xref: /titanic_52/usr/src/cmd/ztest/ztest.c (revision f0f2c3a5cf65a61de34af42edac38b2a7bda3416)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The objective of this program is to provide a DMU/ZAP/SPA stress test
28  * that runs entirely in userland, is easy to use, and easy to extend.
29  *
30  * The overall design of the ztest program is as follows:
31  *
32  * (1) For each major functional area (e.g. adding vdevs to a pool,
33  *     creating and destroying datasets, reading and writing objects, etc)
34  *     we have a simple routine to test that functionality.  These
35  *     individual routines do not have to do anything "stressful".
36  *
37  * (2) We turn these simple functionality tests into a stress test by
38  *     running them all in parallel, with as many threads as desired,
39  *     and spread across as many datasets, objects, and vdevs as desired.
40  *
41  * (3) While all this is happening, we inject faults into the pool to
42  *     verify that self-healing data really works.
43  *
44  * (4) Every time we open a dataset, we change its checksum and compression
45  *     functions.  Thus even individual objects vary from block to block
46  *     in which checksum they use and whether they're compressed.
47  *
48  * (5) To verify that we never lose on-disk consistency after a crash,
49  *     we run the entire test in a child of the main process.
50  *     At random times, the child self-immolates with a SIGKILL.
51  *     This is the software equivalent of pulling the power cord.
52  *     The parent then runs the test again, using the existing
53  *     storage pool, as many times as desired.
54  *
55  * (6) To verify that we don't have future leaks or temporal incursions,
56  *     many of the functional tests record the transaction group number
57  *     as part of their data.  When reading old data, they verify that
58  *     the transaction group number is less than the current, open txg.
59  *     If you add a new test, please do this if applicable.
60  *
61  * When run with no arguments, ztest runs for about five minutes and
62  * produces no output if successful.  To get a little bit of information,
63  * specify -V.  To get more information, specify -VV, and so on.
64  *
65  * To turn this into an overnight stress test, use -T to specify run time.
66  *
67  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68  * to increase the pool capacity, fanout, and overall stress level.
69  *
70  * The -N(okill) option will suppress kills, so each child runs to completion.
71  * This can be useful when you're trying to distinguish temporal incursions
72  * from plain old race conditions.
73  */
74 
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/dbuf.h>
80 #include <sys/zap.h>
81 #include <sys/dmu_objset.h>
82 #include <sys/poll.h>
83 #include <sys/stat.h>
84 #include <sys/time.h>
85 #include <sys/wait.h>
86 #include <sys/mman.h>
87 #include <sys/resource.h>
88 #include <sys/zio.h>
89 #include <sys/zio_checksum.h>
90 #include <sys/zio_compress.h>
91 #include <sys/zil.h>
92 #include <sys/vdev_impl.h>
93 #include <sys/vdev_file.h>
94 #include <sys/spa_impl.h>
95 #include <sys/dsl_prop.h>
96 #include <sys/dsl_dataset.h>
97 #include <sys/refcount.h>
98 #include <stdio.h>
99 #include <stdio_ext.h>
100 #include <stdlib.h>
101 #include <unistd.h>
102 #include <signal.h>
103 #include <umem.h>
104 #include <dlfcn.h>
105 #include <ctype.h>
106 #include <math.h>
107 #include <sys/fs/zfs.h>
108 
109 static char cmdname[] = "ztest";
110 static char *zopt_pool = cmdname;
111 
112 static uint64_t zopt_vdevs = 5;
113 static uint64_t zopt_vdevtime;
114 static int zopt_ashift = SPA_MINBLOCKSHIFT;
115 static int zopt_mirrors = 2;
116 static int zopt_raidz = 4;
117 static int zopt_raidz_parity = 1;
118 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
119 static int zopt_datasets = 7;
120 static int zopt_threads = 23;
121 static uint64_t zopt_passtime = 60;	/* 60 seconds */
122 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
123 static int zopt_verbose = 0;
124 static int zopt_init = 1;
125 static char *zopt_dir = "/tmp";
126 static uint64_t zopt_time = 300;	/* 5 minutes */
127 static int zopt_maxfaults;
128 
129 typedef struct ztest_block_tag {
130 	uint64_t	bt_objset;
131 	uint64_t	bt_object;
132 	uint64_t	bt_offset;
133 	uint64_t	bt_txg;
134 	uint64_t	bt_thread;
135 	uint64_t	bt_seq;
136 } ztest_block_tag_t;
137 
138 typedef struct ztest_args {
139 	char		za_pool[MAXNAMELEN];
140 	spa_t		*za_spa;
141 	objset_t	*za_os;
142 	zilog_t		*za_zilog;
143 	thread_t	za_thread;
144 	uint64_t	za_instance;
145 	uint64_t	za_random;
146 	uint64_t	za_diroff;
147 	uint64_t	za_diroff_shared;
148 	uint64_t	za_zil_seq;
149 	hrtime_t	za_start;
150 	hrtime_t	za_stop;
151 	hrtime_t	za_kill;
152 	/*
153 	 * Thread-local variables can go here to aid debugging.
154 	 */
155 	ztest_block_tag_t za_rbt;
156 	ztest_block_tag_t za_wbt;
157 	dmu_object_info_t za_doi;
158 	dmu_buf_t	*za_dbuf;
159 } ztest_args_t;
160 
161 typedef void ztest_func_t(ztest_args_t *);
162 
163 /*
164  * Note: these aren't static because we want dladdr() to work.
165  */
166 ztest_func_t ztest_dmu_read_write;
167 ztest_func_t ztest_dmu_read_write_zcopy;
168 ztest_func_t ztest_dmu_write_parallel;
169 ztest_func_t ztest_dmu_object_alloc_free;
170 ztest_func_t ztest_zap;
171 ztest_func_t ztest_zap_parallel;
172 ztest_func_t ztest_traverse;
173 ztest_func_t ztest_dsl_prop_get_set;
174 ztest_func_t ztest_dmu_objset_create_destroy;
175 ztest_func_t ztest_dmu_snapshot_create_destroy;
176 ztest_func_t ztest_dsl_dataset_promote_busy;
177 ztest_func_t ztest_spa_create_destroy;
178 ztest_func_t ztest_fault_inject;
179 ztest_func_t ztest_spa_rename;
180 ztest_func_t ztest_vdev_attach_detach;
181 ztest_func_t ztest_vdev_LUN_growth;
182 ztest_func_t ztest_vdev_add_remove;
183 ztest_func_t ztest_vdev_aux_add_remove;
184 ztest_func_t ztest_scrub;
185 
186 typedef struct ztest_info {
187 	ztest_func_t	*zi_func;	/* test function */
188 	uint64_t	zi_iters;	/* iterations per execution */
189 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
190 	uint64_t	zi_calls;	/* per-pass count */
191 	uint64_t	zi_call_time;	/* per-pass time */
192 	uint64_t	zi_call_total;	/* cumulative total */
193 	uint64_t	zi_call_target;	/* target cumulative total */
194 } ztest_info_t;
195 
196 uint64_t zopt_always = 0;		/* all the time */
197 uint64_t zopt_often = 1;		/* every second */
198 uint64_t zopt_sometimes = 10;		/* every 10 seconds */
199 uint64_t zopt_rarely = 60;		/* every 60 seconds */
200 
201 ztest_info_t ztest_info[] = {
202 	{ ztest_dmu_read_write,			1,	&zopt_always	},
203 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_always	},
204 	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
205 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
206 	{ ztest_zap,				30,	&zopt_always	},
207 	{ ztest_zap_parallel,			100,	&zopt_always	},
208 	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
209 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
210 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
211 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
212 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
213 	{ ztest_spa_rename,			1,	&zopt_rarely	},
214 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
215 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
216 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
217 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
218 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
219 	{ ztest_scrub,				1,	&zopt_vdevtime	},
220 };
221 
222 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
223 
224 #define	ZTEST_SYNC_LOCKS	16
225 
226 /*
227  * Stuff we need to share writably between parent and child.
228  */
229 typedef struct ztest_shared {
230 	mutex_t		zs_vdev_lock;
231 	rwlock_t	zs_name_lock;
232 	uint64_t	zs_vdev_primaries;
233 	uint64_t	zs_vdev_aux;
234 	uint64_t	zs_enospc_count;
235 	hrtime_t	zs_start_time;
236 	hrtime_t	zs_stop_time;
237 	uint64_t	zs_alloc;
238 	uint64_t	zs_space;
239 	ztest_info_t	zs_info[ZTEST_FUNCS];
240 	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
241 	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
242 } ztest_shared_t;
243 
244 static char ztest_dev_template[] = "%s/%s.%llua";
245 static char ztest_aux_template[] = "%s/%s.%s.%llu";
246 static ztest_shared_t *ztest_shared;
247 
248 static int ztest_random_fd;
249 static int ztest_dump_core = 1;
250 
251 static uint64_t metaslab_sz;
252 static boolean_t ztest_exiting;
253 
254 extern uint64_t metaslab_gang_bang;
255 extern uint64_t metaslab_df_alloc_threshold;
256 
257 #define	ZTEST_DIROBJ		1
258 #define	ZTEST_MICROZAP_OBJ	2
259 #define	ZTEST_FATZAP_OBJ	3
260 
261 #define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
262 #define	ZTEST_DIRSIZE		256
263 
264 static void usage(boolean_t) __NORETURN;
265 
266 /*
267  * These libumem hooks provide a reasonable set of defaults for the allocator's
268  * debugging facilities.
269  */
270 const char *
271 _umem_debug_init()
272 {
273 	return ("default,verbose"); /* $UMEM_DEBUG setting */
274 }
275 
276 const char *
277 _umem_logging_init(void)
278 {
279 	return ("fail,contents"); /* $UMEM_LOGGING setting */
280 }
281 
282 #define	FATAL_MSG_SZ	1024
283 
284 char *fatal_msg;
285 
286 static void
287 fatal(int do_perror, char *message, ...)
288 {
289 	va_list args;
290 	int save_errno = errno;
291 	char buf[FATAL_MSG_SZ];
292 
293 	(void) fflush(stdout);
294 
295 	va_start(args, message);
296 	(void) sprintf(buf, "ztest: ");
297 	/* LINTED */
298 	(void) vsprintf(buf + strlen(buf), message, args);
299 	va_end(args);
300 	if (do_perror) {
301 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
302 		    ": %s", strerror(save_errno));
303 	}
304 	(void) fprintf(stderr, "%s\n", buf);
305 	fatal_msg = buf;			/* to ease debugging */
306 	if (ztest_dump_core)
307 		abort();
308 	exit(3);
309 }
310 
311 static int
312 str2shift(const char *buf)
313 {
314 	const char *ends = "BKMGTPEZ";
315 	int i;
316 
317 	if (buf[0] == '\0')
318 		return (0);
319 	for (i = 0; i < strlen(ends); i++) {
320 		if (toupper(buf[0]) == ends[i])
321 			break;
322 	}
323 	if (i == strlen(ends)) {
324 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
325 		    buf);
326 		usage(B_FALSE);
327 	}
328 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
329 		return (10*i);
330 	}
331 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
332 	usage(B_FALSE);
333 	/* NOTREACHED */
334 }
335 
336 static uint64_t
337 nicenumtoull(const char *buf)
338 {
339 	char *end;
340 	uint64_t val;
341 
342 	val = strtoull(buf, &end, 0);
343 	if (end == buf) {
344 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
345 		usage(B_FALSE);
346 	} else if (end[0] == '.') {
347 		double fval = strtod(buf, &end);
348 		fval *= pow(2, str2shift(end));
349 		if (fval > UINT64_MAX) {
350 			(void) fprintf(stderr, "ztest: value too large: %s\n",
351 			    buf);
352 			usage(B_FALSE);
353 		}
354 		val = (uint64_t)fval;
355 	} else {
356 		int shift = str2shift(end);
357 		if (shift >= 64 || (val << shift) >> shift != val) {
358 			(void) fprintf(stderr, "ztest: value too large: %s\n",
359 			    buf);
360 			usage(B_FALSE);
361 		}
362 		val <<= shift;
363 	}
364 	return (val);
365 }
366 
367 static void
368 usage(boolean_t requested)
369 {
370 	char nice_vdev_size[10];
371 	char nice_gang_bang[10];
372 	FILE *fp = requested ? stdout : stderr;
373 
374 	nicenum(zopt_vdev_size, nice_vdev_size);
375 	nicenum(metaslab_gang_bang, nice_gang_bang);
376 
377 	(void) fprintf(fp, "Usage: %s\n"
378 	    "\t[-v vdevs (default: %llu)]\n"
379 	    "\t[-s size_of_each_vdev (default: %s)]\n"
380 	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
381 	    "\t[-m mirror_copies (default: %d)]\n"
382 	    "\t[-r raidz_disks (default: %d)]\n"
383 	    "\t[-R raidz_parity (default: %d)]\n"
384 	    "\t[-d datasets (default: %d)]\n"
385 	    "\t[-t threads (default: %d)]\n"
386 	    "\t[-g gang_block_threshold (default: %s)]\n"
387 	    "\t[-i initialize pool i times (default: %d)]\n"
388 	    "\t[-k kill percentage (default: %llu%%)]\n"
389 	    "\t[-p pool_name (default: %s)]\n"
390 	    "\t[-f file directory for vdev files (default: %s)]\n"
391 	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
392 	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
393 	    "\t[-T time] total run time (default: %llu sec)\n"
394 	    "\t[-P passtime] time per pass (default: %llu sec)\n"
395 	    "\t[-h] (print help)\n"
396 	    "",
397 	    cmdname,
398 	    (u_longlong_t)zopt_vdevs,			/* -v */
399 	    nice_vdev_size,				/* -s */
400 	    zopt_ashift,				/* -a */
401 	    zopt_mirrors,				/* -m */
402 	    zopt_raidz,					/* -r */
403 	    zopt_raidz_parity,				/* -R */
404 	    zopt_datasets,				/* -d */
405 	    zopt_threads,				/* -t */
406 	    nice_gang_bang,				/* -g */
407 	    zopt_init,					/* -i */
408 	    (u_longlong_t)zopt_killrate,		/* -k */
409 	    zopt_pool,					/* -p */
410 	    zopt_dir,					/* -f */
411 	    (u_longlong_t)zopt_time,			/* -T */
412 	    (u_longlong_t)zopt_passtime);		/* -P */
413 	exit(requested ? 0 : 1);
414 }
415 
416 static uint64_t
417 ztest_random(uint64_t range)
418 {
419 	uint64_t r;
420 
421 	if (range == 0)
422 		return (0);
423 
424 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
425 		fatal(1, "short read from /dev/urandom");
426 
427 	return (r % range);
428 }
429 
430 /* ARGSUSED */
431 static void
432 ztest_record_enospc(char *s)
433 {
434 	ztest_shared->zs_enospc_count++;
435 }
436 
437 static void
438 process_options(int argc, char **argv)
439 {
440 	int opt;
441 	uint64_t value;
442 
443 	/* By default, test gang blocks for blocks 32K and greater */
444 	metaslab_gang_bang = 32 << 10;
445 
446 	while ((opt = getopt(argc, argv,
447 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
448 		value = 0;
449 		switch (opt) {
450 		case 'v':
451 		case 's':
452 		case 'a':
453 		case 'm':
454 		case 'r':
455 		case 'R':
456 		case 'd':
457 		case 't':
458 		case 'g':
459 		case 'i':
460 		case 'k':
461 		case 'T':
462 		case 'P':
463 			value = nicenumtoull(optarg);
464 		}
465 		switch (opt) {
466 		case 'v':
467 			zopt_vdevs = value;
468 			break;
469 		case 's':
470 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
471 			break;
472 		case 'a':
473 			zopt_ashift = value;
474 			break;
475 		case 'm':
476 			zopt_mirrors = value;
477 			break;
478 		case 'r':
479 			zopt_raidz = MAX(1, value);
480 			break;
481 		case 'R':
482 			zopt_raidz_parity = MIN(MAX(value, 1), 2);
483 			break;
484 		case 'd':
485 			zopt_datasets = MAX(1, value);
486 			break;
487 		case 't':
488 			zopt_threads = MAX(1, value);
489 			break;
490 		case 'g':
491 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
492 			break;
493 		case 'i':
494 			zopt_init = value;
