * without express or implied warranty of any kind.
40  *
41  * These notices must be retained in any copies of any part of this
42  * documentation and/or software.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/md5.h>
47 #include <sys/md5_consts.h>	/* MD5_CONST() optimization */
48 #include "md5_byteswap.h"
49 #if	!defined(_KERNEL) || defined(_BOOT)
50 #include <strings.h>
51 #endif /* !_KERNEL || _BOOT */
52 
53 #if	defined(_KERNEL) && !defined(_BOOT)
54 
55 /*
56  * In kernel module, the md5 module is created with two modlinkages:
57  * - a modlmisc that allows consumers to directly call the entry points
58  *   MD5Init, MD5Update, and MD5Final.
59  * - a modlcrypto that allows the module to register with the Kernel
60  *   Cryptographic Framework (KCF) as a software provider for the MD5
61  *   mechanisms.
62  */
63 
64 #include <sys/systm.h>
65 #include <sys/modctl.h>
66 #include <sys/cmn_err.h>
67 #include <sys/ddi.h>
68 #include <sys/crypto/common.h>
69 #include <sys/crypto/spi.h>
70 #include <sys/sysmacros.h>
71 #include <sys/strsun.h>
72 #include <sys/note.h>
73 
74 extern struct mod_ops mod_miscops;
75 extern struct mod_ops mod_cryptoops;
76 
77 /*
78  * Module linkage information for the kernel.
79  */
80 
81 static struct modlmisc modlmisc = {
82 	&mod_miscops,
83 	"MD5 Message-Digest Algorithm"
84 };
85 
86 static struct modlcrypto modlcrypto = {
87 	&mod_cryptoops,
88 	"MD5 Kernel SW Provider 1.23"
89 };
90 
91 static struct modlinkage modlinkage = {
92 	MODREV_1,
93 	(void *)&modlmisc,
94 	(void *)&modlcrypto,
95 	NULL
96 };
97 
98 /*
99  * CSPI information (entry points, provider info, etc.)
100  */
101 
102 typedef enum md5_mech_type {
103 	MD5_MECH_INFO_TYPE,		/* SUN_CKM_MD5 */
104 	MD5_HMAC_MECH_INFO_TYPE,	/* SUN_CKM_MD5_HMAC */
105 	MD5_HMAC_GEN_MECH_INFO_TYPE	/* SUN_CKM_MD5_HMAC_GENERAL */
106 } md5_mech_type_t;
107 
108 #define	MD5_DIGEST_LENGTH	16	/* MD5 digest length in bytes */
109 #define	MD5_HMAC_BLOCK_SIZE	64	/* MD5 block size */
110 #define	MD5_HMAC_MIN_KEY_LEN	8	/* MD5-HMAC min key length in bits */
111 #define	MD5_HMAC_MAX_KEY_LEN	INT_MAX	/* MD5-HMAC max key length in bits */
112 #define	MD5_HMAC_INTS_PER_BLOCK	(MD5_HMAC_BLOCK_SIZE/sizeof (uint32_t))
113 
114 /*
115  * Context for MD5 mechanism.
116  */
117 typedef struct md5_ctx {
118 	md5_mech_type_t		mc_mech_type;	/* type of context */
119 	MD5_CTX			mc_md5_ctx;	/* MD5 context */
120 } md5_ctx_t;
121 
122 /*
123  * Context for MD5-HMAC and MD5-HMAC-GENERAL mechanisms.
124  */
125 typedef struct md5_hmac_ctx {
126 	md5_mech_type_t		hc_mech_type;	/* type of context */
127 	uint32_t		hc_digest_len;	/* digest len in bytes */
128 	MD5_CTX			hc_icontext;	/* inner MD5 context */
129 	MD5_CTX			hc_ocontext;	/* outer MD5 context */
130 } md5_hmac_ctx_t;
131 
132 /*
133  * Macros to access the MD5 or MD5-HMAC contexts from a context passed
134  * by KCF to one of the entry points.
135  */
136 
137 #define	PROV_MD5_CTX(ctx)	((md5_ctx_t *)(ctx)->cc_provider_private)
138 #define	PROV_MD5_HMAC_CTX(ctx)	((md5_hmac_ctx_t *)(ctx)->cc_provider_private)
139 /* to extract the digest length passed as mechanism parameter */
140 
141 #define	PROV_MD5_GET_DIGEST_LEN(m, len) {				\
142 	if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t)))		\
143 		(len) = (uint32_t)*((ulong_t *)mechanism->cm_param);	\
144 	else {								\
145 		ulong_t tmp_ulong;					\
146 		bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t));	\
147 		(len) = (uint32_t)tmp_ulong;				\
148 	}								\
149 }
150 
151 #define	PROV_MD5_DIGEST_KEY(ctx, key, len, digest) {	\
152 	MD5Init(ctx);					\
153 	MD5Update(ctx, key, len);			\
154 	MD5Final(digest, ctx);				\
155 }
156 
157 /*
158  * Mechanism info structure passed to KCF during registration.
159  */
160 static crypto_mech_info_t md5_mech_info_tab[] = {
161 	/* MD5 */
162 	{SUN_CKM_MD5, MD5_MECH_INFO_TYPE,
163 	    CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
164 	    0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
165 	/* MD5-HMAC */
166 	{SUN_CKM_MD5_HMAC, MD5_HMAC_MECH_INFO_TYPE,
167 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
168 	    MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN,
169 	    CRYPTO_KEYSIZE_UNIT_IN_BITS},
170 	/* MD5-HMAC GENERAL */
171 	{SUN_CKM_MD5_HMAC_GENERAL, MD5_HMAC_GEN_MECH_INFO_TYPE,
172 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
173 	    MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN,
174 	    CRYPTO_KEYSIZE_UNIT_IN_BITS}
175 };
176 
177 static void md5_provider_status(crypto_provider_handle_t, uint_t *);
178 
179 static crypto_control_ops_t md5_control_ops = {
180 	md5_provider_status
181 };
182 
183 static int md5_digest_init(crypto_ctx_t *, crypto_mechanism_t *,
184     crypto_req_handle_t);
185 static int md5_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
186     crypto_req_handle_t);
187 static int md5_digest_update(crypto_ctx_t *, crypto_data_t *,
188     crypto_req_handle_t);
189 static int md5_digest_final(crypto_ctx_t *, crypto_data_t *,
190     crypto_req_handle_t);
191 static int md5_digest_atomic(crypto_provider_handle_t, crypto_session_id_t,
192     crypto_mechanism_t *, crypto_data_t *, crypto_data_t *,
193     crypto_req_handle_t);
194 
195 static crypto_digest_ops_t md5_digest_ops = {
196 	md5_digest_init,
197 	md5_digest,
198 	md5_digest_update,
199 	NULL,
200 	md5_digest_final,
201 	md5_digest_atomic
202 };
203 
204 static int md5_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *,
205     crypto_spi_ctx_template_t, crypto_req_handle_t);
206 static int md5_mac_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
207 static int md5_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
208 static int md5_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
209     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
210     crypto_spi_ctx_template_t, crypto_req_handle_t);
211 static int md5_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
212     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
213     crypto_spi_ctx_template_t, crypto_req_handle_t);
214 
215 static crypto_mac_ops_t md5_mac_ops = {
216 	md5_mac_init,
217 	NULL,
218 	md5_mac_update,
219 	md5_mac_final,
220 	md5_mac_atomic,
221 	md5_mac_verify_atomic
222 };
223 
224 static int md5_create_ctx_template(crypto_provider_handle_t,
225     crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
226     size_t *, crypto_req_handle_t);
227 static int md5_free_context(crypto_ctx_t *);
228 
229 static crypto_ctx_ops_t md5_ctx_ops = {
230 	md5_create_ctx_template,
231 	md5_free_context
232 };
233 
234 static crypto_ops_t md5_crypto_ops = {
235 	&md5_control_ops,
236 	&md5_digest_ops,
237 	NULL,
238 	&md5_mac_ops,
239 	NULL,
240 	NULL,
241 	NULL,
242 	NULL,
243 	NULL,
244 	NULL,
245 	NULL,
246 	NULL,
247 	NULL,
248 	&md5_ctx_ops
249 };
250 
251 static crypto_provider_info_t md5_prov_info = {
252 	CRYPTO_SPI_VERSION_1,
253 	"MD5 Software Provider",
254 	CRYPTO_SW_PROVIDER,
255 	{&modlinkage},
256 	NULL,
257 	&md5_crypto_ops,
258 	sizeof (md5_mech_info_tab)/sizeof (crypto_mech_info_t),
259 	md5_mech_info_tab
260 };
261 
262 static crypto_kcf_provider_handle_t md5_prov_handle = NULL;
263 
264 int
265 _init(void)
266 {
267 	int ret;
268 
269 	if ((ret = mod_install(&modlinkage)) != 0)
270 		return (ret);
271 
272 	/*
273 	 * Register with KCF. If the registration fails, log an
274 	 * error but do not uninstall the module, since the functionality
275 	 * provided by misc/md5 should still be available.
276 	 */
277 	if ((ret = crypto_register_provider(&md5_prov_info,
278 	    &md5_prov_handle)) != CRYPTO_SUCCESS)
279 		cmn_err(CE_WARN, "md5 _init: "
280 		    "crypto_register_provider() failed (0x%x)", ret);
281 
282 	return (0);
283 }
284 
285 int
286 _fini(void)
287 {
288 	int ret;
289 
290 	/*
291 	 * Unregister from KCF if previous registration succeeded.
