xref: /titanic_52/usr/src/cmd/ztest/ztest.c (revision 7eea693d6b672899726e75993fddc4e95b52647f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The objective of this program is to provide a DMU/ZAP/SPA stress test
28  * that runs entirely in userland, is easy to use, and easy to extend.
29  *
30  * The overall design of the ztest program is as follows:
31  *
32  * (1) For each major functional area (e.g. adding vdevs to a pool,
33  *     creating and destroying datasets, reading and writing objects, etc)
34  *     we have a simple routine to test that functionality.  These
35  *     individual routines do not have to do anything "stressful".
36  *
37  * (2) We turn these simple functionality tests into a stress test by
38  *     running them all in parallel, with as many threads as desired,
39  *     and spread across as many datasets, objects, and vdevs as desired.
40  *
41  * (3) While all this is happening, we inject faults into the pool to
42  *     verify that self-healing data really works.
43  *
44  * (4) Every time we open a dataset, we change its checksum and compression
45  *     functions.  Thus even individual objects vary from block to block
46  *     in which checksum they use and whether they're compressed.
47  *
48  * (5) To verify that we never lose on-disk consistency after a crash,
49  *     we run the entire test in a child of the main process.
50  *     At random times, the child self-immolates with a SIGKILL.
51  *     This is the software equivalent of pulling the power cord.
52  *     The parent then runs the test again, using the existing
53  *     storage pool, as many times as desired.
54  *
55  * (6) To verify that we don't have future leaks or temporal incursions,
56  *     many of the functional tests record the transaction group number
57  *     as part of their data.  When reading old data, they verify that
58  *     the transaction group number is less than the current, open txg.
59  *     If you add a new test, please do this if applicable.
60  *
61  * When run with no arguments, ztest runs for about five minutes and
62  * produces no output if successful.  To get a little bit of information,
63  * specify -V.  To get more information, specify -VV, and so on.
64  *
65  * To turn this into an overnight stress test, use -T to specify run time.
66  *
67  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68  * to increase the pool capacity, fanout, and overall stress level.
69  *
70  * The -N(okill) option will suppress kills, so each child runs to completion.
71  * This can be useful when you're trying to distinguish temporal incursions
72  * from plain old race conditions.
73  */
74 
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/zap.h>
80 #include <sys/dmu_traverse.h>
81 #include <sys/dmu_objset.h>
82 #include <sys/poll.h>
83 #include <sys/stat.h>
84 #include <sys/time.h>
85 #include <sys/wait.h>
86 #include <sys/mman.h>
87 #include <sys/resource.h>
88 #include <sys/zio.h>
89 #include <sys/zio_checksum.h>
90 #include <sys/zio_compress.h>
91 #include <sys/zil.h>
92 #include <sys/vdev_impl.h>
93 #include <sys/vdev_file.h>
94 #include <sys/spa_impl.h>
95 #include <sys/dsl_prop.h>
96 #include <sys/refcount.h>
97 #include <stdio.h>
98 #include <stdio_ext.h>
99 #include <stdlib.h>
100 #include <unistd.h>
101 #include <signal.h>
102 #include <umem.h>
103 #include <dlfcn.h>
104 #include <ctype.h>
105 #include <math.h>
106 #include <sys/fs/zfs.h>
107 
108 static char cmdname[] = "ztest";
109 static char *zopt_pool = cmdname;
110 
111 static uint64_t zopt_vdevs = 5;
112 static uint64_t zopt_vdevtime;
113 static int zopt_ashift = SPA_MINBLOCKSHIFT;
114 static int zopt_mirrors = 2;
115 static int zopt_raidz = 4;
116 static int zopt_raidz_parity = 1;
117 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
118 static int zopt_datasets = 7;
119 static int zopt_threads = 23;
120 static uint64_t zopt_passtime = 60;	/* 60 seconds */
121 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
122 static int zopt_verbose = 0;
123 static int zopt_init = 1;
124 static char *zopt_dir = "/tmp";
125 static uint64_t zopt_time = 300;	/* 5 minutes */
126 static int zopt_maxfaults;
127 
128 typedef struct ztest_block_tag {
129 	uint64_t	bt_objset;
130 	uint64_t	bt_object;
131 	uint64_t	bt_offset;
132 	uint64_t	bt_txg;
133 	uint64_t	bt_thread;
134 	uint64_t	bt_seq;
135 } ztest_block_tag_t;
136 
137 typedef struct ztest_args {
138 	char		za_pool[MAXNAMELEN];
139 	spa_t		*za_spa;
140 	objset_t	*za_os;
141 	zilog_t		*za_zilog;
142 	thread_t	za_thread;
143 	uint64_t	za_instance;
144 	uint64_t	za_random;
145 	uint64_t	za_diroff;
146 	uint64_t	za_diroff_shared;
147 	uint64_t	za_zil_seq;
148 	hrtime_t	za_start;
149 	hrtime_t	za_stop;
150 	hrtime_t	za_kill;
151 	traverse_handle_t *za_th;
152 	/*
153 	 * Thread-local variables can go here to aid debugging.
