1*f9fbec18Smcpowers /* 2*f9fbec18Smcpowers * ***** BEGIN LICENSE BLOCK ***** 3*f9fbec18Smcpowers * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4*f9fbec18Smcpowers * 5*f9fbec18Smcpowers * The contents of this file are subject to the Mozilla Public License Version 6*f9fbec18Smcpowers * 1.1 (the "License"); you may not use this file except in compliance with 7*f9fbec18Smcpowers * the License. You may obtain a copy of the License at 8*f9fbec18Smcpowers * http://www.mozilla.org/MPL/ 9*f9fbec18Smcpowers * 10*f9fbec18Smcpowers * Software distributed under the License is distributed on an "AS IS" basis, 11*f9fbec18Smcpowers * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12*f9fbec18Smcpowers * for the specific language governing rights and limitations under the 13*f9fbec18Smcpowers * License. 14*f9fbec18Smcpowers * 15*f9fbec18Smcpowers * The Original Code is the elliptic curve math library. 16*f9fbec18Smcpowers * 17*f9fbec18Smcpowers * The Initial Developer of the Original Code is 18*f9fbec18Smcpowers * Sun Microsystems, Inc. 19*f9fbec18Smcpowers * Portions created by the Initial Developer are Copyright (C) 2003 20*f9fbec18Smcpowers * the Initial Developer. All Rights Reserved. 21*f9fbec18Smcpowers * 22*f9fbec18Smcpowers * Contributor(s): 23*f9fbec18Smcpowers * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories 24*f9fbec18Smcpowers * 25*f9fbec18Smcpowers * Alternatively, the contents of this file may be used under the terms of 26*f9fbec18Smcpowers * either the GNU General Public License Version 2 or later (the "GPL"), or 27*f9fbec18Smcpowers * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 28*f9fbec18Smcpowers * in which case the provisions of the GPL or the LGPL are applicable instead 29*f9fbec18Smcpowers * of those above. If you wish to allow use of your version of this file only 30*f9fbec18Smcpowers * under the terms of either the GPL or the LGPL, and not to allow others to 31*f9fbec18Smcpowers * use your version of this file under the terms of the MPL, indicate your 32*f9fbec18Smcpowers * decision by deleting the provisions above and replace them with the notice 33*f9fbec18Smcpowers * and other provisions required by the GPL or the LGPL. If you do not delete 34*f9fbec18Smcpowers * the provisions above, a recipient may use your version of this file under 35*f9fbec18Smcpowers * the terms of any one of the MPL, the GPL or the LGPL. 36*f9fbec18Smcpowers * 37*f9fbec18Smcpowers * ***** END LICENSE BLOCK ***** */ 38*f9fbec18Smcpowers /* 39*f9fbec18Smcpowers * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 40*f9fbec18Smcpowers * Use is subject to license terms. 41*f9fbec18Smcpowers * 42*f9fbec18Smcpowers * Sun elects to use this software under the MPL license. 43*f9fbec18Smcpowers */ 44*f9fbec18Smcpowers 45*f9fbec18Smcpowers #pragma ident "%Z%%M% %I% %E% SMI" 46*f9fbec18Smcpowers 47*f9fbec18Smcpowers /* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for 48*f9fbec18Smcpowers * code implementation. */ 49*f9fbec18Smcpowers 50*f9fbec18Smcpowers #include "mpi.h" 51*f9fbec18Smcpowers #include "mplogic.h" 52*f9fbec18Smcpowers #include "mpi-priv.h" 53*f9fbec18Smcpowers #include "ecl-priv.h" 54*f9fbec18Smcpowers #include "ecp.h" 55*f9fbec18Smcpowers #ifndef _KERNEL 56*f9fbec18Smcpowers #include <stdlib.h> 57*f9fbec18Smcpowers #include <stdio.h> 58*f9fbec18Smcpowers #endif 59*f9fbec18Smcpowers 60*f9fbec18Smcpowers /* Construct a generic GFMethod for arithmetic over prime fields with 61*f9fbec18Smcpowers * irreducible irr. */ 62*f9fbec18Smcpowers GFMethod * 63*f9fbec18Smcpowers GFMethod_consGFp_mont(const mp_int *irr) 64*f9fbec18Smcpowers { 65*f9fbec18Smcpowers mp_err res = MP_OKAY; 66*f9fbec18Smcpowers int i; 67*f9fbec18Smcpowers GFMethod *meth = NULL; 68*f9fbec18Smcpowers mp_mont_modulus *mmm; 69*f9fbec18Smcpowers 70*f9fbec18Smcpowers meth = GFMethod_consGFp(irr); 71*f9fbec18Smcpowers if (meth == NULL) 72*f9fbec18Smcpowers return NULL; 73*f9fbec18Smcpowers 74*f9fbec18Smcpowers #ifdef _KERNEL 75*f9fbec18Smcpowers mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus), 76*f9fbec18Smcpowers FLAG(irr)); 77*f9fbec18Smcpowers #else 78*f9fbec18Smcpowers mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus)); 79*f9fbec18Smcpowers #endif 80*f9fbec18Smcpowers if (mmm == NULL) { 81*f9fbec18Smcpowers res = MP_MEM; 82*f9fbec18Smcpowers goto CLEANUP; 83*f9fbec18Smcpowers } 84*f9fbec18Smcpowers 85*f9fbec18Smcpowers meth->field_mul = &ec_GFp_mul_mont; 86*f9fbec18Smcpowers meth->field_sqr = &ec_GFp_sqr_mont; 87*f9fbec18Smcpowers meth->field_div = &ec_GFp_div_mont; 88*f9fbec18Smcpowers meth->field_enc = &ec_GFp_enc_mont; 89*f9fbec18Smcpowers meth->field_dec = &ec_GFp_dec_mont; 90*f9fbec18Smcpowers meth->extra1 = mmm; 91*f9fbec18Smcpowers meth->extra2 = NULL; 92*f9fbec18Smcpowers meth->extra_free = &ec_GFp_extra_free_mont; 93*f9fbec18Smcpowers 94*f9fbec18Smcpowers mmm->N = meth->irr; 95*f9fbec18Smcpowers i = mpl_significant_bits(&meth->irr); 96*f9fbec18Smcpowers i += MP_DIGIT_BIT - 1; 97*f9fbec18Smcpowers mmm->b = i - i % MP_DIGIT_BIT; 98*f9fbec18Smcpowers mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0)); 99*f9fbec18Smcpowers 100*f9fbec18Smcpowers CLEANUP: 101*f9fbec18Smcpowers if (res != MP_OKAY) { 102*f9fbec18Smcpowers GFMethod_free(meth); 103*f9fbec18Smcpowers return NULL; 104*f9fbec18Smcpowers } 105*f9fbec18Smcpowers return meth; 106*f9fbec18Smcpowers } 107*f9fbec18Smcpowers 108*f9fbec18Smcpowers /* Wrapper functions for generic prime field arithmetic. */ 109*f9fbec18Smcpowers 110*f9fbec18Smcpowers /* Field multiplication using Montgomery reduction. */ 111*f9fbec18Smcpowers mp_err 112*f9fbec18Smcpowers ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, 113*f9fbec18Smcpowers const GFMethod *meth) 114*f9fbec18Smcpowers { 115*f9fbec18Smcpowers mp_err res = MP_OKAY; 116*f9fbec18Smcpowers 117*f9fbec18Smcpowers #ifdef MP_MONT_USE_MP_MUL 118*f9fbec18Smcpowers /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont 119*f9fbec18Smcpowers * is not implemented and we have to use mp_mul and s_mp_redc directly 120*f9fbec18Smcpowers */ 121*f9fbec18Smcpowers MP_CHECKOK(mp_mul(a, b, r)); 122*f9fbec18Smcpowers MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); 123*f9fbec18Smcpowers #else 124*f9fbec18Smcpowers mp_int s; 125*f9fbec18Smcpowers 126*f9fbec18Smcpowers MP_DIGITS(&s) = 0; 127*f9fbec18Smcpowers /* s_mp_mul_mont doesn't allow source and destination to be the same */ 128*f9fbec18Smcpowers if ((a == r) || (b == r)) { 129*f9fbec18Smcpowers MP_CHECKOK(mp_init(&s, FLAG(a))); 130*f9fbec18Smcpowers MP_CHECKOK(s_mp_mul_mont 131*f9fbec18Smcpowers (a, b, &s, (mp_mont_modulus *) meth->extra1)); 132*f9fbec18Smcpowers MP_CHECKOK(mp_copy(&s, r)); 133*f9fbec18Smcpowers mp_clear(&s); 134*f9fbec18Smcpowers } else { 135*f9fbec18Smcpowers