292 	 */
293 	if (md5_prov_handle != NULL) {
294 		if ((ret = crypto_unregister_provider(md5_prov_handle)) !=
295 		    CRYPTO_SUCCESS) {
296 			cmn_err(CE_WARN, "md5 _fini: "
297 			    "crypto_unregister_provider() failed (0x%x)", ret);
298 			return (EBUSY);
299 		}
300 		md5_prov_handle = NULL;
301 	}
302 
303 	return (mod_remove(&modlinkage));
304 }
305 
306 int
307 _info(struct modinfo *modinfop)
308 {
309 	return (mod_info(&modlinkage, modinfop));
310 }
311 #endif	/* _KERNEL && !_BOOT */
312 
313 static void Encode(uint8_t *, uint32_t *, size_t);
314 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *,
315     const uint8_t [64]);
316 
317 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
318 
319 /*
320  * F, G, H and I are the basic MD5 functions.
321  */
322 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
323 #define	G(b, c, d)	(((b) & (d)) | ((c) & (~d)))
324 #define	H(b, c, d)	((b) ^ (c) ^ (d))
325 #define	I(b, c, d)	((c) ^ ((b) | (~d)))
326 
327 /*
328  * ROTATE_LEFT rotates x left n bits.
329  */
330 #define	ROTATE_LEFT(x, n)	\
331 	(((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))
332 
333 /*
334  * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
335  * Rotation is separate from addition to prevent recomputation.
336  */
337 
338 #define	FF(a, b, c, d, x, s, ac) { \
339 	(a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
340 	(a) = ROTATE_LEFT((a), (s)); \
341 	(a) += (b); \
342 	}
343 
344 #define	GG(a, b, c, d, x, s, ac) { \
345 	(a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
346 	(a) = ROTATE_LEFT((a), (s)); \
347 	(a) += (b); \
348 	}
349 
350 #define	HH(a, b, c, d, x, s, ac) { \
351 	(a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
352 	(a) = ROTATE_LEFT((a), (s)); \
353 	(a) += (b); \
354 	}
355 
356 #define	II(a, b, c, d, x, s, ac) { \
357 	(a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
358 	(a) = ROTATE_LEFT((a), (s)); \
359 	(a) += (b); \
360 	}
361 
362 /*
363  * Loading 32-bit constants on a RISC is expensive since it involves both a
364  * `sethi' and an `or'.  thus, we instead have the compiler generate `ld's to
365  * load the constants from an array called `md5_consts'.  however, on intel
366  * (and other CISC processors), it is cheaper to load the constant
367  * directly.  thus, the c code in MD5Transform() uses the macro MD5_CONST()
368  * which either expands to a constant or an array reference, depending on the
369  * architecture the code is being compiled for.
370  *
371  * Right now, i386 and amd64 are the CISC exceptions.
372  * If we get another CISC ISA, we'll have to change the ifdef.
373  */
374 
375 #if defined(__i386) || defined(__amd64)
376 
377 #define	MD5_CONST(x)		(MD5_CONST_ ## x)
378 #define	MD5_CONST_e(x)		MD5_CONST(x)
379 #define	MD5_CONST_o(x)		MD5_CONST(x)
380 
381 #else
382 /*
383  * sparc/RISC optimization:
384  *
385  * while it is somewhat counter-intuitive, on sparc (and presumably other RISC
386  * machines), it is more efficient to place all the constants used in this
387  * function in an array and load the values out of the array than to manually
388  * load the constants.  this is because setting a register to a 32-bit value
389  * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
390  * value from memory only takes one `ld' (or `lduw' on v9).  while this
391  * increases memory usage, the compiler can find enough other things to do
392  * while waiting to keep the pipeline does not stall.  additionally, it is
393  * likely that many of these constants are cached so that later accesses do
394  * not even go out to the bus.
395  *
396  * this array is declared `static' to keep the compiler from having to
397  * bcopy() this array onto the stack frame of MD5Transform() each time it is
398  * called -- which is unacceptably expensive.
399  *
400  * the `const' is to ensure that callers are good citizens and do not try to
401  * munge the array.  since these routines are going to be called from inside
402  * multithreaded kernelland, this is a good safety check. -- `constants' will
403  * end up in .rodata.
404  *
405  * unfortunately, loading from an array in this manner hurts performance under
406  * intel (and presumably other CISC machines).  so, there is a macro,
407  * MD5_CONST(), used in MD5Transform(), that either expands to a reference to
408  * this array, or to the actual constant, depending on what platform this code
409  * is compiled for.
410  */
411 
412 #ifdef sun4v
413 
414 /*
415  * Going to load these consts in 8B chunks, so need to enforce 8B alignment
416  */
417 
418 /* CSTYLED */
419 #pragma align 64 (md5_consts)
420 
421 #endif /* sun4v */
422 
423 static const uint32_t md5_consts[] = {
424 	MD5_CONST_0,	MD5_CONST_1,	MD5_CONST_2,	MD5_CONST_3,
425 	MD5_CONST_4,	MD5_CONST_5,	MD5_CONST_6,	MD5_CONST_7,
426 	MD5_CONST_8,	MD5_CONST_9,	MD5_CONST_10,	MD5_CONST_11,
427 	MD5_CONST_12,	MD5_CONST_13,	MD5_CONST_14,	MD5_CONST_15,
428 	MD5_CONST_16,	MD5_CONST_17,	MD5_CONST_18,	MD5_CONST_19,
429 	MD5_CONST_20,	MD5_CONST_21,	MD5_CONST_22,	MD5_CONST_23,
430 	MD5_CONST_24,	MD5_CONST_25,	MD5_CONST_26,	MD5_CONST_27,
431 	MD5_CONST_28,	MD5_CONST_29,	MD5_CONST_30,	MD5_CONST_31,
432 	MD5_CONST_32,	MD5_CONST_33,	MD5_CONST_34,	MD5_CONST_35,
433 	MD5_CONST_36,	MD5_CONST_37,	MD5_CONST_38,	MD5_CONST_39,
434 	MD5_CONST_40,	MD5_CONST_41,	MD5_CONST_42,	MD5_CONST_43,
435 	MD5_CONST_44,	MD5_CONST_45,	MD5_CONST_46,	MD5_CONST_47,
436 	MD5_CONST_48,	MD5_CONST_49,	MD5_CONST_50,	MD5_CONST_51,
437 	MD5_CONST_52,	MD5_CONST_53,	MD5_CONST_54,	MD5_CONST_55,
438 	MD5_CONST_56,	MD5_CONST_57,	MD5_CONST_58,	MD5_CONST_59,
439 	MD5_CONST_60,	MD5_CONST_61,	MD5_CONST_62,	MD5_CONST_63
440 };
441 
442 
443 #ifdef sun4v
444 /*
445  * To reduce the number of loads, load consts in 64-bit
446  * chunks and then split.
447  *
448  * No need to mask upper 32-bits, as just interested in
449  * low 32-bits (saves an & operation and means that this
450  * optimization doesn't increases the icount.
451  */
452 #define	MD5_CONST_e(x)		(md5_consts64[x/2] >> 32)
453 #define	MD5_CONST_o(x)		(md5_consts64[x/2])
454 
455 #else
456 
457 #define	MD5_CONST_e(x)		(md5_consts[x])
458 #define	MD5_CONST_o(x)		(md5_consts[x])
459 
460 #endif /* sun4v */
461 
462 #endif
463 
464 /*
465  * MD5Init()
466  *
467  * purpose: initializes the md5 context and begins and md5 digest operation
468  *   input: MD5_CTX *	: the context to initialize.
469  *  output: void
470  */
471 
472 void
473 MD5Init(MD5_CTX *ctx)
474 {
475 	ctx->count[0] = ctx->count[1] = 0;
476 
477 	/* load magic initialization constants */
478 	ctx->state[0] = MD5_INIT_CONST_1;
479 	ctx->state[1] = MD5_INIT_CONST_2;
480 	ctx->state[2] = MD5_INIT_CONST_3;
481 	ctx->state[3] = MD5_INIT_CONST_4;
482 }
483 
484 /*
485  * MD5Update()
486  *
487  * purpose: continues an md5 digest operation, using the message block
488  *          to update the context.
489  *   input: MD5_CTX *	: the context to update
490  *          uint8_t *	: the message block
491  *          uint32_t    : the length of the message block in bytes
492  *  output: void
493  *
494  * MD5 crunches in 64-byte blocks.  All numeric constants here are related to
495  * that property of MD5.
496  */
497 
498 void
499 MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len)
500 {
501 	uint32_t		i, buf_index, buf_len;
502 #ifdef	sun4v
503 	uint32_t		old_asi;
504 #endif	/* sun4v */
505 	const unsigned char 	*input = (const unsigned char *)inpp;
506 
507 	/* compute (number of bytes computed so far) mod 64 */
508 	buf_index = (ctx->count[0] >> 3) & 0x3F;
509 
510 	/* update number of bits hashed into this MD5 computation so far */
511 	if ((ctx->count[0] += (input_len << 3)) < (input_len << 3))
512 	    ctx->count[1]++;
513 	ctx->count[1] += (input_len >> 29);
514 
515 	buf_len = 64 - buf_index;
516 
517 	/* transform as many times as possible */
518 	i = 0;
519 	if (input_len >= buf_len) {
520 
521 		/*
522 		 * general optimization:
523 		 *
524 		 * only do initial bcopy() and MD5Transform() if
525 		 * buf_index != 0.  if buf_index == 0, we're just
526 		 * wasting our time doing the bcopy() since there
527 		 * wasn't any data left over from a previous call to
528 		 * MD5Update().
529 		 */
530 
531 #ifdef sun4v
532 		/*
533 		 * For N1 use %asi register. However, costly to repeatedly set
534 		 * in MD5Transform. Therefore, set once here.
535 		 * Should probably restore the old value afterwards...