154 	 */
155 	ztest_block_tag_t za_rbt;
156 	ztest_block_tag_t za_wbt;
157 	dmu_object_info_t za_doi;
158 	dmu_buf_t	*za_dbuf;
159 } ztest_args_t;
160 
161 typedef void ztest_func_t(ztest_args_t *);
162 
163 /*
164  * Note: these aren't static because we want dladdr() to work.
165  */
166 ztest_func_t ztest_dmu_read_write;
167 ztest_func_t ztest_dmu_write_parallel;
168 ztest_func_t ztest_dmu_object_alloc_free;
169 ztest_func_t ztest_zap;
170 ztest_func_t ztest_zap_parallel;
171 ztest_func_t ztest_traverse;
172 ztest_func_t ztest_dsl_prop_get_set;
173 ztest_func_t ztest_dmu_objset_create_destroy;
174 ztest_func_t ztest_dmu_snapshot_create_destroy;
175 ztest_func_t ztest_spa_create_destroy;
176 ztest_func_t ztest_fault_inject;
177 ztest_func_t ztest_spa_rename;
178 ztest_func_t ztest_vdev_attach_detach;
179 ztest_func_t ztest_vdev_LUN_growth;
180 ztest_func_t ztest_vdev_add_remove;
181 ztest_func_t ztest_vdev_aux_add_remove;
182 ztest_func_t ztest_scrub;
183 
184 typedef struct ztest_info {
185 	ztest_func_t	*zi_func;	/* test function */
186 	uint64_t	zi_iters;	/* iterations per execution */
187 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
188 	uint64_t	zi_calls;	/* per-pass count */
189 	uint64_t	zi_call_time;	/* per-pass time */
190 	uint64_t	zi_call_total;	/* cumulative total */
191 	uint64_t	zi_call_target;	/* target cumulative total */
192 } ztest_info_t;
193 
194 uint64_t zopt_always = 0;		/* all the time */
195 uint64_t zopt_often = 1;		/* every second */
196 uint64_t zopt_sometimes = 10;		/* every 10 seconds */
197 uint64_t zopt_rarely = 60;		/* every 60 seconds */
198 
199 ztest_info_t ztest_info[] = {
200 	{ ztest_dmu_read_write,			1,	&zopt_always	},
201 	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
202 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
203 	{ ztest_zap,				30,	&zopt_always	},
204 	{ ztest_zap_parallel,			100,	&zopt_always	},
205 	{ ztest_traverse,			1,	&zopt_often	},
206 	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
207 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
208 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
209 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
210 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
211 	{ ztest_spa_rename,			1,	&zopt_rarely	},
212 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
213 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
214 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
215 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
216 	{ ztest_scrub,				1,	&zopt_vdevtime	},
217 };
218 
219 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
220 
221 #define	ZTEST_SYNC_LOCKS	16
222 
223 /*
224  * Stuff we need to share writably between parent and child.
225  */
226 typedef struct ztest_shared {
227 	mutex_t		zs_vdev_lock;
228 	rwlock_t	zs_name_lock;
229 	uint64_t	zs_vdev_primaries;
230 	uint64_t	zs_vdev_aux;
231 	uint64_t	zs_enospc_count;
232 	hrtime_t	zs_start_time;
233 	hrtime_t	zs_stop_time;
234 	uint64_t	zs_alloc;
235 	uint64_t	zs_space;
236 	ztest_info_t	zs_info[ZTEST_FUNCS];
237 	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
238 	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
239 } ztest_shared_t;
240 
241 static char ztest_dev_template[] = "%s/%s.%llua";
242 static char ztest_aux_template[] = "%s/%s.%s.%llu";
243 static ztest_shared_t *ztest_shared;
244 
245 static int ztest_random_fd;
246 static int ztest_dump_core = 1;
247 
248 static boolean_t ztest_exiting;
249 
250 extern uint64_t metaslab_gang_bang;
251 
252 #define	ZTEST_DIROBJ		1
253 #define	ZTEST_MICROZAP_OBJ	2
254 #define	ZTEST_FATZAP_OBJ	3
255 
256 #define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
257 #define	ZTEST_DIRSIZE		256
258 
259 static void usage(boolean_t) __NORETURN;
260 
261 /*
262  * These libumem hooks provide a reasonable set of defaults for the allocator's
263  * debugging facilities.
264  */
265 const char *
266 _umem_debug_init()
267 {
268 	return ("default,verbose"); /* $UMEM_DEBUG setting */
269 }
270 
271 const char *
272 _umem_logging_init(void)
273 {
274 	return ("fail,contents"); /* $UMEM_LOGGING setting */
275 }
276 
277 #define	FATAL_MSG_SZ	1024
278 
279 char *fatal_msg;
280 
281 static void
282 fatal(int do_perror, char *message, ...)