495 			break;
496 		case 'k':
497 			zopt_killrate = value;
498 			break;
499 		case 'p':
500 			zopt_pool = strdup(optarg);
501 			break;
502 		case 'f':
503 			zopt_dir = strdup(optarg);
504 			break;
505 		case 'V':
506 			zopt_verbose++;
507 			break;
508 		case 'E':
509 			zopt_init = 0;
510 			break;
511 		case 'T':
512 			zopt_time = value;
513 			break;
514 		case 'P':
515 			zopt_passtime = MAX(1, value);
516 			break;
517 		case 'h':
518 			usage(B_TRUE);
519 			break;
520 		case '?':
521 		default:
522 			usage(B_FALSE);
523 			break;
524 		}
525 	}
526 
527 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
528 
529 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
530 	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
531 }
532 
533 static uint64_t
534 ztest_get_ashift(void)
535 {
536 	if (zopt_ashift == 0)
537 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
538 	return (zopt_ashift);
539 }
540 
541 static nvlist_t *
542 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
543 {
544 	char pathbuf[MAXPATHLEN];
545 	uint64_t vdev;
546 	nvlist_t *file;
547 
548 	if (ashift == 0)
549 		ashift = ztest_get_ashift();
550 
551 	if (path == NULL) {
552 		path = pathbuf;
553 
554 		if (aux != NULL) {
555 			vdev = ztest_shared->zs_vdev_aux;
556 			(void) sprintf(path, ztest_aux_template,
557 			    zopt_dir, zopt_pool, aux, vdev);
558 		} else {
559 			vdev = ztest_shared->zs_vdev_primaries++;
560 			(void) sprintf(path, ztest_dev_template,
561 			    zopt_dir, zopt_pool, vdev);
562 		}
563 	}
564 
565 	if (size != 0) {
566 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
567 		if (fd == -1)
568 			fatal(1, "can't open %s", path);
569 		if (ftruncate(fd, size) != 0)
570 			fatal(1, "can't ftruncate %s", path);
571 		(void) close(fd);
572 	}
573 
574 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
575 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
576 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
577 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
578 
579 	return (file);
580 }
581 
582 static nvlist_t *
583 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
584 {
585 	nvlist_t *raidz, **child;
586 	int c;
587 
588 	if (r < 2)
589 		return (make_vdev_file(path, aux, size, ashift));
590 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
591 
592 	for (c = 0; c < r; c++)
593 		child[c] = make_vdev_file(path, aux, size, ashift);
594 
595 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
596 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
597 	    VDEV_TYPE_RAIDZ) == 0);
598 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
599 	    zopt_raidz_parity) == 0);
600 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
601 	    child, r) == 0);
602 
603 	for (c = 0; c < r; c++)
604 		nvlist_free(child[c]);
605 
606 	umem_free(child, r * sizeof (nvlist_t *));
607 
608 	return (raidz);
609 }
610 
611 static nvlist_t *
612 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
613 	int r, int m)
614 {
615 	nvlist_t *mirror, **child;
616 	int c;
617 
618 	if (m < 1)
619 		return (make_vdev_raidz(path, aux, size, ashift, r));
620 
621 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
622 
623 	for (c = 0; c < m; c++)
624 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
625 
626 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
627 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
628 	    VDEV_TYPE_MIRROR) == 0);
629 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
630 	    child, m) == 0);
631 
632 	for (c = 0; c < m; c++)
633 		nvlist_free(child[c]);
634 
635 	umem_free(child, m * sizeof (nvlist_t *));
636 
637 	return (mirror);
638 }
639 
640 static nvlist_t *
641 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
642 	int log, int r, int m, int t)
643 {
644 	nvlist_t *root, **child;
645 	int c;
646 
647 	ASSERT(t > 0);
648 
649 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
650 
651 	for (c = 0; c < t; c++) {
652 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
653 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
654 		    log) == 0);
655 	}
656 
657 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
658 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
659 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
660 	    child, t) == 0);
661 
662 	for (c = 0; c < t; c++)
663 		nvlist_free(child[c]);
664 
665 	umem_free(child, t * sizeof (nvlist_t *));
666 
667 	return (root);
668 }
669 
670 static void
671 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
672 {
673 	int bs = SPA_MINBLOCKSHIFT +
674 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
675 	int ibs = DN_MIN_INDBLKSHIFT +
676 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
677 	int error;
678 
679 	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
680 	if (error) {
681 		char osname[300];
682 		dmu_objset_name(os, osname);
683 		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
684 		    osname, object, 1 << bs, ibs, error);
685 	}
686 }
687 
688 static uint8_t
689 ztest_random_checksum(void)
690 {
691 	uint8_t checksum;
692 
693 	do {
694 		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
695 	} while (zio_checksum_table[checksum].ci_zbt);
696 
697 	if (checksum == ZIO_CHECKSUM_OFF)
698 		checksum = ZIO_CHECKSUM_ON;
699 
700 	return (checksum);
701 }
702 
703 static uint8_t
704 ztest_random_compress(void)
705 {
706 	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
707 }
708 
709 static int
710 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap)
711 {
712 	dmu_tx_t *tx;
713 	int error;
714 
715 	if (byteswap)
716 		byteswap_uint64_array(lr, sizeof (*lr));
717 
718 	tx = dmu_tx_create(os);
719 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
720 	error = dmu_tx_assign(tx, TXG_WAIT);
721 	if (error) {
722 		dmu_tx_abort(tx);
723 		return (error);
724 	}
725 
726 	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
727 	    DMU_OT_NONE, 0, tx);
728 	ASSERT3U(error, ==, 0);
729 	dmu_tx_commit(tx);
730 
731 	if (zopt_verbose >= 5) {
732 		char osname[MAXNAMELEN];
733 		dmu_objset_name(os, osname);
734 		(void) printf("replay create of %s object %llu"
735 		    " in txg %llu = %d\n",
736 		    osname, (u_longlong_t)lr->lr_doid,
737 		    (u_longlong_t)dmu_tx_get_txg(tx), error);
738 	}
739 
740 	return (error);
741 }
742 
743 static int
744 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap)
745 {
746 	dmu_tx_t *tx;
747 	int error;
748 
749 	if (byteswap)
750 		byteswap_uint64_array(lr, sizeof (*lr));
751 
752 	tx = dmu_tx_create(os);
753 	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
754 	error = dmu_tx_assign(tx, TXG_WAIT);
755 	if (error) {
756 		dmu_tx_abort(tx);
757 		return (error);
758 	}
759 
760 	error = dmu_object_free(os, lr->lr_doid, tx);
761 	dmu_tx_commit(tx);
762 
763 	return (error);
764 }
765 
766 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
767 	NULL,			/* 0 no such transaction type */
768 	ztest_replay_create,	/* TX_CREATE */
769 	NULL,			/* TX_MKDIR */
770 	NULL,			/* TX_MKXATTR */
771 	NULL,			/* TX_SYMLINK */
772 	ztest_replay_remove,	/* TX_REMOVE */
773 	NULL,			/* TX_RMDIR */
774 	NULL,			/* TX_LINK */
775 	NULL,			/* TX_RENAME */
776 	NULL,			/* TX_WRITE */
777 	NULL,			/* TX_TRUNCATE */
778 	NULL,			/* TX_SETATTR */
779 	NULL,			/* TX_ACL */
780 };
781 
782 /*
783  * Verify that we can't destroy an active pool, create an existing pool,
784  * or create a pool with a bad vdev spec.
785  */
786 void
787 ztest_spa_create_destroy(ztest_args_t *za)
788 {
789 	int error;
790 	spa_t *spa;
791 	nvlist_t *nvroot;
792 
793 	/*
794 	 * Attempt to create using a bad file.
795 	 */
796 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
797 	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
798 	nvlist_free(nvroot);
799 	if (error != ENOENT)
800 		fatal(0, "spa_create(bad_file) = %d", error);
801 
802 	/*
803 	 * Attempt to create using a bad mirror.
804 	 */
805 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
806 	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
807 	nvlist_free(nvroot);
808 	if (error != ENOENT)
809 		fatal(0, "spa_create(bad_mirror) = %d", error);
810 
811 	/*
812 	 * Attempt to create an existing pool.  It shouldn't matter
813 	 * what's in the nvroot; we should fail with EEXIST.
814 	 */
815 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
816 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
817 	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
818 	nvlist_free(nvroot);
819 	if (error != EEXIST)
820 		fatal(0, "spa_create(whatever) = %d", error);
821 
822 	error = spa_open(za->za_pool, &spa, FTAG);
823 	if (error)
824 		fatal(0, "spa_open() = %d", error);
825 
826 	error = spa_destroy(za->za_pool);
827 	if (error != EBUSY)
828 		fatal(0, "spa_destroy() = %d", error);
829 
830 	spa_close(spa, FTAG);
831 	(void) rw_unlock(&ztest_shared->zs_name_lock);
832 }
833 
834 static vdev_t *
835 vdev_lookup_by_path(vdev_t *vd, const char *path)
836 {
837 	vdev_t *mvd;
838 
839 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
840 		return (vd);
841 
842 	for (int c = 0; c < vd->vdev_children; c++)
843 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
844 		    NULL)
845 			return (mvd);
846 
847 	return (NULL);
848 }
849 
850 /*
851  * Verify that vdev_add() works as expected.
852  */
853 void
854 ztest_vdev_add_remove(ztest_args_t *za)
855 {
856 	spa_t *spa = za->za_spa;
857 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
858 	nvlist_t *nvroot;
859 	int error;
860 
861 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
862 
863 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
864 
865 	ztest_shared->zs_vdev_primaries =
866 	    spa->spa_root_vdev->vdev_children * leaves;
867 
868 	spa_config_exit(spa, SCL_VDEV, FTAG);
869 
870 	/*
871 	 * Make 1/4 of the devices be log devices.
872 	 */
873 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
874 	    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
875 
876 	error = spa_vdev_add(spa, nvroot);
877 	nvlist_free(nvroot);
878 
879 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
880 
881 	if (error == ENOSPC)
882 		ztest_record_enospc("spa_vdev_add");
883 	else if (error != 0)
884 		fatal(0, "spa_vdev_add() = %d", error);
885 }
886 
887 /*
888  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
889  */
890 void
891 ztest_vdev_aux_add_remove(ztest_args_t *za)
892 {
893 	spa_t *spa = za->za_spa;
894 	vdev_t *rvd = spa->spa_root_vdev;
895 	spa_aux_vdev_t *sav;
896 	char *aux;
897 	uint64_t guid = 0;
898 	int error;
899 
900 	if (ztest_random(2) == 0) {
901 		sav = &spa->spa_spares;
902 		aux = ZPOOL_CONFIG_SPARES;
903 	} else {
904 		sav = &spa->spa_l2cache;
905 		aux = ZPOOL_CONFIG_L2CACHE;
906 	}
907 
908 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
909 
910 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
911 
912 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
913 		/*
914 		 * Pick a random device to remove.
915 		 */
916 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
917 	} else {
918 		/*
919 		 * Find an unused device we can add.
920 		 */
921 		ztest_shared->zs_vdev_aux = 0;
922 		for (;;) {
923 			char path[MAXPATHLEN];
924 			int c;
925 			(void) sprintf(path, ztest_aux_template, zopt_dir,
926 			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
927 			for (c = 0; c < sav->sav_count; c++)
928 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
929 				    path) == 0)
930 					break;
931 			if (c == sav->sav_count &&
932 			    vdev_lookup_by_path(rvd, path) == NULL)
933 				break;
934 			ztest_shared->zs_vdev_aux++;
935 		}
936 	}
937 
938 	spa_config_exit(spa, SCL_VDEV, FTAG);
939 
940 	if (guid == 0) {
941 		/*
942 		 * Add a new device.
943 		 */
944 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
945 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
946 		error = spa_vdev_add(spa, nvroot);
947 		if (error != 0)
948 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
949 		nvlist_free(nvroot);
950 	} else {
951 		/*
952 		 * Remove an existing device.  Sometimes, dirty its
953 		 * vdev state first to make sure we handle removal
954 		 * of devices that have pending state changes.
955 		 */
956 		if (ztest_random(2) == 0)
957 			(void) vdev_online(spa, guid, B_FALSE, NULL);
958 
959 		error = spa_vdev_remove(spa, guid, B_FALSE);
960 		if (error != 0 && error != EBUSY)
961 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
962 	}
963 
964 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
965 }
966 
967 /*
968  * Verify that we can attach and detach devices.
969  */
970 void
971 ztest_vdev_attach_detach(ztest_args_t *za)
972 {
973 	spa_t *spa = za->za_spa;
974 	spa_aux_vdev_t *sav = &spa->spa_spares;
975 	vdev_t *rvd = spa->spa_root_vdev;
976 	vdev_t *oldvd, *newvd, *pvd;
977 	nvlist_t *root;
978 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
979 	uint64_t leaf, top;
980 	uint64_t ashift = ztest_get_ashift();
981 	uint64_t oldguid, pguid;
982 	size_t oldsize, newsize;
983 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
984 	int replacing;
985 	int oldvd_has_siblings = B_FALSE;
986 	int newvd_is_spare = B_FALSE;
987 	int oldvd_is_log;
988 	int error, expected_error;
989 
990 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
991 
992 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
993 
994 	/*
995 	 * Decide whether to do an attach or a replace.
996 	 */
997 	replacing = ztest_random(2);
998 
999 	/*
1000 	 * Pick a random top-level vdev.
1001 	 */
1002 	top = ztest_random(rvd->vdev_children);
1003 
1004 	/*
1005 	 * Pick a random leaf within it.
1006 	 */
1007 	leaf = ztest_random(leaves);
1008 
1009 	/*
1010 	 * Locate this vdev.
1011 	 */
1012 	oldvd = rvd->vdev_child[top];
1013 	if (zopt_mirrors >= 1) {
1014 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
1015 		ASSERT(oldvd->vdev_children >= zopt_mirrors);
1016 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1017 	}
1018 	if (zopt_raidz > 1) {
1019 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
1020 		ASSERT(oldvd->vdev_children == zopt_raidz);
1021 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1022 	}
1023 
1024 	/*
1025 	 * If we're already doing an attach or replace, oldvd may be a
1026 	 * mirror vdev -- in which case, pick a random child.
1027 	 */
1028 	while (oldvd->vdev_children != 0) {
1029 		oldvd_has_siblings = B_TRUE;
1030 		ASSERT(oldvd->vdev_children >= 2);
1031 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
1032 	}
1033 
1034 	oldguid = oldvd->vdev_guid;
1035 	oldsize = vdev_get_rsize(oldvd);
1036 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1037 	(void) strcpy(oldpath, oldvd->vdev_path);
1038 	pvd = oldvd->vdev_parent;
1039 	pguid = pvd->vdev_guid;
1040 
1041 	/*
1042 	 * If oldvd has siblings, then half of the time, detach it.
