1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_traverse.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/refcount.h> 97 #include <stdio.h> 98 #include <stdio_ext.h> 99 #include <stdlib.h> 100 #include <unistd.h> 101 #include <signal.h> 102 #include <umem.h> 103 #include <dlfcn.h> 104 #include <ctype.h> 105 #include <math.h> 106 #include <sys/fs/zfs.h> 107 108 static char cmdname[] = "ztest"; 109 static char *zopt_pool = cmdname; 110 111 static uint64_t zopt_vdevs = 5; 112 static uint64_t zopt_vdevtime; 113 static int zopt_ashift = SPA_MINBLOCKSHIFT; 114 static int zopt_mirrors = 2; 115 static int zopt_raidz = 4; 116 static int zopt_raidz_parity = 1; 117 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 118 static int zopt_datasets = 7; 119 static int zopt_threads = 23; 120 static uint64_t zopt_passtime = 60; /* 60 seconds */ 121 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 122 static int zopt_verbose = 0; 123 static int zopt_init = 1; 124 static char *zopt_dir = "/tmp"; 125 static uint64_t zopt_time = 300; /* 5 minutes */ 126 static int zopt_maxfaults; 127 128 typedef struct ztest_block_tag { 129 uint64_t bt_objset; 130 uint64_t bt_object; 131 uint64_t bt_offset; 132 uint64_t bt_txg; 133 uint64_t bt_thread; 134 uint64_t bt_seq; 135 } ztest_block_tag_t; 136 137 typedef struct ztest_args { 138 char za_pool[MAXNAMELEN]; 139 spa_t *za_spa; 140 objset_t *za_os; 141 zilog_t *za_zilog; 142 thread_t za_thread; 143 uint64_t za_instance; 144 uint64_t za_random; 145 uint64_t za_diroff; 146 uint64_t za_diroff_shared; 147 uint64_t za_zil_seq; 148 hrtime_t za_start; 149 hrtime_t za_stop; 150 hrtime_t za_kill; 151 traverse_handle_t *za_th; 152 /* 153 * Thread-local variables can go here to aid debugging. 154 */ 155 ztest_block_tag_t za_rbt; 156 ztest_block_tag_t za_wbt; 157 dmu_object_info_t za_doi; 158 dmu_buf_t *za_dbuf; 159 } ztest_args_t; 160 161 typedef void ztest_func_t(ztest_args_t *); 162 163 /* 164 * Note: these aren't static because we want dladdr() to work. 165 */ 166 ztest_func_t ztest_dmu_read_write; 167 ztest_func_t ztest_dmu_write_parallel; 168 ztest_func_t ztest_dmu_object_alloc_free; 169 ztest_func_t ztest_zap; 170 ztest_func_t ztest_zap_parallel; 171 ztest_func_t ztest_traverse; 172 ztest_func_t ztest_dsl_prop_get_set; 173 ztest_func_t ztest_dmu_objset_create_destroy; 174 ztest_func_t ztest_dmu_snapshot_create_destroy; 175 ztest_func_t ztest_spa_create_destroy; 176 ztest_func_t ztest_fault_inject; 177 ztest_func_t ztest_spa_rename; 178 ztest_func_t ztest_vdev_attach_detach; 179 ztest_func_t ztest_vdev_LUN_growth; 180 ztest_func_t ztest_vdev_add_remove; 181 ztest_func_t ztest_vdev_aux_add_remove; 182 ztest_func_t ztest_scrub; 183 184 typedef struct ztest_info { 185 ztest_func_t *zi_func; /* test function */ 186 uint64_t zi_iters; /* iterations per execution */ 187 uint64_t *zi_interval; /* execute every <interval> seconds */ 188 uint64_t zi_calls; /* per-pass count */ 189 uint64_t zi_call_time; /* per-pass time */ 190 uint64_t zi_call_total; /* cumulative total */ 191 uint64_t zi_call_target; /* target cumulative total */ 192 } ztest_info_t; 193 194 uint64_t zopt_always = 0; /* all the time */ 195 uint64_t zopt_often = 1; /* every second */ 196 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 197 uint64_t zopt_rarely = 60; /* every 60 seconds */ 198 199 ztest_info_t ztest_info[] = { 200 { ztest_dmu_read_write, 1, &zopt_always }, 201 { ztest_dmu_write_parallel, 30, &zopt_always }, 202 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 203 { ztest_zap, 30, &zopt_always }, 204 { ztest_zap_parallel, 100, &zopt_always }, 205 { ztest_traverse, 1, &zopt_often }, 206 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 207 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 208 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 209 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 210 { ztest_fault_inject, 1, &zopt_sometimes }, 211 { ztest_spa_rename, 1, &zopt_rarely }, 212 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 213 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 214 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 215 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 216 { ztest_scrub, 1, &zopt_vdevtime }, 217 }; 218 219 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 220 221 #define ZTEST_SYNC_LOCKS 16 222 223 /* 224 * Stuff we need to share writably between parent and child. 225 */ 226 typedef struct ztest_shared { 227 mutex_t zs_vdev_lock; 228 rwlock_t zs_name_lock; 229 uint64_t zs_vdev_primaries; 230 uint64_t zs_vdev_aux; 231 uint64_t zs_enospc_count; 232 hrtime_t zs_start_time; 233 hrtime_t zs_stop_time; 234 uint64_t zs_alloc; 235 uint64_t zs_space; 236 ztest_info_t zs_info[ZTEST_FUNCS]; 237 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 238 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 239 } ztest_shared_t; 240 241 static char ztest_dev_template[] = "%s/%s.%llua"; 242 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 243 static ztest_shared_t *ztest_shared; 244 245 static int ztest_random_fd; 246 static int ztest_dump_core = 1; 247 248 static boolean_t ztest_exiting; 249 250 extern uint64_t metaslab_gang_bang; 251 252 #define ZTEST_DIROBJ 1 253 #define ZTEST_MICROZAP_OBJ 2 254 #define ZTEST_FATZAP_OBJ 3 255 256 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 257 #define ZTEST_DIRSIZE 256 258 259 static void usage(boolean_t) __NORETURN; 260 261 /* 262 * These libumem hooks provide a reasonable set of defaults for the allocator's 263 * debugging facilities. 264 */ 265 const char * 266 _umem_debug_init() 267 { 268 return ("default,verbose"); /* $UMEM_DEBUG setting */ 269 } 270 271 const char * 272 _umem_logging_init(void) 273 { 274 return ("fail,contents"); /* $UMEM_LOGGING setting */ 275 } 276 277 #define FATAL_MSG_SZ 1024 278 279 char *fatal_msg; 280 281 static void 282 fatal(int do_perror, char *message, ...) 283 { 284 va_list args; 285 int save_errno = errno; 286 char buf[FATAL_MSG_SZ]; 287 288 (void) fflush(stdout); 289 290 va_start(args, message); 291 (void) sprintf(buf, "ztest: "); 292 /* LINTED */ 293 (void) vsprintf(buf + strlen(buf), message, args); 294 va_end(args); 295 if (do_perror) { 296 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 297 ": %s", strerror(save_errno)); 298 } 299 (void) fprintf(stderr, "%s\n", buf); 300 fatal_msg = buf; /* to ease debugging */ 301 if (ztest_dump_core) 302 abort(); 303 exit(3); 304 } 305 306 static int 307 str2shift(const char *buf) 308 { 309 const char *ends = "BKMGTPEZ"; 310 int i; 311 312 if (buf[0] == '\0') 313 return (0); 314 for (i = 0; i < strlen(ends); i++) { 315 if (toupper(buf[0]) == ends[i]) 316 break; 317 } 318 if (i == strlen(ends)) { 319 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 320 buf); 321 usage(B_FALSE); 322 } 323 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 324 return (10*i); 325 } 326 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 327 usage(B_FALSE); 328 /* NOTREACHED */ 329 } 330 331 static uint64_t 332 nicenumtoull(const char *buf) 333 { 334 char *end; 335 uint64_t val; 336 337 val = strtoull(buf, &end, 0); 338 if (end == buf) { 339 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 340 usage(B_FALSE); 341 } else if (end[0] == '.') { 342 double fval = strtod(buf, &end); 343 fval *= pow(2, str2shift(end)); 344 if (fval > UINT64_MAX) { 345 (void) fprintf(stderr, "ztest: value too large: %s\n", 346 buf); 347 usage(B_FALSE); 348 } 349 val = (uint64_t)fval; 350 } else { 351 int shift = str2shift(end); 352 if (shift >= 64 || (val << shift) >> shift != val) { 353 (void) fprintf(stderr, "ztest: value too large: %s\n", 354 buf); 355 usage(B_FALSE); 356 } 357 val <<= shift; 358 } 359 return (val); 360 } 361 362 static void 363 usage(boolean_t requested) 364 { 365 char nice_vdev_size[10]; 366 char nice_gang_bang[10]; 367 FILE *fp = requested ? stdout : stderr; 368 369 nicenum(zopt_vdev_size, nice_vdev_size); 370 nicenum(metaslab_gang_bang, nice_gang_bang); 371 372 (void) fprintf(fp, "Usage: %s\n" 373 "\t[-v vdevs (default: %llu)]\n" 374 "\t[-s size_of_each_vdev (default: %s)]\n" 375 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 376 "\t[-m mirror_copies (default: %d)]\n" 377 "\t[-r raidz_disks (default: %d)]\n" 378 "\t[-R raidz_parity (default: %d)]\n" 379 "\t[-d datasets (default: %d)]\n" 380 "\t[-t threads (default: %d)]\n" 381 "\t[-g gang_block_threshold (default: %s)]\n" 382 "\t[-i initialize pool i times (default: %d)]\n" 383 "\t[-k kill percentage (default: %llu%%)]\n" 384 "\t[-p pool_name (default: %s)]\n" 385 "\t[-f file directory for vdev files (default: %s)]\n" 386 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 387 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 388 "\t[-T time] total run time (default: %llu sec)\n" 389 "\t[-P passtime] time per pass (default: %llu sec)\n" 390 "\t[-h] (print help)\n" 391 "", 392 cmdname, 393 (u_longlong_t)zopt_vdevs, /* -v */ 394 nice_vdev_size, /* -s */ 395 zopt_ashift, /* -a */ 396 zopt_mirrors, /* -m */ 397 zopt_raidz, /* -r */ 398 zopt_raidz_parity, /* -R */ 399 zopt_datasets, /* -d */ 400 zopt_threads, /* -t */ 401 nice_gang_bang, /* -g */ 402 zopt_init, /* -i */ 403 (u_longlong_t)zopt_killrate, /* -k */ 404 zopt_pool, /* -p */ 405 zopt_dir, /* -f */ 406 (u_longlong_t)zopt_time, /* -T */ 407 (u_longlong_t)zopt_passtime); /* -P */ 408 exit(requested ? 0 : 1); 409 } 410 411 static uint64_t 412 ztest_random(uint64_t range) 413 { 414 uint64_t r; 415 416 if (range == 0) 417 return (0); 418 419 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 420 fatal(1, "short read from /dev/urandom"); 421 422 return (r % range); 423 } 424 425 static void 426 ztest_record_enospc(char *s) 427 { 428 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 429 ztest_shared->zs_enospc_count++; 430 } 431 432 static void 433 process_options(int argc, char **argv) 434 { 435 int opt; 436 uint64_t value; 437 438 /* By default, test gang blocks for blocks 32K and greater */ 439 metaslab_gang_bang = 32 << 10; 440 441 while ((opt = getopt(argc, argv, 442 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 443 value = 0; 444 switch (opt) { 445 case 'v': 446 case 's': 447 case 'a': 448 case 'm': 449 case 'r': 450 case 'R': 451 case 'd': 452 case 't': 453 case 'g': 454 case 'i': 455 case 'k': 456 case 'T': 457 case 'P': 458 value = nicenumtoull(optarg); 459 } 460 switch (opt) { 461 case 'v': 462 zopt_vdevs = value; 463 break; 464 case 's': 465 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 466 break; 467 case 'a': 468 zopt_ashift = value; 469 break; 470 case 'm': 471 zopt_mirrors = value; 472 break; 473 case 'r': 474 zopt_raidz = MAX(1, value); 475 break; 476 case 'R': 477 zopt_raidz_parity = MIN(MAX(value, 1), 2); 478 break; 479 case 'd': 480 zopt_datasets = MAX(1, value); 481 break; 482 case 't': 483 zopt_threads = MAX(1, value); 484 break; 485 case 'g': 486 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 487 break; 488 case 'i': 489 zopt_init = value; 490 break; 491 case 'k': 492 zopt_killrate = value; 493 break; 494 case 'p': 495 zopt_pool = strdup(optarg); 496 break; 497 case 'f': 498 zopt_dir = strdup(optarg); 499 break; 500 case 'V': 501 zopt_verbose++; 502 break; 503 case 'E': 504 zopt_init = 0; 505 break; 506 case 'T': 507 zopt_time = value; 508 break; 509 case 'P': 510 zopt_passtime = MAX(1, value); 511 break; 512 case 'h': 513 usage(B_TRUE); 514 break; 515 case '?': 516 default: 517 usage(B_FALSE); 518 break; 519 } 520 } 521 522 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 523 524 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 525 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 526 } 527 528 static uint64_t 529 ztest_get_ashift(void) 530 { 531 if (zopt_ashift == 0) 532 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 533 return (zopt_ashift); 534 } 535 536 static nvlist_t * 537 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 538 { 539 char pathbuf[MAXPATHLEN]; 540 uint64_t vdev; 541 nvlist_t *file; 542 543 if (ashift == 0) 544 ashift = ztest_get_ashift(); 545 546 if (path == NULL) { 547 path = pathbuf; 548 549 if (aux != NULL) { 550 vdev = ztest_shared->zs_vdev_aux; 551 (void) sprintf(path, ztest_aux_template, 552 zopt_dir, zopt_pool, aux, vdev); 553 } else { 554 vdev = ztest_shared->zs_vdev_primaries++; 555 (void) sprintf(path, ztest_dev_template, 556 zopt_dir, zopt_pool, vdev); 557 } 558 } 559 560 if (size != 0) { 561 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 562 if (fd == -1) 563 fatal(1, "can't open %s", path); 564 if (ftruncate(fd, size) != 0) 565 fatal(1, "can't ftruncate %s", path); 566 (void) close(fd); 567 } 568 569 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 570 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 571 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 572 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 573 574 return (file); 575 } 576 577 static nvlist_t * 578 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 579 { 580 nvlist_t *raidz, **child; 581 int c; 582 583 if (r < 2) 584 return (make_vdev_file(path, aux, size, ashift)); 585 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 586 587 for (c = 0; c < r; c++) 588 child[c] = make_vdev_file(path, aux, size, ashift); 589 590 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 591 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 592 VDEV_TYPE_RAIDZ) == 0); 593 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 594 zopt_raidz_parity) == 0); 595 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 596 child, r) == 0); 597 598 for (c = 0; c < r; c++) 599 nvlist_free(child[c]); 600 601 umem_free(child, r * sizeof (nvlist_t *)); 602 603 return (raidz); 604 } 605 606 static nvlist_t * 607 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 608 int r, int m) 609 { 610 nvlist_t *mirror, **child; 611 int c; 612 613 if (m < 1) 614 return (make_vdev_raidz(path, aux, size, ashift, r)); 615 616 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 617 618 for (c = 0; c < m; c++) 619 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 620 621 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 622 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 623 VDEV_TYPE_MIRROR) == 0); 624 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 625 child, m) == 0); 626 627 for (c = 0; c < m; c++) 628 nvlist_free(child[c]); 629 630 umem_free(child, m * sizeof (nvlist_t *)); 631 632 return (mirror); 633 } 634 635 static nvlist_t * 636 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 637 int log, int r, int m, int t) 638 { 639 nvlist_t *root, **child; 640 int c; 641 642 ASSERT(t > 0); 643 644 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 645 646 for (c = 0; c < t; c++) { 647 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 648 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 649 log) == 0); 650 } 651 652 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 653 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 654 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 655 child, t) == 0); 656 657 for (c = 0; c < t; c++) 658 nvlist_free(child[c]); 659 660 umem_free(child, t * sizeof (nvlist_t *)); 661 662 return (root); 663 } 664 665 static void 666 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 667 { 668 int bs = SPA_MINBLOCKSHIFT + 669 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 670 int ibs = DN_MIN_INDBLKSHIFT + 671 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 672 int error; 673 674 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 675 if (error) { 676 char osname[300]; 677 dmu_objset_name(os, osname); 678 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 679 osname, object, 1 << bs, ibs, error); 680 } 681 } 682 683 static uint8_t 684 ztest_random_checksum(void) 685 { 686 uint8_t checksum; 687 688 do { 689 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 690 } while (zio_checksum_table[checksum].ci_zbt); 691 692 if (checksum == ZIO_CHECKSUM_OFF) 693 checksum = ZIO_CHECKSUM_ON; 694 695 return (checksum); 696 } 697 698 static uint8_t 699 ztest_random_compress(void) 700 { 701 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 702 } 703 704 typedef struct ztest_replay { 705 objset_t *zr_os; 706 uint64_t zr_assign; 707 } ztest_replay_t; 708 709 static int 710 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 711 { 712 objset_t *os = zr->zr_os; 713 dmu_tx_t *tx; 714 int error; 715 716 if (byteswap) 717 byteswap_uint64_array(lr, sizeof (*lr)); 718 719 tx = dmu_tx_create(os); 720 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 721 error = dmu_tx_assign(tx, zr->zr_assign); 722 if (error) { 723 dmu_tx_abort(tx); 724 return (error); 725 } 726 727 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 728 DMU_OT_NONE, 0, tx); 729 ASSERT3U(error, ==, 0); 730 dmu_tx_commit(tx); 731 732 if (zopt_verbose >= 5) { 733 char osname[MAXNAMELEN]; 734 dmu_objset_name(os, osname); 735 (void) printf("replay create of %s object %llu" 736 " in txg %llu = %d\n", 737 osname, (u_longlong_t)lr->lr_doid, 738 (u_longlong_t)zr->zr_assign, error); 739 } 740 741 return (error); 742 } 743 744 static int 745 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 746 { 747 objset_t *os = zr->zr_os; 748 dmu_tx_t *tx; 749 int error; 750 751 if (byteswap) 752 byteswap_uint64_array(lr, sizeof (*lr)); 753 754 tx = dmu_tx_create(os); 755 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 756 error = dmu_tx_assign(tx, zr->zr_assign); 757 if (error) { 758 dmu_tx_abort(tx); 759 return (error); 760 } 761 762 error = dmu_object_free(os, lr->lr_doid, tx); 763 dmu_tx_commit(tx); 764 765 return (error); 766 } 767 768 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 769 NULL, /* 0 no such transaction type */ 770 ztest_replay_create, /* TX_CREATE */ 771 NULL, /* TX_MKDIR */ 772 NULL, /* TX_MKXATTR */ 773 NULL, /* TX_SYMLINK */ 774 ztest_replay_remove, /* TX_REMOVE */ 775 NULL, /* TX_RMDIR */ 776 NULL, /* TX_LINK */ 777 NULL, /* TX_RENAME */ 778 NULL, /* TX_WRITE */ 779 NULL, /* TX_TRUNCATE */ 780 NULL, /* TX_SETATTR */ 781 NULL, /* TX_ACL */ 782 }; 783 784 /* 785 * Verify that we can't destroy an active pool, create an existing pool, 786 * or create a pool with a bad vdev spec. 787 */ 788 void 789 ztest_spa_create_destroy(ztest_args_t *za) 790 { 791 int error; 792 spa_t *spa; 793 nvlist_t *nvroot; 794 795 /* 796 * Attempt to create using a bad file. 797 */ 798 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 799 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 800 nvlist_free(nvroot); 801 if (error != ENOENT) 802 fatal(0, "spa_create(bad_file) = %d", error); 803 804 /* 805 * Attempt to create using a bad mirror. 806 */ 807 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 808 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 809 nvlist_free(nvroot); 810 if (error != ENOENT) 811 fatal(0, "spa_create(bad_mirror) = %d", error); 812 813 /* 814 * Attempt to create an existing pool. It shouldn't matter 815 * what's in the nvroot; we should fail with EEXIST. 816 */ 817 (void) rw_rdlock(&ztest_shared->zs_name_lock); 818 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 819 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 820 nvlist_free(nvroot); 821 if (error != EEXIST) 822 fatal(0, "spa_create(whatever) = %d", error); 823 824 error = spa_open(za->za_pool, &spa, FTAG); 825 if (error) 826 fatal(0, "spa_open() = %d", error); 827 828 error = spa_destroy(za->za_pool); 829 if (error != EBUSY) 830 fatal(0, "spa_destroy() = %d", error); 831 832 spa_close(spa, FTAG); 833 (void) rw_unlock(&ztest_shared->zs_name_lock); 834 } 835 836 static vdev_t * 837 vdev_lookup_by_path(vdev_t *vd, const char *path) 838 { 839 vdev_t *mvd; 840 841 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 842 return (vd); 843 844 for (int c = 0; c < vd->vdev_children; c++) 845 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 846 NULL) 847 return (mvd); 848 849 return (NULL); 850 } 851 852 /* 853 * Verify that vdev_add() works as expected. 854 */ 855 void 856 ztest_vdev_add_remove(ztest_args_t *za) 857 { 858 spa_t *spa = za->za_spa; 859 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 860 nvlist_t *nvroot; 861 int error; 862 863 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 864 865 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 866 867 ztest_shared->zs_vdev_primaries = 868 spa->spa_root_vdev->vdev_children * leaves; 869 870 spa_config_exit(spa, SCL_VDEV, FTAG); 871 872 /* 873 * Make 1/4 of the devices be log devices. 874 */ 875 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 876 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 877 878 error = spa_vdev_add(spa, nvroot); 879 nvlist_free(nvroot); 880 881 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 882 883 if (error == ENOSPC) 884 ztest_record_enospc("spa_vdev_add"); 885 else if (error != 0) 886 fatal(0, "spa_vdev_add() = %d", error); 887 } 888 889 /* 890 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 891 */ 892 void 893 ztest_vdev_aux_add_remove(ztest_args_t *za) 894 { 895 spa_t *spa = za->za_spa; 896 vdev_t *rvd = spa->spa_root_vdev; 897 spa_aux_vdev_t *sav; 898 char *aux; 899 uint64_t guid = 0; 900 int error; 901 902 if (ztest_random(2) == 0) { 903 sav = &spa->spa_spares; 904 aux = ZPOOL_CONFIG_SPARES; 905 } else { 906 sav = &spa->spa_l2cache; 907 aux = ZPOOL_CONFIG_L2CACHE; 908 } 909 910 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 911 912 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 913 914 if (sav->sav_count != 0 && ztest_random(4) == 0) { 915 /* 916 * Pick a random device to remove. 917 */ 918 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 919 } else { 920 /* 921 * Find an unused device we can add. 922 */ 923 ztest_shared->zs_vdev_aux = 0; 924 for (;;) { 925 char path[MAXPATHLEN]; 926 int c; 927 (void) sprintf(path, ztest_aux_template, zopt_dir, 928 zopt_pool, aux, ztest_shared->zs_vdev_aux); 929 for (c = 0; c < sav->sav_count; c++) 930 if (strcmp(sav->sav_vdevs[c]->vdev_path, 931 path) == 0) 932 break; 933 if (c == sav->sav_count && 934 vdev_lookup_by_path(rvd, path) == NULL) 935 break; 936 ztest_shared->zs_vdev_aux++; 937 } 938 } 939 940 spa_config_exit(spa, SCL_VDEV, FTAG); 941 942 if (guid == 0) { 943 /* 944 * Add a new device. 945 */ 946 nvlist_t *nvroot = make_vdev_root(NULL, aux, 947 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 948 error = spa_vdev_add(spa, nvroot); 949 if (error != 0) 950 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 951 nvlist_free(nvroot); 952 } else { 953 /* 954 * Remove an existing device. Sometimes, dirty its 955 * vdev state first to make sure we handle removal 956 * of devices that have pending state changes. 957 */ 958 if (ztest_random(2) == 0) 959 (void) vdev_online(spa, guid, B_FALSE, NULL); 960 961 error = spa_vdev_remove(spa, guid, B_FALSE); 962 if (error != 0 && error != EBUSY) 963 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 964 } 965 966 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 967 } 968 969 /* 970 * Verify that we can attach and detach devices. 971 */ 972 void 973 ztest_vdev_attach_detach(ztest_args_t *za) 974 { 975 spa_t *spa = za->za_spa; 976 spa_aux_vdev_t *sav = &spa->spa_spares; 977 vdev_t *rvd = spa->spa_root_vdev; 978 vdev_t *oldvd, *newvd, *pvd; 979 nvlist_t *root; 980 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 981 uint64_t leaf, top; 982 uint64_t ashift = ztest_get_ashift(); 983 uint64_t oldguid; 984 size_t oldsize, newsize; 985 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 986 int replacing; 987 int oldvd_has_siblings = B_FALSE; 988 int newvd_is_spare = B_FALSE; 989 int oldvd_is_log; 990 int error, expected_error; 991 992 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 993 994 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 995 996 /* 997 * Decide whether to do an attach or a replace. 998 */ 999 replacing = ztest_random(2); 1000 1001 /* 1002 * Pick a random top-level vdev. 1003 */ 1004 top = ztest_random(rvd->vdev_children); 1005 1006 /* 1007 * Pick a random leaf within it. 1008 */ 1009 leaf = ztest_random(leaves); 1010 1011 /* 1012 * Locate this vdev. 1013 */ 1014 oldvd = rvd->vdev_child[top]; 1015 if (zopt_mirrors >= 1) 1016 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1017 if (zopt_raidz > 1) 1018 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1019 1020 /* 1021 * If we're already doing an attach or replace, oldvd may be a 1022 * mirror vdev -- in which case, pick a random child. 