283 {
284 	va_list args;
285 	int save_errno = errno;
286 	char buf[FATAL_MSG_SZ];
287 
288 	(void) fflush(stdout);
289 
290 	va_start(args, message);
291 	(void) sprintf(buf, "ztest: ");
292 	/* LINTED */
293 	(void) vsprintf(buf + strlen(buf), message, args);
294 	va_end(args);
295 	if (do_perror) {
296 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
297 		    ": %s", strerror(save_errno));
298 	}
299 	(void) fprintf(stderr, "%s\n", buf);
300 	fatal_msg = buf;			/* to ease debugging */
301 	if (ztest_dump_core)
302 		abort();
303 	exit(3);
304 }
305 
306 static int
307 str2shift(const char *buf)
308 {
309 	const char *ends = "BKMGTPEZ";
310 	int i;
311 
312 	if (buf[0] == '\0')
313 		return (0);
314 	for (i = 0; i < strlen(ends); i++) {
315 		if (toupper(buf[0]) == ends[i])
316 			break;
317 	}
318 	if (i == strlen(ends)) {
319 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
320 		    buf);
321 		usage(B_FALSE);
322 	}
323 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
324 		return (10*i);
325 	}
326 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
327 	usage(B_FALSE);
328 	/* NOTREACHED */
329 }
330 
331 static uint64_t
332 nicenumtoull(const char *buf)
333 {
334 	char *end;
335 	uint64_t val;
336 
337 	val = strtoull(buf, &end, 0);
338 	if (end == buf) {
339 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
340 		usage(B_FALSE);
341 	} else if (end[0] == '.') {
342 		double fval = strtod(buf, &end);
343 		fval *= pow(2, str2shift(end));
344 		if (fval > UINT64_MAX) {
345 			(void) fprintf(stderr, "ztest: value too large: %s\n",
346 			    buf);
347 			usage(B_FALSE);
348 		}
349 		val = (uint64_t)fval;
350 	} else {
351 		int shift = str2shift(end);
352 		if (shift >= 64 || (val << shift) >> shift != val) {
353 			(void) fprintf(stderr, "ztest: value too large: %s\n",
354 			    buf);
355 			usage(B_FALSE);
356 		}
357 		val <<= shift;
358 	}
359 	return (val);
360 }
361 
362 static void
363 usage(boolean_t requested)
364 {
365 	char nice_vdev_size[10];
366 	char nice_gang_bang[10];
367 	FILE *fp = requested ? stdout : stderr;
368 
369 	nicenum(zopt_vdev_size, nice_vdev_size);
370 	nicenum(metaslab_gang_bang, nice_gang_bang);
371 
372 	(void) fprintf(fp, "Usage: %s\n"
373 	    "\t[-v vdevs (default: %llu)]\n"
374 	    "\t[-s size_of_each_vdev (default: %s)]\n"
375 	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
376 	    "\t[-m mirror_copies (default: %d)]\n"
377 	    "\t[-r raidz_disks (default: %d)]\n"
378 	    "\t[-R raidz_parity (default: %d)]\n"
379 	    "\t[-d datasets (default: %d)]\n"
380 	    "\t[-t threads (default: %d)]\n"
381 	    "\t[-g gang_block_threshold (default: %s)]\n"
382 	    "\t[-i initialize pool i times (default: %d)]\n"
383 	    "\t[-k kill percentage (default: %llu%%)]\n"
384 	    "\t[-p pool_name (default: %s)]\n"
385 	    "\t[-f file directory for vdev files (default: %s)]\n"
386 	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
387 	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
388 	    "\t[-T time] total run time (default: %llu sec)\n"
389 	    "\t[-P passtime] time per pass (default: %llu sec)\n"
390 	    "\t[-h] (print help)\n"
391 	    "",
392 	    cmdname,
393 	    (u_longlong_t)zopt_vdevs,			/* -v */
394 	    nice_vdev_size,				/* -s */
395 	    zopt_ashift,				/* -a */
396 	    zopt_mirrors,				/* -m */
397 	    zopt_raidz,					/* -r */
398 	    zopt_raidz_parity,				/* -R */
399 	    zopt_datasets,				/* -d */
400 	    zopt_threads,				/* -t */
401 	    nice_gang_bang,				/* -g */
402 	    zopt_init,					/* -i */
403 	    (u_longlong_t)zopt_killrate,		/* -k */
404 	    zopt_pool,					/* -p */
405 	    zopt_dir,					/* -f */
406 	    (u_longlong_t)zopt_time,			/* -T */
407 	    (u_longlong_t)zopt_passtime);		/* -P */
408 	exit(requested ? 0 : 1);
409 }
410 
411 static uint64_t
412 ztest_random(uint64_t range)
413 {
414 	uint64_t r;
415 
416 	if (range == 0)
417 		return (0);
418 
419 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
420 		fatal(1, "short read from /dev/urandom");
421 
422 	return (r % range);
423 }
424 
425 static void
426 ztest_record_enospc(char *s)
427 {
428 	dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>");
429 	ztest_shared->zs_enospc_count++;
430 }
431 
432 static void
433 process_options(int argc, char **argv)
434 {
435 	int opt;
436 	uint64_t value;
437 
438 	/* By default, test gang blocks for blocks 32K and greater */