1043 	 */
1044 	if (oldvd_has_siblings && ztest_random(2) == 0) {
1045 		spa_config_exit(spa, SCL_VDEV, FTAG);
1046 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
1047 		if (error != 0 && error != ENODEV && error != EBUSY &&
1048 		    error != ENOTSUP)
1049 			fatal(0, "detach (%s) returned %d", oldpath, error);
1050 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1051 		return;
1052 	}
1053 
1054 	/*
1055 	 * For the new vdev, choose with equal probability between the two
1056 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1057 	 */
1058 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1059 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1060 		newvd_is_spare = B_TRUE;
1061 		(void) strcpy(newpath, newvd->vdev_path);
1062 	} else {
1063 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1064 		    zopt_dir, zopt_pool, top * leaves + leaf);
1065 		if (ztest_random(2) == 0)
1066 			newpath[strlen(newpath) - 1] = 'b';
1067 		newvd = vdev_lookup_by_path(rvd, newpath);
1068 	}
1069 
1070 	if (newvd) {
1071 		newsize = vdev_get_rsize(newvd);
1072 	} else {
1073 		/*
1074 		 * Make newsize a little bigger or smaller than oldsize.
1075 		 * If it's smaller, the attach should fail.
1076 		 * If it's larger, and we're doing a replace,
1077 		 * we should get dynamic LUN growth when we're done.
1078 		 */
1079 		newsize = 10 * oldsize / (9 + ztest_random(3));
1080 	}
1081 
1082 	/*
1083 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1084 	 * unless it's a replace; in that case any non-replacing parent is OK.
1085 	 *
1086 	 * If newvd is already part of the pool, it should fail with EBUSY.
1087 	 *
1088 	 * If newvd is too small, it should fail with EOVERFLOW.
1089 	 */
1090 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1091 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1092 	    pvd->vdev_ops == &vdev_replacing_ops ||
1093 	    pvd->vdev_ops == &vdev_spare_ops))
1094 		expected_error = ENOTSUP;
1095 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1096 		expected_error = ENOTSUP;
1097 	else if (newvd == oldvd)
1098 		expected_error = replacing ? 0 : EBUSY;
1099 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1100 		expected_error = EBUSY;
1101 	else if (newsize < oldsize)
1102 		expected_error = EOVERFLOW;
1103 	else if (ashift > oldvd->vdev_top->vdev_ashift)
1104 		expected_error = EDOM;
1105 	else
1106 		expected_error = 0;
1107 
1108 	spa_config_exit(spa, SCL_VDEV, FTAG);
1109 
1110 	/*
1111 	 * Build the nvlist describing newpath.
1112 	 */
1113 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1114 	    ashift, 0, 0, 0, 1);
1115 
1116 	error = spa_vdev_attach(spa, oldguid, root, replacing);
1117 
1118 	nvlist_free(root);
1119 
1120 	/*
1121 	 * If our parent was the replacing vdev, but the replace completed,
1122 	 * then instead of failing with ENOTSUP we may either succeed,
1123 	 * fail with ENODEV, or fail with EOVERFLOW.
1124 	 */
1125 	if (expected_error == ENOTSUP &&
1126 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1127 		expected_error = error;
1128 
1129 	/*
1130 	 * If someone grew the LUN, the replacement may be too small.
1131 	 */
1132 	if (error == EOVERFLOW || error == EBUSY)
1133 		expected_error = error;
1134 
1135 	/* XXX workaround 6690467 */
1136 	if (error != expected_error && expected_error != EBUSY) {
1137 		fatal(0, "attach (%s %llu, %s %llu, %d) "
1138 		    "returned %d, expected %d",
1139 		    oldpath, (longlong_t)oldsize, newpath,
1140 		    (longlong_t)newsize, replacing, error, expected_error);
1141 	}
1142 
1143 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1144 }
1145 
1146 /*
1147  * Verify that dynamic LUN growth works as expected.
1148  */
1149 void
1150 ztest_vdev_LUN_growth(ztest_args_t *za)
1151 {
1152 	spa_t *spa = za->za_spa;
1153 	char dev_name[MAXPATHLEN];
1154 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1155 	uint64_t vdev;
1156 	size_t fsize;
1157 	int fd;
1158 
1159 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1160 
1161 	/*
1162 	 * Pick a random leaf vdev.
1163 	 */
1164 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1165 	vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves);
1166 	spa_config_exit(spa, SCL_VDEV, FTAG);
1167 
1168 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
1169 
1170 	if ((fd = open(dev_name, O_RDWR)) != -1) {
1171 		/*
1172 		 * Determine the size.
1173 		 */
1174 		fsize = lseek(fd, 0, SEEK_END);
1175 
1176 		/*
1177 		 * If it's less than 2x the original size, grow by around 3%.
1178 		 */
1179 		if (fsize < 2 * zopt_vdev_size) {
1180 			size_t newsize = fsize + ztest_random(fsize / 32);
1181 			(void) ftruncate(fd, newsize);
1182 			if (zopt_verbose >= 6) {
1183 				(void) printf("%s grew from %lu to %lu bytes\n",
1184 				    dev_name, (ulong_t)fsize, (ulong_t)newsize);
1185 			}
1186 		}
1187 		(void) close(fd);
1188 	}
1189 
1190 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1191 }
1192 
1193 /* ARGSUSED */
1194 static void
1195 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1196 {
1197 	/*
1198 	 * Create the directory object.
1199 	 */
1200 	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1201 	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1202 	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1203 
1204 	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1205 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1206 
1207 	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1208 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1209 }
1210 
1211 static int
1212 ztest_destroy_cb(char *name, void *arg)
1213 {
1214 	ztest_args_t *za = arg;
1215 	objset_t *os;
1216 	dmu_object_info_t *doi = &za->za_doi;
1217 	int error;
1218 
1219 	/*
1220 	 * Verify that the dataset contains a directory object.
1221 	 */
1222 	error = dmu_objset_open(name, DMU_OST_OTHER,
1223 	    DS_MODE_USER | DS_MODE_READONLY, &os);
1224 	ASSERT3U(error, ==, 0);
1225 	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1226 	if (error != ENOENT) {
1227 		/* We could have crashed in the middle of destroying it */
1228 		ASSERT3U(error, ==, 0);
1229 		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1230 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1231 	}
1232 	dmu_objset_close(os);
1233 
1234 	/*
1235 	 * Destroy the dataset.
1236 	 */
1237 	error = dmu_objset_destroy(name);
1238 	if (error) {
1239 		(void) dmu_objset_open(name, DMU_OST_OTHER,
1240 		    DS_MODE_USER | DS_MODE_READONLY, &os);
1241 		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error);
1242 	}
1243 	return (0);
1244 }
1245 
1246 /*
1247  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1248  */
1249 static uint64_t
1250 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1251 {
1252 	itx_t *itx;
1253 	lr_create_t *lr;
1254 	size_t namesize;
1255 	char name[24];
1256 
1257 	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1258 	namesize = strlen(name) + 1;
1259 
1260 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1261 	    ztest_random(ZIL_MAX_BLKSZ));
1262 	lr = (lr_create_t *)&itx->itx_lr;
1263 	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1264 	lr->lr_doid = object;
1265 	lr->lr_foid = 0;
1266 	lr->lr_mode = mode;
1267 	lr->lr_uid = 0;
1268 	lr->lr_gid = 0;
1269 	lr->lr_gen = dmu_tx_get_txg(tx);
1270 	lr->lr_crtime[0] = time(NULL);
1271 	lr->lr_crtime[1] = 0;
1272 	lr->lr_rdev = 0;
1273 	bcopy(name, (char *)(lr + 1), namesize);
1274 
1275 	return (zil_itx_assign(zilog, itx, tx));
1276 }
1277 
1278 void
1279 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1280 {
1281 	int error;
1282 	objset_t *os, *os2;
1283 	char name[100];
1284 	int basemode, expected_error;
1285 	zilog_t *zilog;
1286 	uint64_t seq;
1287 	uint64_t objects;
1288 
1289 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1290 	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1291 	    (u_longlong_t)za->za_instance);
1292 
1293 	basemode = DS_MODE_TYPE(za->za_instance);
1294 	if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER)
1295 		basemode = DS_MODE_USER;
1296 
1297 	/*
1298 	 * If this dataset exists from a previous run, process its replay log
1299 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1300 	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1301 	 */
1302 	if (ztest_random(2) == 0 &&
1303 	    dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) {
1304 		zil_replay(os, os, ztest_replay_vector);
1305 		dmu_objset_close(os);
1306 	}
1307 
1308 	/*
1309 	 * There may be an old instance of the dataset we're about to
1310 	 * create lying around from a previous run.  If so, destroy it
1311 	 * and all of its snapshots.
1312 	 */
1313 	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1314 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1315 
1316 	/*
1317 	 * Verify that the destroyed dataset is no longer in the namespace.
1318 	 */
1319 	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1320 	if (error != ENOENT)
1321 		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1322 		    name, os);
1323 
1324 	/*
1325 	 * Verify that we can create a new dataset.
1326 	 */
1327 	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
1328 	    ztest_create_cb, NULL);
1329 	if (error) {
1330 		if (error == ENOSPC) {
1331 			ztest_record_enospc("dmu_objset_create");
1332 			(void) rw_unlock(&ztest_shared->zs_name_lock);
1333 			return;
1334 		}
1335 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1336 	}
1337 
1338 	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1339 	if (error) {
1340 		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1341 	}
1342 
1343 	/*
1344 	 * Open the intent log for it.
1345 	 */
1346 	zilog = zil_open(os, NULL);
1347 
1348 	/*
1349 	 * Put a random number of objects in there.
1350 	 */
1351 	objects = ztest_random(20);
1352 	seq = 0;
1353 	while (objects-- != 0) {
1354 		uint64_t object;
1355 		dmu_tx_t *tx = dmu_tx_create(os);
1356 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1357 		error = dmu_tx_assign(tx, TXG_WAIT);
1358 		if (error) {
1359 			dmu_tx_abort(tx);
1360 		} else {
1361 			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1362 			    DMU_OT_NONE, 0, tx);
1363 			ztest_set_random_blocksize(os, object, tx);
1364 			seq = ztest_log_create(zilog, tx, object,
1365 			    DMU_OT_UINT64_OTHER);
1366 			dmu_write(os, object, 0, sizeof (name), name, tx);
1367 			dmu_tx_commit(tx);
1368 		}
1369 		if (ztest_random(5) == 0) {
1370 			zil_commit(zilog, seq, object);
1371 		}
1372 		if (ztest_random(100) == 0) {
1373 			error = zil_suspend(zilog);
1374 			if (error == 0) {
1375 				zil_resume(zilog);
1376 			}
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * Verify that we cannot create an existing dataset.
1382 	 */
1383 	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL);
1384 	if (error != EEXIST)
1385 		fatal(0, "created existing dataset, error = %d", error);
1386 
1387 	/*
1388 	 * Verify that multiple dataset holds are allowed, but only when
1389 	 * the new access mode is compatible with the base mode.
1390 	 */
1391 	if (basemode == DS_MODE_OWNER) {
1392 		error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER,
1393 		    &os2);
1394 		if (error)
1395 			fatal(0, "dmu_objset_open('%s') = %d", name, error);
1396 		else
1397 			dmu_objset_close(os2);
1398 	}
1399 	error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2);
1400 	expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0;
1401 	if (error != expected_error)
1402 		fatal(0, "dmu_objset_open('%s') = %d, expected %d",
1403 		    name, error, expected_error);
1404 	if (error == 0)
1405 		dmu_objset_close(os2);
1406 
1407 	zil_close(zilog);
1408 	dmu_objset_close(os);
1409 
1410 	error = dmu_objset_destroy(name);
1411 	if (error)
1412 		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1413 
1414 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1415 }
1416 
1417 /*
1418  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1419  */
1420 void
1421 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1422 {
1423 	int error;
1424 	objset_t *os = za->za_os;
1425 	char snapname[100];
1426 	char osname[MAXNAMELEN];
1427 
1428 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1429 	dmu_objset_name(os, osname);
1430 	(void) snprintf(snapname, 100, "%s@%llu", osname,
1431 	    (u_longlong_t)za->za_instance);
1432 
1433 	error = dmu_objset_destroy(snapname);
1434 	if (error != 0 && error != ENOENT)
1435 		fatal(0, "dmu_objset_destroy() = %d", error);
1436 	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1,
1437 	    NULL, FALSE);
1438 	if (error == ENOSPC)
1439 		ztest_record_enospc("dmu_take_snapshot");
1440 	else if (error != 0 && error != EEXIST)
1441 		fatal(0, "dmu_take_snapshot() = %d", error);
1442 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1443 }
1444 
1445 /*
1446  * Verify dsl_dataset_promote handles EBUSY
1447  */
1448 void
1449 ztest_dsl_dataset_promote_busy(ztest_args_t *za)
1450 {
1451 	int error;
1452 	objset_t *os = za->za_os;
1453 	objset_t *clone;
1454 	dsl_dataset_t *ds;
1455 	char snap1name[100];
1456 	char clone1name[100];
1457 	char snap2name[100];
1458 	char clone2name[100];
1459 	char snap3name[100];
1460 	char osname[MAXNAMELEN];
1461 	uint64_t curval;
1462 
1463 	curval = za->za_instance;
1464 
1465 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1466 
1467 	dmu_objset_name(os, osname);
1468 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1469 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1470 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1471 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1472 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1473 
1474 	error = dmu_objset_destroy(clone2name);
1475 	if (error != 0 && error != ENOENT)
1476 		fatal(0, "dmu_objset_destroy() = %d", error);
1477 	error = dmu_objset_destroy(snap3name);
1478 	if (error != 0 && error != ENOENT)
1479 		fatal(0, "dmu_objset_destroy() = %d", error);
1480 	error = dmu_objset_destroy(snap2name);
1481 	if (error != 0 && error != ENOENT)
1482 		fatal(0, "dmu_objset_destroy() = %d", error);
1483 	error = dmu_objset_destroy(clone1name);
1484 	if (error != 0 && error != ENOENT)
1485 		fatal(0, "dmu_objset_destroy() = %d", error);
1486 	error = dmu_objset_destroy(snap1name);
1487 	if (error != 0 && error != ENOENT)
1488 		fatal(0, "dmu_objset_destroy() = %d", error);
1489 
1490 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
1491 	    NULL, FALSE);
1492 	if (error && error != EEXIST) {
1493 		if (error == ENOSPC) {
1494 			ztest_record_enospc("dmu_take_snapshot");
1495 			goto out;
1496 		}
1497 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
1498 	}
1499 
1500 	error = dmu_objset_open(snap1name, DMU_OST_OTHER,
1501 	    DS_MODE_USER | DS_MODE_READONLY, &clone);
1502 	if (error)
1503 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
1504 
1505 	error = dmu_objset_create(clone1name, DMU_OST_OTHER, clone, 0,
1506 	    NULL, NULL);
1507 	dmu_objset_close(clone);
1508 	if (error) {
1509 		if (error == ENOSPC) {
1510 			ztest_record_enospc("dmu_objset_create");
1511 			goto out;
1512 		}
1513 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
1514 	}
1515 
1516 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
1517 	    NULL, FALSE);
1518 	if (error && error != EEXIST) {
1519 		if (error == ENOSPC) {
1520 			ztest_record_enospc("dmu_take_snapshot");
1521 			goto out;
1522 		}
1523 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
1524 	}
1525 
1526 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
1527 	    NULL, FALSE);
1528 	if (error && error != EEXIST) {
1529 		if (error == ENOSPC) {
1530 			ztest_record_enospc("dmu_take_snapshot");
1531 			goto out;
1532 		}
1533 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1534 	}
1535 
1536 	error = dmu_objset_open(snap3name, DMU_OST_OTHER,
1537 	    DS_MODE_USER | DS_MODE_READONLY, &clone);
1538 	if (error)
1539 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1540 
1541 	error = dmu_objset_create(clone2name, DMU_OST_OTHER, clone, 0,
1542 	    NULL, NULL);
1543 	dmu_objset_close(clone);
1544 	if (error) {
1545 		if (error == ENOSPC) {
1546 			ztest_record_enospc("dmu_objset_create");
1547 			goto out;
1548 		}
1549 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
1550 	}
1551 
1552 	error = dsl_dataset_own(snap1name, DS_MODE_READONLY, FTAG, &ds);
1553 	if (error)
1554 		fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error);
1555 	error = dsl_dataset_promote(clone2name);
1556 	if (error != EBUSY)
1557 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
1558 		    error);
1559 	dsl_dataset_disown(ds, FTAG);
1560 
1561 out:
1562 	error = dmu_objset_destroy(clone2name);
1563 	if (error && error != ENOENT)
1564 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
1565 	error = dmu_objset_destroy(snap3name);
1566 	if (error && error != ENOENT)
1567 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
1568 	error = dmu_objset_destroy(snap2name);
1569 	if (error && error != ENOENT)
1570 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
1571 	error = dmu_objset_destroy(clone1name);
1572 	if (error && error != ENOENT)
1573 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
1574 	error = dmu_objset_destroy(snap1name);
1575 	if (error && error != ENOENT)
1576 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
1577 
1578 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1579 }
1580 
1581 /*
1582  * Verify that dmu_object_{alloc,free} work as expected.