1023 */ 1024 while (oldvd->vdev_children != 0) { 1025 oldvd_has_siblings = B_TRUE; 1026 ASSERT(oldvd->vdev_children == 2); 1027 oldvd = oldvd->vdev_child[ztest_random(2)]; 1028 } 1029 1030 oldguid = oldvd->vdev_guid; 1031 oldsize = vdev_get_rsize(oldvd); 1032 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1033 (void) strcpy(oldpath, oldvd->vdev_path); 1034 pvd = oldvd->vdev_parent; 1035 1036 /* 1037 * If oldvd has siblings, then half of the time, detach it. 1038 */ 1039 if (oldvd_has_siblings && ztest_random(2) == 0) { 1040 spa_config_exit(spa, SCL_VDEV, FTAG); 1041 error = spa_vdev_detach(spa, oldguid, B_FALSE); 1042 if (error != 0 && error != ENODEV && error != EBUSY) 1043 fatal(0, "detach (%s) returned %d", 1044 oldpath, error); 1045 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1046 return; 1047 } 1048 1049 /* 1050 * For the new vdev, choose with equal probability between the two 1051 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1052 */ 1053 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1054 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1055 newvd_is_spare = B_TRUE; 1056 (void) strcpy(newpath, newvd->vdev_path); 1057 } else { 1058 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1059 zopt_dir, zopt_pool, top * leaves + leaf); 1060 if (ztest_random(2) == 0) 1061 newpath[strlen(newpath) - 1] = 'b'; 1062 newvd = vdev_lookup_by_path(rvd, newpath); 1063 } 1064 1065 if (newvd) { 1066 newsize = vdev_get_rsize(newvd); 1067 } else { 1068 /* 1069 * Make newsize a little bigger or smaller than oldsize. 1070 * If it's smaller, the attach should fail. 1071 * If it's larger, and we're doing a replace, 1072 * we should get dynamic LUN growth when we're done. 1073 */ 1074 newsize = 10 * oldsize / (9 + ztest_random(3)); 1075 } 1076 1077 /* 1078 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1079 * unless it's a replace; in that case any non-replacing parent is OK. 1080 * 1081 * If newvd is already part of the pool, it should fail with EBUSY. 1082 * 1083 * If newvd is too small, it should fail with EOVERFLOW. 1084 */ 1085 if (pvd->vdev_ops != &vdev_mirror_ops && 1086 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1087 pvd->vdev_ops == &vdev_replacing_ops || 1088 pvd->vdev_ops == &vdev_spare_ops)) 1089 expected_error = ENOTSUP; 1090 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1091 expected_error = ENOTSUP; 1092 else if (newvd == oldvd) 1093 expected_error = replacing ? 0 : EBUSY; 1094 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1095 expected_error = EBUSY; 1096 else if (newsize < oldsize) 1097 expected_error = EOVERFLOW; 1098 else if (ashift > oldvd->vdev_top->vdev_ashift) 1099 expected_error = EDOM; 1100 else 1101 expected_error = 0; 1102 1103 spa_config_exit(spa, SCL_VDEV, FTAG); 1104 1105 /* 1106 * Build the nvlist describing newpath. 1107 */ 1108 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1109 ashift, 0, 0, 0, 1); 1110 1111 error = spa_vdev_attach(spa, oldguid, root, replacing); 1112 1113 nvlist_free(root); 1114 1115 /* 1116 * If our parent was the replacing vdev, but the replace completed, 1117 * then instead of failing with ENOTSUP we may either succeed, 1118 * fail with ENODEV, or fail with EOVERFLOW. 1119 */ 1120 if (expected_error == ENOTSUP && 1121 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1122 expected_error = error; 1123 1124 /* 1125 * If someone grew the LUN, the replacement may be too small. 1126 */ 1127 if (error == EOVERFLOW || error == EBUSY) 1128 expected_error = error; 1129 1130 /* XXX workaround 6690467 */ 1131 if (error != expected_error && expected_error != EBUSY) { 1132 fatal(0, "attach (%s %llu, %s %llu, %d) " 1133 "returned %d, expected %d", 1134 oldpath, (longlong_t)oldsize, newpath, 1135 (longlong_t)newsize, replacing, error, expected_error); 1136 } 1137 1138 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1139 } 1140 1141 /* 1142 * Verify that dynamic LUN growth works as expected. 1143 */ 1144 /* ARGSUSED */ 1145 void 1146 ztest_vdev_LUN_growth(ztest_args_t *za) 1147 { 1148 spa_t *spa = za->za_spa; 1149 char dev_name[MAXPATHLEN]; 1150 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1151 uint64_t vdev; 1152 size_t fsize; 1153 int fd; 1154 1155 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1156 1157 /* 1158 * Pick a random leaf vdev. 1159 */ 1160 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1161 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1162 spa_config_exit(spa, SCL_VDEV, FTAG); 1163 1164 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1165 1166 if ((fd = open(dev_name, O_RDWR)) != -1) { 1167 /* 1168 * Determine the size. 1169 */ 1170 fsize = lseek(fd, 0, SEEK_END); 1171 1172 /* 1173 * If it's less than 2x the original size, grow by around 3%. 1174 */ 1175 if (fsize < 2 * zopt_vdev_size) { 1176 size_t newsize = fsize + ztest_random(fsize / 32); 1177 (void) ftruncate(fd, newsize); 1178 if (zopt_verbose >= 6) { 1179 (void) printf("%s grew from %lu to %lu bytes\n", 1180 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1181 } 1182 } 1183 (void) close(fd); 1184 } 1185 1186 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1187 } 1188 1189 /* ARGSUSED */ 1190 static void 1191 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1192 { 1193 /* 1194 * Create the directory object. 1195 */ 1196 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1197 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1198 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1199 1200 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1201 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1202 1203 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1204 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1205 } 1206 1207 static int 1208 ztest_destroy_cb(char *name, void *arg) 1209 { 1210 ztest_args_t *za = arg; 1211 objset_t *os; 1212 dmu_object_info_t *doi = &za->za_doi; 1213 int error; 1214 1215 /* 1216 * Verify that the dataset contains a directory object. 1217 */ 1218 error = dmu_objset_open(name, DMU_OST_OTHER, 1219 DS_MODE_USER | DS_MODE_READONLY, &os); 1220 ASSERT3U(error, ==, 0); 1221 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1222 if (error != ENOENT) { 1223 /* We could have crashed in the middle of destroying it */ 1224 ASSERT3U(error, ==, 0); 1225 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1226 ASSERT3S(doi->doi_physical_blks, >=, 0); 1227 } 1228 dmu_objset_close(os); 1229 1230 /* 1231 * Destroy the dataset. 1232 */ 1233 error = dmu_objset_destroy(name); 1234 if (error) { 1235 (void) dmu_objset_open(name, DMU_OST_OTHER, 1236 DS_MODE_USER | DS_MODE_READONLY, &os); 1237 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1238 } 1239 return (0); 1240 } 1241 1242 /* 1243 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1244 */ 1245 static uint64_t 1246 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1247 { 1248 itx_t *itx; 1249 lr_create_t *lr; 1250 size_t namesize; 1251 char name[24]; 1252 1253 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1254 namesize = strlen(name) + 1; 1255 1256 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1257 ztest_random(ZIL_MAX_BLKSZ)); 1258 lr = (lr_create_t *)&itx->itx_lr; 1259 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1260 lr->lr_doid = object; 1261 lr->lr_foid = 0; 1262 lr->lr_mode = mode; 1263 lr->lr_uid = 0; 1264 lr->lr_gid = 0; 1265 lr->lr_gen = dmu_tx_get_txg(tx); 1266 lr->lr_crtime[0] = time(NULL); 1267 lr->lr_crtime[1] = 0; 1268 lr->lr_rdev = 0; 1269 bcopy(name, (char *)(lr + 1), namesize); 1270 1271 return (zil_itx_assign(zilog, itx, tx)); 1272 } 1273 1274 void 1275 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1276 { 1277 int error; 1278 objset_t *os, *os2; 1279 char name[100]; 1280 int basemode, expected_error; 1281 zilog_t *zilog; 1282 uint64_t seq; 1283 uint64_t objects; 1284 ztest_replay_t zr; 1285 1286 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1287 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1288 (u_longlong_t)za->za_instance); 1289 1290 basemode = DS_MODE_TYPE(za->za_instance); 1291 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1292 basemode = DS_MODE_USER; 1293 1294 /* 1295 * If this dataset exists from a previous run, process its replay log 1296 * half of the time. If we don't replay it, then dmu_objset_destroy() 1297 * (invoked from ztest_destroy_cb() below) should just throw it away. 1298 */ 1299 if (ztest_random(2) == 0 && 1300 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1301 zr.zr_os = os; 1302 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL); 1303 dmu_objset_close(os); 1304 } 1305 1306 /* 1307 * There may be an old instance of the dataset we're about to 1308 * create lying around from a previous run. If so, destroy it 1309 * and all of its snapshots. 1310 */ 1311 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1312 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1313 1314 /* 1315 * Verify that the destroyed dataset is no longer in the namespace. 1316 */ 1317 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1318 if (error != ENOENT) 1319 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1320 name, os); 1321 1322 /* 1323 * Verify that we can create a new dataset. 1324 */ 1325 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1326 ztest_create_cb, NULL); 1327 if (error) { 1328 if (error == ENOSPC) { 1329 ztest_record_enospc("dmu_objset_create"); 1330 (void) rw_unlock(&ztest_shared->zs_name_lock); 1331 return; 1332 } 1333 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1334 } 1335 1336 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1337 if (error) { 1338 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1339 } 1340 1341 /* 1342 * Open the intent log for it. 1343 */ 1344 zilog = zil_open(os, NULL); 1345 1346 /* 1347 * Put a random number of objects in there. 1348 */ 1349 objects = ztest_random(20); 1350 seq = 0; 1351 while (objects-- != 0) { 1352 uint64_t object; 1353 dmu_tx_t *tx = dmu_tx_create(os); 1354 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1355 error = dmu_tx_assign(tx, TXG_WAIT); 1356 if (error) { 1357 dmu_tx_abort(tx); 1358 } else { 1359 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1360 DMU_OT_NONE, 0, tx); 1361 ztest_set_random_blocksize(os, object, tx); 1362 seq = ztest_log_create(zilog, tx, object, 1363 DMU_OT_UINT64_OTHER); 1364 dmu_write(os, object, 0, sizeof (name), name, tx); 1365 dmu_tx_commit(tx); 1366 } 1367 if (ztest_random(5) == 0) { 1368 zil_commit(zilog, seq, object); 1369 } 1370 if (ztest_random(100) == 0) { 1371 error = zil_suspend(zilog); 1372 if (error == 0) { 1373 zil_resume(zilog); 1374 } 1375 } 1376 } 1377 1378 /* 1379 * Verify that we cannot create an existing dataset. 1380 */ 1381 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1382 if (error != EEXIST) 1383 fatal(0, "created existing dataset, error = %d", error); 1384 1385 /* 1386 * Verify that multiple dataset holds are allowed, but only when 1387 * the new access mode is compatible with the base mode. 1388 */ 1389 if (basemode == DS_MODE_OWNER) { 1390 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1391 &os2); 1392 if (error) 1393 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1394 else 1395 dmu_objset_close(os2); 1396 } 1397 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1398 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1399 if (error != expected_error) 1400 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1401 name, error, expected_error); 1402 if (error == 0) 1403 dmu_objset_close(os2); 1404 1405 zil_close(zilog); 1406 dmu_objset_close(os); 1407 1408 error = dmu_objset_destroy(name); 1409 if (error) 1410 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1411 1412 (void) rw_unlock(&ztest_shared->zs_name_lock); 1413 } 1414 1415 /* 1416 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1417 */ 1418 void 1419 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1420 { 1421 int error; 1422 objset_t *os = za->za_os; 1423 char snapname[100]; 1424 char osname[MAXNAMELEN]; 1425 1426 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1427 dmu_objset_name(os, osname); 1428 (void) snprintf(snapname, 100, "%s@%llu", osname, 1429 (u_longlong_t)za->za_instance); 1430 1431 error = dmu_objset_destroy(snapname); 1432 if (error != 0 && error != ENOENT) 1433 fatal(0, "dmu_objset_destroy() = %d", error); 1434 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE); 1435 if (error == ENOSPC) 1436 ztest_record_enospc("dmu_take_snapshot"); 1437 else if (error != 0 && error != EEXIST) 1438 fatal(0, "dmu_take_snapshot() = %d", error); 1439 (void) rw_unlock(&ztest_shared->zs_name_lock); 1440 } 1441 1442 #define ZTEST_TRAVERSE_BLOCKS 1000 1443 1444 static int 1445 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 1446 { 1447 ztest_args_t *za = arg; 1448 zbookmark_t *zb = &bc->bc_bookmark; 1449 blkptr_t *bp = &bc->bc_blkptr; 1450 dnode_phys_t *dnp = bc->bc_dnode; 1451 traverse_handle_t *th = za->za_th; 1452 uint64_t size = BP_GET_LSIZE(bp); 1453 1454 /* 1455 * Level -1 indicates the objset_phys_t or something in its intent log. 1456 */ 1457 if (zb->zb_level == -1) { 1458 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1459 ASSERT3U(zb->zb_object, ==, 0); 1460 ASSERT3U(zb->zb_blkid, ==, 0); 1461 ASSERT3U(size, ==, sizeof (objset_phys_t)); 1462 za->za_zil_seq = 0; 1463 } else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 1464 ASSERT3U(zb->zb_object, ==, 0); 1465 ASSERT3U(zb->zb_blkid, >, za->za_zil_seq); 1466 za->za_zil_seq = zb->zb_blkid; 1467 } else { 1468 ASSERT3U(zb->zb_object, !