439 	metaslab_gang_bang = 32 << 10;
440 
441 	while ((opt = getopt(argc, argv,
442 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
443 		value = 0;
444 		switch (opt) {
445 		case 'v':
446 		case 's':
447 		case 'a':
448 		case 'm':
449 		case 'r':
450 		case 'R':
451 		case 'd':
452 		case 't':
453 		case 'g':
454 		case 'i':
455 		case 'k':
456 		case 'T':
457 		case 'P':
458 			value = nicenumtoull(optarg);
459 		}
460 		switch (opt) {
461 		case 'v':
462 			zopt_vdevs = value;
463 			break;
464 		case 's':
465 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
466 			break;
467 		case 'a':
468 			zopt_ashift = value;
469 			break;
470 		case 'm':
471 			zopt_mirrors = value;
472 			break;
473 		case 'r':
474 			zopt_raidz = MAX(1, value);
475 			break;
476 		case 'R':
477 			zopt_raidz_parity = MIN(MAX(value, 1), 2);
478 			break;
479 		case 'd':
480 			zopt_datasets = MAX(1, value);
481 			break;
482 		case 't':
483 			zopt_threads = MAX(1, value);
484 			break;
485 		case 'g':
486 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
487 			break;
488 		case 'i':
489 			zopt_init = value;
490 			break;
491 		case 'k':
492 			zopt_killrate = value;
493 			break;
494 		case 'p':
495 			zopt_pool = strdup(optarg);
496 			break;
497 		case 'f':
498 			zopt_dir = strdup(optarg);
499 			break;
500 		case 'V':
501 			zopt_verbose++;
502 			break;
503 		case 'E':
504 			zopt_init = 0;
505 			break;
506 		case 'T':
507 			zopt_time = value;
508 			break;
509 		case 'P':
510 			zopt_passtime = MAX(1, value);
511 			break;
512 		case 'h':
513 			usage(B_TRUE);
514 			break;
515 		case '?':
516 		default:
517 			usage(B_FALSE);
518 			break;
519 		}
520 	}
521 
522 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
523 
524 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
525 	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
526 }
527 
528 static uint64_t
529 ztest_get_ashift(void)
530 {
531 	if (zopt_ashift == 0)
532 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
533 	return (zopt_ashift);
534 }
535 
536 static nvlist_t *
537 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
538 {
539 	char pathbuf[MAXPATHLEN];
540 	uint64_t vdev;
541 	nvlist_t *file;
542 
543 	if (ashift == 0)
544 		ashift = ztest_get_ashift();
545 
546 	if (path == NULL) {
547 		path = pathbuf;
548 
549 		if (aux != NULL) {
550 			vdev = ztest_shared->zs_vdev_aux;
551 			(void) sprintf(path, ztest_aux_template,
552 			    zopt_dir, zopt_pool, aux, vdev);
553 		} else {
554 			vdev = ztest_shared->zs_vdev_primaries++;
555 			(void) sprintf(path, ztest_dev_template,
556 			    zopt_dir, zopt_pool, vdev);
557 		}
558 	}
559 
560 	if (size != 0) {
561 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
562 		if (fd == -1)
563 			fatal(1, "can't open %s", path);
564 		if (ftruncate(fd, size) != 0)
565 			fatal(1, "can't ftruncate %s", path);
566 		(void) close(fd);
567 	}
568 
569 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
570 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
571 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
572 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
573 
574 	return (file);
575 }
576 
577 static nvlist_t *
578 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
579 {
580 	nvlist_t *raidz, **child;
581 	int c;
582 
583 	if (r < 2)
584 		return (make_vdev_file(path, aux, size, ashift));
585 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
586 
587 	for (c = 0; c < r; c++)
588 		child[c] = make_vdev_file(path, aux, size, ashift);
589 
590 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
591 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
592 	    VDEV_TYPE_RAIDZ) == 0);
593 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
594 	    zopt_raidz_parity) == 0);
595 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
596 	    child, r) == 0);
597 
598 	for (c = 0; c < r; c++)
599 		nvlist_free(child[c]);
600 
601 	umem_free(child, r * sizeof (nvlist_t *));
602 
603 	return (raidz);
604 }
605 
606 static nvlist_t *
607 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
608 	int log, int r, int m)
609 {
610 	nvlist_t *mirror, **child;
611 	int c;
612 
613 	if (m < 1)
614 		return (make_vdev_raidz(path, aux, size, ashift, r));
615 
616 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
617 
618 	for (c = 0; c < m; c++)