1583  */
1584 void
1585 ztest_dmu_object_alloc_free(ztest_args_t *za)
1586 {
1587 	objset_t *os = za->za_os;
1588 	dmu_buf_t *db;
1589 	dmu_tx_t *tx;
1590 	uint64_t batchobj, object, batchsize, endoff, temp;
1591 	int b, c, error, bonuslen;
1592 	dmu_object_info_t *doi = &za->za_doi;
1593 	char osname[MAXNAMELEN];
1594 
1595 	dmu_objset_name(os, osname);
1596 
1597 	endoff = -8ULL;
1598 	batchsize = 2;
1599 
1600 	/*
1601 	 * Create a batch object if necessary, and record it in the directory.
1602 	 */
1603 	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1604 	    sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH));
1605 	if (batchobj == 0) {
1606 		tx = dmu_tx_create(os);
1607 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1608 		    sizeof (uint64_t));
1609 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1610 		error = dmu_tx_assign(tx, TXG_WAIT);
1611 		if (error) {
1612 			ztest_record_enospc("create a batch object");
1613 			dmu_tx_abort(tx);
1614 			return;
1615 		}
1616 		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1617 		    DMU_OT_NONE, 0, tx);
1618 		ztest_set_random_blocksize(os, batchobj, tx);
1619 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1620 		    sizeof (uint64_t), &batchobj, tx);
1621 		dmu_tx_commit(tx);
1622 	}
1623 
1624 	/*
1625 	 * Destroy the previous batch of objects.
1626 	 */
1627 	for (b = 0; b < batchsize; b++) {
1628 		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1629 		    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
1630 		if (object == 0)
1631 			continue;
1632 		/*
1633 		 * Read and validate contents.
1634 		 * We expect the nth byte of the bonus buffer to be n.
1635 		 */
1636 		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1637 		za->za_dbuf = db;
1638 
1639 		dmu_object_info_from_db(db, doi);
1640 		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1641 		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1642 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1643 
1644 		bonuslen = doi->doi_bonus_size;
1645 
1646 		for (c = 0; c < bonuslen; c++) {
1647 			if (((uint8_t *)db->db_data)[c] !=
1648 			    (uint8_t)(c + bonuslen)) {
1649 				fatal(0,
1650 				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1651 				    osname, object, c,
1652 				    ((uint8_t *)db->db_data)[c],
1653 				    (uint8_t)(c + bonuslen));
1654 			}
1655 		}
1656 
1657 		dmu_buf_rele(db, FTAG);
1658 		za->za_dbuf = NULL;
1659 
1660 		/*
1661 		 * We expect the word at endoff to be our object number.
1662 		 */
1663 		VERIFY(0 == dmu_read(os, object, endoff,
1664 		    sizeof (uint64_t), &temp, DMU_READ_PREFETCH));
1665 
1666 		if (temp != object) {
1667 			fatal(0, "bad data in %s, got %llu, expected %llu",
1668 			    osname, temp, object);
1669 		}
1670 
1671 		/*
1672 		 * Destroy old object and clear batch entry.
1673 		 */
1674 		tx = dmu_tx_create(os);
1675 		dmu_tx_hold_write(tx, batchobj,
1676 		    b * sizeof (uint64_t), sizeof (uint64_t));
1677 		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1678 		error = dmu_tx_assign(tx, TXG_WAIT);
1679 		if (error) {
1680 			ztest_record_enospc("free object");
1681 			dmu_tx_abort(tx);
1682 			return;
1683 		}
1684 		error = dmu_object_free(os, object, tx);
1685 		if (error) {
1686 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1687 			    osname, object, error);
1688 		}
1689 		object = 0;
1690 
1691 		dmu_object_set_checksum(os, batchobj,
1692 		    ztest_random_checksum(), tx);
1693 		dmu_object_set_compress(os, batchobj,
1694 		    ztest_random_compress(), tx);
1695 
1696 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1697 		    sizeof (uint64_t), &object, tx);
1698 
1699 		dmu_tx_commit(tx);
1700 	}
1701 
1702 	/*
1703 	 * Before creating the new batch of objects, generate a bunch of churn.
1704 	 */
1705 	for (b = ztest_random(100); b > 0; b--) {
1706 		tx = dmu_tx_create(os);
1707 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1708 		error = dmu_tx_assign(tx, TXG_WAIT);
1709 		if (error) {
1710 			ztest_record_enospc("churn objects");
1711 			dmu_tx_abort(tx);
1712 			return;
1713 		}
1714 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1715 		    DMU_OT_NONE, 0, tx);
1716 		ztest_set_random_blocksize(os, object, tx);
1717 		error = dmu_object_free(os, object, tx);
1718 		if (error) {
1719 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1720 			    osname, object, error);
1721 		}
1722 		dmu_tx_commit(tx);
1723 	}
1724 
1725 	/*
1726 	 * Create a new batch of objects with randomly chosen
1727 	 * blocksizes and record them in the batch directory.
1728 	 */
1729 	for (b = 0; b < batchsize; b++) {
1730 		uint32_t va_blksize;
1731 		u_longlong_t va_nblocks;
1732 
1733 		tx = dmu_tx_create(os);
1734 		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1735 		    sizeof (uint64_t));
1736 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1737 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1738 		    sizeof (uint64_t));
1739 		error = dmu_tx_assign(tx, TXG_WAIT);
1740 		if (error) {
1741 			ztest_record_enospc("create batchobj");
1742 			dmu_tx_abort(tx);
1743 			return;
1744 		}
1745 		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1746 
1747 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1748 		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1749 
1750 		ztest_set_random_blocksize(os, object, tx);
1751 
1752 		dmu_object_set_checksum(os, object,
1753 		    ztest_random_checksum(), tx);
1754 		dmu_object_set_compress(os, object,
1755 		    ztest_random_compress(), tx);
1756 
1757 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1758 		    sizeof (uint64_t), &object, tx);
1759 
1760 		/*
1761 		 * Write to both the bonus buffer and the regular data.
1762 		 */
1763 		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1764 		za->za_dbuf = db;
1765 		ASSERT3U(bonuslen, <=, db->db_size);
1766 
1767 		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1768 		ASSERT3S(va_nblocks, >=, 0);
1769 
1770 		dmu_buf_will_dirty(db, tx);
1771 
1772 		/*
1773 		 * See comments above regarding the contents of
1774 		 * the bonus buffer and the word at endoff.
1775 		 */
1776 		for (c = 0; c < bonuslen; c++)
1777 			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1778 
1779 		dmu_buf_rele(db, FTAG);
1780 		za->za_dbuf = NULL;
1781 
1782 		/*
1783 		 * Write to a large offset to increase indirection.
1784 		 */
1785 		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1786 
1787 		dmu_tx_commit(tx);
1788 	}
1789 }
1790 
1791 /*
1792  * Verify that dmu_{read,write} work as expected.
1793  */
1794 typedef struct bufwad {
1795 	uint64_t	bw_index;
1796 	uint64_t	bw_txg;
1797 	uint64_t	bw_data;
1798 } bufwad_t;
1799 
1800 typedef struct dmu_read_write_dir {
1801 	uint64_t	dd_packobj;
1802 	uint64_t	dd_bigobj;
1803 	uint64_t	dd_chunk;
1804 } dmu_read_write_dir_t;
1805 
1806 void
1807 ztest_dmu_read_write(ztest_args_t *za)
1808 {
1809 	objset_t *os = za->za_os;
1810 	dmu_read_write_dir_t dd;
1811 	dmu_tx_t *tx;
1812 	int i, freeit, error;
1813 	uint64_t n, s, txg;
1814 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
1815 	uint64_t packoff, packsize, bigoff, bigsize;
1816 	uint64_t regions = 997;
1817 	uint64_t stride = 123456789ULL;
1818 	uint64_t width = 40;
1819 	int free_percent = 5;
1820 
1821 	/*
1822 	 * This test uses two objects, packobj and bigobj, that are always
1823 	 * updated together (i.e. in the same tx) so that their contents are
1824 	 * in sync and can be compared.  Their contents relate to each other
1825 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
1826 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
1827 	 * for any index n, there are three bufwads that should be identical:
1828 	 *
1829 	 *	packobj, at offset n * sizeof (bufwad_t)
1830 	 *	bigobj, at the head of the nth chunk
1831 	 *	bigobj, at the tail of the nth chunk
1832 	 *
1833 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
1834 	 * and it doesn't have any relation to the object blocksize.
1835 	 * The only requirement is that it can hold at least two bufwads.
1836 	 *
1837 	 * Normally, we write the bufwad to each of these locations.
1838 	 * However, free_percent of the time we instead write zeroes to
1839 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
1840 	 * bigobj to packobj, we can verify that the DMU is correctly
1841 	 * tracking which parts of an object are allocated and free,
1842 	 * and that the contents of the allocated blocks are correct.
1843 	 */
1844 
1845 	/*
1846 	 * Read the directory info.  If it's the first time, set things up.
1847 	 */
1848 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1849 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
1850 	if (dd.dd_chunk == 0) {
1851 		ASSERT(dd.dd_packobj == 0);
1852 		ASSERT(dd.dd_bigobj == 0);
1853 		tx = dmu_tx_create(os);
1854 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
1855 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1856 		error = dmu_tx_assign(tx, TXG_WAIT);
1857 		if (error) {
1858 			ztest_record_enospc("create r/w directory");
1859 			dmu_tx_abort(tx);
1860 			return;
1861 		}
1862 
1863 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1864 		    DMU_OT_NONE, 0, tx);
1865 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1866 		    DMU_OT_NONE, 0, tx);
1867 		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
1868 
1869 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
1870 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
1871 
1872 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
1873 		    tx);
1874 		dmu_tx_commit(tx);
1875 	}
1876 
1877 	/*
1878 	 * Prefetch a random chunk of the big object.
1879 	 * Our aim here is to get some async reads in flight
1880 	 * for blocks that we may free below; the DMU should
1881 	 * handle this race correctly.
1882 	 */
1883 	n = ztest_random(regions) * stride + ztest_random(width);
1884 	s = 1 + ztest_random(2 * width - 1);
1885 	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
1886 
1887 	/*
1888 	 * Pick a random index and compute the offsets into packobj and bigobj.
1889 	 */
1890 	n = ztest_random(regions) * stride + ztest_random(width);
1891 	s = 1 + ztest_random(width - 1);
1892 
1893 	packoff = n * sizeof (bufwad_t);
1894 	packsize = s * sizeof (bufwad_t);
1895 
1896 	bigoff = n * dd.dd_chunk;
1897 	bigsize = s * dd.dd_chunk;
1898 
1899 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
1900 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
1901 
1902 	/*
1903 	 * free_percent of the time, free a range of bigobj rather than
1904 	 * overwriting it.
1905 	 */
1906 	freeit = (ztest_random(100) < free_percent);
1907 
1908 	/*
1909 	 * Read the current contents of our objects.
1910 	 */
1911 	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf,
1912 	    DMU_READ_PREFETCH);
1913 	ASSERT3U(error, ==, 0);
1914 	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf,
1915 	    DMU_READ_PREFETCH);
1916 	ASSERT3U(error, ==, 0);
1917 
1918 	/*
1919 	 * Get a tx for the mods to both packobj and bigobj.
1920 	 */
1921 	tx = dmu_tx_create(os);
1922 
1923 	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
1924 
1925 	if (freeit)
1926 		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
1927 	else
1928 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
1929 
1930 	error = dmu_tx_assign(tx, TXG_WAIT);
1931 
1932 	if (error) {
1933 		ztest_record_enospc("dmu r/w range");
1934 		dmu_tx_abort(tx);
1935 		umem_free(packbuf, packsize);
1936 		umem_free(bigbuf, bigsize);
1937 		return;
1938 	}
1939 
1940 	txg = dmu_tx_get_txg(tx);
1941 
1942 	/*
1943 	 * For each index from n to n + s, verify that the existing bufwad
1944 	 * in packobj matches the bufwads at the head and tail of the
1945 	 * corresponding chunk in bigobj.  Then update all three bufwads
1946 	 * with the new values we want to write out.
1947 	 */
1948 	for (i = 0; i < s; i++) {
1949 		/* LINTED */
1950 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
1951 		/* LINTED */
1952 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
1953 		/* LINTED */
1954 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
1955 
1956 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
1957 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
1958 
1959 		if (pack->bw_txg > txg)
1960 			fatal(0, "future leak: got %llx, open txg is %llx",
1961 			    pack->bw_txg, txg);
1962 
1963 		if (pack->bw_data != 0 && pack->bw_index != n + i)
1964 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
1965 			    pack->bw_index, n, i);
1966 
1967 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
1968 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
1969 
1970 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
1971 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
1972 
1973 		if (freeit) {
1974 			bzero(pack, sizeof (bufwad_t));
1975 		} else {
1976 			pack->bw_index = n + i;
1977 			pack->bw_txg = txg;
1978 			pack->bw_data = 1 + ztest_random(-2ULL);
1979 		}
1980 		*bigH = *pack;
1981 		*bigT = *pack;
1982 	}
1983 
1984 	/*
1985 	 * We've verified all the old bufwads, and made new ones.
1986 	 * Now write them out.
1987 	 */
1988 	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
1989 
1990 	if (freeit) {
1991 		if (zopt_verbose >= 6) {
1992 			(void) printf("freeing offset %llx size %llx"
1993 			    " txg %llx\n",
1994 			    (u_longlong_t)bigoff,
1995 			    (u_longlong_t)bigsize,
1996 			    (u_longlong_t)txg);
1997 		}
1998 		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
1999 		    bigsize, tx));
2000 	} else {
2001 		if (zopt_verbose >= 6) {
2002 			(void) printf("writing offset %llx size %llx"
2003 			    " txg %llx\n",
2004 			    (u_longlong_t)bigoff,
2005 			    (u_longlong_t)bigsize,
2006 			    (u_longlong_t)txg);
2007 		}
2008 		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
2009 	}
2010 
2011 	dmu_tx_commit(tx);
2012 
2013 	/*
2014 	 * Sanity check the stuff we just wrote.
2015 	 */
2016 	{
2017 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2018 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2019 
2020 		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2021 		    packsize, packcheck, DMU_READ_PREFETCH));
2022 		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2023 		    bigsize, bigcheck, DMU_READ_PREFETCH));
2024 
2025 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2026 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2027 
2028 		umem_free(packcheck, packsize);
2029 		umem_free(bigcheck, bigsize);
2030 	}
2031 
2032 	umem_free(packbuf, packsize);
2033 	umem_free(bigbuf, bigsize);
2034 }
2035 
2036 void
2037 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
2038     uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg)
2039 {
2040 	uint64_t i;
2041 	bufwad_t *pack;
2042 	bufwad_t *bigH;
2043 	bufwad_t *bigT;
2044 
2045 	/*
2046 	 * For each index from n to n + s, verify that the existing bufwad
2047 	 * in packobj matches the bufwads at the head and tail of the
2048 	 * corresponding chunk in bigobj.  Then update all three bufwads
2049 	 * with the new values we want to write out.