536 		 */
537 		old_asi = get_little();
538 		set_little(0x88);
539 #endif /* sun4v */
540 
541 		if (buf_index) {
542 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
543 
544 			MD5Transform(ctx->state[0], ctx->state[1],
545 			    ctx->state[2], ctx->state[3], ctx,
546 			    ctx->buf_un.buf8);
547 
548 			i = buf_len;
549 		}
550 
551 		for (; i + 63 < input_len; i += 64)
552 			MD5Transform(ctx->state[0], ctx->state[1],
553 			    ctx->state[2], ctx->state[3], ctx, &input[i]);
554 
555 
556 #ifdef sun4v
557 		/*
558 		 * Restore old %ASI value
559 		 */
560 		set_little(old_asi);
561 #endif /* sun4v */
562 
563 		/*
564 		 * general optimization:
565 		 *
566 		 * if i and input_len are the same, return now instead
567 		 * of calling bcopy(), since the bcopy() in this
568 		 * case will be an expensive nop.
569 		 */
570 
571 		if (input_len == i)
572 			return;
573 
574 		buf_index = 0;
575 	}
576 
577 	/* buffer remaining input */
578 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
579 }
580 
581 /*
582  * MD5Final()
583  *
584  * purpose: ends an md5 digest operation, finalizing the message digest and
585  *          zeroing the context.
586  *   input: uint8_t *	: a buffer to store the digest in
587  *          MD5_CTX *   : the context to finalize, save, and zero
588  *  output: void
589  */
590 
591 void
592 MD5Final(unsigned char *digest, MD5_CTX *ctx)
593 {
594 	uint8_t		bitcount_le[sizeof (ctx->count)];
595 	uint32_t	index = (ctx->count[0] >> 3) & 0x3f;
596 
597 	/* store bit count, little endian */
598 	Encode(bitcount_le, ctx->count, sizeof (bitcount_le));
599 
600 	/* pad out to 56 mod 64 */
601 	MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
602 
603 	/* append length (before padding) */
604 	MD5Update(ctx, bitcount_le, sizeof (bitcount_le));
605 
606 	/* store state in digest */
607 	Encode(digest, ctx->state, sizeof (ctx->state));
608 }
609 
610 #ifndef	_KERNEL
611 
612 void
613 md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)
614 {
615 	MD5_CTX context;
616 
617 	MD5Init(&context);
618 	MD5Update(&context, input, inlen);
619 	MD5Final(output, &context);
620 }
621 
622 #endif	/* !_KERNEL */
623 
624 /*
625  * sparc register window optimization:
626  *
627  * `a', `b', `c', and `d' are passed into MD5Transform explicitly
628  * since it increases the number of registers available to the
629  * compiler.  under this scheme, these variables can be held in
630  * %i0 - %i3, which leaves more local and out registers available.
631  */
632 
633 /*
634  * MD5Transform()
635  *
636  * purpose: md5 transformation -- updates the digest based on `block'
637  *   input: uint32_t	: bytes  1 -  4 of the digest
638  *          uint32_t	: bytes  5 -  8 of the digest
639  *          uint32_t	: bytes  9 - 12 of the digest
640  *          uint32_t	: bytes 12 - 16 of the digest
641  *          MD5_CTX *   : the context to update
642  *          uint8_t [64]: the block to use to update the digest
643  *  output: void
644  */
645 
646 static void
647 MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d,
648     MD5_CTX *ctx, const uint8_t block[64])
649 {
650 	/*
651 	 * general optimization:
652 	 *
653 	 * use individual integers instead of using an array.  this is a
654 	 * win, although the amount it wins by seems to vary quite a bit.
655 	 */
656 
657 	register uint32_t	x_0, x_1, x_2,  x_3,  x_4,  x_5,  x_6,  x_7;
658 	register uint32_t	x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15;
659 #ifdef sun4v
660 	unsigned long long 	*md5_consts64;
661 
662 	md5_consts64 = (unsigned long long *) md5_consts;
663 #endif	/* sun4v */
664 
665 	/*
666 	 * general optimization:
667 	 *
668 	 * the compiler (at least SC4.2/5.x) generates better code if
669 	 * variable use is localized.  in this case, swapping the integers in
670 	 * this order allows `x_0 'to be swapped nearest to its first use in
671 	 * FF(), and likewise for `x_1' and up.  note that the compiler
672 	 * prefers this to doing each swap right before the FF() that
673 	 * uses it.
674 	 */
675 
676 	/*
677 	 * sparc v9/v8plus optimization:
678 	 *
679 	 * if `block' is already aligned on a 4-byte boundary, use the
680 	 * optimized load_little_32() directly.  otherwise, bcopy()
681 	 * into a buffer that *is* aligned on a 4-byte boundary and
682 	 * then do the load_little_32() on that buffer.  benchmarks
683 	 * have shown that using the bcopy() is better than loading
684 	 * the bytes individually and doing the endian-swap by hand.
685 	 *
686 	 * even though it's quite tempting to assign to do:
687 	 *
688 	 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
689 	 *
690 	 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
691 	 * SC4.2/5.x) *does not* like that, so please resist the urge.
692 	 */
693 
694 #ifdef _MD5_CHECK_ALIGNMENT
695 	if ((uintptr_t)block & 0x3) {		/* not 4-byte aligned? */
696 		bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
697 
698 #ifdef sun4v
699 		x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32);
700 		x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32);
701 		x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32);
702 		x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32);
703 		x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32);
704 		x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32);
705 		x_9  = LOAD_LITTLE_32_9(ctx->buf_un.buf32);
706 		x_8  = LOAD_LITTLE_32_8(ctx->buf_un.buf32);
707 		x_7  = LOAD_LITTLE_32_7(ctx->buf_un.buf32);
708 		x_6  = LOAD_LITTLE_32_6(ctx->buf_un.buf32);
709 		x_5  = LOAD_LITTLE_32_5(ctx->buf_un.buf32);
710 		x_4  = LOAD_LITTLE_32_4(ctx->buf_un.buf32);
711 		x_3  = LOAD_LITTLE_32_3(ctx->buf_un.buf32);
712 		x_2  = LOAD_LITTLE_32_2(ctx->buf_un.buf32);
713 		x_1  = LOAD_LITTLE_32_1(ctx->buf_un.buf32);
714 		x_0  = LOAD_LITTLE_32_0(ctx->buf_un.buf32);
715 #else
716 		x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15);
717 		x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14);
718 		x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13);
719 		x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12);
720 		x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11);
721 		x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10);
722 		x_9  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  9);
723 		x_8  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  8);
724 		x_7  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  7);
725 		x_6  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  6);
726 		x_5  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  5);
727 		x_4  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  4);
728 		x_3  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  3);
729 		x_2  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  2);
730 		x_1  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  1);
731 		x_0  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  0);
732 #endif /* sun4v */
733 	} else
734 #endif
735 	{
736 
737 #ifdef sun4v
738 		x_15 = LOAD_LITTLE_32_f(block);
739 		x_14 = LOAD_LITTLE_32_e(block);
740 		x_13 = LOAD_LITTLE_32_d(block);
741 		x_12 = LOAD_LITTLE_32_c(block);
742 		x_11 = LOAD_LITTLE_32_b(block);
743 		x_10 = LOAD_LITTLE_32_a(block);
744 		x_9  = LOAD_LITTLE_32_9(block);
745 		x_8  = LOAD_LITTLE_32_8(block);
746 		x_7  = LOAD_LITTLE_32_7(block);
747 		x_6  = LOAD_LITTLE_32_6(block);
748 		x_5  = LOAD_LITTLE_32_5(block);
749 		x_4  = LOAD_LITTLE_32_4(block);
750 		x_3  = LOAD_LITTLE_32_3(block);
751 		x_2  = LOAD_LITTLE_32_2(block);
752 		x_1  = LOAD_LITTLE_32_1(block);
753 		x_0  = LOAD_LITTLE_32_0(block);
754 #else
755 		x_15 = LOAD_LITTLE_32(block + 60);
756 		x_14 = LOAD_LITTLE_32(block + 56);
757 		x_13 = LOAD_LITTLE_32(block + 52);
758 		x_12 = LOAD_LITTLE_32(block + 48);
759 		x_11 = LOAD_LITTLE_32(block + 44);
760 		x_10 = LOAD_LITTLE_32(block + 40);
761 		x_9  = LOAD_LITTLE_32(block + 36);
762 		x_8  = LOAD_LITTLE_32(block + 32);
763 		x_7  = LOAD_LITTLE_32(block + 28);
764 		x_6  = LOAD_LITTLE_32(block + 24);
765 		x_5  = LOAD_LITTLE_32(block + 20);
766 		x_4  = LOAD_LITTLE_32(block + 16);
767 		x_3  = LOAD_LITTLE_32(block + 12);
768 		x_2  = LOAD_LITTLE_32(block +  8);
769 		x_1  = LOAD_LITTLE_32(block +  4);
770 		x_0  = LOAD_LITTLE_32(block +  0);
771 #endif /* sun4v */
772 	}
773 
774 	/* round 1 */
775 	FF(a, b, c, d, 	x_0, MD5_SHIFT_11, MD5_CONST_e(0));  /* 1 */
776 	FF(d, a, b, c, 	x_1, MD5_SHIFT_12, MD5_CONST_o(1));  /* 2 */
777 	FF(c, d, a, b, 	x_2, MD5_SHIFT_13, MD5_CONST_e(2));  /* 3 */
778 	FF(b, c, d, a, 	x_3, MD5_SHIFT_14, MD5_CONST_o(3));  /* 4 */
779 	FF(a, b, c, d, 	x_4, MD5_SHIFT_11, MD5_CONST_e(4));  /* 5 */
780 	FF(d, a, b, c, 	x_5, MD5_SHIFT_12, MD5_CONST_o(5));  /* 6 */
781 	FF(c, d, a, b, 	x_6, MD5_SHIFT_13, MD5_CONST_e(6));  /* 7 */
782 	FF(b, c, d, a, 	x_7, MD5_SHIFT_14, MD5_CONST_o(7));  /* 8 */
783 	FF(a, b, c, d, 	x_8, MD5_SHIFT_11, MD5_CONST_e(8));  /* 9 */
784 	FF(d, a, b, c, 	x_9, MD5_SHIFT_12, MD5_CONST_o(9));  /* 10 */
785 	FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */
786 	FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */
787 	FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */
788 	FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */
789 	FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */
790 	FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */
791 
792 	/* round 2 */
793 	GG(a, b, c, d,  x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */
794 	GG(d, a, b, c,  x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */
795 	GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */
796 	GG(b, c, d, a,  x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */
797 	GG(a, b, c, d,  x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */
798 	GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */
799 	GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */
800 	GG(b, c, d, a,  x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */
801 	GG(a, b, c, d,  x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */
802 	GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */
803 	GG(c, d, a, b,  x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */
804 	GG(b, c, d, a,  x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */
805 	GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */
806 	GG(d, a, b, c,  x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */
807 	GG(c, d, a, b,  x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */
808 	GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */
809 
810 	/* round 3 */
811 	HH(a, b, c, d,  x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */
812 	HH(d, a, b, c,  x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */
813 	HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */
814 	HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */
815 	HH(a, b, c, d,  x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */
816 	HH(d, a, b, c,  x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */
817 	HH(c, d, a, b,  x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */
818 	HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */
819 	HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */
820 	HH(d, a, b, c,  x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */
821 	HH(c, d, a, b,  x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */
822 	HH(b, c, d, a,  x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */
823 	HH(a, b, c, d,  x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */
824 	HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */
825 	HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */
826 	HH(b, c, d, a,  x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */
827 
828 	/* round 4 */
829 	II(a, b, c, d,  x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */
830 	II(d, a, b, c,  x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */
831 	II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */
832 	II(b, c, d, a,  x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */
833 	II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */
834 	II(d, a, b, c,  x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */
835 	II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */
836 	II(b, c, d, a,  x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */
837 	II(a, b, c, d,  x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */
838 	II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */
839 	II(c, d, a, b,  x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */
840 	II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */
841 	II(a, b, c, d,  x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */
842 	II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */
843 	II(c, d, a, b,  x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */
844 	II(b, c, d, a,  x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */
845 
846 	ctx->state[0] += a;
847 	ctx->state[1] += b;
848 	ctx->state[2] += c;
849 	ctx->state[3] += d;
850 
851 	/*
852 	 * zeroize sensitive information -- compiler will optimize
853 	 * this out if everything is kept in registers
854 	 */
855 
856 	x_0 = x_1  = x_2  = x_3  = x_4  = x_5  = x_6  = x_7 = x_8 = 0;
857 	x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0;
858 }
859 
860 /*
861  * devpro compiler optimization:
862  *
863  * the compiler can generate better code if it knows that `input' and
864  * `output' do not point to the same source.  there is no portable
865  * way to tell the compiler this, but the devpro compiler recognizes the
866  * `_Restrict' keyword to indicate this condition.  use it if possible.
867  */
868 
869 #if defined(__RESTRICT) && !defined(__GNUC__)
870 #define	restrict	_Restrict
871 #else
872 #define	restrict	/* nothing */
873 #endif
874 
875 /*
876  * Encode()
877  *
878  * purpose: to convert a list of numbers from big endian to little endian
879  *   input: uint8_t *	: place to store the converted little endian numbers
880  *	    uint32_t *	: place to get numbers to convert from
881  *          size_t	: the length of the input in bytes
882  *  output: void
883  */
884 
885 static void
886 Encode(uint8_t *restrict output, uint32_t *restrict input, size_t input_len)
887 {
888 	size_t		i, j;
889 
890 	for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) {
891 
892 #ifdef _LITTLE_ENDIAN
893 
894 #ifdef _MD5_CHECK_ALIGNMENT
895 		if ((uintptr_t)output & 0x3)	/* Not 4-byte aligned */
896 			bcopy(input + i, output + j, 4);
897 		else *(uint32_t *)(output + j) = input[i];
898 #else
899 		*(uint32_t *)(output + j) = input[i];
900 #endif /* _MD5_CHECK_ALIGNMENT */
901 
902 #else	/* big endian -- will work on little endian, but slowly */
903 
904 		output[j] = input[i] & 0xff;
905 		output[j + 1] = (input[i] >> 8)  & 0xff;
906 		output[j + 2] = (input[i] >> 16) & 0xff;
907 		output[j + 3] = (input[i] >> 24) & 0xff;
908 #endif
909 	}
910 }
911 
912 #if	defined(_KERNEL) && !defined(_BOOT)
913 
914 /*
915  * KCF software provider control entry points.
916  */
917 /* ARGSUSED */
918 static void
919 md5_provider_status(crypto_provider_handle_t provider, uint_t *status)
920 {
921 	*status = CRYPTO_PROVIDER_READY;
922 }
923 
924 /*
925  * KCF software provider digest entry points.
926  */
927 
928 static int
929 md5_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
930     crypto_req_handle_t req)
931 {
932 	if (mechanism->cm_type != MD5_MECH_INFO_TYPE)
933 		return (CRYPTO_MECHANISM_INVALID);
934 
935 	/*
936 	 * Allocate and initialize MD5 context.
937 	 */
938 	ctx->cc_provider_private = kmem_alloc(sizeof (md5_ctx_t),
939 	    crypto_kmflag(req));
940 	if (ctx->cc_provider_private == NULL)
941 		return (CRYPTO_HOST_MEMORY);
942 
943 	PROV_MD5_CTX(ctx)->mc_mech_type = MD5_MECH_INFO_TYPE;
944 	MD5Init(&PROV_MD5_CTX(ctx)->mc_md5_ctx);
945 
946 	return (CRYPTO_SUCCESS);
947 }
948 
949 /*
950  * Helper MD5 digest update function for uio data.
951  */
952 static int
953 md5_digest_update_uio(MD5_CTX *md5_ctx, crypto_data_t *data)
954 {
955 	off_t offset = data->cd_offset;
956 	size_t length = data->cd_length;
957 	uint_t vec_idx;
958 	size_t cur_len;
959 
960 	/* we support only kernel buffer */
961 	if (data->cd_uio->uio_segflg != UIO_SYSSPACE)
962 		return (CRYPTO_ARGUMENTS_BAD);
963 
964 	/*
965 	 * Jump to the first iovec containing data to be
966 	 * digested.
967 	 */
968 	for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt &&
969 	    offset >= data->cd_uio->uio_iov[vec_idx].iov_len;
970 	    offset -= data->cd_uio->uio_iov[vec_idx++].iov_len);
971 	if (vec_idx == data->cd_uio->uio_iovcnt) {
972 		/*
973 		 * The caller specified an offset that is larger than the
974 		 * total size of the buffers it provided.
975 		 */
976 		return (CRYPTO_DATA_LEN_RANGE);
977 	}
978 
979 	/*
980 	 * Now do the digesting on the iovecs.
981 	 */
982 	while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) {
983 		cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len -
984 		    offset, length);
985 
986 		MD5Update(md5_ctx, data->cd_uio->uio_iov[vec_idx].iov_base +
987 		    offset, cur_len);
988 
989 		length -= cur_len;
990 		vec_idx++;
991 		offset = 0;
992 	}
993 
994 	if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) {
995 		/*
996 		 * The end of the specified iovec's was reached but
997 		 * the length requested could not be processed, i.e.
998 		 * The caller requested to digest more data than it provided.
999 		 */
1000 		return (CRYPTO_DATA_LEN_RANGE);
1001 	}
1002 
1003 	return (CRYPTO_SUCCESS);
1004 }
1005 
1006 /*
1007  * Helper MD5 digest final function for uio data.
1008  * digest_len is the length of the desired digest. If digest_len
1009  * is smaller than the default MD5 digest length, the caller
1010  * must pass a scratch buffer, digest_scratch, which must
1011  * be at least MD5_DIGEST_LENGTH bytes.
1012  */
1013 static int
1014 md5_digest_final_uio(MD5_CTX *md5_ctx, crypto_data_t *digest,
1015     ulong_t digest_len, uchar_t *digest_scratch)
1016 {
1017 	off_t offset = digest->cd_offset;
1018 	uint_t vec_idx;
1019 
1020 	/* we support only kernel buffer */
1021 	if (digest->cd_uio->uio_segflg != UIO_SYSSPACE)
1022 		return (CRYPTO_ARGUMENTS_BAD);
1023 
1024 	/*
1025 	 * Jump to the first iovec containing ptr to the digest to
1026 	 * be returned.
1027 	 */
1028 	for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len &&
1029 	    vec_idx < digest->cd_uio->uio_iovcnt;
1030 	    offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len);
1031 	if (vec_idx == digest->cd_uio->uio_iovcnt) {
1032 		/*
1033 		 * The caller specified an offset that is
1034 		 * larger than the total size of the buffers
1035 		 * it provided.
1036 		 */
1037 		return (CRYPTO_DATA_LEN_RANGE);
1038 	}
1039 
1040 	if (offset + digest_len <=
1041 	    digest->cd_uio->uio_iov[vec_idx].iov_len) {
1042 		/*
1043 		 * The computed MD5 digest will fit in the current
1044 		 * iovec.