619 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
620 
621 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
622 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
623 	    VDEV_TYPE_MIRROR) == 0);
624 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
625 	    child, m) == 0);
626 	VERIFY(nvlist_add_uint64(mirror, ZPOOL_CONFIG_IS_LOG, log) == 0);
627 
628 	for (c = 0; c < m; c++)
629 		nvlist_free(child[c]);
630 
631 	umem_free(child, m * sizeof (nvlist_t *));
632 
633 	return (mirror);
634 }
635 
636 static nvlist_t *
637 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
638 	int log, int r, int m, int t)
639 {
640 	nvlist_t *root, **child;
641 	int c;
642 
643 	ASSERT(t > 0);
644 
645 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
646 
647 	for (c = 0; c < t; c++)
648 		child[c] = make_vdev_mirror(path, aux, size, ashift, log, r, m);
649 
650 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
651 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
652 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
653 	    child, t) == 0);
654 
655 	for (c = 0; c < t; c++)
656 		nvlist_free(child[c]);
657 
658 	umem_free(child, t * sizeof (nvlist_t *));
659 
660 	return (root);
661 }
662 
663 static void
664 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
665 {
666 	int bs = SPA_MINBLOCKSHIFT +
667 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
668 	int ibs = DN_MIN_INDBLKSHIFT +
669 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
670 	int error;
671 
672 	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
673 	if (error) {
674 		char osname[300];
675 		dmu_objset_name(os, osname);
676 		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
677 		    osname, object, 1 << bs, ibs, error);
678 	}
679 }
680 
681 static uint8_t
682 ztest_random_checksum(void)
683 {
684 	uint8_t checksum;
685 
686 	do {
687 		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
688 	} while (zio_checksum_table[checksum].ci_zbt);
689 
690 	if (checksum == ZIO_CHECKSUM_OFF)
691 		checksum = ZIO_CHECKSUM_ON;
692 
693 	return (checksum);
694 }
695 
696 static uint8_t
697 ztest_random_compress(void)
698 {
699 	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
700 }
701 
702 typedef struct ztest_replay {
703 	objset_t	*zr_os;
704 	uint64_t	zr_assign;
705 } ztest_replay_t;
706 
707 static int
708 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap)
709 {
710 	objset_t *os = zr->zr_os;
711 	dmu_tx_t *tx;
712 	int error;
713 
714 	if (byteswap)
715 		byteswap_uint64_array(lr, sizeof (*lr));
716 
717 	tx = dmu_tx_create(os);
718 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
719 	error = dmu_tx_assign(tx, zr->zr_assign);
720 	if (error) {
721 		dmu_tx_abort(tx);
722 		return (error);
723 	}
724 
725 	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
726 	    DMU_OT_NONE, 0, tx);
727 	ASSERT3U(error, ==, 0);
728 	dmu_tx_commit(tx);
729 
730 	if (zopt_verbose >= 5) {
731 		char osname[MAXNAMELEN];
732 		dmu_objset_name(os, osname);
733 		(void) printf("replay create of %s object %llu"
734 		    " in txg %llu = %d\n",
735 		    osname, (u_longlong_t)lr->lr_doid,
736 		    (u_longlong_t)zr->zr_assign, error);
737 	}
738 
739 	return (error);
740 }
741 
742 static int
743 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap)
744 {
745 	objset_t *os = zr->zr_os;
746 	dmu_tx_t *tx;
747 	int error;
748 
749 	if (byteswap)
750 		byteswap_uint64_array(lr, sizeof (*lr));
751 
752 	tx = dmu_tx_create(os);
753 	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
754 	error = dmu_tx_assign(tx, zr->zr_assign);
755 	if (error) {
756 		dmu_tx_abort(tx);
757 		return (error);
758 	}
759 
760 	error = dmu_object_free(os, lr->lr_doid, tx);
761 	dmu_tx_commit(tx);
762 
763 	return (error);
764 }
765 
766 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
767 	NULL,			/* 0 no such transaction type */
768 	ztest_replay_create,	/* TX_CREATE */
769 	NULL,			/* TX_MKDIR */
770 	NULL,			/* TX_MKXATTR */
771 	NULL,			/* TX_SYMLINK */
772 	ztest_replay_remove,	/* TX_REMOVE */
773 	NULL,			/* TX_RMDIR */
774 	NULL,			/* TX_LINK */
775 	NULL,			/* TX_RENAME */
776 	NULL,			/* TX_WRITE */
777 	NULL,			/* TX_TRUNCATE */
778 	NULL,			/* TX_SETATTR */
779 	NULL,			/* TX_ACL */
780 };
781 
782 /*
783  * Verify that we can't destroy an active pool, create an existing pool,
784  * or create a pool with a bad vdev spec.