2050 	 */
2051 	for (i = 0; i < s; i++) {
2052 		/* LINTED */
2053 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2054 		/* LINTED */
2055 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2056 		/* LINTED */
2057 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2058 
2059 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2060 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2061 
2062 		if (pack->bw_txg > txg)
2063 			fatal(0, "future leak: got %llx, open txg is %llx",
2064 			    pack->bw_txg, txg);
2065 
2066 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2067 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2068 			    pack->bw_index, n, i);
2069 
2070 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2071 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2072 
2073 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2074 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2075 
2076 		pack->bw_index = n + i;
2077 		pack->bw_txg = txg;
2078 		pack->bw_data = 1 + ztest_random(-2ULL);
2079 
2080 		*bigH = *pack;
2081 		*bigT = *pack;
2082 	}
2083 }
2084 
2085 void
2086 ztest_dmu_read_write_zcopy(ztest_args_t *za)
2087 {
2088 	objset_t *os = za->za_os;
2089 	dmu_read_write_dir_t dd;
2090 	dmu_tx_t *tx;
2091 	uint64_t i;
2092 	int error;
2093 	uint64_t n, s, txg;
2094 	bufwad_t *packbuf, *bigbuf;
2095 	uint64_t packoff, packsize, bigoff, bigsize;
2096 	uint64_t regions = 997;
2097 	uint64_t stride = 123456789ULL;
2098 	uint64_t width = 9;
2099 	dmu_buf_t *bonus_db;
2100 	arc_buf_t **bigbuf_arcbufs;
2101 	dmu_object_info_t *doi = &za->za_doi;
2102 
2103 	/*
2104 	 * This test uses two objects, packobj and bigobj, that are always
2105 	 * updated together (i.e. in the same tx) so that their contents are
2106 	 * in sync and can be compared.  Their contents relate to each other
2107 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2108 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2109 	 * for any index n, there are three bufwads that should be identical:
2110 	 *
2111 	 *	packobj, at offset n * sizeof (bufwad_t)
2112 	 *	bigobj, at the head of the nth chunk
2113 	 *	bigobj, at the tail of the nth chunk
2114 	 *
2115 	 * The chunk size is set equal to bigobj block size so that
2116 	 * dmu_assign_arcbuf() can be tested for object updates.
2117 	 */
2118 
2119 	/*
2120 	 * Read the directory info.  If it's the first time, set things up.
2121 	 */
2122 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2123 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2124 	if (dd.dd_chunk == 0) {
2125 		ASSERT(dd.dd_packobj == 0);
2126 		ASSERT(dd.dd_bigobj == 0);
2127 		tx = dmu_tx_create(os);
2128 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2129 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2130 		error = dmu_tx_assign(tx, TXG_WAIT);
2131 		if (error) {
2132 			ztest_record_enospc("create r/w directory");
2133 			dmu_tx_abort(tx);
2134 			return;
2135 		}
2136 
2137 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2138 		    DMU_OT_NONE, 0, tx);
2139 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2140 		    DMU_OT_NONE, 0, tx);
2141 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2142 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2143 
2144 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2145 		ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t));
2146 		ASSERT(ISP2(doi->doi_data_block_size));
2147 		dd.dd_chunk = doi->doi_data_block_size;
2148 
2149 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2150 		    tx);
2151 		dmu_tx_commit(tx);
2152 	} else {
2153 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2154 		VERIFY(ISP2(doi->doi_data_block_size));
2155 		VERIFY(dd.dd_chunk == doi->doi_data_block_size);
2156 		VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t));
2157 	}
2158 
2159 	/*
2160 	 * Pick a random index and compute the offsets into packobj and bigobj.
2161 	 */
2162 	n = ztest_random(regions) * stride + ztest_random(width);
2163 	s = 1 + ztest_random(width - 1);
2164 
2165 	packoff = n * sizeof (bufwad_t);
2166 	packsize = s * sizeof (bufwad_t);
2167 
2168 	bigoff = n * dd.dd_chunk;
2169 	bigsize = s * dd.dd_chunk;
2170 
2171 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
2172 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
2173 
2174 	VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0);
2175 
2176 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
2177 
2178 	/*
2179 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
2180 	 * Iteration 1 test zcopy to already referenced dbufs.
2181 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
2182 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
2183 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
2184 	 * Iteration 5 test zcopy when it can't be done.
2185 	 * Iteration 6 one more zcopy write.
2186 	 */
2187 	for (i = 0; i < 7; i++) {
2188 		uint64_t j;
2189 		uint64_t off;
2190 
2191 		/*
2192 		 * In iteration 5 (i == 5) use arcbufs
2193 		 * that don't match bigobj blksz to test
2194 		 * dmu_assign_arcbuf() when it can't directly
2195 		 * assign an arcbuf to a dbuf.
2196 		 */
2197 		for (j = 0; j < s; j++) {
2198 			if (i != 5) {
2199 				bigbuf_arcbufs[j] =
2200 				    dmu_request_arcbuf(bonus_db,
2201 				    dd.dd_chunk);
2202 			} else {
2203 				bigbuf_arcbufs[2 * j] =
2204 				    dmu_request_arcbuf(bonus_db,
2205 				    dd.dd_chunk / 2);
2206 				bigbuf_arcbufs[2 * j + 1] =
2207 				    dmu_request_arcbuf(bonus_db,
2208 				    dd.dd_chunk / 2);
2209 			}
2210 		}
2211 
2212 		/*
2213 		 * Get a tx for the mods to both packobj and bigobj.
2214 		 */
2215 		tx = dmu_tx_create(os);
2216 
2217 		dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2218 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2219 
2220 		if (ztest_random(100) == 0) {
2221 			error = -1;
2222 		} else {
2223 			error = dmu_tx_assign(tx, TXG_WAIT);
2224 		}
2225 
2226 		if (error) {
2227 			if (error != -1) {
2228 				ztest_record_enospc("dmu r/w range");
2229 			}
2230 			dmu_tx_abort(tx);
2231 			umem_free(packbuf, packsize);
2232 			umem_free(bigbuf, bigsize);
2233 			for (j = 0; j < s; j++) {
2234 				if (i != 5) {
2235 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
2236 				} else {
2237 					dmu_return_arcbuf(
2238 					    bigbuf_arcbufs[2 * j]);
2239 					dmu_return_arcbuf(
2240 					    bigbuf_arcbufs[2 * j + 1]);
2241 				}
2242 			}
2243 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2244 			dmu_buf_rele(bonus_db, FTAG);
2245 			return;
2246 		}
2247 
2248 		txg = dmu_tx_get_txg(tx);
2249 
2250 		/*
2251 		 * 50% of the time don't read objects in the 1st iteration to
2252 		 * test dmu_assign_arcbuf() for the case when there're no
2253 		 * existing dbufs for the specified offsets.
2254 		 */
2255 		if (i != 0 || ztest_random(2) != 0) {
2256 			error = dmu_read(os, dd.dd_packobj, packoff,
2257 			    packsize, packbuf, DMU_READ_PREFETCH);
2258 			ASSERT3U(error, ==, 0);
2259 			error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize,
2260 			    bigbuf, DMU_READ_PREFETCH);
2261 			ASSERT3U(error, ==, 0);
2262 		}
2263 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
2264 		    n, dd, txg);
2265 
2266 		/*
2267 		 * We've verified all the old bufwads, and made new ones.
2268 		 * Now write them out.
2269 		 */
2270 		dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2271 		if (zopt_verbose >= 6) {
2272 			(void) printf("writing offset %llx size %llx"
2273 			    " txg %llx\n",
2274 			    (u_longlong_t)bigoff,
2275 			    (u_longlong_t)bigsize,
2276 			    (u_longlong_t)txg);
2277 		}
2278 		for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) {
2279 			dmu_buf_t *dbt;
2280 			if (i != 5) {
2281 				bcopy((caddr_t)bigbuf + (off - bigoff),
2282 				    bigbuf_arcbufs[j]->b_data, dd.dd_chunk);
2283 			} else {
2284 				bcopy((caddr_t)bigbuf + (off - bigoff),
2285 				    bigbuf_arcbufs[2 * j]->b_data,
2286 				    dd.dd_chunk / 2);
2287 				bcopy((caddr_t)bigbuf + (off - bigoff) +
2288 				    dd.dd_chunk / 2,
2289 				    bigbuf_arcbufs[2 * j + 1]->b_data,
2290 				    dd.dd_chunk / 2);
2291 			}
2292 
2293 			if (i == 1) {
2294 				VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off,
2295 				    FTAG, &dbt) == 0);
2296 			}
2297 			if (i != 5) {
2298 				dmu_assign_arcbuf(bonus_db, off,
2299 				    bigbuf_arcbufs[j], tx);
2300 			} else {
2301 				dmu_assign_arcbuf(bonus_db, off,
2302 				    bigbuf_arcbufs[2 * j], tx);
2303 				dmu_assign_arcbuf(bonus_db,
2304 				    off + dd.dd_chunk / 2,
2305 				    bigbuf_arcbufs[2 * j + 1], tx);
2306 			}
2307 			if (i == 1) {
2308 				dmu_buf_rele(dbt, FTAG);
2309 			}
2310 		}
2311 		dmu_tx_commit(tx);
2312 
2313 		/*
2314 		 * Sanity check the stuff we just wrote.
2315 		 */
2316 		{
2317 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2318 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2319 
2320 			VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2321 			    packsize, packcheck, DMU_READ_PREFETCH));
2322 			VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2323 			    bigsize, bigcheck, DMU_READ_PREFETCH));
2324 
2325 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2326 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2327 
2328 			umem_free(packcheck, packsize);
2329 			umem_free(bigcheck, bigsize);
2330 		}
2331 		if (i == 2) {
2332 			txg_wait_open(dmu_objset_pool(os), 0);
2333 		} else if (i == 3) {
2334 			txg_wait_synced(dmu_objset_pool(os), 0);
2335 		}
2336 	}
2337 
2338 	dmu_buf_rele(bonus_db, FTAG);
2339 	umem_free(packbuf, packsize);
2340 	umem_free(bigbuf, bigsize);
2341 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2342 }
2343 
2344 void
2345 ztest_dmu_check_future_leak(ztest_args_t *za)
2346 {
2347 	objset_t *os = za->za_os;
2348 	dmu_buf_t *db;
2349 	ztest_block_tag_t *bt;
2350 	dmu_object_info_t *doi = &za->za_doi;
2351 
2352 	/*
2353 	 * Make sure that, if there is a write record in the bonus buffer
2354 	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2355 	 * last synced txg of the pool.
2356 	 */
2357 	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2358 	za->za_dbuf = db;
2359 	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2360 	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2361 	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2362 	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2363 	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2364 	if (bt->bt_objset != 0) {
2365 		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2366 		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2367 		ASSERT3U(bt->bt_offset, ==, -1ULL);
2368 		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2369 	}
2370 	dmu_buf_rele(db, FTAG);
2371 	za->za_dbuf = NULL;
2372 }
2373 
2374 void
2375 ztest_dmu_write_parallel(ztest_args_t *za)
2376 {
2377 	objset_t *os = za->za_os;
2378 	ztest_block_tag_t *rbt = &za->za_rbt;
2379 	ztest_block_tag_t *wbt = &za->za_wbt;
2380 	const size_t btsize = sizeof (ztest_block_tag_t);
2381 	dmu_buf_t *db;
2382 	int b, error;
2383 	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2384 	int do_free = 0;
2385 	uint64_t off, txg, txg_how;
2386 	mutex_t *lp;
2387 	char osname[MAXNAMELEN];
2388 	char iobuf[SPA_MAXBLOCKSIZE];
2389 	blkptr_t blk = { 0 };
2390 	uint64_t blkoff;
2391 	zbookmark_t zb;
2392 	dmu_tx_t *tx = dmu_tx_create(os);
2393 	dmu_buf_t *bonus_db;
2394 	arc_buf_t *abuf = NULL;
2395 
2396 	dmu_objset_name(os, osname);
2397 
2398 	/*
2399 	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2400 	 * to verify that having multiple threads writing to the same object
2401 	 * in parallel doesn't cause any trouble.
2402 	 */
2403 	if (ztest_random(4) == 0) {
2404 		/*
2405 		 * Do the bonus buffer instead of a regular block.
2406 		 * We need a lock to serialize resize vs. others,
2407 		 * so we hash on the objset ID.
2408 		 */
2409 		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2410 		off = -1ULL;
2411 		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2412 	} else {
2413 		b = ztest_random(ZTEST_SYNC_LOCKS);
2414 		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2415 		if (ztest_random(4) == 0) {
2416 			do_free = 1;
2417 			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2418 		} else {
2419 			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2420 		}
2421 	}
2422 
2423 	if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free &&
2424 	    ztest_random(8) == 0) {
2425 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0);
2426 		abuf = dmu_request_arcbuf(bonus_db, bs);
2427 	}
2428 
2429 	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2430 	error = dmu_tx_assign(tx, txg_how);
2431 	if (error) {
2432 		if (error == ERESTART) {
2433 			ASSERT(txg_how == TXG_NOWAIT);
2434 			dmu_tx_wait(tx);
2435 		} else {
2436 			ztest_record_enospc("dmu write parallel");
2437 		}
2438 		dmu_tx_abort(tx);
2439 		if (abuf != NULL) {
2440 			dmu_return_arcbuf(abuf);
2441 			dmu_buf_rele(bonus_db, FTAG);
2442 		}
2443 		return;
2444 	}
2445 	txg = dmu_tx_get_txg(tx);
2446 
2447 	lp = &ztest_shared->zs_sync_lock[b];
2448 	(void) mutex_lock(lp);
2449 
2450 	wbt->bt_objset = dmu_objset_id(os);
2451 	wbt->bt_object = ZTEST_DIROBJ;
2452 	wbt->bt_offset = off;
2453 	wbt->bt_txg = txg;
2454 	wbt->bt_thread = za->za_instance;
2455 	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2456 
2457 	/*
2458 	 * Occasionally, write an all-zero block to test the behavior
2459 	 * of blocks that compress into holes.
2460 	 */
2461 	if (off != -1ULL && ztest_random(8) == 0)
2462 		bzero(wbt, btsize);
2463 
2464 	if (off == -1ULL) {
2465 		dmu_object_info_t *doi = &za->za_doi;
2466 		char *dboff;
2467 
2468 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2469 		za->za_dbuf = db;
2470 		dmu_object_info_from_db(db, doi);
2471 		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2472 		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2473 		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2474 		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2475 		bcopy(dboff, rbt, btsize);
2476 		if (rbt->bt_objset != 0) {
2477 			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2478 			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2479 			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2480 			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2481 		}
2482 		if (ztest_random(10) == 0) {
2483 			int newsize = (ztest_random(db->db_size /
2484 			    btsize) + 1) * btsize;
2485 
2486 			ASSERT3U(newsize, >=, btsize);
2487 			ASSERT3U(newsize, <=, db->db_size);
2488 			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2489 			dboff = (char *)db->db_data + newsize - btsize;
2490 		}
2491 		dmu_buf_will_dirty(db, tx);
2492 		bcopy(wbt, dboff, btsize);
2493 		dmu_buf_rele(db, FTAG);
2494 		za->za_dbuf = NULL;
2495 	} else if (do_free) {
2496 		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2497 	} else if (abuf == NULL) {
2498 		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2499 	} else {
2500 		bcopy(wbt, abuf->b_data, btsize);
2501 		dmu_assign_arcbuf(bonus_db, off, abuf, tx);
2502 		dmu_buf_rele(bonus_db, FTAG);
2503 	}
2504 
2505 	(void) mutex_unlock(lp);
2506 
2507 	if (ztest_random(1000) == 0)
2508 		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2509 
2510 	dmu_tx_commit(tx);
2511 
2512 	if (ztest_random(10000) == 0)
2513 		txg_wait_synced(dmu_objset_pool(os), txg);
2514 
2515 	if (off == -1ULL || do_free)
2516 		return;
2517 
2518 	if (ztest_random(2) != 0)
2519 		return;
2520 
2521 	/*
2522 	 * dmu_sync() the block we just wrote.