=, 0); /* lr_write_t */ 1469 } 1470 1471 return (0); 1472 } 1473 1474 ASSERT(dnp != NULL); 1475 1476 if (bc->bc_errno) 1477 return (ERESTART); 1478 1479 /* 1480 * Once in a while, abort the traverse. We only do this to odd 1481 * instance numbers to ensure that even ones can run to completion. 1482 */ 1483 if ((za->za_instance & 1) && ztest_random(10000) == 0) 1484 return (EINTR); 1485 1486 if (bp->blk_birth == 0) { 1487 ASSERT(th->th_advance & ADVANCE_HOLES); 1488 return (0); 1489 } 1490 1491 if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) && 1492 bc == &th->th_cache[ZB_DN_CACHE][0]) { 1493 ASSERT(bc->bc_data == NULL); 1494 return (0); 1495 } 1496 1497 ASSERT(bc->bc_data != NULL); 1498 1499 /* 1500 * This is an expensive question, so don't ask it too often. 1501 */ 1502 if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) { 1503 void *xbuf = umem_alloc(size, UMEM_NOFAIL); 1504 if (arc_tryread(spa, bp, xbuf) == 0) { 1505 ASSERT(bcmp(bc->bc_data, xbuf, size) == 0); 1506 } 1507 umem_free(xbuf, size); 1508 } 1509 1510 if (zb->zb_level > 0) { 1511 ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift); 1512 return (0); 1513 } 1514 1515 ASSERT(zb->zb_level == 0); 1516 ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT); 1517 1518 return (0); 1519 } 1520 1521 /* 1522 * Verify that live pool traversal works. 1523 */ 1524 void 1525 ztest_traverse(ztest_args_t *za) 1526 { 1527 spa_t *spa = za->za_spa; 1528 traverse_handle_t *th = za->za_th; 1529 int rc, advance; 1530 uint64_t cbstart, cblimit; 1531 1532 if (th == NULL) { 1533 advance = 0; 1534 1535 if (ztest_random(2) == 0) 1536 advance |= ADVANCE_PRE; 1537 1538 if (ztest_random(2) == 0) 1539 advance |= ADVANCE_PRUNE; 1540 1541 if (ztest_random(2) == 0) 1542 advance |= ADVANCE_DATA; 1543 1544 if (ztest_random(2) == 0) 1545 advance |= ADVANCE_HOLES; 1546 1547 if (ztest_random(2) == 0) 1548 advance |= ADVANCE_ZIL; 1549 1550 th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance, 1551 ZIO_FLAG_CANFAIL); 1552 1553 traverse_add_pool(th, 0, -1ULL); 1554 } 1555 1556 advance = th->th_advance; 1557 cbstart = th->th_callbacks; 1558 cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000); 1559 1560 while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit) 1561 continue; 1562 1563 if (zopt_verbose >= 5) 1564 (void) printf("traverse %s%s%s%s %llu blocks to " 1565 "<%llu, %llu, %lld, %llx>%s\n", 1566 (advance & ADVANCE_PRE) ? "pre" : "post", 1567 (advance & ADVANCE_PRUNE) ? "|prune" : "", 1568 (advance & ADVANCE_DATA) ? "|data" : "", 1569 (advance & ADVANCE_HOLES) ? "|holes" : "", 1570 (u_longlong_t)(th->th_callbacks - cbstart), 1571 (u_longlong_t)th->th_lastcb.zb_objset, 1572 (u_longlong_t)th->th_lastcb.zb_object, 1573 (u_longlong_t)th->th_lastcb.zb_level, 1574 (u_longlong_t)th->th_lastcb.zb_blkid, 1575 rc == 0 ? " [done]" : 1576 rc == EINTR ? " [aborted]" : 1577 rc == EAGAIN ? "" : 1578 strerror(rc)); 1579 1580 if (rc != EAGAIN) { 1581 if (rc != 0 && rc != EINTR) 1582 fatal(0, "traverse_more(%p) = %d", th, rc); 1583 traverse_fini(th); 1584 za->za_th = NULL; 1585 } 1586 } 1587 1588 /* 1589 * Verify that dmu_object_{alloc,free} work as expected. 1590 */ 1591 void 1592 ztest_dmu_object_alloc_free(ztest_args_t *za) 1593 { 1594 objset_t *os = za->za_os; 1595 dmu_buf_t *db; 1596 dmu_tx_t *tx; 1597 uint64_t batchobj, object, batchsize, endoff, temp; 1598 int b, c, error, bonuslen; 1599 dmu_object_info_t *doi = &za->za_doi; 1600 char osname[MAXNAMELEN]; 1601 1602 dmu_objset_name(os, osname); 1603 1604 endoff = -8ULL; 1605 batchsize = 2; 1606 1607 /* 1608 * Create a batch object if necessary, and record it in the directory. 1609 */ 1610 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1611 sizeof (uint64_t), &batchobj)); 1612 if (batchobj == 0) { 1613 tx = dmu_tx_create(os); 1614 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1615 sizeof (uint64_t)); 1616 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1617 error = dmu_tx_assign(tx, TXG_WAIT); 1618 if (error) { 1619 ztest_record_enospc("create a batch object"); 1620 dmu_tx_abort(tx); 1621 return; 1622 } 1623 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1624 DMU_OT_NONE, 0, tx); 1625 ztest_set_random_blocksize(os, batchobj, tx); 1626 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1627 sizeof (uint64_t), &batchobj, tx); 1628 dmu_tx_commit(tx); 1629 } 1630 1631 /* 1632 * Destroy the previous batch of objects. 1633 */ 1634 for (b = 0; b < batchsize; b++) { 1635 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1636 sizeof (uint64_t), &object)); 1637 if (object == 0) 1638 continue; 1639 /* 1640 * Read and validate contents. 1641 * We expect the nth byte of the bonus buffer to be n. 1642 */ 1643 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1644 za->za_dbuf = db; 1645 1646 dmu_object_info_from_db(db, doi); 1647 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1648 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1649 ASSERT3S(doi->doi_physical_blks, >=, 0); 1650 1651 bonuslen = doi->doi_bonus_size; 1652 1653 for (c = 0; c < bonuslen; c++) { 1654 if (((uint8_t *)db->db_data)[c] != 1655 (uint8_t)(c + bonuslen)) { 1656 fatal(0, 1657 "bad bonus: %s, obj %llu, off %d: %u != %u", 1658 osname, object, c, 1659 ((uint8_t *)db->db_data)[c], 1660 (uint8_t)(c + bonuslen)); 1661 } 1662 } 1663 1664 dmu_buf_rele(db, FTAG); 1665 za->za_dbuf = NULL; 1666 1667 /* 1668 * We expect the word at endoff to be our object number. 1669 */ 1670 VERIFY(0 == dmu_read(os, object, endoff, 1671 sizeof (uint64_t), &temp)); 1672 1673 if (temp != object) { 1674 fatal(0, "bad data in %s, got %llu, expected %llu", 1675 osname, temp, object); 1676 } 1677 1678 /* 1679 * Destroy old object and clear batch entry. 1680 */ 1681 tx = dmu_tx_create(os); 1682 dmu_tx_hold_write(tx, batchobj, 1683 b * sizeof (uint64_t), sizeof (uint64_t)); 1684 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1685 error = dmu_tx_assign(tx, TXG_WAIT); 1686 if (error) { 1687 ztest_record_enospc("free object"); 1688 dmu_tx_abort(tx); 1689 return; 1690 } 1691 error = dmu_object_free(os, object, tx); 1692 if (error) { 1693 fatal(0, "dmu_object_free('%s', %llu) = %d", 1694 osname, object, error); 1695 } 1696 object = 0; 1697 1698 dmu_object_set_checksum(os, batchobj, 1699 ztest_random_checksum(), tx); 1700 dmu_object_set_compress(os, batchobj, 1701 ztest_random_compress(), tx); 1702 1703 dmu_write(os, batchobj, b * sizeof (uint64_t), 1704 sizeof (uint64_t), &object, tx); 1705 1706 dmu_tx_commit(tx); 1707 } 1708 1709 /* 1710 * Before creating the new batch of objects, generate a bunch of churn. 1711 */ 1712 for (b = ztest_random(100); b > 0; b--) { 1713 tx = dmu_tx_create(os); 1714 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1715 error = dmu_tx_assign(tx, TXG_WAIT); 1716 if (error) { 1717 ztest_record_enospc("churn objects"); 1718 dmu_tx_abort(tx); 1719 return; 1720 } 1721 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1722 DMU_OT_NONE, 0, tx); 1723 ztest_set_random_blocksize(os, object, tx); 1724 error = dmu_object_free(os, object, tx); 1725 if (error) { 1726 fatal(0, "dmu_object_free('%s', %llu) = %d", 1727 osname, object, error); 1728 } 1729 dmu_tx_commit(tx); 1730 } 1731 1732 /* 1733 * Create a new batch of objects with randomly chosen 1734 * blocksizes and record them in the batch directory. 1735 */ 1736 for (b = 0; b < batchsize; b++) { 1737 uint32_t va_blksize; 1738 u_longlong_t va_nblocks; 1739 1740 tx = dmu_tx_create(os); 1741 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1742 sizeof (uint64_t)); 1743 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1744 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1745 sizeof (uint64_t)); 1746 error = dmu_tx_assign(tx, TXG_WAIT); 1747 if (error) { 1748 ztest_record_enospc("create batchobj"); 1749 dmu_tx_abort(tx); 1750 return; 1751 } 1752 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1753 1754 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1755 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1756 1757 ztest_set_random_blocksize(os, object, tx); 1758 1759 dmu_object_set_checksum(os, object, 1760 ztest_random_checksum(), tx); 1761 dmu_object_set_compress(os, object, 1762 ztest_random_compress(), tx); 1763 1764 dmu_write(os, batchobj, b * sizeof (uint64_t), 1765 sizeof (uint64_t), &object, tx); 1766 1767 /* 1768 * Write to both the bonus buffer and the regular data. 1769 */ 1770 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1771 za->za_dbuf = db; 1772 ASSERT3U(bonuslen, <=, db->db_size); 1773 1774 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1775 ASSERT3S(va_nblocks, >=, 0); 1776 1777 dmu_buf_will_dirty(db, tx); 1778 1779 /* 1780 * See comments above regarding the contents of 1781 * the bonus buffer and the word at endoff. 1782 */ 1783 for (c = 0; c < bonuslen; c++) 1784 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1785 1786 dmu_buf_rele(db, FTAG); 1787 za->za_dbuf = NULL; 1788 1789 /* 1790 * Write to a large offset to increase indirection. 1791 */ 1792 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1793 1794 dmu_tx_commit(tx); 1795 } 1796 } 1797 1798 /* 1799 * Verify that dmu_{read,write} work as expected. 1800 */ 1801 typedef struct bufwad { 1802 uint64_t bw_index; 1803 uint64_t bw_txg; 1804 uint64_t bw_data; 1805 } bufwad_t; 1806 1807 typedef struct dmu_read_write_dir { 1808 uint64_t dd_packobj; 1809 uint64_t dd_bigobj; 1810 uint64_t dd_chunk; 1811 } dmu_read_write_dir_t; 1812 1813 void 1814 ztest_dmu_read_write(ztest_args_t *za) 1815 { 1816 objset_t *os = za->za_os; 1817 dmu_read_write_dir_t dd; 1818 dmu_tx_t *tx; 1819 int i, freeit, error; 1820 uint64_t n, s, txg; 1821 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1822 uint64_t packoff, packsize, bigoff, bigsize; 1823 uint64_t regions = 997; 1824 uint64_t stride = 123456789ULL; 1825 uint64_t width = 40; 1826 int free_percent = 5; 1827 1828 /* 1829 * This test uses two objects, packobj and bigobj, that are always 1830 * updated together (i.e. in the same tx) so that their contents are 1831 * in sync and can be compared. Their contents relate to each other 1832 * in a simple way: packobj is a dense array of 'bufwad' structures, 1833 * while bigobj is a sparse array of the same bufwads. Specifically, 1834 * for any index n, there are three bufwads that should be identical: 1835 * 1836 * packobj, at offset n * sizeof (bufwad_t) 1837 * bigobj, at the head of the nth chunk 1838 * bigobj, at the tail of the nth chunk 1839 * 1840 * The chunk size is arbitrary. It doesn't have to be a power of two, 1841 * and it doesn't have any relation to the object blocksize. 1842 * The only requirement is that it can hold at least two bufwads. 1843 * 1844 * Normally, we write the bufwad to each of these locations. 1845 * However, free_percent of the time we instead write zeroes to 1846 * packobj and perform a dmu_free_range() on bigobj. By comparing 1847 * bigobj to packobj, we can verify that the DMU is correctly 1848 * tracking which parts of an object are allocated and free, 1849 * and that the contents of the allocated blocks are correct. 