785  */
786 void
787 ztest_spa_create_destroy(ztest_args_t *za)
788 {
789 	int error;
790 	spa_t *spa;
791 	nvlist_t *nvroot;
792 
793 	/*
794 	 * Attempt to create using a bad file.
795 	 */
796 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
797 	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
798 	nvlist_free(nvroot);
799 	if (error != ENOENT)
800 		fatal(0, "spa_create(bad_file) = %d", error);
801 
802 	/*
803 	 * Attempt to create using a bad mirror.
804 	 */
805 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
806 	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
807 	nvlist_free(nvroot);
808 	if (error != ENOENT)
809 		fatal(0, "spa_create(bad_mirror) = %d", error);
810 
811 	/*
812 	 * Attempt to create an existing pool.  It shouldn't matter
813 	 * what's in the nvroot; we should fail with EEXIST.
814 	 */
815 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
816 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
817 	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
818 	nvlist_free(nvroot);
819 	if (error != EEXIST)
820 		fatal(0, "spa_create(whatever) = %d", error);
821 
822 	error = spa_open(za->za_pool, &spa, FTAG);
823 	if (error)
824 		fatal(0, "spa_open() = %d", error);
825 
826 	error = spa_destroy(za->za_pool);
827 	if (error != EBUSY)
828 		fatal(0, "spa_destroy() = %d", error);
829 
830 	spa_close(spa, FTAG);
831 	(void) rw_unlock(&ztest_shared->zs_name_lock);
832 }
833 
834 /*
835  * Verify that vdev_add() works as expected.
836  */
837 void
838 ztest_vdev_add_remove(ztest_args_t *za)
839 {
840 	spa_t *spa = za->za_spa;
841 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
842 	nvlist_t *nvroot;
843 	int error;
844 
845 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
846 
847 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
848 
849 	ztest_shared->zs_vdev_primaries =
850 	    spa->spa_root_vdev->vdev_children * leaves;
851 
852 	spa_config_exit(spa, SCL_VDEV, FTAG);
853 
854 	/*
855 	 * Make 1/4 of the devices be log devices.
856 	 */
857 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
858 	    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
859 
860 	error = spa_vdev_add(spa, nvroot);
861 	nvlist_free(nvroot);
862 
863 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
864 
865 	if (error == ENOSPC)
866 		ztest_record_enospc("spa_vdev_add");
867 	else if (error != 0)
868 		fatal(0, "spa_vdev_add() = %d", error);
869 }
870 
871 /*
872  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
873  */
874 void
875 ztest_vdev_aux_add_remove(ztest_args_t *za)
876 {
877 	spa_t *spa = za->za_spa;
878 	spa_aux_vdev_t *sav;
879 	char *aux;
880 	uint64_t guid = 0;
881 	int error;
882 
883 	if (ztest_random(3) == 0) {
884 		sav = &spa->spa_spares;
885 		aux = ZPOOL_CONFIG_SPARES;
886 	} else {
887 		sav = &spa->spa_l2cache;
888 		aux = ZPOOL_CONFIG_L2CACHE;
889 	}
890 
891 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
892 
893 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
894 
895 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
896 		/*
897 		 * Pick a random device to remove.
898 		 */
899 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
900 	} else {
901 		/*
902 		 * Find an unused device we can add.
903 		 */
904 		ztest_shared->zs_vdev_aux = 0;
905 		for (;;) {
906 			char path[MAXPATHLEN];
907 			int c;
908 			(void) sprintf(path, ztest_aux_template, zopt_dir,
909 			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
910 			for (c = 0; c < sav->sav_count; c++)
911 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
912 				    path) == 0)
913 					break;
914 			if (c == sav->sav_count)
915 				break;
916 			ztest_shared->zs_vdev_aux++;
917 		}
918 	}
919 
920 	spa_config_exit(spa, SCL_VDEV, FTAG);
921 
922 	if (guid == 0) {
923 		/*
924 		 * Add a new device.
925 		 */
926 		nvlist_t *nvroot = make_vdev_root(NULL, aux, zopt_vdev_size, 0,
927 		    0, 0, 0, 1);
928 		error = spa_vdev_add(spa, nvroot);
929 		if (error != 0)
930 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
931 		nvlist_free(nvroot);
932 	} else {
933 		/*
934 		 * Remove an existing device.  Sometimes, dirty its
935 		 * vdev state first to make sure we handle removal
936 		 * of devices that have pending state changes.
937 		 */
938 		if (ztest_random(2) == 0)
939 			(void) vdev_online(spa, guid, B_FALSE, NULL);
940 
941 		error = spa_vdev_remove(spa, guid, B_FALSE);
942 		if (error != 0 && error != EBUSY)
943 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
944 	}
945 
946 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
947 }
948 
949 static vdev_t *
950 vdev_lookup_by_path(vdev_t *vd, const char *path)
951 {
952 	int c;
953 	vdev_t *mvd;
954 
955 	if (vd->vdev_path != NULL) {
956 		if (vd->vdev_wholedisk == 1) {
957 			/*
958 			 * For whole disks, the internal path has 's0', but the
959 			 * path passed in by the user doesn't.