2523 	 */
2524 	(void) mutex_lock(lp);
2525 
2526 	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2527 	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2528 	za->za_dbuf = db;
2529 	if (error) {
2530 		(void) mutex_unlock(lp);
2531 		return;
2532 	}
2533 	blkoff = off - blkoff;
2534 	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2535 	dmu_buf_rele(db, FTAG);
2536 	za->za_dbuf = NULL;
2537 
2538 	if (error) {
2539 		(void) mutex_unlock(lp);
2540 		return;
2541 	}
2542 
2543 	if (blk.blk_birth == 0)	{	/* concurrent free */
2544 		(void) mutex_unlock(lp);
2545 		return;
2546 	}
2547 
2548 	txg_suspend(dmu_objset_pool(os));
2549 
2550 	(void) mutex_unlock(lp);
2551 
2552 	ASSERT(blk.blk_fill == 1);
2553 	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2554 	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2555 	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2556 
2557 	/*
2558 	 * Read the block that dmu_sync() returned to make sure its contents
2559 	 * match what we wrote.  We do this while still txg_suspend()ed
2560 	 * to ensure that the block can't be reused before we read it.
2561 	 */
2562 	zb.zb_objset = dmu_objset_id(os);
2563 	zb.zb_object = ZTEST_DIROBJ;
2564 	zb.zb_level = 0;
2565 	zb.zb_blkid = off / bs;
2566 	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2567 	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2568 	ASSERT3U(error, ==, 0);
2569 
2570 	txg_resume(dmu_objset_pool(os));
2571 
2572 	bcopy(&iobuf[blkoff], rbt, btsize);
2573 
2574 	if (rbt->bt_objset == 0)		/* concurrent free */
2575 		return;
2576 
2577 	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2578 		return;
2579 
2580 	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2581 	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2582 	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2583 
2584 	/*
2585 	 * The semantic of dmu_sync() is that we always push the most recent
2586 	 * version of the data, so in the face of concurrent updates we may
2587 	 * see a newer version of the block.  That's OK.
2588 	 */
2589 	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2590 	if (rbt->bt_thread == wbt->bt_thread)
2591 		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2592 	else
2593 		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2594 }
2595 
2596 /*
2597  * Verify that zap_{create,destroy,add,remove,update} work as expected.
2598  */
2599 #define	ZTEST_ZAP_MIN_INTS	1
2600 #define	ZTEST_ZAP_MAX_INTS	4
2601 #define	ZTEST_ZAP_MAX_PROPS	1000
2602 
2603 void
2604 ztest_zap(ztest_args_t *za)
2605 {
2606 	objset_t *os = za->za_os;
2607 	uint64_t object;
2608 	uint64_t txg, last_txg;
2609 	uint64_t value[ZTEST_ZAP_MAX_INTS];
2610 	uint64_t zl_ints, zl_intsize, prop;
2611 	int i, ints;
2612 	dmu_tx_t *tx;
2613 	char propname[100], txgname[100];
2614 	int error;
2615 	char osname[MAXNAMELEN];
2616 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2617 
2618 	dmu_objset_name(os, osname);
2619 
2620 	/*
2621 	 * Create a new object if necessary, and record it in the directory.
2622 	 */
2623 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2624 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
2625 
2626 	if (object == 0) {
2627 		tx = dmu_tx_create(os);
2628 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2629 		    sizeof (uint64_t));
2630 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2631 		error = dmu_tx_assign(tx, TXG_WAIT);
2632 		if (error) {
2633 			ztest_record_enospc("create zap test obj");
2634 			dmu_tx_abort(tx);
2635 			return;
2636 		}
2637 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2638 		if (error) {
2639 			fatal(0, "zap_create('%s', %llu) = %d",
2640 			    osname, object, error);
2641 		}
2642 		ASSERT(object != 0);
2643 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2644 		    sizeof (uint64_t), &object, tx);
2645 		/*
2646 		 * Generate a known hash collision, and verify that
2647 		 * we can lookup and remove both entries.
2648 		 */
2649 		for (i = 0; i < 2; i++) {
2650 			value[i] = i;
2651 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2652 			    1, &value[i], tx);
2653 			ASSERT3U(error, ==, 0);
2654 		}
2655 		for (i = 0; i < 2; i++) {
2656 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2657 			    1, &value[i], tx);
2658 			ASSERT3U(error, ==, EEXIST);
2659 			error = zap_length(os, object, hc[i],
2660 			    &zl_intsize, &zl_ints);
2661 			ASSERT3U(error, ==, 0);
2662 			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2663 			ASSERT3U(zl_ints, ==, 1);
2664 		}
2665 		for (i = 0; i < 2; i++) {
2666 			error = zap_remove(os, object, hc[i], tx);
2667 			ASSERT3U(error, ==, 0);
2668 		}
2669 
2670 		dmu_tx_commit(tx);
2671 	}
2672 
2673 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2674 
2675 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2676 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2677 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2678 	bzero(value, sizeof (value));
2679 	last_txg = 0;
2680 
2681 	/*
2682 	 * If these zap entries already exist, validate their contents.
2683 	 */
2684 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2685 	if (error == 0) {
2686 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2687 		ASSERT3U(zl_ints, ==, 1);
2688 
2689 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2690 		    zl_ints, &last_txg) == 0);
2691 
2692 		VERIFY(zap_length(os, object, propname, &zl_intsize,
2693 		    &zl_ints) == 0);
2694 
2695 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2696 		ASSERT3U(zl_ints, ==, ints);
2697 
2698 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2699 		    zl_ints, value) == 0);
2700 
2701 		for (i = 0; i < ints; i++) {
2702 			ASSERT3U(value[i], ==, last_txg + object + i);
2703 		}
2704 	} else {
2705 		ASSERT3U(error, ==, ENOENT);
2706 	}
2707 
2708 	/*
2709 	 * Atomically update two entries in our zap object.
2710 	 * The first is named txg_%llu, and contains the txg
2711 	 * in which the property was last updated.  The second
2712 	 * is named prop_%llu, and the nth element of its value
2713 	 * should be txg + object + n.
2714 	 */
2715 	tx = dmu_tx_create(os);
2716 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2717 	error = dmu_tx_assign(tx, TXG_WAIT);
2718 	if (error) {
2719 		ztest_record_enospc("create zap entry");
2720 		dmu_tx_abort(tx);
2721 		return;
2722 	}
2723 	txg = dmu_tx_get_txg(tx);
2724 
2725 	if (last_txg > txg)
2726 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2727 
2728 	for (i = 0; i < ints; i++)
2729 		value[i] = txg + object + i;
2730 
2731 	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2732 	if (error)
2733 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2734 		    osname, object, txgname, error);
2735 
2736 	error = zap_update(os, object, propname, sizeof (uint64_t),
2737 	    ints, value, tx);
2738 	if (error)
2739 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2740 		    osname, object, propname, error);
2741 
2742 	dmu_tx_commit(tx);
2743 
2744 	/*
2745 	 * Remove a random pair of entries.
2746 	 */
2747 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2748 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2749 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2750 
2751 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2752 
2753 	if (error == ENOENT)
2754 		return;
2755 
2756 	ASSERT3U(error, ==, 0);
2757 
2758 	tx = dmu_tx_create(os);
2759 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2760 	error = dmu_tx_assign(tx, TXG_WAIT);
2761 	if (error) {
2762 		ztest_record_enospc("remove zap entry");
2763 		dmu_tx_abort(tx);
2764 		return;
2765 	}
2766 	error = zap_remove(os, object, txgname, tx);
2767 	if (error)
2768 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2769 		    osname, object, txgname, error);
2770 
2771 	error = zap_remove(os, object, propname, tx);
2772 	if (error)
2773 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2774 		    osname, object, propname, error);
2775 
2776 	dmu_tx_commit(tx);
2777 
2778 	/*
2779 	 * Once in a while, destroy the object.
2780 	 */
2781 	if (ztest_random(1000) != 0)
2782 		return;
2783 
2784 	tx = dmu_tx_create(os);
2785 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2786 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2787 	error = dmu_tx_assign(tx, TXG_WAIT);
2788 	if (error) {
2789 		ztest_record_enospc("destroy zap object");
2790 		dmu_tx_abort(tx);
2791 		return;
2792 	}
2793 	error = zap_destroy(os, object, tx);
2794 	if (error)
2795 		fatal(0, "zap_destroy('%s', %llu) = %d",
2796 		    osname, object, error);
2797 	object = 0;
2798 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2799 	    &object, tx);
2800 	dmu_tx_commit(tx);
2801 }
2802 
2803 void
2804 ztest_zap_parallel(ztest_args_t *za)
2805 {
2806 	objset_t *os = za->za_os;
2807 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
2808 	dmu_tx_t *tx;
2809 	int i, namelen, error;
2810 	char name[20], string_value[20];
2811 	void *data;
2812 
2813 	/*
2814 	 * Generate a random name of the form 'xxx.....' where each
2815 	 * x is a random printable character and the dots are dots.
2816 	 * There are 94 such characters, and the name length goes from
2817 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
2818 	 */
2819 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
2820 
2821 	for (i = 0; i < 3; i++)
2822 		name[i] = '!' + ztest_random('~' - '!' + 1);
2823 	for (; i < namelen - 1; i++)
2824 		name[i] = '.';
2825 	name[i] = '\0';
2826 
2827 	if (ztest_random(2) == 0)
2828 		object = ZTEST_MICROZAP_OBJ;
2829 	else
2830 		object = ZTEST_FATZAP_OBJ;
2831 
2832 	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
2833 		wsize = sizeof (txg);
2834 		wc = 1;
2835 		data = &txg;
2836 	} else {
2837 		wsize = 1;
2838 		wc = namelen;
2839 		data = string_value;
2840 	}
2841 
2842 	count = -1ULL;
2843 	VERIFY(zap_count(os, object, &count) == 0);
2844 	ASSERT(count != -1ULL);
2845 
2846 	/*
2847 	 * Select an operation: length, lookup, add, update, remove.
2848 	 */
2849 	i = ztest_random(5);
2850 
2851 	if (i >= 2) {
2852 		tx = dmu_tx_create(os);
2853 		dmu_tx_hold_zap(tx, object, TRUE, NULL);
2854 		error = dmu_tx_assign(tx, TXG_WAIT);
2855 		if (error) {
2856 			ztest_record_enospc("zap parallel");
2857 			dmu_tx_abort(tx);
2858 			return;
2859 		}
2860 		txg = dmu_tx_get_txg(tx);
2861 		bcopy(name, string_value, namelen);
2862 	} else {
2863 		tx = NULL;
2864 		txg = 0;
2865 		bzero(string_value, namelen);
2866 	}
2867 
2868 	switch (i) {
2869 
2870 	case 0:
2871 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
2872 		if (error == 0) {
2873 			ASSERT3U(wsize, ==, zl_wsize);
2874 			ASSERT3U(wc, ==, zl_wc);
2875 		} else {
2876 			ASSERT3U(error, ==, ENOENT);
2877 		}
2878 		break;
2879 
2880 	case 1:
2881 		error = zap_lookup(os, object, name, wsize, wc, data);
2882 		if (error == 0) {
2883 			if (data == string_value &&
2884 			    bcmp(name, data, namelen) != 0)
2885 				fatal(0, "name '%s' != val '%s' len %d",
2886 				    name, data, namelen);
2887 		} else {
2888 			ASSERT3U(error, ==, ENOENT);
2889 		}
2890 		break;
2891 
2892 	case 2:
2893 		error = zap_add(os, object, name, wsize, wc, data, tx);
2894 		ASSERT(error == 0 || error == EEXIST);
2895 		break;
2896 
2897 	case 3:
2898 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
2899 		break;
2900 
2901 	case 4:
2902 		error = zap_remove(os, object, name, tx);
2903 		ASSERT(error == 0 || error == ENOENT);
2904 		break;
2905 	}
2906 
2907 	if (tx != NULL)
2908 		dmu_tx_commit(tx);
2909 }
2910 
2911 void
2912 ztest_dsl_prop_get_set(ztest_args_t *za)
2913 {
2914 	objset_t *os = za->za_os;
2915 	int i, inherit;
2916 	uint64_t value;
2917 	const char *prop, *valname;
2918 	char setpoint[MAXPATHLEN];
2919 	char osname[MAXNAMELEN];
2920 	int error;
2921 
2922 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
2923 
2924 	dmu_objset_name(os, osname);
2925 
2926 	for (i = 0; i < 2; i++) {
2927 		if (i == 0) {
2928 			prop = "checksum";
2929 			value = ztest_random_checksum();
2930 			inherit = (value == ZIO_CHECKSUM_INHERIT);
2931 		} else {
2932 			prop = "compression";
2933 			value = ztest_random_compress();
2934 			inherit = (value == ZIO_COMPRESS_INHERIT);
2935 		}
2936 
2937 		error = dsl_prop_set(osname, prop, sizeof (value),
2938 		    !inherit, &value);
2939 
2940 		if (error == ENOSPC) {
2941 			ztest_record_enospc("dsl_prop_set");
2942 			break;
2943 		}
2944 
2945 		ASSERT3U(error, ==, 0);
2946 
2947 		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
2948 		    1, &value, setpoint), ==, 0);
2949 
2950 		if (i == 0)
2951 			valname = zio_checksum_table[value].ci_name;
2952 		else
2953 			valname = zio_compress_table[value].ci_name;
2954 
2955 		if (zopt_verbose >= 6) {
2956 			(void) printf("%s %s = %s for '%s'\n",
2957 			    osname, prop, valname, setpoint);
2958 		}
2959 	}
2960 
2961 	(void) rw_unlock(&ztest_shared->zs_name_lock);
2962 }
2963 
2964 /*
2965  * Inject random faults into the on-disk data.
2966  */
2967 void
2968 ztest_fault_inject(ztest_args_t *za)
2969 {
2970 	int fd;
2971 	uint64_t offset;
2972 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
2973 	uint64_t bad = 0x1990c0ffeedecade;
2974 	uint64_t top, leaf;
2975 	char path0[MAXPATHLEN];
2976 	char pathrand[MAXPATHLEN];
2977 	size_t fsize;
2978 	spa_t *spa = za->za_spa;
2979 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
2980 	int iters = 1000;
2981 	int maxfaults = zopt_maxfaults;
2982 	vdev_t *vd0 = NULL;
2983 	uint64_t guid0 = 0;
2984 
2985 	ASSERT(leaves >= 1);
2986 
2987 	/*
2988 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2989 	 */
2990 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2991 
2992 	if (ztest_random(2) == 0) {
2993 		/*
2994 		 * Inject errors on a normal data device.
2995 		 */
2996 		top = ztest_random(spa->spa_root_vdev->vdev_children);
2997 		leaf = ztest_random(leaves);
2998 
2999 		/*
3000 		 * Generate paths to the first leaf in this top-level vdev,
3001 		 * and to the random leaf we selected.  We'll induce transient
3002 		 * write failures and random online/offline activity on leaf 0,
3003 		 * and we'll write random garbage to the randomly chosen leaf.