1850 */ 1851 1852 /* 1853 * Read the directory info. If it's the first time, set things up. 1854 */ 1855 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1856 sizeof (dd), &dd)); 1857 if (dd.dd_chunk == 0) { 1858 ASSERT(dd.dd_packobj == 0); 1859 ASSERT(dd.dd_bigobj == 0); 1860 tx = dmu_tx_create(os); 1861 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1862 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1863 error = dmu_tx_assign(tx, TXG_WAIT); 1864 if (error) { 1865 ztest_record_enospc("create r/w directory"); 1866 dmu_tx_abort(tx); 1867 return; 1868 } 1869 1870 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1871 DMU_OT_NONE, 0, tx); 1872 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1873 DMU_OT_NONE, 0, tx); 1874 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1875 1876 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1877 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1878 1879 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1880 tx); 1881 dmu_tx_commit(tx); 1882 } 1883 1884 /* 1885 * Prefetch a random chunk of the big object. 1886 * Our aim here is to get some async reads in flight 1887 * for blocks that we may free below; the DMU should 1888 * handle this race correctly. 1889 */ 1890 n = ztest_random(regions) * stride + ztest_random(width); 1891 s = 1 + ztest_random(2 * width - 1); 1892 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1893 1894 /* 1895 * Pick a random index and compute the offsets into packobj and bigobj. 1896 */ 1897 n = ztest_random(regions) * stride + ztest_random(width); 1898 s = 1 + ztest_random(width - 1); 1899 1900 packoff = n * sizeof (bufwad_t); 1901 packsize = s * sizeof (bufwad_t); 1902 1903 bigoff = n * dd.dd_chunk; 1904 bigsize = s * dd.dd_chunk; 1905 1906 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1907 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1908 1909 /* 1910 * free_percent of the time, free a range of bigobj rather than 1911 * overwriting it. 1912 */ 1913 freeit = (ztest_random(100) < free_percent); 1914 1915 /* 1916 * Read the current contents of our objects. 1917 */ 1918 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1919 ASSERT3U(error, ==, 0); 1920 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1921 ASSERT3U(error, ==, 0); 1922 1923 /* 1924 * Get a tx for the mods to both packobj and bigobj. 1925 */ 1926 tx = dmu_tx_create(os); 1927 1928 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1929 1930 if (freeit) 1931 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1932 else 1933 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1934 1935 error = dmu_tx_assign(tx, TXG_WAIT); 1936 1937 if (error) { 1938 ztest_record_enospc("dmu r/w range"); 1939 dmu_tx_abort(tx); 1940 umem_free(packbuf, packsize); 1941 umem_free(bigbuf, bigsize); 1942 return; 1943 } 1944 1945 txg = dmu_tx_get_txg(tx); 1946 1947 /* 1948 * For each index from n to n + s, verify that the existing bufwad 1949 * in packobj matches the bufwads at the head and tail of the 1950 * corresponding chunk in bigobj. Then update all three bufwads 1951 * with the new values we want to write out. 1952 */ 1953 for (i = 0; i < s; i++) { 1954 /* LINTED */ 1955 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1956 /* LINTED */ 1957 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1958 /* LINTED */ 1959 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1960 1961 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1962 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1963 1964 if (pack->bw_txg > txg) 1965 fatal(0, "future leak: got %llx, open txg is %llx", 1966 pack->bw_txg, txg); 1967 1968 if (pack->bw_data != 0 && pack->bw_index != n + i) 1969 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1970 pack->bw_index, n, i); 1971 1972 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1973 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1974 1975 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1976 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1977 1978 if (freeit) { 1979 bzero(pack, sizeof (bufwad_t)); 1980 } else { 1981 pack->bw_index = n + i; 1982 pack->bw_txg = txg; 1983 pack->bw_data = 1 + ztest_random(-2ULL); 1984 } 1985 *bigH = *pack; 1986 *bigT = *pack; 1987 } 1988 1989 /* 1990 * We've verified all the old bufwads, and made new ones. 1991 * Now write them out. 1992 */ 1993 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1994 1995 if (freeit) { 1996 if (zopt_verbose >= 6) { 1997 (void) printf("freeing offset %llx size %llx" 1998 " txg %llx\n", 1999 (u_longlong_t)bigoff, 2000 (u_longlong_t)bigsize, 2001 (u_longlong_t)txg); 2002 } 2003 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2004 bigsize, tx)); 2005 } else { 2006 if (zopt_verbose >= 6) { 2007 (void) printf("writing offset %llx size %llx" 2008 " txg %llx\n", 2009 (u_longlong_t)bigoff, 2010 (u_longlong_t)bigsize, 2011 (u_longlong_t)txg); 2012 } 2013 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2014 } 2015 2016 dmu_tx_commit(tx); 2017 2018 /* 2019 * Sanity check the stuff we just wrote. 2020 */ 2021 { 2022 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2023 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2024 2025 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2026 packsize, packcheck)); 2027 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2028 bigsize, bigcheck)); 2029 2030 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2031 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2032 2033 umem_free(packcheck, packsize); 2034 umem_free(bigcheck, bigsize); 2035 } 2036 2037 umem_free(packbuf, packsize); 2038 umem_free(bigbuf, bigsize); 2039 } 2040 2041 void 2042 ztest_dmu_check_future_leak(ztest_args_t *za) 2043 { 2044 objset_t *os = za->za_os; 2045 dmu_buf_t *db; 2046 ztest_block_tag_t *bt; 2047 dmu_object_info_t *doi = &za->za_doi; 2048 2049 /* 2050 * Make sure that, if there is a write record in the bonus buffer 2051 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2052 * last synced txg of the pool. 2053 */ 2054 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2055 za->za_dbuf = db; 2056 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2057 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2058 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2059 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2060 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2061 if (bt->bt_objset != 0) { 2062 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2063 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2064 ASSERT3U(bt->bt_offset, ==, -1ULL); 2065 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2066 } 2067 dmu_buf_rele(db, FTAG); 2068 za->za_dbuf = NULL; 2069 } 2070 2071 void 2072 ztest_dmu_write_parallel(ztest_args_t *za) 2073 { 2074 objset_t *os = za->za_os; 2075 ztest_block_tag_t *rbt = &za->za_rbt; 2076 ztest_block_tag_t *wbt = &za->za_wbt; 2077 const size_t btsize = sizeof (ztest_block_tag_t); 2078 dmu_buf_t *db; 2079 int b, error; 2080 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2081 int do_free = 0; 2082 uint64_t off, txg, txg_how; 2083 mutex_t *lp; 2084 char osname[MAXNAMELEN]; 2085 char iobuf[SPA_MAXBLOCKSIZE]; 2086 blkptr_t blk = { 0 }; 2087 uint64_t blkoff; 2088 zbookmark_t zb; 2089 dmu_tx_t *tx = dmu_tx_create(os); 2090 2091 dmu_objset_name(os, osname); 2092 2093 /* 2094 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2095 * to verify that having multiple threads writing to the same object 2096 * in parallel doesn't cause any trouble. 2097 */ 2098 if (ztest_random(4) == 0) { 2099 /* 2100 * Do the bonus buffer instead of a regular block. 2101 * We need a lock to serialize resize vs. others, 2102 * so we hash on the objset ID. 2103 */ 2104 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2105 off = -1ULL; 2106 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2107 } else { 2108 b = ztest_random(ZTEST_SYNC_LOCKS); 2109 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2110 if (ztest_random(4) == 0) { 2111 do_free = 1; 2112 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2113 } else { 2114 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2115 } 2116 } 2117 2118 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2119 error = dmu_tx_assign(tx, txg_how); 2120 if (error) { 2121 if (error == ERESTART) { 2122 ASSERT(txg_how == TXG_NOWAIT); 2123 dmu_tx_wait(tx); 2124 } else { 2125 ztest_record_enospc("dmu write parallel"); 2126 } 2127 dmu_tx_abort(tx); 2128 return; 2129 } 2130 txg = dmu_tx_get_txg(tx); 2131 2132 lp = &ztest_shared->zs_sync_lock[b]; 2133 (void) mutex_lock(lp); 2134 2135 wbt->bt_objset = dmu_objset_id(os); 2136 wbt->bt_object = ZTEST_DIROBJ; 2137 wbt->bt_offset = off; 2138 wbt->bt_txg = txg; 2139 wbt->bt_thread = za->za_instance; 2140 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2141 2142 /* 2143 * Occasionally, write an all-zero block to test the behavior 2144 * of blocks that compress into holes. 2145 */ 2146 if (off != -1ULL && ztest_random(8) == 0) 2147 bzero(wbt, btsize); 2148 2149 if (off == -1ULL) { 2150 dmu_object_info_t *doi = &za->za_doi; 2151 char *dboff; 2152 2153 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2154 za->za_dbuf = db; 2155 dmu_object_info_from_db(db, doi); 2156 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2157 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2158 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2159 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2160 bcopy(dboff, rbt, btsize); 2161 if (rbt->bt_objset != 0) { 2162 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2163 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2164 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2165 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2166 } 2167 if (ztest_random(10) == 0) { 2168 int newsize = (ztest_random(db->db_size / 2169 btsize) + 1) * btsize; 2170 2171 ASSERT3U(newsize, >=, btsize); 2172 ASSERT3U(newsize, <=, db->db_size); 2173 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2174 dboff = (char *)db->db_data + newsize - btsize; 2175 } 2176 dmu_buf_will_dirty(db, tx); 2177 bcopy(wbt, dboff, btsize); 2178 dmu_buf_rele(db, FTAG); 2179 za->za_dbuf = NULL; 2180 } else if (do_free) { 2181 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2182 } else { 2183 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2184 } 2185 2186 (void) mutex_unlock(lp); 2187 2188 if (ztest_random(1000) == 0) 2189 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2190 2191 dmu_tx_commit(tx); 2192 2193 if (ztest_random(10000) == 0) 2194 txg_wait_synced(dmu_objset_pool(os), txg); 2195 2196 if (off == -1ULL || do_free) 2197 return; 2198 2199 if (ztest_random(2) != 0) 2200 return; 2201 2202 /* 2203 * dmu_sync() the block we just wrote. 2204 */ 2205 (void) mutex_lock(lp); 2206 2207 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2208 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2209 za->za_dbuf = db; 2210 if (error) { 2211 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n", 2212 osname, ZTEST_DIROBJ, blkoff, error); 2213 (void) mutex_unlock(lp); 2214 return; 2215 } 2216 blkoff = off - blkoff; 2217 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2218 dmu_buf_rele(db, FTAG); 2219 za->za_dbuf = NULL; 2220 2221 (void) mutex_unlock(lp); 2222 2223 if (error) { 2224 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2225 osname, ZTEST_DIROBJ, off, error); 2226 return; 2227 } 2228 2229 if (blk.blk_birth == 0) /* concurrent free */ 2230 return; 2231 2232 txg_suspend(dmu_objset_pool(os)); 2233 2234 ASSERT(blk.blk_fill == 1); 2235 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2236 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2237 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2238 2239 /* 2240 * Read the block that dmu_sync() returned to make sure its contents 2241 * match what we wrote. We do this while still txg_suspend()ed 2242 * to ensure that the block can't be reused before we read it. 2243 */ 2244 zb.zb_objset = dmu_objset_id(os); 2245 zb.zb_object = ZTEST_DIROBJ; 2246 zb.zb_level = 0; 2247 zb.zb_blkid = off / bs; 2248 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2249 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2250 ASSERT3U(error, ==, 0); 2251 2252 txg_resume(dmu_objset_pool(os)); 2253 2254 bcopy(&iobuf[blkoff], rbt, btsize); 2255 2256 if (rbt->bt_objset == 0) /* concurrent free */ 2257 return; 2258 2259 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2260 return; 2261 2262 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2263 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2264 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2265 2266 /* 2267 * The semantic of dmu_sync() is that we always push the most recent 2268 * version of the data, so in the face of concurrent updates we may 2269 * see a newer version of the block. That's OK. 2270 */ 2271 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2272 if (rbt->bt_thread == wbt->bt_thread) 2273 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2274 else 2275 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2276 } 2277 2278 /* 2279 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2280 */ 2281 #define ZTEST_ZAP_MIN_INTS 1 2282 #define ZTEST_ZAP_MAX_INTS 4 2283 #define ZTEST_ZAP_MAX_PROPS 1000 2284 2285 void 2286 ztest_zap(ztest_args_t *za) 2287 { 2288 objset_t *os = za->za_os; 2289 uint64_t object; 2290 uint64_t txg, last_txg; 2291 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2292 uint64_t zl_ints, zl_intsize, prop; 2293 int i, ints; 2294 dmu_tx_t *tx; 2295 char propname[100], txgname[100]; 2296 int error; 2297 char osname[MAXNAMELEN]; 2298 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2299 2300 dmu_objset_name(os, osname); 2301 2302 /* 2303 * Create a new object if necessary, and record it in the directory. 