960 			 */
961 			if (strlen(path) == strlen(vd->vdev_path) - 2 &&
962 			    strncmp(path, vd->vdev_path, strlen(path)) == 0)
963 				return (vd);
964 		} else if (strcmp(path, vd->vdev_path) == 0) {
965 			return (vd);
966 		}
967 	}
968 
969 	for (c = 0; c < vd->vdev_children; c++)
970 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
971 		    NULL)
972 			return (mvd);
973 
974 	return (NULL);
975 }
976 
977 /*
978  * Verify that we can attach and detach devices.
979  */
980 void
981 ztest_vdev_attach_detach(ztest_args_t *za)
982 {
983 	spa_t *spa = za->za_spa;
984 	vdev_t *rvd = spa->spa_root_vdev;
985 	vdev_t *oldvd, *newvd, *pvd;
986 	nvlist_t *root;
987 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
988 	uint64_t leaf, top;
989 	uint64_t ashift = ztest_get_ashift();
990 	size_t oldsize, newsize;
991 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
992 	int replacing;
993 	int error, expected_error;
994 
995 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
996 
997 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
998 
999 	/*
1000 	 * Decide whether to do an attach or a replace.
1001 	 */
1002 	replacing = ztest_random(2);
1003 
1004 	/*
1005 	 * Pick a random top-level vdev.
1006 	 */
1007 	top = ztest_random(rvd->vdev_children);
1008 
1009 	/*
1010 	 * Pick a random leaf within it.
1011 	 */
1012 	leaf = ztest_random(leaves);
1013 
1014 	/*
1015 	 * Generate the path to this leaf.  The filename will end with 'a'.
1016 	 * We'll alternate replacements with a filename that ends with 'b'.
1017 	 */
1018 	(void) snprintf(oldpath, sizeof (oldpath),
1019 	    ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf);
1020 
1021 	bcopy(oldpath, newpath, MAXPATHLEN);
1022 
1023 	/*
1024 	 * If the 'a' file isn't part of the pool, the 'b' file must be.
1025 	 */
1026 	if (vdev_lookup_by_path(rvd, oldpath) == NULL)
1027 		oldpath[strlen(oldpath) - 1] = 'b';
1028 	else
1029 		newpath[strlen(newpath) - 1] = 'b';
1030 
1031 	/*
1032 	 * Now oldpath represents something that's already in the pool,
1033 	 * and newpath is the thing we'll try to attach.
1034 	 */
1035 	oldvd = vdev_lookup_by_path(rvd, oldpath);
1036 	newvd = vdev_lookup_by_path(rvd, newpath);
1037 	ASSERT(oldvd != NULL);
1038 	pvd = oldvd->vdev_parent;
1039 
1040 	/*
1041 	 * Make newsize a little bigger or smaller than oldsize.
1042 	 * If it's smaller, the attach should fail.
1043 	 * If it's larger, and we're doing a replace,
1044 	 * we should get dynamic LUN growth when we're done.
1045 	 */
1046 	oldsize = vdev_get_rsize(oldvd);
1047 	newsize = 10 * oldsize / (9 + ztest_random(3));
1048 
1049 	/*
1050 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1051 	 * unless it's a replace; in that case any non-replacing parent is OK.
1052 	 *
1053 	 * If newvd is already part of the pool, it should fail with EBUSY.
1054 	 *
1055 	 * If newvd is too small, it should fail with EOVERFLOW.
1056 	 */
1057 	if (newvd != NULL)
1058 		expected_error = EBUSY;
1059 	else if (pvd->vdev_ops != &vdev_mirror_ops &&
1060 	    pvd->vdev_ops != &vdev_root_ops &&
1061 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1062 		expected_error = ENOTSUP;
1063 	else if (newsize < oldsize)
1064 		expected_error = EOVERFLOW;
1065 	else if (ashift > oldvd->vdev_top->vdev_ashift)
1066 		expected_error = EDOM;
1067 	else
1068 		expected_error = 0;
1069 
1070 	spa_config_exit(spa, SCL_VDEV, FTAG);
1071 
1072 	/*
1073 	 * Build the nvlist describing newpath.
1074 	 */
1075 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1076 	    ashift, 0, 0, 0, 1);
1077 
1078 	error = spa_vdev_attach(spa, oldvd->vdev_guid, root, replacing);
1079 
1080 	nvlist_free(root);
1081 
1082 	/*
1083 	 * If our parent was the replacing vdev, but the replace completed,
1084 	 * then instead of failing with ENOTSUP we may either succeed,
1085 	 * fail with ENODEV, or fail with EOVERFLOW.