3004 		 */
3005 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
3006 		    zopt_dir, zopt_pool, top * leaves + 0);
3007 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
3008 		    zopt_dir, zopt_pool, top * leaves + leaf);
3009 
3010 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
3011 		if (vd0 != NULL && maxfaults != 1) {
3012 			/*
3013 			 * Make vd0 explicitly claim to be unreadable,
3014 			 * or unwriteable, or reach behind its back
3015 			 * and close the underlying fd.  We can do this if
3016 			 * maxfaults == 0 because we'll fail and reexecute,
3017 			 * and we can do it if maxfaults >= 2 because we'll
3018 			 * have enough redundancy.  If maxfaults == 1, the
3019 			 * combination of this with injection of random data
3020 			 * corruption below exceeds the pool's fault tolerance.
3021 			 */
3022 			vdev_file_t *vf = vd0->vdev_tsd;
3023 
3024 			if (vf != NULL && ztest_random(3) == 0) {
3025 				(void) close(vf->vf_vnode->v_fd);
3026 				vf->vf_vnode->v_fd = -1;
3027 			} else if (ztest_random(2) == 0) {
3028 				vd0->vdev_cant_read = B_TRUE;
3029 			} else {
3030 				vd0->vdev_cant_write = B_TRUE;
3031 			}
3032 			guid0 = vd0->vdev_guid;
3033 		}
3034 	} else {
3035 		/*
3036 		 * Inject errors on an l2cache device.
3037 		 */
3038 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
3039 
3040 		if (sav->sav_count == 0) {
3041 			spa_config_exit(spa, SCL_STATE, FTAG);
3042 			return;
3043 		}
3044 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
3045 		guid0 = vd0->vdev_guid;
3046 		(void) strcpy(path0, vd0->vdev_path);
3047 		(void) strcpy(pathrand, vd0->vdev_path);
3048 
3049 		leaf = 0;
3050 		leaves = 1;
3051 		maxfaults = INT_MAX;	/* no limit on cache devices */
3052 	}
3053 
3054 	spa_config_exit(spa, SCL_STATE, FTAG);
3055 
3056 	if (maxfaults == 0)
3057 		return;
3058 
3059 	/*
3060 	 * If we can tolerate two or more faults, randomly online/offline vd0.
3061 	 */
3062 	if (maxfaults >= 2 && guid0 != 0) {
3063 		if (ztest_random(10) < 6) {
3064 			int flags = (ztest_random(2) == 0 ?
3065 			    ZFS_OFFLINE_TEMPORARY : 0);
3066 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
3067 		} else {
3068 			(void) vdev_online(spa, guid0, 0, NULL);
3069 		}
3070 	}
3071 
3072 	/*
3073 	 * We have at least single-fault tolerance, so inject data corruption.
3074 	 */
3075 	fd = open(pathrand, O_RDWR);
3076 
3077 	if (fd == -1)	/* we hit a gap in the device namespace */
3078 		return;
3079 
3080 	fsize = lseek(fd, 0, SEEK_END);
3081 
3082 	while (--iters != 0) {
3083 		offset = ztest_random(fsize / (leaves << bshift)) *
3084 		    (leaves << bshift) + (leaf << bshift) +
3085 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
3086 
3087 		if (offset >= fsize)
3088 			continue;
3089 
3090 		if (zopt_verbose >= 6)
3091 			(void) printf("injecting bad word into %s,"
3092 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
3093 
3094 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
3095 			fatal(1, "can't inject bad word at 0x%llx in %s",
3096 			    offset, pathrand);
3097 	}
3098 
3099 	(void) close(fd);
3100 }
3101 
3102 /*
3103  * Scrub the pool.
3104  */
3105 void
3106 ztest_scrub(ztest_args_t *za)
3107 {
3108 	spa_t *spa = za->za_spa;
3109 
3110 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3111 	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
3112 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3113 }
3114 
3115 /*
3116  * Rename the pool to a different name and then rename it back.
3117  */
3118 void
3119 ztest_spa_rename(ztest_args_t *za)
3120 {
3121 	char *oldname, *newname;
3122 	int error;
3123 	spa_t *spa;
3124 
3125 	(void) rw_wrlock(&ztest_shared->zs_name_lock);
3126 
3127 	oldname = za->za_pool;
3128 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
3129 	(void) strcpy(newname, oldname);
3130 	(void) strcat(newname, "_tmp");
3131 
3132 	/*
3133 	 * Do the rename
3134 	 */
3135 	error = spa_rename(oldname, newname);
3136 	if (error)
3137 		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
3138 		    newname, error);
3139 
3140 	/*
3141 	 * Try to open it under the old name, which shouldn't exist
3142 	 */
3143 	error = spa_open(oldname, &spa, FTAG);
3144 	if (error != ENOENT)
3145 		fatal(0, "spa_open('%s') = %d", oldname, error);
3146 
3147 	/*
3148 	 * Open it under the new name and make sure it's still the same spa_t.
3149 	 */
3150 	error = spa_open(newname, &spa, FTAG);
3151 	if (error != 0)
3152 		fatal(0, "spa_open('%s') = %d", newname, error);
3153 
3154 	ASSERT(spa == za->za_spa);
3155 	spa_close(spa, FTAG);
3156 
3157 	/*
3158 	 * Rename it back to the original
3159 	 */
3160 	error = spa_rename(newname, oldname);
3161 	if (error)
3162 		fatal(0, "spa_rename('%s', '%s') = %d", newname,
3163 		    oldname, error);
3164 
3165 	/*
3166 	 * Make sure it can still be opened
3167 	 */
3168 	error = spa_open(oldname, &spa, FTAG);
3169 	if (error != 0)
3170 		fatal(0, "spa_open('%s') = %d", oldname, error);
3171 
3172 	ASSERT(spa == za->za_spa);
3173 	spa_close(spa, FTAG);
3174 
3175 	umem_free(newname, strlen(newname) + 1);
3176 
3177 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3178 }
3179 
3180 
3181 /*
3182  * Completely obliterate one disk.
3183  */
3184 static void
3185 ztest_obliterate_one_disk(uint64_t vdev)
3186 {
3187 	int fd;
3188 	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
3189 	size_t fsize;
3190 
3191 	if (zopt_maxfaults < 2)
3192 		return;
3193 
3194 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3195 	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
3196 
3197 	fd = open(dev_name, O_RDWR);
3198 
3199 	if (fd == -1)
3200 		fatal(1, "can't open %s", dev_name);
3201 
3202 	/*
3203 	 * Determine the size.
3204 	 */
3205 	fsize = lseek(fd, 0, SEEK_END);
3206 
3207 	(void) close(fd);
3208 
3209 	/*
3210 	 * Rename the old device to dev_name.old (useful for debugging).
3211 	 */
3212 	VERIFY(rename(dev_name, copy_name) == 0);
3213 
3214 	/*
3215 	 * Create a new one.
3216 	 */
3217 	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
3218 	VERIFY(ftruncate(fd, fsize) == 0);
3219 	(void) close(fd);
3220 }
3221 
3222 static void
3223 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
3224 {
3225 	char dev_name[MAXPATHLEN];
3226 	nvlist_t *root;
3227 	int error;
3228 	uint64_t guid;
3229 	vdev_t *vd;
3230 
3231 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3232 
3233 	/*
3234 	 * Build the nvlist describing dev_name.
3235 	 */
3236 	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
3237 
3238 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3239 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
3240 		guid = 0;
3241 	else
3242 		guid = vd->vdev_guid;
3243 	spa_config_exit(spa, SCL_VDEV, FTAG);
3244 	error = spa_vdev_attach(spa, guid, root, B_TRUE);
3245 	if (error != 0 &&
3246 	    error != EBUSY &&
3247 	    error != ENOTSUP &&
3248 	    error != ENODEV &&
3249 	    error != EDOM)
3250 		fatal(0, "spa_vdev_attach(in-place) = %d", error);
3251 
3252 	nvlist_free(root);
3253 }
3254 
3255 static void
3256 ztest_verify_blocks(char *pool)
3257 {
3258 	int status;
3259 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
3260 	char zbuf[1024];
3261 	char *bin;
3262 	char *ztest;
3263 	char *isa;
3264 	int isalen;
3265 	FILE *fp;
3266 
3267 	(void) realpath(getexecname(), zdb);
3268 
3269 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
3270 	bin = strstr(zdb, "/usr/bin/");
3271 	ztest = strstr(bin, "/ztest");
3272 	isa = bin + 8;
3273 	isalen = ztest - isa;
3274 	isa = strdup(isa);
3275 	/* LINTED */
3276 	(void) sprintf(bin,
3277 	    "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s",
3278 	    isalen,
3279 	    isa,
3280 	    zopt_verbose >= 3 ? "s" : "",
3281 	    zopt_verbose >= 4 ? "v" : "",
3282 	    pool);
3283 	free(isa);
3284 
3285 	if (zopt_verbose >= 5)
3286 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
3287 
3288 	fp = popen(zdb, "r");
3289 
3290 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
3291 		if (zopt_verbose >= 3)
3292 			(void) printf("%s", zbuf);
3293 
3294 	status = pclose(fp);
3295 
3296 	if (status == 0)
3297 		return;
3298 
3299 	ztest_dump_core = 0;
3300 	if (WIFEXITED(status))
3301 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
3302 	else
3303 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
3304 }
3305 
3306 static void
3307 ztest_walk_pool_directory(char *header)
3308 {
3309 	spa_t *spa = NULL;
3310 
3311 	if (zopt_verbose >= 6)
3312 		(void) printf("%s\n", header);
3313 
3314 	mutex_enter(&spa_namespace_lock);
3315 	while ((spa = spa_next(spa)) != NULL)
3316 		if (zopt_verbose >= 6)
3317 			(void) printf("\t%s\n", spa_name(spa));
3318 	mutex_exit(&spa_namespace_lock);
3319 }
3320 
3321 static void
3322 ztest_spa_import_export(char *oldname, char *newname)
3323 {
3324 	nvlist_t *config, *newconfig;
3325 	uint64_t pool_guid;
3326 	spa_t *spa;
3327 	int error;
3328 
3329 	if (zopt_verbose >= 4) {
3330 		(void) printf("import/export: old = %s, new = %s\n",
3331 		    oldname, newname);
3332 	}
3333 
3334 	/*
3335 	 * Clean up from previous runs.
3336 	 */
3337 	(void) spa_destroy(newname);
3338 
3339 	/*
3340 	 * Get the pool's configuration and guid.
3341 	 */
3342 	error = spa_open(oldname, &spa, FTAG);
3343 	if (error)
3344 		fatal(0, "spa_open('%s') = %d", oldname, error);
3345 
3346 	/*
3347 	 * Kick off a scrub to tickle scrub/export races.
3348 	 */
3349 	if (ztest_random(2) == 0)
3350 		(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3351 
3352 	pool_guid = spa_guid(spa);
3353 	spa_close(spa, FTAG);
3354 
3355 	ztest_walk_pool_directory("pools before export");
3356 
3357 	/*
3358 	 * Export it.
3359 	 */
3360 	error = spa_export(oldname, &config, B_FALSE, B_FALSE);
3361 	if (error)
3362 		fatal(0, "spa_export('%s') = %d", oldname, error);
3363 
3364 	ztest_walk_pool_directory("pools after export");
3365 
3366 	/*
3367 	 * Try to import it.
3368 	 */
3369 	newconfig = spa_tryimport(config);
3370 	ASSERT(newconfig != NULL);
3371 	nvlist_free(newconfig);
3372 
3373 	/*
3374 	 * Import it under the new name.
3375 	 */
3376 	error = spa_import(newname, config, NULL);
3377 	if (error)
3378 		fatal(0, "spa_import('%s') = %d", newname, error);
3379 
3380 	ztest_walk_pool_directory("pools after import");
3381 
3382 	/*
3383 	 * Try to import it again -- should fail with EEXIST.
3384 	 */
3385 	error = spa_import(newname, config, NULL);
3386 	if (error != EEXIST)
3387 		fatal(0, "spa_import('%s') twice", newname);
3388 
3389 	/*
3390 	 * Try to import it under a different name -- should fail with EEXIST.
3391 	 */
3392 	error = spa_import(oldname, config, NULL);
3393 	if (error != EEXIST)
3394 		fatal(0, "spa_import('%s') under multiple names", newname);
3395 
3396 	/*
3397 	 * Verify that the pool is no longer visible under the old name.
3398 	 */
3399 	error = spa_open(oldname, &spa, FTAG);
3400 	if (error != ENOENT)
3401 		fatal(0, "spa_open('%s') = %d", newname, error);
3402 
3403 	/*
3404 	 * Verify that we can open and close the pool using the new name.
3405 	 */
3406 	error = spa_open(newname, &spa, FTAG);
3407 	if (error)
3408 		fatal(0, "spa_open('%s') = %d", newname, error);
3409 	ASSERT(pool_guid == spa_guid(spa));
3410 	spa_close(spa, FTAG);
3411 
3412 	nvlist_free(config);
3413 }
3414 
3415 static void
3416 ztest_resume(spa_t *spa)
3417 {
3418 	if (spa_suspended(spa)) {
3419 		spa_vdev_state_enter(spa);
3420 		vdev_clear(spa, NULL);
3421 		(void) spa_vdev_state_exit(spa, NULL, 0);
3422 		(void) zio_resume(spa);
3423 	}
3424 }
3425 
3426 static void *
3427 ztest_resume_thread(void *arg)
3428 {
3429 	spa_t *spa = arg;
3430 
3431 	while (!ztest_exiting) {
3432 		(void) poll(NULL, 0, 1000);
3433 		ztest_resume(spa);
3434 	}
3435 	return (NULL);
3436 }
3437 
3438 static void *
3439 ztest_thread(void *arg)
3440 {
3441 	ztest_args_t *za = arg;
3442 	ztest_shared_t *zs = ztest_shared;
3443 	hrtime_t now, functime;
3444 	ztest_info_t *zi;
3445 	int f, i;
3446 
3447 	while ((now = gethrtime()) < za->za_stop) {
3448 		/*
3449 		 * See if it's time to force a crash.
3450 		 */
3451 		if (now > za->za_kill) {
3452 			zs->zs_alloc = spa_get_alloc(za->za_spa);
3453 			zs->zs_space = spa_get_space(za->za_spa);
3454 			(void) kill(getpid(), SIGKILL);
3455 		}
3456 
3457 		/*
3458 		 * Pick a random function.
3459 		 */
3460 		f = ztest_random(ZTEST_FUNCS);
3461 		zi = &zs->zs_info[f];
3462 
3463 		/*
3464 		 * Decide whether to call it, based on the requested frequency.
3465 		 */
3466 		if (zi->zi_call_target == 0 ||
3467 		    (double)zi->zi_call_total / zi->zi_call_target >
3468 		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3469 			continue;
3470 
3471 		atomic_add_64(&zi->zi_calls, 1);
3472 		atomic_add_64(&zi->zi_call_total, 1);
3473 
3474 		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
3475 		    ZTEST_DIRSIZE;
3476 		za->za_diroff_shared = (1ULL << 63);
3477 
3478 		for (i = 0; i < zi->zi_iters; i++)
3479 			zi->zi_func(za);
3480 
3481 		functime = gethrtime() - now;
3482 
3483 		atomic_add_64(&zi->zi_call_time, functime);
3484 
3485 		if (zopt_verbose >= 4) {
3486 			Dl_info dli;
3487 			(void) dladdr((void *)zi->zi_func, &dli);
3488 			(void) printf("%6.2f sec in %s\n",
3489 			    (double)functime / NANOSEC, dli.dli_sname);
3490 		}
3491 
3492 		/*
3493 		 * If we're getting ENOSPC with some regularity, stop.
3494 		 */
3495 		if (zs->zs_enospc_count > 10)
3496 			break;
3497 	}
3498 
3499 	return (NULL);
3500 }
3501 
3502 /*
3503  * Kick off threads to run tests on all datasets in parallel.