1045 		 */
1046 		if (digest_len != MD5_DIGEST_LENGTH) {
1047 			/*
1048 			 * The caller requested a short digest. Digest
1049 			 * into a scratch buffer and return to
1050 			 * the user only what was requested.
1051 			 */
1052 			MD5Final(digest_scratch, md5_ctx);
1053 			bcopy(digest_scratch, (uchar_t *)digest->
1054 			    cd_uio->uio_iov[vec_idx].iov_base + offset,
1055 			    digest_len);
1056 		} else {
1057 			MD5Final((uchar_t *)digest->
1058 			    cd_uio->uio_iov[vec_idx].iov_base + offset,
1059 			    md5_ctx);
1060 		}
1061 	} else {
1062 		/*
1063 		 * The computed digest will be crossing one or more iovec's.
1064 		 * This is bad performance-wise but we need to support it.
1065 		 * Allocate a small scratch buffer on the stack and
1066 		 * copy it piece meal to the specified digest iovec's.
1067 		 */
1068 		uchar_t digest_tmp[MD5_DIGEST_LENGTH];
1069 		off_t scratch_offset = 0;
1070 		size_t length = digest_len;
1071 		size_t cur_len;
1072 
1073 		MD5Final(digest_tmp, md5_ctx);
1074 
1075 		while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) {
1076 			cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len -
1077 			    offset, length);
1078 			bcopy(digest_tmp + scratch_offset,
1079 			    digest->cd_uio->uio_iov[vec_idx].iov_base + offset,
1080 			    cur_len);
1081 
1082 			length -= cur_len;
1083 			vec_idx++;
1084 			scratch_offset += cur_len;
1085 			offset = 0;
1086 		}
1087 
1088 		if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) {
1089 			/*
1090 			 * The end of the specified iovec's was reached but
1091 			 * the length requested could not be processed, i.e.
1092 			 * The caller requested to digest more data than it
1093 			 * provided.
1094 			 */
1095 			return (CRYPTO_DATA_LEN_RANGE);
1096 		}
1097 	}
1098 
1099 	return (CRYPTO_SUCCESS);
1100 }
1101 
1102 /*
1103  * Helper MD5 digest update for mblk's.
1104  */
1105 static int
1106 md5_digest_update_mblk(MD5_CTX *md5_ctx, crypto_data_t *data)
1107 {
1108 	off_t offset = data->cd_offset;
1109 	size_t length = data->cd_length;
1110 	mblk_t *mp;
1111 	size_t cur_len;
1112 
1113 	/*
1114 	 * Jump to the first mblk_t containing data to be digested.
1115 	 */
1116 	for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp);
1117 	    offset -= MBLKL(mp), mp = mp->b_cont);
1118 	if (mp == NULL) {
1119 		/*
1120 		 * The caller specified an offset that is larger than the
1121 		 * total size of the buffers it provided.
1122 		 */
1123 		return (CRYPTO_DATA_LEN_RANGE);
1124 	}
1125 
1126 	/*
1127 	 * Now do the digesting on the mblk chain.
1128 	 */
1129 	while (mp != NULL && length > 0) {
1130 		cur_len = MIN(MBLKL(mp) - offset, length);
1131 		MD5Update(md5_ctx, mp->b_rptr + offset, cur_len);
1132 		length -= cur_len;
1133 		offset = 0;
1134 		mp = mp->b_cont;
1135 	}
1136 
1137 	if (mp == NULL && length > 0) {
1138 		/*
1139 		 * The end of the mblk was reached but the length requested
1140 		 * could not be processed, i.e. The caller requested
1141 		 * to digest more data than it provided.
1142 		 */
1143 		return (CRYPTO_DATA_LEN_RANGE);
1144 	}
1145 
1146 	return (CRYPTO_SUCCESS);
1147 }
1148 
1149 /*
1150  * Helper MD5 digest final for mblk's.
1151  * digest_len is the length of the desired digest. If digest_len
1152  * is smaller than the default MD5 digest length, the caller
1153  * must pass a scratch buffer, digest_scratch, which must
1154  * be at least MD5_DIGEST_LENGTH bytes.
1155  */
1156 static int
1157 md5_digest_final_mblk(MD5_CTX *md5_ctx, crypto_data_t *digest,
1158     ulong_t digest_len, uchar_t *digest_scratch)
1159 {
1160 	off_t offset = digest->cd_offset;
1161 	mblk_t *mp;
1162 
1163 	/*
1164 	 * Jump to the first mblk_t that will be used to store the digest.
1165 	 */
1166 	for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp);
1167 	    offset -= MBLKL(mp), mp = mp->b_cont);
1168 	if (mp == NULL) {
1169 		/*
1170 		 * The caller specified an offset that is larger than the
1171 		 * total size of the buffers it provided.
1172 		 */
1173 		return (CRYPTO_DATA_LEN_RANGE);
1174 	}
1175 
1176 	if (offset + digest_len <= MBLKL(mp)) {
1177 		/*
1178 		 * The computed MD5 digest will fit in the current mblk.
1179 		 * Do the MD5Final() in-place.
1180 		 */
1181 		if (digest_len != MD5_DIGEST_LENGTH) {
1182 			/*
1183 			 * The caller requested a short digest. Digest
1184 			 * into a scratch buffer and return to
1185 			 * the user only what was requested.
1186 			 */
1187 			MD5Final(digest_scratch, md5_ctx);
1188 			bcopy(digest_scratch, mp->b_rptr + offset, digest_len);
1189 		} else {
1190 			MD5Final(mp->b_rptr + offset, md5_ctx);
1191 		}
1192 	} else {
1193 		/*
1194 		 * The computed digest will be crossing one or more mblk's.
1195 		 * This is bad performance-wise but we need to support it.
1196 		 * Allocate a small scratch buffer on the stack and
1197 		 * copy it piece meal to the specified digest iovec's.
1198 		 */
1199 		uchar_t digest_tmp[MD5_DIGEST_LENGTH];
1200 		off_t scratch_offset = 0;
1201 		size_t length = digest_len;
1202 		size_t cur_len;
1203 
1204 		MD5Final(digest_tmp, md5_ctx);
1205 
1206 		while (mp != NULL && length > 0) {
1207 			cur_len = MIN(MBLKL(mp) - offset, length);
1208 			bcopy(digest_tmp + scratch_offset,
1209 			    mp->b_rptr + offset, cur_len);
1210 
1211 			length -= cur_len;
1212 			mp = mp->b_cont;
1213 			scratch_offset += cur_len;
1214 			offset = 0;
1215 		}
1216 
1217 		if (mp == NULL && length > 0) {
1218 			/*
1219 			 * The end of the specified mblk was reached but
1220 			 * the length requested could not be processed, i.e.
1221 			 * The caller requested to digest more data than it
1222 			 * provided.
1223 			 */
1224 			return (CRYPTO_DATA_LEN_RANGE);
1225 		}
1226 	}
1227 
1228 	return (CRYPTO_SUCCESS);
1229 }
1230 
1231 /* ARGSUSED */
1232 static int
1233 md5_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest,
1234     crypto_req_handle_t req)
1235 {
1236 	int ret = CRYPTO_SUCCESS;
1237 
1238 	ASSERT(ctx->cc_provider_private != NULL);
1239 
1240 	/*
1241 	 * We need to just return the length needed to store the output.
1242 	 * We should not destroy the context for the following cases.
1243 	 */
1244 	if ((digest->cd_length == 0) ||
1245 	    (digest->cd_length < MD5_DIGEST_LENGTH)) {
1246 		digest->cd_length = MD5_DIGEST_LENGTH;
1247 		return (CRYPTO_BUFFER_TOO_SMALL);
1248 	}
1249 
1250 	/*
1251 	 * Do the MD5 update on the specified input data.
1252 	 */
1253 	switch (data->cd_format) {
1254 	case CRYPTO_DATA_RAW:
1255 		MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1256 		    data->cd_raw.iov_base + data->cd_offset,
1257 		    data->cd_length);
1258 		break;
1259 	case CRYPTO_DATA_UIO:
1260 		ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1261 		    data);
1262 		break;
1263 	case CRYPTO_DATA_MBLK:
1264 		ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1265 		    data);
1266 		break;
1267 	default:
1268 		ret = CRYPTO_ARGUMENTS_BAD;
1269 	}
1270 
1271 	if (ret != CRYPTO_SUCCESS) {
1272 		/* the update failed, free context and bail */
1273 		kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1274 		ctx->cc_provider_private = NULL;
1275 		digest->cd_length = 0;
1276 		return (ret);
1277 	}
1278 
1279 	/*
1280 	 * Do an MD5 final, must be done separately since the digest
1281 	 * type can be different than the input data type.
1282 	 */
1283 	switch (digest->cd_format) {
1284 	case CRYPTO_DATA_RAW:
1285 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1286 		    digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx);
1287 		break;
1288 	case CRYPTO_DATA_UIO:
1289 		ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1290 		    digest, MD5_DIGEST_LENGTH, NULL);
1291 		break;
1292 	case CRYPTO_DATA_MBLK:
1293 		ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1294 		    digest, MD5_DIGEST_LENGTH, NULL);
1295 		break;
1296 	default:
1297 		ret = CRYPTO_ARGUMENTS_BAD;
1298 	}
1299 
1300 	/* all done, free context and return */
1301 
1302 	if (ret == CRYPTO_SUCCESS) {
1303 		digest->cd_length = MD5_DIGEST_LENGTH;
1304 	} else {
1305 		digest->cd_length = 0;
1306 	}
1307 
1308 	kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1309 	ctx->cc_provider_private = NULL;
1310 	return (ret);
1311 }
1312 
1313 /* ARGSUSED */
1314 static int
1315 md5_digest_update(crypto_ctx_t *ctx, crypto_data_t *data,
1316     crypto_req_handle_t req)
1317 {
1318 	int ret = CRYPTO_SUCCESS;
1319 
1320 	ASSERT(ctx->cc_provider_private != NULL);
1321 
1322 	/*
1323 	 * Do the MD5 update on the specified input data.