2304 */ 2305 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2306 sizeof (uint64_t), &object)); 2307 2308 if (object == 0) { 2309 tx = dmu_tx_create(os); 2310 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2311 sizeof (uint64_t)); 2312 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2313 error = dmu_tx_assign(tx, TXG_WAIT); 2314 if (error) { 2315 ztest_record_enospc("create zap test obj"); 2316 dmu_tx_abort(tx); 2317 return; 2318 } 2319 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2320 if (error) { 2321 fatal(0, "zap_create('%s', %llu) = %d", 2322 osname, object, error); 2323 } 2324 ASSERT(object != 0); 2325 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2326 sizeof (uint64_t), &object, tx); 2327 /* 2328 * Generate a known hash collision, and verify that 2329 * we can lookup and remove both entries. 2330 */ 2331 for (i = 0; i < 2; i++) { 2332 value[i] = i; 2333 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2334 1, &value[i], tx); 2335 ASSERT3U(error, ==, 0); 2336 } 2337 for (i = 0; i < 2; i++) { 2338 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2339 1, &value[i], tx); 2340 ASSERT3U(error, ==, EEXIST); 2341 error = zap_length(os, object, hc[i], 2342 &zl_intsize, &zl_ints); 2343 ASSERT3U(error, ==, 0); 2344 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2345 ASSERT3U(zl_ints, ==, 1); 2346 } 2347 for (i = 0; i < 2; i++) { 2348 error = zap_remove(os, object, hc[i], tx); 2349 ASSERT3U(error, ==, 0); 2350 } 2351 2352 dmu_tx_commit(tx); 2353 } 2354 2355 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2356 2357 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2358 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2359 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2360 bzero(value, sizeof (value)); 2361 last_txg = 0; 2362 2363 /* 2364 * If these zap entries already exist, validate their contents. 2365 */ 2366 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2367 if (error == 0) { 2368 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2369 ASSERT3U(zl_ints, ==, 1); 2370 2371 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2372 zl_ints, &last_txg) == 0); 2373 2374 VERIFY(zap_length(os, object, propname, &zl_intsize, 2375 &zl_ints) == 0); 2376 2377 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2378 ASSERT3U(zl_ints, ==, ints); 2379 2380 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2381 zl_ints, value) == 0); 2382 2383 for (i = 0; i < ints; i++) { 2384 ASSERT3U(value[i], ==, last_txg + object + i); 2385 } 2386 } else { 2387 ASSERT3U(error, ==, ENOENT); 2388 } 2389 2390 /* 2391 * Atomically update two entries in our zap object. 2392 * The first is named txg_%llu, and contains the txg 2393 * in which the property was last updated. The second 2394 * is named prop_%llu, and the nth element of its value 2395 * should be txg + object + n. 2396 */ 2397 tx = dmu_tx_create(os); 2398 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2399 error = dmu_tx_assign(tx, TXG_WAIT); 2400 if (error) { 2401 ztest_record_enospc("create zap entry"); 2402 dmu_tx_abort(tx); 2403 return; 2404 } 2405 txg = dmu_tx_get_txg(tx); 2406 2407 if (last_txg > txg) 2408 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2409 2410 for (i = 0; i < ints; i++) 2411 value[i] = txg + object + i; 2412 2413 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2414 if (error) 2415 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2416 osname, object, txgname, error); 2417 2418 error = zap_update(os, object, propname, sizeof (uint64_t), 2419 ints, value, tx); 2420 if (error) 2421 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2422 osname, object, propname, error); 2423 2424 dmu_tx_commit(tx); 2425 2426 /* 2427 * Remove a random pair of entries. 2428 */ 2429 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2430 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2431 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2432 2433 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2434 2435 if (error == ENOENT) 2436 return; 2437 2438 ASSERT3U(error, ==, 0); 2439 2440 tx = dmu_tx_create(os); 2441 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2442 error = dmu_tx_assign(tx, TXG_WAIT); 2443 if (error) { 2444 ztest_record_enospc("remove zap entry"); 2445 dmu_tx_abort(tx); 2446 return; 2447 } 2448 error = zap_remove(os, object, txgname, tx); 2449 if (error) 2450 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2451 osname, object, txgname, error); 2452 2453 error = zap_remove(os, object, propname, tx); 2454 if (error) 2455 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2456 osname, object, propname, error); 2457 2458 dmu_tx_commit(tx); 2459 2460 /* 2461 * Once in a while, destroy the object. 2462 */ 2463 if (ztest_random(1000) != 0) 2464 return; 2465 2466 tx = dmu_tx_create(os); 2467 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2468 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2469 error = dmu_tx_assign(tx, TXG_WAIT); 2470 if (error) { 2471 ztest_record_enospc("destroy zap object"); 2472 dmu_tx_abort(tx); 2473 return; 2474 } 2475 error = zap_destroy(os, object, tx); 2476 if (error) 2477 fatal(0, "zap_destroy('%s', %llu) = %d", 2478 osname, object, error); 2479 object = 0; 2480 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2481 &object, tx); 2482 dmu_tx_commit(tx); 2483 } 2484 2485 void 2486 ztest_zap_parallel(ztest_args_t *za) 2487 { 2488 objset_t *os = za->za_os; 2489 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2490 dmu_tx_t *tx; 2491 int i, namelen, error; 2492 char name[20], string_value[20]; 2493 void *data; 2494 2495 /* 2496 * Generate a random name of the form 'xxx.....' where each 2497 * x is a random printable character and the dots are dots. 2498 * There are 94 such characters, and the name length goes from 2499 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2500 */ 2501 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2502 2503 for (i = 0; i < 3; i++) 2504 name[i] = '!' + ztest_random('~' - '!' + 1); 2505 for (; i < namelen - 1; i++) 2506 name[i] = '.'; 2507 name[i] = '\0'; 2508 2509 if (ztest_random(2) == 0) 2510 object = ZTEST_MICROZAP_OBJ; 2511 else 2512 object = ZTEST_FATZAP_OBJ; 2513 2514 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2515 wsize = sizeof (txg); 2516 wc = 1; 2517 data = &txg; 2518 } else { 2519 wsize = 1; 2520 wc = namelen; 2521 data = string_value; 2522 } 2523 2524 count = -1ULL; 2525 VERIFY(zap_count(os, object, &count) == 0); 2526 ASSERT(count != -1ULL); 2527 2528 /* 2529 * Select an operation: length, lookup, add, update, remove. 2530 */ 2531 i = ztest_random(5); 2532 2533 if (i >= 2) { 2534 tx = dmu_tx_create(os); 2535 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2536 error = dmu_tx_assign(tx, TXG_WAIT); 2537 if (error) { 2538 ztest_record_enospc("zap parallel"); 2539 dmu_tx_abort(tx); 2540 return; 2541 } 2542 txg = dmu_tx_get_txg(tx); 2543 bcopy(name, string_value, namelen); 2544 } else { 2545 tx = NULL; 2546 txg = 0; 2547 bzero(string_value, namelen); 2548 } 2549 2550 switch (i) { 2551 2552 case 0: 2553 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2554 if (error == 0) { 2555 ASSERT3U(wsize, ==, zl_wsize); 2556 ASSERT3U(wc, ==, zl_wc); 2557 } else { 2558 ASSERT3U(error, ==, ENOENT); 2559 } 2560 break; 2561 2562 case 1: 2563 error = zap_lookup(os, object, name, wsize, wc, data); 2564 if (error == 0) { 2565 if (data == string_value && 2566 bcmp(name, data, namelen) != 0) 2567 fatal(0, "name '%s' != val '%s' len %d", 2568 name, data, namelen); 2569 } else { 2570 ASSERT3U(error, ==, ENOENT); 2571 } 2572 break; 2573 2574 case 2: 2575 error = zap_add(os, object, name, wsize, wc, data, tx); 2576 ASSERT(error == 0 || error == EEXIST); 2577 break; 2578 2579 case 3: 2580 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2581 break; 2582 2583 case 4: 2584 error = zap_remove(os, object, name, tx); 2585 ASSERT(error == 0 || error == ENOENT); 2586 break; 2587 } 2588 2589 if (tx != NULL) 2590 dmu_tx_commit(tx); 2591 } 2592 2593 void 2594 ztest_dsl_prop_get_set(ztest_args_t *za) 2595 { 2596 objset_t *os = za->za_os; 2597 int i, inherit; 2598 uint64_t value; 2599 const char *prop, *valname; 2600 char setpoint[MAXPATHLEN]; 2601 char osname[MAXNAMELEN]; 2602 int error; 2603 2604 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2605 2606 dmu_objset_name(os, osname); 2607 2608 for (i = 0; i < 2; i++) { 2609 if (i == 0) { 2610 prop = "checksum"; 2611 value = ztest_random_checksum(); 2612 inherit = (value == ZIO_CHECKSUM_INHERIT); 2613 } else { 2614 prop = "compression"; 2615 value = ztest_random_compress(); 2616 inherit = (value == ZIO_COMPRESS_INHERIT); 2617 } 2618 2619 error = dsl_prop_set(osname, prop, sizeof (value), 2620 !inherit, &value); 2621 2622 if (error == ENOSPC) { 2623 ztest_record_enospc("dsl_prop_set"); 2624 break; 2625 } 2626 2627 ASSERT3U(error, ==, 0); 2628 2629 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2630 1, &value, setpoint), ==, 0); 2631 2632 if (i == 0) 2633 valname = zio_checksum_table[value].ci_name; 2634 else 2635 valname = zio_compress_table[value].ci_name; 2636 2637 if (zopt_verbose >= 6) { 2638 (void) printf("%s %s = %s for '%s'\n", 2639 osname, prop, valname, setpoint); 2640 } 2641 } 2642 2643 (void) rw_unlock(&ztest_shared->zs_name_lock); 2644 } 2645 2646 /* 2647 * Inject random faults into the on-disk data. 2648 */ 2649 void 2650 ztest_fault_inject(ztest_args_t *za) 2651 { 2652 int fd; 2653 uint64_t offset; 2654 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2655 uint64_t bad = 0x1990c0ffeedecade; 2656 uint64_t top, leaf; 2657 char path0[MAXPATHLEN]; 2658 char pathrand[MAXPATHLEN]; 2659 size_t fsize; 2660 spa_t *spa = za->za_spa; 2661 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2662 int iters = 1000; 2663 int maxfaults = zopt_maxfaults; 2664 vdev_t *vd0 = NULL; 2665 uint64_t guid0 = 0; 2666 2667 ASSERT(leaves >= 1); 2668 2669 /* 2670 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2671 */ 2672 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2673 2674 if (ztest_random(2) == 0) { 2675 /* 2676 * Inject errors on a normal data device. 2677 */ 2678 top = ztest_random(spa->spa_root_vdev->vdev_children); 2679 leaf = ztest_random(leaves); 2680 2681 /* 2682 * Generate paths to the first leaf in this top-level vdev, 2683 * and to the random leaf we selected. We'll induce transient 2684 * write failures and random online/offline activity on leaf 0, 2685 * and we'll write random garbage to the randomly chosen leaf. 2686 */ 2687 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 2688 zopt_dir, zopt_pool, top * leaves + 0); 2689 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 2690 zopt_dir, zopt_pool, top * leaves + leaf); 2691 2692 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2693 if (vd0 != NULL && maxfaults != 1) { 2694 /* 2695 * Make vd0 explicitly claim to be unreadable, 2696 * or unwriteable, or reach behind its back 2697 * and close the underlying fd. We can do this if 2698 * maxfaults == 0 because we'll fail and reexecute, 2699 * and we can do it if maxfaults >= 2 because we'll 2700 * have enough redundancy. If maxfaults == 1, the 2701 * combination of this with injection of random data 2702 * corruption below exceeds the pool's fault tolerance. 