3504  */
3505 static void
3506 ztest_run(char *pool)
3507 {
3508 	int t, d, error;
3509 	ztest_shared_t *zs = ztest_shared;
3510 	ztest_args_t *za;
3511 	spa_t *spa;
3512 	char name[100];
3513 	thread_t resume_tid;
3514 
3515 	ztest_exiting = B_FALSE;
3516 
3517 	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3518 	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3519 
3520 	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3521 		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3522 
3523 	/*
3524 	 * Destroy one disk before we even start.
3525 	 * It's mirrored, so everything should work just fine.
3526 	 * This makes us exercise fault handling very early in spa_load().
3527 	 */
3528 	ztest_obliterate_one_disk(0);
3529 
3530 	/*
3531 	 * Verify that the sum of the sizes of all blocks in the pool
3532 	 * equals the SPA's allocated space total.
3533 	 */
3534 	ztest_verify_blocks(pool);
3535 
3536 	/*
3537 	 * Kick off a replacement of the disk we just obliterated.
3538 	 */
3539 	kernel_init(FREAD | FWRITE);
3540 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3541 	ztest_replace_one_disk(spa, 0);
3542 	if (zopt_verbose >= 5)
3543 		show_pool_stats(spa);
3544 	spa_close(spa, FTAG);
3545 	kernel_fini();
3546 
3547 	kernel_init(FREAD | FWRITE);
3548 
3549 	/*
3550 	 * Verify that we can export the pool and reimport it under a
3551 	 * different name.
3552 	 */
3553 	if (ztest_random(2) == 0) {
3554 		(void) snprintf(name, 100, "%s_import", pool);
3555 		ztest_spa_import_export(pool, name);
3556 		ztest_spa_import_export(name, pool);
3557 	}
3558 
3559 	/*
3560 	 * Verify that we can loop over all pools.
3561 	 */
3562 	mutex_enter(&spa_namespace_lock);
3563 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3564 		if (zopt_verbose > 3) {
3565 			(void) printf("spa_next: found %s\n", spa_name(spa));
3566 		}
3567 	}
3568 	mutex_exit(&spa_namespace_lock);
3569 
3570 	/*
3571 	 * Open our pool.
3572 	 */
3573 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3574 
3575 	/*
3576 	 * We don't expect the pool to suspend unless maxfaults == 0,
3577 	 * in which case ztest_fault_inject() temporarily takes away
3578 	 * the only valid replica.
3579 	 */
3580 	if (zopt_maxfaults == 0)
3581 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
3582 	else
3583 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
3584 
3585 	/*
3586 	 * Create a thread to periodically resume suspended I/O.
3587 	 */
3588 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
3589 	    &resume_tid) == 0);
3590 
3591 	/*
3592 	 * Verify that we can safely inquire about about any object,
3593 	 * whether it's allocated or not.  To make it interesting,
3594 	 * we probe a 5-wide window around each power of two.
3595 	 * This hits all edge cases, including zero and the max.
3596 	 */
3597 	for (t = 0; t < 64; t++) {
3598 		for (d = -5; d <= 5; d++) {
3599 			error = dmu_object_info(spa->spa_meta_objset,
3600 			    (1ULL << t) + d, NULL);
3601 			ASSERT(error == 0 || error == ENOENT ||
3602 			    error == EINVAL);
3603 		}
3604 	}
3605 
3606 	/*
3607 	 * Now kick off all the tests that run in parallel.
3608 	 */
3609 	zs->zs_enospc_count = 0;
3610 
3611 	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3612 
3613 	if (zopt_verbose >= 4)
3614 		(void) printf("starting main threads...\n");
3615 
3616 	za[0].za_start = gethrtime();
3617 	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3618 	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3619 	za[0].za_kill = za[0].za_stop;
3620 	if (ztest_random(100) < zopt_killrate)
3621 		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3622 
3623 	for (t = 0; t < zopt_threads; t++) {
3624 		d = t % zopt_datasets;
3625 
3626 		(void) strcpy(za[t].za_pool, pool);
3627 		za[t].za_os = za[d].za_os;
3628 		za[t].za_spa = spa;
3629 		za[t].za_zilog = za[d].za_zilog;
3630 		za[t].za_instance = t;
3631 		za[t].za_random = ztest_random(-1ULL);
3632 		za[t].za_start = za[0].za_start;
3633 		za[t].za_stop = za[0].za_stop;
3634 		za[t].za_kill = za[0].za_kill;
3635 
3636 		if (t < zopt_datasets) {
3637 			int test_future = FALSE;
3638 			(void) rw_rdlock(&ztest_shared->zs_name_lock);
3639 			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3640 			error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
3641 			    ztest_create_cb, NULL);
3642 			if (error == EEXIST) {
3643 				test_future = TRUE;
3644 			} else if (error == ENOSPC) {
3645 				zs->zs_enospc_count++;
3646 				(void) rw_unlock(&ztest_shared->zs_name_lock);
3647 				break;
3648 			} else if (error != 0) {
3649 				fatal(0, "dmu_objset_create(%s) = %d",
3650 				    name, error);
3651 			}
3652 			error = dmu_objset_open(name, DMU_OST_OTHER,
3653 			    DS_MODE_USER, &za[d].za_os);
3654 			if (error)
3655 				fatal(0, "dmu_objset_open('%s') = %d",
3656 				    name, error);
3657 			(void) rw_unlock(&ztest_shared->zs_name_lock);
3658 			if (test_future)
3659 				ztest_dmu_check_future_leak(&za[t]);
3660 			zil_replay(za[d].za_os, za[d].za_os,
3661 			    ztest_replay_vector);
3662 			za[d].za_zilog = zil_open(za[d].za_os, NULL);
3663 		}
3664 
3665 		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3666 		    &za[t].za_thread) == 0);
3667 	}
3668 
3669 	while (--t >= 0) {
3670 		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3671 		if (t < zopt_datasets) {
3672 			zil_close(za[t].za_zilog);
3673 			dmu_objset_close(za[t].za_os);
3674 		}
3675 	}
3676 
3677 	if (zopt_verbose >= 3)
3678 		show_pool_stats(spa);
3679 
3680 	txg_wait_synced(spa_get_dsl(spa), 0);
3681 
3682 	zs->zs_alloc = spa_get_alloc(spa);
3683 	zs->zs_space = spa_get_space(spa);
3684 
3685 	/*
3686 	 * If we had out-of-space errors, destroy a random objset.
3687 	 */
3688 	if (zs->zs_enospc_count != 0) {
3689 		(void) rw_rdlock(&ztest_shared->zs_name_lock);
3690 		d = (int)ztest_random(zopt_datasets);
3691 		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3692 		if (zopt_verbose >= 3)
3693 			(void) printf("Destroying %s to free up space\n", name);
3694 		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3695 		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3696 		(void) rw_unlock(&ztest_shared->zs_name_lock);
3697 	}
3698 
3699 	txg_wait_synced(spa_get_dsl(spa), 0);
3700 
3701 	umem_free(za, zopt_threads * sizeof (ztest_args_t));
3702 
3703 	/* Kill the resume thread */
3704 	ztest_exiting = B_TRUE;
3705 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3706 	ztest_resume(spa);
3707 
3708 	/*
3709 	 * Right before closing the pool, kick off a bunch of async I/O;
3710 	 * spa_close() should wait for it to complete.
3711 	 */
3712 	for (t = 1; t < 50; t++)
3713 		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
3714 
3715 	spa_close(spa, FTAG);
3716 
3717 	kernel_fini();
3718 }
3719 
3720 void
3721 print_time(hrtime_t t, char *timebuf)
3722 {
3723 	hrtime_t s = t / NANOSEC;
3724 	hrtime_t m = s / 60;
3725 	hrtime_t h = m / 60;
3726 	hrtime_t d = h / 24;
3727 
3728 	s -= m * 60;
3729 	m -= h * 60;
3730 	h -= d * 24;
3731 
3732 	timebuf[0] = '\0';
3733 
3734 	if (d)
3735 		(void) sprintf(timebuf,
3736 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
3737 	else if (h)
3738 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
3739 	else if (m)
3740 		(void) sprintf(timebuf, "%llum%02llus", m, s);
3741 	else
3742 		(void) sprintf(timebuf, "%llus", s);
3743 }
3744 
3745 /*
3746  * Create a storage pool with the given name and initial vdev size.
3747  * Then create the specified number of datasets in the pool.
3748  */
3749 static void
3750 ztest_init(char *pool)
3751 {
3752 	spa_t *spa;
3753 	int error;
3754 	nvlist_t *nvroot;
3755 
3756 	kernel_init(FREAD | FWRITE);
3757 
3758 	/*
3759 	 * Create the storage pool.
3760 	 */
3761 	(void) spa_destroy(pool);
3762 	ztest_shared->zs_vdev_primaries = 0;
3763 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
3764 	    0, zopt_raidz, zopt_mirrors, 1);
3765 	error = spa_create(pool, nvroot, NULL, NULL, NULL);
3766 	nvlist_free(nvroot);
3767 
3768 	if (error)
3769 		fatal(0, "spa_create() = %d", error);
3770 	error = spa_open(pool, &spa, FTAG);
3771 	if (error)
3772 		fatal(0, "spa_open() = %d", error);
3773 
3774 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
3775 
3776 	if (zopt_verbose >= 3)
3777 		show_pool_stats(spa);
3778 
3779 	spa_close(spa, FTAG);
3780 
3781 	kernel_fini();
3782 }
3783 
3784 int
3785 main(int argc, char **argv)
3786 {
3787 	int kills = 0;
3788 	int iters = 0;
3789 	int i, f;
3790 	ztest_shared_t *zs;
3791 	ztest_info_t *zi;
3792 	char timebuf[100];
3793 	char numbuf[6];
3794 
3795 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
3796 
3797 	/* Override location of zpool.cache */
3798 	spa_config_path = "/tmp/zpool.cache";
3799 
3800 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
3801 
3802 	process_options(argc, argv);
3803 
3804 	/*
3805 	 * Blow away any existing copy of zpool.cache
3806 	 */
3807 	if (zopt_init != 0)
3808 		(void) remove("/tmp/zpool.cache");
3809 
3810 	zs = ztest_shared = (void *)mmap(0,
3811 	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
3812 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
3813 
3814 	if (zopt_verbose >= 1) {
3815 		(void) printf("%llu vdevs, %d datasets, %d threads,"
3816 		    " %llu seconds...\n",
3817 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
3818 		    (u_longlong_t)zopt_time);
3819 	}
3820 
3821 	/*
3822 	 * Create and initialize our storage pool.
3823 	 */
3824 	for (i = 1; i <= zopt_init; i++) {
3825 		bzero(zs, sizeof (ztest_shared_t));
3826 		if (zopt_verbose >= 3 && zopt_init != 1)
3827 			(void) printf("ztest_init(), pass %d\n", i);
3828 		ztest_init(zopt_pool);
3829 	}
3830 
3831 	/*
3832 	 * Initialize the call targets for each function.
3833 	 */
3834 	for (f = 0; f < ZTEST_FUNCS; f++) {
3835 		zi = &zs->zs_info[f];
3836 
3837 		*zi = ztest_info[f];
3838 
3839 		if (*zi->zi_interval == 0)
3840 			zi->zi_call_target = UINT64_MAX;
3841 		else
3842 			zi->zi_call_target = zopt_time / *zi->zi_interval;
3843 	}
3844 
3845 	zs->zs_start_time = gethrtime();
3846 	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
3847 
3848 	/*
3849 	 * Run the tests in a loop.  These tests include fault injection
3850 	 * to verify that self-healing data works, and forced crashes
3851 	 * to verify that we never lose on-disk consistency.
3852 	 */
3853 	while (gethrtime() < zs->zs_stop_time) {
3854 		int status;
3855 		pid_t pid;
3856 		char *tmp;
3857 
3858 		/*
3859 		 * Initialize the workload counters for each function.
3860 		 */
3861 		for (f = 0; f < ZTEST_FUNCS; f++) {
3862 			zi = &zs->zs_info[f];
3863 			zi->zi_calls = 0;
3864 			zi->zi_call_time = 0;
3865 		}
3866 
3867 		/* Set the allocation switch size */
3868 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
3869 
3870 		pid = fork();
3871 
3872 		if (pid == -1)
3873 			fatal(1, "fork failed");
3874 
3875 		if (pid == 0) {	/* child */
3876 			struct rlimit rl = { 1024, 1024 };
3877 			(void) setrlimit(RLIMIT_NOFILE, &rl);
3878 			(void) enable_extended_FILE_stdio(-1, -1);
3879 			ztest_run(zopt_pool);
3880 			exit(0);
3881 		}
3882 
3883 		while (waitpid(pid, &status, 0) != pid)
3884 			continue;
3885 
3886 		if (WIFEXITED(status)) {
3887 			if (WEXITSTATUS(status) != 0) {
3888 				(void) fprintf(stderr,
3889 				    "child exited with code %d\n",
3890 				    WEXITSTATUS(status));
3891 				exit(2);
3892 			}
3893 		} else if (WIFSIGNALED(status)) {
3894 			if (WTERMSIG(status) != SIGKILL) {
3895 				(void) fprintf(stderr,
3896 				    "child died with signal %d\n",
3897 				    WTERMSIG(status));
3898 				exit(3);
3899 			}
3900 			kills++;
3901 		} else {
3902 			(void) fprintf(stderr, "something strange happened "
3903 			    "to child\n");
3904 			exit(4);
3905 		}
3906 
3907 		iters++;
3908 
3909 		if (zopt_verbose >= 1) {
3910 			hrtime_t now = gethrtime();
3911 
3912 			now = MIN(now, zs->zs_stop_time);
3913 			print_time(zs->zs_stop_time - now, timebuf);
3914 			nicenum(zs->zs_space, numbuf);
3915 
3916 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
3917 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
3918 			    iters,
3919 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
3920 			    (u_longlong_t)zs->zs_enospc_count,
3921 			    100.0 * zs->zs_alloc / zs->zs_space,
3922 			    numbuf,
3923 			    100.0 * (now - zs->zs_start_time) /
3924 			    (zopt_time * NANOSEC), timebuf);
3925 		}
3926 
3927 		if (zopt_verbose >= 2) {
3928 			(void) printf("\nWorkload summary:\n\n");
3929 			(void) printf("%7s %9s   %s\n",
3930 			    "Calls", "Time", "Function");
3931 			(void) printf("%7s %9s   %s\n",
3932 			    "-----", "----", "--------");
3933 			for (f = 0; f < ZTEST_FUNCS; f++) {
3934 				Dl_info dli;
3935 
3936 				zi = &zs->zs_info[f];
3937 				print_time(zi->zi_call_time, timebuf);
3938 				(void) dladdr((void *)zi->zi_func, &dli);
3939 				(void) printf("%7llu %9s   %s\n",
3940 				    (u_longlong_t)zi->zi_calls, timebuf,
3941 				    dli.dli_sname);
3942 			}
3943 			(void) printf("\n");
3944 		}
3945 
3946 		/*
3947 		 * It's possible that we killed a child during a rename test, in
3948 		 * which case we'll have a 'ztest_tmp' pool lying around instead
3949 		 * of 'ztest'.  Do a blind rename in case this happened.
3950 		 */
3951 		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
3952 		(void) strcpy(tmp, zopt_pool);
3953 		(void) strcat(tmp, "_tmp");
3954 		kernel_init(FREAD | FWRITE);
3955 		(void) spa_rename(tmp, zopt_pool);
3956 		kernel_fini();
3957 		umem_free(tmp, strlen(tmp) + 1);
3958 	}
3959 
3960 	ztest_verify_blocks(zopt_pool);
3961 
3962 	if (zopt_verbose >= 1) {
3963 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
3964 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
3965 	}
3966 
3967 	return (0);
3968 }
3969