1324 	 */
1325 	switch (data->cd_format) {
1326 	case CRYPTO_DATA_RAW:
1327 		MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1328 		    data->cd_raw.iov_base + data->cd_offset,
1329 		    data->cd_length);
1330 		break;
1331 	case CRYPTO_DATA_UIO:
1332 		ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1333 		    data);
1334 		break;
1335 	case CRYPTO_DATA_MBLK:
1336 		ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1337 		    data);
1338 		break;
1339 	default:
1340 		ret = CRYPTO_ARGUMENTS_BAD;
1341 	}
1342 
1343 	return (ret);
1344 }
1345 
1346 /* ARGSUSED */
1347 static int
1348 md5_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest,
1349     crypto_req_handle_t req)
1350 {
1351 	int ret = CRYPTO_SUCCESS;
1352 
1353 	ASSERT(ctx->cc_provider_private != NULL);
1354 
1355 	/*
1356 	 * We need to just return the length needed to store the output.
1357 	 * We should not destroy the context for the following cases.
1358 	 */
1359 	if ((digest->cd_length == 0) ||
1360 	    (digest->cd_length < MD5_DIGEST_LENGTH)) {
1361 		digest->cd_length = MD5_DIGEST_LENGTH;
1362 		return (CRYPTO_BUFFER_TOO_SMALL);
1363 	}
1364 
1365 	/*
1366 	 * Do an MD5 final.
1367 	 */
1368 	switch (digest->cd_format) {
1369 	case CRYPTO_DATA_RAW:
1370 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1371 		    digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx);
1372 		break;
1373 	case CRYPTO_DATA_UIO:
1374 		ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1375 		    digest, MD5_DIGEST_LENGTH, NULL);
1376 		break;
1377 	case CRYPTO_DATA_MBLK:
1378 		ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1379 		    digest, MD5_DIGEST_LENGTH, NULL);
1380 		break;
1381 	default:
1382 		ret = CRYPTO_ARGUMENTS_BAD;
1383 	}
1384 
1385 	/* all done, free context and return */
1386 
1387 	if (ret == CRYPTO_SUCCESS) {
1388 		digest->cd_length = MD5_DIGEST_LENGTH;
1389 	} else {
1390 		digest->cd_length = 0;
1391 	}
1392 
1393 	kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1394 	ctx->cc_provider_private = NULL;
1395 
1396 	return (ret);
1397 }
1398 
1399 /* ARGSUSED */
1400 static int
1401 md5_digest_atomic(crypto_provider_handle_t provider,
1402     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1403     crypto_data_t *data, crypto_data_t *digest,
1404     crypto_req_handle_t req)
1405 {
1406 	int ret = CRYPTO_SUCCESS;
1407 	MD5_CTX md5_ctx;
1408 
1409 	if (mechanism->cm_type != MD5_MECH_INFO_TYPE)
1410 		return (CRYPTO_MECHANISM_INVALID);
1411 
1412 	/*
1413 	 * Do the MD5 init.
1414 	 */
1415 	MD5Init(&md5_ctx);
1416 
1417 	/*
1418 	 * Do the MD5 update on the specified input data.
1419 	 */
1420 	switch (data->cd_format) {
1421 	case CRYPTO_DATA_RAW:
1422 		MD5Update(&md5_ctx, data->cd_raw.iov_base + data->cd_offset,
1423 		    data->cd_length);
1424 		break;
1425 	case CRYPTO_DATA_UIO:
1426 		ret = md5_digest_update_uio(&md5_ctx, data);
1427 		break;
1428 	case CRYPTO_DATA_MBLK:
1429 		ret = md5_digest_update_mblk(&md5_ctx, data);
1430 		break;
1431 	default:
1432 		ret = CRYPTO_ARGUMENTS_BAD;
1433 	}
1434 
1435 	if (ret != CRYPTO_SUCCESS) {
1436 		/* the update failed, bail */
1437 		digest->cd_length = 0;
1438 		return (ret);
1439 	}
1440 
1441 	/*
1442 	 * Do an MD5 final, must be done separately since the digest
1443 	 * type can be different than the input data type.
1444 	 */
1445 	switch (digest->cd_format) {
1446 	case CRYPTO_DATA_RAW:
1447 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1448 		    digest->cd_offset, &md5_ctx);
1449 		break;
1450 	case CRYPTO_DATA_UIO:
1451 		ret = md5_digest_final_uio(&md5_ctx, digest,
1452 		    MD5_DIGEST_LENGTH, NULL);
1453 		break;
1454 	case CRYPTO_DATA_MBLK:
1455 		ret = md5_digest_final_mblk(&md5_ctx, digest,
1456 		    MD5_DIGEST_LENGTH, NULL);
1457 		break;
1458 	default:
1459 		ret = CRYPTO_ARGUMENTS_BAD;
1460 	}
1461 
1462 	if (ret == CRYPTO_SUCCESS) {
1463 		digest->cd_length = MD5_DIGEST_LENGTH;
1464 	} else {
1465 		digest->cd_length = 0;
1466 	}
1467 
1468 	return (ret);
1469 }
1470 
1471 /*
1472  * KCF software provider mac entry points.
1473  *
1474  * MD5 HMAC is: MD5(key XOR opad, MD5(key XOR ipad, text))
1475  *
1476  * Init:
1477  * The initialization routine initializes what we denote
1478  * as the inner and outer contexts by doing
1479  * - for inner context: MD5(key XOR ipad)
1480  * - for outer context: MD5(key XOR opad)
1481  *
1482  * Update:
1483  * Each subsequent MD5 HMAC update will result in an
1484  * update of the inner context with the specified data.
1485  *
1486  * Final:
1487  * The MD5 HMAC final will do a MD5 final operation on the
1488  * inner context, and the resulting digest will be used
1489  * as the data for an update on the outer context. Last
1490  * but not least, an MD5 final on the outer context will
1491  * be performed to obtain the MD5 HMAC digest to return
1492  * to the user.
1493  */
1494 
1495 /*
1496  * Initialize a MD5-HMAC context.
1497  */
1498 static void
1499 md5_mac_init_ctx(md5_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes)
1500 {
1501 	uint32_t ipad[MD5_HMAC_INTS_PER_BLOCK];
1502 	uint32_t opad[MD5_HMAC_INTS_PER_BLOCK];
1503 	uint_t i;
1504 
1505 	bzero(ipad, MD5_HMAC_BLOCK_SIZE);
1506 	bzero(opad, MD5_HMAC_BLOCK_SIZE);
1507 
1508 	bcopy(keyval, ipad, length_in_bytes);
1509 	bcopy(keyval, opad, length_in_bytes);
1510 
1511 	/* XOR key with ipad (0x36) and opad (0x5c) */
1512 	for (i = 0; i < MD5_HMAC_INTS_PER_BLOCK; i++) {
1513 		ipad[i] ^= 0x36363636;
1514 		opad[i] ^= 0x5c5c5c5c;
1515 	}
1516 
1517 	/* perform MD5 on ipad */
1518 	MD5Init(&ctx->hc_icontext);
1519 	MD5Update(&ctx->hc_icontext, ipad, MD5_HMAC_BLOCK_SIZE);
1520 
1521 	/* perform MD5 on opad */
1522 	MD5Init(&ctx->hc_ocontext);
1523 	MD5Update(&ctx->hc_ocontext, opad, MD5_HMAC_BLOCK_SIZE);
1524 }
1525 
1526 /*
1527  * Initializes a multi-part MAC operation.
1528  */
1529 static int
1530 md5_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
1531     crypto_key_t *key, crypto_spi_ctx_template_t ctx_template,
1532     crypto_req_handle_t req)
1533 {
1534 	int ret = CRYPTO_SUCCESS;
1535 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1536 
1537 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1538 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1539 		return (CRYPTO_MECHANISM_INVALID);
1540 
1541 	/* Add support for key by attributes (RFE 4706552) */
1542 	if (key->ck_format != CRYPTO_KEY_RAW)
1543 		return (CRYPTO_ARGUMENTS_BAD);
1544 
1545 	ctx->cc_provider_private = kmem_alloc(sizeof (md5_hmac_ctx_t),
1546 	    crypto_kmflag(req));
1547 	if (ctx->cc_provider_private == NULL)
1548 		return (CRYPTO_HOST_MEMORY);
1549 
1550 	if (ctx_template != NULL) {
1551 		/* reuse context template */
1552 		bcopy(ctx_template, PROV_MD5_HMAC_CTX(ctx),
1553 		    sizeof (md5_hmac_ctx_t));
1554 	} else {
1555 		/* no context template, compute context */
1556 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1557 			uchar_t digested_key[MD5_DIGEST_LENGTH];
1558 			md5_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private;
1559 
1560 			/*
1561 			 * Hash the passed-in key to get a smaller key.
1562 			 * The inner context is used since it hasn't been
1563 			 * initialized yet.
1564 			 */
1565 			PROV_MD5_DIGEST_KEY(&hmac_ctx->hc_icontext,
1566 			    key->ck_data, keylen_in_bytes, digested_key);
1567 			md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx),
1568 			    digested_key, MD5_DIGEST_LENGTH);
1569 		} else {
1570 			md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx),
1571 			    key->ck_data, keylen_in_bytes);
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * Get the mechanism parameters, if applicable.