2703 */ 2704 vdev_file_t *vf = vd0->vdev_tsd; 2705 2706 if (vf != NULL && ztest_random(3) == 0) { 2707 (void) close(vf->vf_vnode->v_fd); 2708 vf->vf_vnode->v_fd = -1; 2709 } else if (ztest_random(2) == 0) { 2710 vd0->vdev_cant_read = B_TRUE; 2711 } else { 2712 vd0->vdev_cant_write = B_TRUE; 2713 } 2714 guid0 = vd0->vdev_guid; 2715 } 2716 } else { 2717 /* 2718 * Inject errors on an l2cache device. 2719 */ 2720 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2721 2722 if (sav->sav_count == 0) { 2723 spa_config_exit(spa, SCL_STATE, FTAG); 2724 return; 2725 } 2726 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2727 guid0 = vd0->vdev_guid; 2728 (void) strcpy(path0, vd0->vdev_path); 2729 (void) strcpy(pathrand, vd0->vdev_path); 2730 2731 leaf = 0; 2732 leaves = 1; 2733 maxfaults = INT_MAX; /* no limit on cache devices */ 2734 } 2735 2736 dprintf("damaging %s and %s\n", path0, pathrand); 2737 2738 spa_config_exit(spa, SCL_STATE, FTAG); 2739 2740 if (maxfaults == 0) 2741 return; 2742 2743 /* 2744 * If we can tolerate two or more faults, randomly online/offline vd0. 2745 */ 2746 if (maxfaults >= 2 && guid0 != 0) { 2747 if (ztest_random(10) < 6) 2748 (void) vdev_offline(spa, guid0, B_TRUE); 2749 else 2750 (void) vdev_online(spa, guid0, B_FALSE, NULL); 2751 } 2752 2753 /* 2754 * We have at least single-fault tolerance, so inject data corruption. 2755 */ 2756 fd = open(pathrand, O_RDWR); 2757 2758 if (fd == -1) /* we hit a gap in the device namespace */ 2759 return; 2760 2761 fsize = lseek(fd, 0, SEEK_END); 2762 2763 while (--iters != 0) { 2764 offset = ztest_random(fsize / (leaves << bshift)) * 2765 (leaves << bshift) + (leaf << bshift) + 2766 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2767 2768 if (offset >= fsize) 2769 continue; 2770 2771 if (zopt_verbose >= 6) 2772 (void) printf("injecting bad word into %s," 2773 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2774 2775 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2776 fatal(1, "can't inject bad word at 0x%llx in %s", 2777 offset, pathrand); 2778 } 2779 2780 (void) close(fd); 2781 } 2782 2783 /* 2784 * Scrub the pool. 2785 */ 2786 void 2787 ztest_scrub(ztest_args_t *za) 2788 { 2789 spa_t *spa = za->za_spa; 2790 2791 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2792 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2793 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2794 } 2795 2796 /* 2797 * Rename the pool to a different name and then rename it back. 2798 */ 2799 void 2800 ztest_spa_rename(ztest_args_t *za) 2801 { 2802 char *oldname, *newname; 2803 int error; 2804 spa_t *spa; 2805 2806 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2807 2808 oldname = za->za_pool; 2809 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2810 (void) strcpy(newname, oldname); 2811 (void) strcat(newname, "_tmp"); 2812 2813 /* 2814 * Do the rename 2815 */ 2816 error = spa_rename(oldname, newname); 2817 if (error) 2818 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2819 newname, error); 2820 2821 /* 2822 * Try to open it under the old name, which shouldn't exist 2823 */ 2824 error = spa_open(oldname, &spa, FTAG); 2825 if (error != ENOENT) 2826 fatal(0, "spa_open('%s') = %d", oldname, error); 2827 2828 /* 2829 * Open it under the new name and make sure it's still the same spa_t. 2830 */ 2831 error = spa_open(newname, &spa, FTAG); 2832 if (error != 0) 2833 fatal(0, "spa_open('%s') = %d", newname, error); 2834 2835 ASSERT(spa == za->za_spa); 2836 spa_close(spa, FTAG); 2837 2838 /* 2839 * Rename it back to the original 2840 */ 2841 error = spa_rename(newname, oldname); 2842 if (error) 2843 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2844 oldname, error); 2845 2846 /* 2847 * Make sure it can still be opened 2848 */ 2849 error = spa_open(oldname, &spa, FTAG); 2850 if (error != 0) 2851 fatal(0, "spa_open('%s') = %d", oldname, error); 2852 2853 ASSERT(spa == za->za_spa); 2854 spa_close(spa, FTAG); 2855 2856 umem_free(newname, strlen(newname) + 1); 2857 2858 (void) rw_unlock(&ztest_shared->zs_name_lock); 2859 } 2860 2861 2862 /* 2863 * Completely obliterate one disk. 2864 */ 2865 static void 2866 ztest_obliterate_one_disk(uint64_t vdev) 2867 { 2868 int fd; 2869 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2870 size_t fsize; 2871 2872 if (zopt_maxfaults < 2) 2873 return; 2874 2875 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2876 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2877 2878 fd = open(dev_name, O_RDWR); 2879 2880 if (fd == -1) 2881 fatal(1, "can't open %s", dev_name); 2882 2883 /* 2884 * Determine the size. 2885 */ 2886 fsize = lseek(fd, 0, SEEK_END); 2887 2888 (void) close(fd); 2889 2890 /* 2891 * Rename the old device to dev_name.old (useful for debugging). 2892 */ 2893 VERIFY(rename(dev_name, copy_name) == 0); 2894 2895 /* 2896 * Create a new one. 2897 */ 2898 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2899 VERIFY(ftruncate(fd, fsize) == 0); 2900 (void) close(fd); 2901 } 2902 2903 static void 2904 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2905 { 2906 char dev_name[MAXPATHLEN]; 2907 nvlist_t *root; 2908 int error; 2909 uint64_t guid; 2910 vdev_t *vd; 2911 2912 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2913 2914 /* 2915 * Build the nvlist describing dev_name. 2916 */ 2917 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 2918 2919 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2920 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2921 guid = 0; 2922 else 2923 guid = vd->vdev_guid; 2924 spa_config_exit(spa, SCL_VDEV, FTAG); 2925 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2926 if (error != 0 && 2927 error != EBUSY && 2928 error != ENOTSUP && 2929 error != ENODEV && 2930 error != EDOM) 2931 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2932 2933 nvlist_free(root); 2934 } 2935 2936 static void 2937 ztest_verify_blocks(char *pool) 2938 { 2939 int status; 2940 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2941 char zbuf[1024]; 2942 char *bin; 2943 char *ztest; 2944 char *isa; 2945 int isalen; 2946 FILE *fp; 2947 2948 (void) realpath(getexecname(), zdb); 2949 2950 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2951 bin = strstr(zdb, "/usr/bin/"); 2952 ztest = strstr(bin, "/ztest"); 2953 isa = bin + 8; 2954 isalen = ztest - isa; 2955 isa = strdup(isa); 2956 /* LINTED */ 2957 (void) sprintf(bin, 2958 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache -O %s %s", 2959 isalen, 2960 isa, 2961 zopt_verbose >= 3 ? "s" : "", 2962 zopt_verbose >= 4 ? "v" : "", 2963 ztest_random(2) == 0 ? "pre" : "post", pool); 2964 free(isa); 2965 2966 if (zopt_verbose >= 5) 2967 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2968 2969 fp = popen(zdb, "r"); 2970 2971 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2972 if (zopt_verbose >= 3) 2973 (void) printf("%s", zbuf); 2974 2975 status = pclose(fp); 2976 2977 if (status == 0) 2978 return; 2979 2980 ztest_dump_core = 0; 2981 if (WIFEXITED(status)) 2982 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2983 else 2984 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2985 } 2986 2987 static void 2988 ztest_walk_pool_directory(char *header) 2989 { 2990 spa_t *spa = NULL; 2991 2992 if (zopt_verbose >= 6) 2993 (void) printf("%s\n", header); 2994 2995 mutex_enter(&spa_namespace_lock); 2996 while ((spa = spa_next(spa)) != NULL) 2997 if (zopt_verbose >= 6) 2998 (void) printf("\t%s\n", spa_name(spa)); 2999 mutex_exit(&spa_namespace_lock); 3000 } 3001 3002 static void 3003 ztest_spa_import_export(char *oldname, char *newname) 3004 { 3005 nvlist_t *config; 3006 uint64_t pool_guid; 3007 spa_t *spa; 3008 int error; 3009 3010 if (zopt_verbose >= 4) { 3011 (void) printf("import/export: old = %s, new = %s\n", 3012 oldname, newname); 3013 } 3014 3015 /* 3016 * Clean up from previous runs. 3017 */ 3018 (void) spa_destroy(newname); 3019 3020 /* 3021 * Get the pool's configuration and guid. 3022 */ 3023 error = spa_open(oldname, &spa, FTAG); 3024 if (error) 3025 fatal(0, "spa_open('%s') = %d", oldname, error); 3026 3027 pool_guid = spa_guid(spa); 3028 spa_close(spa, FTAG); 3029 3030 ztest_walk_pool_directory("pools before export"); 3031 3032 /* 3033 * Export it. 3034 */ 3035 error = spa_export(oldname, &config, B_FALSE); 3036 if (error) 3037 fatal(0, "spa_export('%s') = %d", oldname, error); 3038 3039 ztest_walk_pool_directory("pools after export"); 3040 3041 /* 3042 * Import it under the new name. 3043 */ 3044 error = spa_import(newname, config, NULL); 3045 if (error) 3046 fatal(0, "spa_import('%s') = %d", newname, error); 3047 3048 ztest_walk_pool_directory("pools after import"); 3049 3050 /* 3051 * Try to import it again -- should fail with EEXIST. 3052 */ 3053 error = spa_import(newname, config, NULL); 3054 if (error != EEXIST) 3055 fatal(0, "spa_import('%s') twice", newname); 3056 3057 /* 3058 * Try to import it under a different name -- should fail with EEXIST. 3059 */ 3060 error = spa_import(oldname, config, NULL); 3061 if (error != EEXIST) 3062 fatal(0, "spa_import('%s') under multiple names", newname); 3063 3064 /* 3065 * Verify that the pool is no longer visible under the old name. 3066 */ 3067 error = spa_open(oldname, &spa, FTAG); 3068 if (error != ENOENT) 3069 fatal(0, "spa_open('%s') = %d", newname, error); 3070 3071 /* 3072 * Verify that we can open and close the pool using the new name. 3073 */ 3074 error = spa_open(newname, &spa, FTAG); 3075 if (error) 3076 fatal(0, "spa_open('%s') = %d", newname, error); 3077 ASSERT(pool_guid == spa_guid(spa)); 3078 spa_close(spa, FTAG); 3079 3080 nvlist_free(config); 3081 } 3082 3083 static void * 3084 ztest_resume(void *arg) 3085 { 3086 spa_t *spa = arg; 3087 3088 while (!ztest_exiting) { 3089 (void) poll(NULL, 0, 1000); 3090 3091 if (!spa_suspended(spa)) 3092 continue; 3093 3094 spa_vdev_state_enter(spa); 3095 vdev_clear(spa, NULL); 3096 (void) spa_vdev_state_exit(spa, NULL, 0); 3097 3098 zio_resume(spa); 3099 } 3100 return (NULL); 3101 } 3102 3103 static void * 3104 ztest_thread(void *arg) 3105 { 3106 ztest_args_t *za = arg; 3107 ztest_shared_t *zs = ztest_shared; 3108 hrtime_t now, functime; 3109 ztest_info_t *zi; 3110 int f, i; 3111 3112 while ((now = gethrtime()) < za->za_stop) { 3113 /* 3114 * See if it's time to force a crash. 3115 */ 3116 if (now > za->za_kill) { 3117 zs->zs_alloc = spa_get_alloc(za->za_spa); 3118 zs->zs_space = spa_get_space(za->za_spa); 3119 (void) kill(getpid(), SIGKILL); 3120 } 3121 3122 /* 3123 * Pick a random function. 3124 */ 3125 f = ztest_random(ZTEST_FUNCS); 3126 zi = &zs->zs_info[f]; 3127 3128 /* 3129 * Decide whether to call it, based on the requested frequency. 3130 */ 3131 if (zi->zi_call_target == 0 || 3132 (double)zi->zi_call_total / zi->zi_call_target > 3133 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3134 continue; 3135 3136 atomic_add_64(&zi->zi_calls, 1); 3137 atomic_add_64(&zi->zi_call_total, 1); 3138 3139 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3140 ZTEST_DIRSIZE; 3141 za->za_diroff_shared = (1ULL << 63); 3142 3143 for (i = 0; i < zi->zi_iters; i++) 3144 zi->zi_func(za); 3145 3146 functime = gethrtime() - now; 3147 3148 atomic_add_64(&zi->zi_call_time, functime); 3149 3150 if (zopt_verbose >= 4) { 3151 Dl_info dli; 3152 (void) dladdr((void *)zi->zi_func, &dli); 3153 (void) printf("%6.2f sec in %s\n", 3154 (double)functime / NANOSEC, dli.dli_sname); 3155 } 3156 3157 /* 3158 * If we're getting ENOSPC with some regularity, stop. 3159 */ 3160 if (zs->zs_enospc_count > 10) 3161 break; 3162 } 3163 3164 return (NULL); 3165 } 3166 3167 /* 3168 * Kick off threads to run tests on all datasets in parallel. 3169 */ 3170 static void 3171 ztest_run(char *pool) 3172 { 3173 int t, d, error; 3174 ztest_shared_t *zs = ztest_shared; 3175 ztest_args_t *za; 3176 spa_t *spa; 3177 char name[100]; 3178 thread_t resume_tid; 3179 3180 ztest_exiting = B_FALSE; 3181 3182 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3183 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3184 3185 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3186 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3187 3188 /* 3189 * Destroy one disk before we even start. 