return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1); 136*f9fbec18Smcpowers } 137*f9fbec18Smcpowers #endif 138*f9fbec18Smcpowers CLEANUP: 139*f9fbec18Smcpowers return res; 140*f9fbec18Smcpowers } 141*f9fbec18Smcpowers 142*f9fbec18Smcpowers /* Field squaring using Montgomery reduction. */ 143*f9fbec18Smcpowers mp_err 144*f9fbec18Smcpowers ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth) 145*f9fbec18Smcpowers { 146*f9fbec18Smcpowers return ec_GFp_mul_mont(a, a, r, meth); 147*f9fbec18Smcpowers } 148*f9fbec18Smcpowers 149*f9fbec18Smcpowers /* Field division using Montgomery reduction. */ 150*f9fbec18Smcpowers mp_err 151*f9fbec18Smcpowers ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, 152*f9fbec18Smcpowers const GFMethod *meth) 153*f9fbec18Smcpowers { 154*f9fbec18Smcpowers mp_err res = MP_OKAY; 155*f9fbec18Smcpowers 156*f9fbec18Smcpowers /* if A=aZ represents a encoded in montgomery coordinates with Z and # 157*f9fbec18Smcpowers * and \ respectively represent multiplication and division in 158*f9fbec18Smcpowers * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv = 159*f9fbec18Smcpowers * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */ 160*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_div(a, b, r, meth)); 161*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); 162*f9fbec18Smcpowers if (a == NULL) { 163*f9fbec18Smcpowers MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); 164*f9fbec18Smcpowers } 165*f9fbec18Smcpowers CLEANUP: 166*f9fbec18Smcpowers return res; 167*f9fbec18Smcpowers } 168*f9fbec18Smcpowers 169*f9fbec18Smcpowers /* Encode a field element in Montgomery form. See s_mp_to_mont in 170*f9fbec18Smcpowers * mpi/mpmontg.c */ 171*f9fbec18Smcpowers mp_err 172*f9fbec18Smcpowers ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth) 173*f9fbec18Smcpowers { 174*f9fbec18Smcpowers mp_mont_modulus *mmm; 175*f9fbec18Smcpowers mp_err res = MP_OKAY; 176*f9fbec18Smcpowers 177*f9fbec18Smcpowers mmm = (mp_mont_modulus *) meth->extra1; 178*f9fbec18Smcpowers MP_CHECKOK(mpl_lsh(a, r, mmm->b)); 179*f9fbec18Smcpowers MP_CHECKOK(mp_mod(r, &mmm->N, r)); 180*f9fbec18Smcpowers CLEANUP: 181*f9fbec18Smcpowers return res; 182*f9fbec18Smcpowers } 183*f9fbec18Smcpowers 184*f9fbec18Smcpowers /* Decode a field element from Montgomery form. */ 185*f9fbec18Smcpowers mp_err 186*f9fbec18Smcpowers ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth) 187*f9fbec18Smcpowers { 188*f9fbec18Smcpowers mp_err res = MP_OKAY; 189*f9fbec18Smcpowers 190*f9fbec18Smcpowers if (a != r) { 191*f9fbec18Smcpowers MP_CHECKOK(mp_copy(a, r)); 192*f9fbec18Smcpowers } 193*f9fbec18Smcpowers MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); 194*f9fbec18Smcpowers CLEANUP: 195*f9fbec18Smcpowers return res; 196*f9fbec18Smcpowers } 197*f9fbec18Smcpowers 198*f9fbec18Smcpowers /* Free the memory allocated to the extra fields of Montgomery GFMethod 199*f9fbec18Smcpowers * object. */ 200*f9fbec18Smcpowers void 201*f9fbec18Smcpowers ec_GFp_extra_free_mont(GFMethod *meth) 202*f9fbec18Smcpowers { 203*f9fbec18Smcpowers if (meth->extra1 != NULL) { 204*f9fbec18Smcpowers #ifdef _KERNEL 205*f9fbec18Smcpowers kmem_free(meth->extra1, sizeof(mp_mont_modulus)); 206*f9fbec18Smcpowers #else 207*f9fbec18Smcpowers free(meth->extra1); 208*f9fbec18Smcpowers #endif 209*f9fbec18Smcpowers meth->extra1 = NULL; 210*f9fbec18Smcpowers } 211*f9fbec18Smcpowers } 212