1577 	 */
1578 	PROV_MD5_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type;
1579 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1580 		if (mechanism->cm_param == NULL ||
1581 		    mechanism->cm_param_len != sizeof (ulong_t))
1582 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1583 		PROV_MD5_GET_DIGEST_LEN(mechanism,
1584 		    PROV_MD5_HMAC_CTX(ctx)->hc_digest_len);
1585 		if (PROV_MD5_HMAC_CTX(ctx)->hc_digest_len >
1586 		    MD5_DIGEST_LENGTH)
1587 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1588 	}
1589 
1590 	if (ret != CRYPTO_SUCCESS) {
1591 		bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1592 		kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1593 		ctx->cc_provider_private = NULL;
1594 	}
1595 
1596 	return (ret);
1597 }
1598 
1599 
1600 /* ARGSUSED */
1601 static int
1602 md5_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req)
1603 {
1604 	int ret = CRYPTO_SUCCESS;
1605 
1606 	ASSERT(ctx->cc_provider_private != NULL);
1607 
1608 	/*
1609 	 * Do an MD5 update of the inner context using the specified
1610 	 * data.
1611 	 */
1612 	switch (data->cd_format) {
1613 	case CRYPTO_DATA_RAW:
1614 		MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_icontext,
1615 		    data->cd_raw.iov_base + data->cd_offset,
1616 		    data->cd_length);
1617 		break;
1618 	case CRYPTO_DATA_UIO:
1619 		ret = md5_digest_update_uio(
1620 		    &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data);
1621 		break;
1622 	case CRYPTO_DATA_MBLK:
1623 		ret = md5_digest_update_mblk(
1624 		    &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data);
1625 		break;
1626 	default:
1627 		ret = CRYPTO_ARGUMENTS_BAD;
1628 	}
1629 
1630 	return (ret);
1631 }
1632 
1633 /* ARGSUSED */
1634 static int
1635 md5_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
1636 {
1637 	int ret = CRYPTO_SUCCESS;
1638 	uchar_t digest[MD5_DIGEST_LENGTH];
1639 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1640 
1641 	ASSERT(ctx->cc_provider_private != NULL);
1642 
1643 	if (PROV_MD5_HMAC_CTX(ctx)->hc_mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE)
1644 	    digest_len = PROV_MD5_HMAC_CTX(ctx)->hc_digest_len;
1645 
1646 	/*
1647 	 * We need to just return the length needed to store the output.
1648 	 * We should not destroy the context for the following cases.
1649 	 */
1650 	if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) {
1651 		mac->cd_length = digest_len;
1652 		return (CRYPTO_BUFFER_TOO_SMALL);
1653 	}
1654 
1655 	/*
1656 	 * Do an MD5 final on the inner context.
1657 	 */
1658 	MD5Final(digest, &PROV_MD5_HMAC_CTX(ctx)->hc_icontext);
1659 
1660 	/*
1661 	 * Do an MD5 update on the outer context, feeding the inner
1662 	 * digest as data.
1663 	 */
1664 	MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, digest,
1665 	    MD5_DIGEST_LENGTH);
1666 
1667 	/*
1668 	 * Do an MD5 final on the outer context, storing the computing
1669 	 * digest in the users buffer.
1670 	 */
1671 	switch (mac->cd_format) {
1672 	case CRYPTO_DATA_RAW:
1673 		if (digest_len != MD5_DIGEST_LENGTH) {
1674 			/*
1675 			 * The caller requested a short digest. Digest
1676 			 * into a scratch buffer and return to
1677 			 * the user only what was requested.
1678 			 */
1679 			MD5Final(digest,
1680 			    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext);
1681 			bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1682 			    mac->cd_offset, digest_len);
1683 		} else {
1684 			MD5Final((unsigned char *)mac->cd_raw.iov_base +
1685 			    mac->cd_offset,
1686 			    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext);
1687 		}
1688 		break;
1689 	case CRYPTO_DATA_UIO:
1690 		ret = md5_digest_final_uio(
1691 		    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac,
1692 		    digest_len, digest);
1693 		break;
1694 	case CRYPTO_DATA_MBLK:
1695 		ret = md5_digest_final_mblk(
1696 		    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac,
1697 		    digest_len, digest);
1698 		break;
1699 	default:
1700 		ret = CRYPTO_ARGUMENTS_BAD;
1701 	}
1702 
1703 	if (ret == CRYPTO_SUCCESS) {
1704 		mac->cd_length = digest_len;
1705 	} else {
1706 		mac->cd_length = 0;
1707 	}
1708 
1709 	bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1710 	kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1711 	ctx->cc_provider_private = NULL;
1712 
1713 	return (ret);
1714 }
1715 
1716 #define	MD5_MAC_UPDATE(data, ctx, ret) {				\
1717 	switch (data->cd_format) {					\
1718 	case CRYPTO_DATA_RAW:						\
1719 		MD5Update(&(ctx).hc_icontext,				\
1720 		    data->cd_raw.iov_base + data->cd_offset,		\
1721 		    data->cd_length);					\
1722 		break;							\
1723 	case CRYPTO_DATA_UIO:						\
1724 		ret = md5_digest_update_uio(&(ctx).hc_icontext,	data);	\
1725 		break;							\
1726 	case CRYPTO_DATA_MBLK:						\
1727 		ret = md5_digest_update_mblk(&(ctx).hc_icontext,	\
1728 		    data);						\
1729 		break;							\
1730 	default:							\
1731 		ret = CRYPTO_ARGUMENTS_BAD;				\
1732 	}								\
1733 }
1734 
1735 
1736 /* ARGSUSED */
1737 static int
1738 md5_mac_atomic(crypto_provider_handle_t provider,
1739     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1740     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1741     crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1742 {
1743 	int ret = CRYPTO_SUCCESS;
1744 	uchar_t digest[MD5_DIGEST_LENGTH];
1745 	md5_hmac_ctx_t md5_hmac_ctx;
1746 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1747 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1748 
1749 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1750 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1751 		return (CRYPTO_MECHANISM_INVALID);
1752 
1753 	/* Add support for key by attributes (RFE 4706552) */
1754 	if (key->ck_format != CRYPTO_KEY_RAW)
1755 		return (CRYPTO_ARGUMENTS_BAD);
1756 
1757 	if (ctx_template != NULL) {
1758 		/* reuse context template */
1759 		bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1760 	} else {
1761 		/* no context template, compute context */
1762 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1763 			/*
1764 			 * Hash the passed-in key to get a smaller key.
1765 			 * The inner context is used since it hasn't been
1766 			 * initialized yet.
1767 			 */
1768 			PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext,
1769 			    key->ck_data, keylen_in_bytes, digest);
1770 			md5_mac_init_ctx(&md5_hmac_ctx, digest,
1771 			    MD5_DIGEST_LENGTH);
1772 		} else {
1773 			md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data,
1774 			    keylen_in_bytes);
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Get the mechanism parameters, if applicable.
1780 	 */
1781 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1782 		if (mechanism->cm_param == NULL ||
1783 		    mechanism->cm_param_len != sizeof (ulong_t)) {
1784 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1785 			goto bail;
1786 		}
1787 		PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len);
1788 		if (digest_len > MD5_DIGEST_LENGTH) {
1789 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1790 			goto bail;
1791 		}
1792 	}
1793 
1794 	/* do an MD5 update of the inner context using the specified data */
1795 	MD5_MAC_UPDATE(data, md5_hmac_ctx, ret);
1796 	if (ret != CRYPTO_SUCCESS)
1797 		/* the update failed, free context and bail */
1798 		goto bail;
1799 
1800 	/* do an MD5 final on the inner context */
1801 	MD5Final(digest, &md5_hmac_ctx.hc_icontext);
1802 
1803 	/*
1804 	 * Do an MD5 update on the outer context, feeding the inner
1805 	 * digest as data.
1806 	 */
1807 	MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH);
1808 
1809 	/*
1810 	 * Do an MD5 final on the outer context, storing the computed
1811 	 * digest in the users buffer.
1812 	 */
1813 	switch (mac->cd_format) {
1814 	case CRYPTO_DATA_RAW:
1815 		if (digest_len != MD5_DIGEST_LENGTH) {
1816 			/*
1817 			 * The caller requested a short digest. Digest
1818 			 * into a scratch buffer and return to
1819 			 * the user only what was requested.
1820 			 */
1821 			MD5Final(digest, &md5_hmac_ctx.hc_ocontext);
1822 			bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1823 			    mac->cd_offset, digest_len);
1824 		} else {
1825 			MD5Final((unsigned char *)mac->cd_raw.iov_base +
1826 			    mac->cd_offset, &md5_hmac_ctx.hc_ocontext);
1827 		}
1828 		break;
1829 	case CRYPTO_DATA_UIO:
1830 		ret = md5_digest_final_uio(&md5_hmac_ctx.hc_ocontext, mac,
1831 		    digest_len, digest);
1832 		break;
1833 	case CRYPTO_DATA_MBLK:
1834 		ret = md5_digest_final_mblk(&md5_hmac_ctx.hc_ocontext, mac,
1835 		    digest_len, digest);
1836 		break;
1837 	default:
1838 		ret = CRYPTO_ARGUMENTS_BAD;
1839 	}
1840 
1841 	if (ret == CRYPTO_SUCCESS) {
1842 		mac->cd_length = digest_len;
1843 	} else {
1844 		mac->cd_length = 0;
1845 	}
1846 	/* Extra paranoia: zeroizing the local context on the stack */
1847 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1848 
1849 	return (ret);
1850 bail:
1851 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1852 	mac->cd_length = 0;
1853 	return (ret);
1854 }
1855 
1856 /* ARGSUSED */
1857 static int
1858 md5_mac_verify_atomic(crypto_provider_handle_t provider,
1859     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1860     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1861     crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1862 {
1863 	int ret = CRYPTO_SUCCESS;
1864 	uchar_t digest[MD5_DIGEST_LENGTH];
1865 	md5_hmac_ctx_t md5_hmac_ctx;
1866 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1867 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1868 
1869 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1870 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1871 		return (CRYPTO_MECHANISM_INVALID);
1872 
1873 	/* Add support for key by attributes (RFE 4706552) */
1874 	if (key->ck_format != CRYPTO_KEY_RAW)
1875 		return (CRYPTO_ARGUMENTS_BAD);
1876 
1877 	if (ctx_template != NULL) {
1878 		/* reuse context template */
1879 		bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1880 	} else {
1881 		/* no context template, compute context */
1882 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1883 			/*
1884 			 * Hash the passed-in key to get a smaller key.