3190 * It's mirrored, so everything should work just fine. 3191 * This makes us exercise fault handling very early in spa_load(). 3192 */ 3193 ztest_obliterate_one_disk(0); 3194 3195 /* 3196 * Verify that the sum of the sizes of all blocks in the pool 3197 * equals the SPA's allocated space total. 3198 */ 3199 ztest_verify_blocks(pool); 3200 3201 /* 3202 * Kick off a replacement of the disk we just obliterated. 3203 */ 3204 kernel_init(FREAD | FWRITE); 3205 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3206 ztest_replace_one_disk(spa, 0); 3207 if (zopt_verbose >= 5) 3208 show_pool_stats(spa); 3209 spa_close(spa, FTAG); 3210 kernel_fini(); 3211 3212 kernel_init(FREAD | FWRITE); 3213 3214 /* 3215 * Verify that we can export the pool and reimport it under a 3216 * different name. 3217 */ 3218 if (ztest_random(2) == 0) { 3219 (void) snprintf(name, 100, "%s_import", pool); 3220 ztest_spa_import_export(pool, name); 3221 ztest_spa_import_export(name, pool); 3222 } 3223 3224 /* 3225 * Verify that we can loop over all pools. 3226 */ 3227 mutex_enter(&spa_namespace_lock); 3228 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3229 if (zopt_verbose > 3) { 3230 (void) printf("spa_next: found %s\n", spa_name(spa)); 3231 } 3232 } 3233 mutex_exit(&spa_namespace_lock); 3234 3235 /* 3236 * Open our pool. 3237 */ 3238 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3239 3240 /* 3241 * Create a thread to periodically resume suspended I/O. 3242 */ 3243 VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND, 3244 &resume_tid) == 0); 3245 3246 /* 3247 * Verify that we can safely inquire about about any object, 3248 * whether it's allocated or not. To make it interesting, 3249 * we probe a 5-wide window around each power of two. 3250 * This hits all edge cases, including zero and the max. 3251 */ 3252 for (t = 0; t < 64; t++) { 3253 for (d = -5; d <= 5; d++) { 3254 error = dmu_object_info(spa->spa_meta_objset, 3255 (1ULL << t) + d, NULL); 3256 ASSERT(error == 0 || error == ENOENT || 3257 error == EINVAL); 3258 } 3259 } 3260 3261 /* 3262 * Now kick off all the tests that run in parallel. 3263 */ 3264 zs->zs_enospc_count = 0; 3265 3266 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3267 3268 if (zopt_verbose >= 4) 3269 (void) printf("starting main threads...\n"); 3270 3271 za[0].za_start = gethrtime(); 3272 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3273 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3274 za[0].za_kill = za[0].za_stop; 3275 if (ztest_random(100) < zopt_killrate) 3276 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3277 3278 for (t = 0; t < zopt_threads; t++) { 3279 d = t % zopt_datasets; 3280 3281 (void) strcpy(za[t].za_pool, pool); 3282 za[t].za_os = za[d].za_os; 3283 za[t].za_spa = spa; 3284 za[t].za_zilog = za[d].za_zilog; 3285 za[t].za_instance = t; 3286 za[t].za_random = ztest_random(-1ULL); 3287 za[t].za_start = za[0].za_start; 3288 za[t].za_stop = za[0].za_stop; 3289 za[t].za_kill = za[0].za_kill; 3290 3291 if (t < zopt_datasets) { 3292 ztest_replay_t zr; 3293 int test_future = FALSE; 3294 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3295 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3296 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3297 ztest_create_cb, NULL); 3298 if (error == EEXIST) { 3299 test_future = TRUE; 3300 } else if (error == ENOSPC) { 3301 zs->zs_enospc_count++; 3302 (void) rw_unlock(&ztest_shared->zs_name_lock); 3303 break; 3304 } else if (error != 0) { 3305 fatal(0, "dmu_objset_create(%s) = %d", 3306 name, error); 3307 } 3308 error = dmu_objset_open(name, DMU_OST_OTHER, 3309 DS_MODE_USER, &za[d].za_os); 3310 if (error) 3311 fatal(0, "dmu_objset_open('%s') = %d", 3312 name, error); 3313 (void) rw_unlock(&ztest_shared->zs_name_lock); 3314 if (test_future) 3315 ztest_dmu_check_future_leak(&za[t]); 3316 zr.zr_os = za[d].za_os; 3317 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 3318 ztest_replay_vector, NULL); 3319 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3320 } 3321 3322 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3323 &za[t].za_thread) == 0); 3324 } 3325 3326 while (--t >= 0) { 3327 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3328 if (za[t].za_th) 3329 traverse_fini(za[t].za_th); 3330 if (t < zopt_datasets) { 3331 zil_close(za[t].za_zilog); 3332 dmu_objset_close(za[t].za_os); 3333 } 3334 } 3335 3336 if (zopt_verbose >= 3) 3337 show_pool_stats(spa); 3338 3339 txg_wait_synced(spa_get_dsl(spa), 0); 3340 3341 zs->zs_alloc = spa_get_alloc(spa); 3342 zs->zs_space = spa_get_space(spa); 3343 3344 /* 3345 * If we had out-of-space errors, destroy a random objset. 3346 */ 3347 if (zs->zs_enospc_count != 0) { 3348 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3349 d = (int)ztest_random(zopt_datasets); 3350 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3351 if (zopt_verbose >= 3) 3352 (void) printf("Destroying %s to free up space\n", name); 3353 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3354 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3355 (void) rw_unlock(&ztest_shared->zs_name_lock); 3356 } 3357 3358 txg_wait_synced(spa_get_dsl(spa), 0); 3359 3360 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3361 3362 /* Kill the resume thread */ 3363 ztest_exiting = B_TRUE; 3364 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3365 3366 /* 3367 * Right before closing the pool, kick off a bunch of async I/O; 3368 * spa_close() should wait for it to complete. 3369 */ 3370 for (t = 1; t < 50; t++) 3371 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3372 3373 spa_close(spa, FTAG); 3374 3375 kernel_fini(); 3376 } 3377 3378 void 3379 print_time(hrtime_t t, char *timebuf) 3380 { 3381 hrtime_t s = t / NANOSEC; 3382 hrtime_t m = s / 60; 3383 hrtime_t h = m / 60; 3384 hrtime_t d = h / 24; 3385 3386 s -= m * 60; 3387 m -= h * 60; 3388 h -= d * 24; 3389 3390 timebuf[0] = '\0'; 3391 3392 if (d) 3393 (void) sprintf(timebuf, 3394 "%llud%02lluh%02llum%02llus", d, h, m, s); 3395 else if (h) 3396 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3397 else if (m) 3398 (void) sprintf(timebuf, "%llum%02llus", m, s); 3399 else 3400 (void) sprintf(timebuf, "%llus", s); 3401 } 3402 3403 /* 3404 * Create a storage pool with the given name and initial vdev size. 3405 * Then create the specified number of datasets in the pool. 3406 */ 3407 static void 3408 ztest_init(char *pool) 3409 { 3410 spa_t *spa; 3411 int error; 3412 nvlist_t *nvroot; 3413 3414 kernel_init(FREAD | FWRITE); 3415 3416 /* 3417 * Create the storage pool. 3418 */ 3419 (void) spa_destroy(pool); 3420 ztest_shared->zs_vdev_primaries = 0; 3421 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3422 0, zopt_raidz, zopt_mirrors, 1); 3423 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3424 nvlist_free(nvroot); 3425 3426 if (error) 3427 fatal(0, "spa_create() = %d", error); 3428 error = spa_open(pool, &spa, FTAG); 3429 if (error) 3430 fatal(0, "spa_open() = %d", error); 3431 3432 if (zopt_verbose >= 3) 3433 show_pool_stats(spa); 3434 3435 spa_close(spa, FTAG); 3436 3437 kernel_fini(); 3438 } 3439 3440 int 3441 main(int argc, char **argv) 3442 { 3443 int kills = 0; 3444 int iters = 0; 3445 int i, f; 3446 ztest_shared_t *zs; 3447 ztest_info_t *zi; 3448 char timebuf[100]; 3449 char numbuf[6]; 3450 3451 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3452 3453 /* Override location of zpool.cache */ 3454 spa_config_path = "/tmp/zpool.cache"; 3455 3456 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3457 3458 process_options(argc, argv); 3459 3460 argc -= optind; 3461 argv += optind; 3462 3463 dprintf_setup(&argc, argv); 3464 3465 /* 3466 * Blow away any existing copy of zpool.cache 3467 */ 3468 if (zopt_init != 0) 3469 (void) remove("/tmp/zpool.cache"); 3470 3471 zs = ztest_shared = (void *)mmap(0, 3472 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3473 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3474 3475 if (zopt_verbose >= 1) { 3476 (void) printf("%llu vdevs, %d datasets, %d threads," 3477 " %llu seconds...\n", 3478 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3479 (u_longlong_t)zopt_time); 3480 } 3481 3482 /* 3483 * Create and initialize our storage pool. 3484 */ 3485 for (i = 1; i <= zopt_init; i++) { 3486 bzero(zs, sizeof (ztest_shared_t)); 3487 if (zopt_verbose >= 3 && zopt_init != 1) 3488 (void) printf("ztest_init(), pass %d\n", i); 3489 ztest_init(zopt_pool); 3490 } 3491 3492 /* 3493 * Initialize the call targets for each function. 3494 */ 3495 for (f = 0; f < ZTEST_FUNCS; f++) { 3496 zi = &zs->zs_info[f]; 3497 3498 *zi = ztest_info[f]; 3499 3500 if (*zi->zi_interval == 0) 3501 zi->zi_call_target = UINT64_MAX; 3502 else 3503 zi->zi_call_target = zopt_time / *zi->zi_interval; 3504 } 3505 3506 zs->zs_start_time = gethrtime(); 3507 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3508 3509 /* 3510 * Run the tests in a loop. These tests include fault injection 3511 * to verify that self-healing data works, and forced crashes 3512 * to verify that we never lose on-disk consistency. 3513 */ 3514 while (gethrtime() < zs->zs_stop_time) { 3515 int status; 3516 pid_t pid; 3517 char *tmp; 3518 3519 /* 3520 * Initialize the workload counters for each function. 3521 */ 3522 for (f = 0; f < ZTEST_FUNCS; f++) { 3523 zi = &zs->zs_info[f]; 3524 zi->zi_calls = 0; 3525 zi->zi_call_time = 0; 3526 } 3527 3528 pid = fork(); 3529 3530 if (pid == -1) 3531 fatal(1, "fork failed"); 3532 3533 if (pid == 0) { /* child */ 3534 struct rlimit rl = { 1024, 1024 }; 3535 (void) setrlimit(RLIMIT_NOFILE, &rl); 3536 (void) enable_extended_FILE_stdio(-1, -1); 3537 ztest_run(zopt_pool); 3538 exit(0); 3539 } 3540 3541 while (waitpid(pid, &status, 0) != pid) 3542 continue; 3543 3544 if (WIFEXITED(status)) { 3545 if (WEXITSTATUS(status) != 0) { 3546 (void) fprintf(stderr, 3547 "child exited with code %d\n", 3548 WEXITSTATUS(status)); 3549 exit(2); 3550 } 3551 } else if (WIFSIGNALED(status)) { 3552 if (WTERMSIG(status) != SIGKILL) { 3553 (void) fprintf(stderr, 3554 "child died with signal %d\n", 3555 WTERMSIG(status)); 3556 exit(3); 3557 } 3558 kills++; 3559 } else { 3560 (void) fprintf(stderr, "something strange happened " 3561 "to child\n"); 3562 exit(4); 3563 } 3564 3565 iters++; 3566 3567 if (zopt_verbose >= 1) { 3568 hrtime_t now = gethrtime(); 3569 3570 now = MIN(now, zs->zs_stop_time); 3571 print_time(zs->zs_stop_time - now, timebuf); 3572 nicenum(zs->zs_space, numbuf); 3573 3574 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3575 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3576 iters, 3577 WIFEXITED(status) ? "Complete" : "SIGKILL", 3578 (u_longlong_t)zs->zs_enospc_count, 3579 100.0 * zs->zs_alloc / zs->zs_space, 3580 numbuf, 3581 100.0 * (now - zs->zs_start_time) / 3582 (zopt_time * NANOSEC), timebuf); 3583 } 3584 3585 if (zopt_verbose >= 2) { 3586 (void) printf("\nWorkload summary:\n\n"); 3587 (void) printf("%7s %9s %s\n", 3588 "Calls", "Time", "Function"); 3589 (void) printf("%7s %9s %s\n", 3590 "-----", "----", "--------"); 3591 for (f = 0; f < ZTEST_FUNCS; f++) { 3592 Dl_info dli; 3593 3594 zi = &zs->zs_info[f]; 3595 print_time(zi->zi_call_time, timebuf); 3596 (void) dladdr((void *)zi->zi_func, &dli); 3597 (void) printf("%7llu %9s %s\n", 3598 (u_longlong_t)zi->zi_calls, timebuf, 3599 dli.dli_sname); 3600 } 3601 (void) printf("\n"); 3602 } 3603 3604 /* 3605 * It's possible that we killed a child during a rename test, in 3606 * which case we'll have a 'ztest_tmp' pool lying around instead 3607 * of 'ztest'. Do a blind rename in case this happened. 3608 */ 3609 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3610 (void) strcpy(tmp, zopt_pool); 3611 (void) strcat(tmp, "_tmp"); 3612 kernel_init(FREAD | FWRITE); 3613 (void) spa_rename(tmp, zopt_pool); 3614 kernel_fini(); 3615 umem_free(tmp, strlen(tmp) + 1); 3616 } 3617 3618 ztest_verify_blocks(zopt_pool); 3619 3620 if (zopt_verbose >= 1) { 3621 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3622 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3623 } 3624 3625 return (0); 3626 } 3627