1885 			 * The inner context is used since it hasn't been
1886 			 * initialized yet.
1887 			 */
1888 			PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext,
1889 			    key->ck_data, keylen_in_bytes, digest);
1890 			md5_mac_init_ctx(&md5_hmac_ctx, digest,
1891 			    MD5_DIGEST_LENGTH);
1892 		} else {
1893 			md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data,
1894 			    keylen_in_bytes);
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * Get the mechanism parameters, if applicable.
1900 	 */
1901 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1902 		if (mechanism->cm_param == NULL ||
1903 		    mechanism->cm_param_len != sizeof (ulong_t)) {
1904 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1905 			goto bail;
1906 		}
1907 		PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len);
1908 		if (digest_len > MD5_DIGEST_LENGTH) {
1909 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1910 			goto bail;
1911 		}
1912 	}
1913 
1914 	if (mac->cd_length != digest_len) {
1915 		ret = CRYPTO_INVALID_MAC;
1916 		goto bail;
1917 	}
1918 
1919 	/* do an MD5 update of the inner context using the specified data */
1920 	MD5_MAC_UPDATE(data, md5_hmac_ctx, ret);
1921 	if (ret != CRYPTO_SUCCESS)
1922 		/* the update failed, free context and bail */
1923 		goto bail;
1924 
1925 	/* do an MD5 final on the inner context */
1926 	MD5Final(digest, &md5_hmac_ctx.hc_icontext);
1927 
1928 	/*
1929 	 * Do an MD5 update on the outer context, feeding the inner
1930 	 * digest as data.
1931 	 */
1932 	MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH);
1933 
1934 	/*
1935 	 * Do an MD5 final on the outer context, storing the computed
1936 	 * digest in the local digest buffer.
1937 	 */
1938 	MD5Final(digest, &md5_hmac_ctx.hc_ocontext);
1939 
1940 	/*
1941 	 * Compare the computed digest against the expected digest passed
1942 	 * as argument.
1943 	 */
1944 	switch (mac->cd_format) {
1945 
1946 	case CRYPTO_DATA_RAW:
1947 		if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base +
1948 		    mac->cd_offset, digest_len) != 0)
1949 			ret = CRYPTO_INVALID_MAC;
1950 		break;
1951 
1952 	case CRYPTO_DATA_UIO: {
1953 		off_t offset = mac->cd_offset;
1954 		uint_t vec_idx;
1955 		off_t scratch_offset = 0;
1956 		size_t length = digest_len;
1957 		size_t cur_len;
1958 
1959 		/* we support only kernel buffer */
1960 		if (mac->cd_uio->uio_segflg != UIO_SYSSPACE)
1961 			return (CRYPTO_ARGUMENTS_BAD);
1962 
1963 		/* jump to the first iovec containing the expected digest */
1964 		for (vec_idx = 0;
1965 		    offset >= mac->cd_uio->uio_iov[vec_idx].iov_len &&
1966 		    vec_idx < mac->cd_uio->uio_iovcnt;
1967 		    offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len);
1968 		if (vec_idx == mac->cd_uio->uio_iovcnt) {
1969 			/*
1970 			 * The caller specified an offset that is
1971 			 * larger than the total size of the buffers
1972 			 * it provided.
1973 			 */
1974 			ret = CRYPTO_DATA_LEN_RANGE;
1975 			break;
1976 		}
1977 
1978 		/* do the comparison of computed digest vs specified one */
1979 		while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) {
1980 			cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len -
1981 			    offset, length);
1982 
1983 			if (bcmp(digest + scratch_offset,
1984 			    mac->cd_uio->uio_iov[vec_idx].iov_base + offset,
1985 			    cur_len) != 0) {
1986 				ret = CRYPTO_INVALID_MAC;
1987 				break;
1988 			}
1989 
1990 			length -= cur_len;
1991 			vec_idx++;
1992 			scratch_offset += cur_len;
1993 			offset = 0;
1994 		}
1995 		break;
1996 	}
1997 
1998 	case CRYPTO_DATA_MBLK: {
1999 		off_t offset = mac->cd_offset;
2000 		mblk_t *mp;
2001 		off_t scratch_offset = 0;
2002 		size_t length = digest_len;
2003 		size_t cur_len;
2004 
2005 		/* jump to the first mblk_t containing the expected digest */
2006 		for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp);
2007 		    offset -= MBLKL(mp), mp = mp->b_cont);
2008 		if (mp == NULL) {
2009 			/*
2010 			 * The caller specified an offset that is larger than
2011 			 * the total size of the buffers it provided.
2012 			 */
2013 			ret = CRYPTO_DATA_LEN_RANGE;
2014 			break;
2015 		}
2016 
2017 		while (mp != NULL && length > 0) {
2018 			cur_len = MIN(MBLKL(mp) - offset, length);
2019 			if (bcmp(digest + scratch_offset,
2020 			    mp->b_rptr + offset, cur_len) != 0) {
2021 				ret = CRYPTO_INVALID_MAC;
2022 				break;
2023 			}
2024 
2025 			length -= cur_len;
2026 			mp = mp->b_cont;
2027 			scratch_offset += cur_len;
2028 			offset = 0;
2029 		}
2030 		break;
2031 	}
2032 
2033 	default:
2034 		ret = CRYPTO_ARGUMENTS_BAD;
2035 	}
2036 
2037 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
2038 	return (ret);
2039 bail:
2040 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
2041 	mac->cd_length = 0;
2042 	return (ret);
2043 }
2044 
2045 /*
2046  * KCF software provider context management entry points.
2047  */
2048 
2049 /* ARGSUSED */
2050 static int
2051 md5_create_ctx_template(crypto_provider_handle_t provider,
2052     crypto_mechanism_t *mechanism, crypto_key_t *key,
2053     crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size,
2054     crypto_req_handle_t req)
2055 {
2056 	md5_hmac_ctx_t *md5_hmac_ctx_tmpl;
2057 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
2058 
2059 	if ((mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE) &&
2060 	    (mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE))
2061 		return (CRYPTO_MECHANISM_INVALID);
2062 
2063 	/* Add support for key by attributes (RFE 4706552) */
2064 	if (key->ck_format != CRYPTO_KEY_RAW)
2065 		return (CRYPTO_ARGUMENTS_BAD);
2066 
2067 	/*
2068 	 * Allocate and initialize MD5 context.
2069 	 */
2070 	md5_hmac_ctx_tmpl = kmem_alloc(sizeof (md5_hmac_ctx_t),
2071 	    crypto_kmflag(req));
2072 	if (md5_hmac_ctx_tmpl == NULL)
2073 		return (CRYPTO_HOST_MEMORY);
2074 
2075 	if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
2076 		uchar_t digested_key[MD5_DIGEST_LENGTH];
2077 
2078 		/*
2079 		 * Hash the passed-in key to get a smaller key.
2080 		 * The inner context is used since it hasn't been
2081 		 * initialized yet.
2082 		 */
2083 		PROV_MD5_DIGEST_KEY(&md5_hmac_ctx_tmpl->hc_icontext,
2084 		    key->ck_data, keylen_in_bytes, digested_key);
2085 		md5_mac_init_ctx(md5_hmac_ctx_tmpl, digested_key,
2086 		    MD5_DIGEST_LENGTH);
2087 	} else {
2088 		md5_mac_init_ctx(md5_hmac_ctx_tmpl, key->ck_data,
2089 		    keylen_in_bytes);
2090 	}
2091 
2092 	md5_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type;
2093 	*ctx_template = (crypto_spi_ctx_template_t)md5_hmac_ctx_tmpl;
2094 	*ctx_template_size = sizeof (md5_hmac_ctx_t);
2095 
2096 	return (CRYPTO_SUCCESS);
2097 }
2098 
2099 static int
2100 md5_free_context(crypto_ctx_t *ctx)
2101 {
2102 	uint_t ctx_len;
2103 	md5_mech_type_t mech_type;
2104 
2105 	if (ctx->cc_provider_private == NULL)
2106 		return (CRYPTO_SUCCESS);
2107 
2108 	/*
2109 	 * We have to free either MD5 or MD5-HMAC contexts, which
2110 	 * have different lengths.
2111 	 */
2112 
2113 	mech_type = PROV_MD5_CTX(ctx)->mc_mech_type;
2114 	if (mech_type == MD5_MECH_INFO_TYPE)
2115 		ctx_len = sizeof (md5_ctx_t);
2116 	else {
2117 		ASSERT(mech_type == MD5_HMAC_MECH_INFO_TYPE ||
2118 		    mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE);
2119 		ctx_len = sizeof (md5_hmac_ctx_t);
2120 	}
2121 
2122 	bzero(ctx->cc_provider_private, ctx_len);
2123 	kmem_free(ctx->cc_provider_private, ctx_len);
2124 	ctx->cc_provider_private = NULL;
2125 
2126 	return (CRYPTO_SUCCESS);
2127 }
2128 
2129 #endif	/* _KERNEL && !_BOOT */
2130