1086 	 */
1087 	if (expected_error == ENOTSUP &&
1088 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1089 		expected_error = error;
1090 
1091 	/*
1092 	 * If someone grew the LUN, the replacement may be too small.
1093 	 */
1094 	if (error == EOVERFLOW || error == EBUSY)
1095 		expected_error = error;
1096 
1097 	/* XXX workaround 6690467 */
1098 	if (error != expected_error && expected_error != EBUSY) {
1099 		fatal(0, "attach (%s %llu, %s %llu, %d) "
1100 		    "returned %d, expected %d",
1101 		    oldpath, (longlong_t)oldsize, newpath,
1102 		    (longlong_t)newsize, replacing, error, expected_error);
1103 	}
1104 
1105 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1106 }
1107 
1108 /*
1109  * Verify that dynamic LUN growth works as expected.
1110  */
1111 /* ARGSUSED */
1112 void
1113 ztest_vdev_LUN_growth(ztest_args_t *za)
1114 {
1115 	spa_t *spa = za->za_spa;
1116 	char dev_name[MAXPATHLEN];
1117 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1118 	uint64_t vdev;
1119 	size_t fsize;
1120 	int fd;
1121 
1122 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1123 
1124 	/*
1125 	 * Pick a random leaf vdev.
1126 	 */
1127 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1128 	vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves);
1129 	spa_config_exit(spa, SCL_VDEV, FTAG);
1130 
1131 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
1132 
1133 	if ((fd = open(dev_name, O_RDWR)) != -1) {
1134 		/*
1135 		 * Determine the size.
1136 		 */
1137 		fsize = lseek(fd, 0, SEEK_END);
1138 
1139 		/*
1140 		 * If it's less than 2x the original size, grow by around 3%.
1141 		 */
1142 		if (fsize < 2 * zopt_vdev_size) {
1143 			size_t newsize = fsize + ztest_random(fsize / 32);
1144 			(void) ftruncate(fd, newsize);
1145 			if (zopt_verbose >= 6) {
1146 				(void) printf("%s grew from %lu to %lu bytes\n",
1147 				    dev_name, (ulong_t)fsize, (ulong_t)newsize);
1148 			}
1149 		}
1150 		(void) close(fd);
1151 	}
1152 
1153 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1154 }
1155 
1156 /* ARGSUSED */
1157 static void
1158 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1159 {
1160 	/*
1161 	 * Create the directory object.
1162 	 */
1163 	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1164 	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1165 	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1166 
1167 	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1168 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1169 
1170 	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1171 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1172 }
1173 
1174 static int
1175 ztest_destroy_cb(char *name, void *arg)
1176 {
1177 	ztest_args_t *za = arg;
1178 	objset_t *os;
1179 	dmu_object_info_t *doi = &za->za_doi;
1180 	int error;
1181 
1182 	/*
1183 	 * Verify that the dataset contains a directory object.
1184 	 */
1185 	error = dmu_objset_open(name, DMU_OST_OTHER,
1186 	    DS_MODE_USER | DS_MODE_READONLY, &os);
1187 	ASSERT3U(error, ==, 0);
1188 	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1189 	if (error != ENOENT) {
1190 		/* We could have crashed in the middle of destroying it */
1191 		ASSERT3U(error, ==, 0);
1192 		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1193 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1194 	}
1195 	dmu_objset_close(os);
1196 
1197 	/*
1198 	 * Destroy the dataset.
1199 	 */
1200 	error = dmu_objset_destroy(name);
1201 	if (error) {
1202 		(void) dmu_objset_open(name, DMU_OST_OTHER,
1203 		    DS_MODE_USER | DS_MODE_READONLY, &os);
1204 		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error);
1205 	}
1206 	return (0);
1207 }
1208 
1209 /*
1210  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1211  */
1212 static uint64_t
1213 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1214 {
1215 	itx_t *itx;
1216 	lr_create_t *lr;
1217 	size_t namesize;
1218 	char name[24];
1219 
1220 	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1221 	namesize = strlen(name) + 1;
1222 
1223 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1224 	    ztest_random(ZIL_MAX_BLKSZ));
1225 	lr = (lr_create_t *)&itx->itx_lr;
1226 	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1227 	lr->lr_doid = object;
1228 	lr->lr_foid = 0;
1229 	lr->lr_mode = mode;
1230 	lr->lr_uid = 0;
1231 	lr->lr_gid = 0;
1232 	lr->lr_gen = dmu_tx_get_txg(tx);
1233 	lr->lr_crtime[0] = time(NULL);
1234 	lr->lr_crtime[1] = 0;
1235 	lr->lr_rdev = 0;
1236 	bcopy(name, (char *)(lr + 1), namesize);
1237 
1238 	return (zil_itx_assign(zilog, itx, tx));
1239 }
1240 
1241 void
1242 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1243 {
1244 	int error;
1245 	objset_t *os, *os2;
1246 	char name[100];
1247 	int basemode, expected_error;
1248 	zilog_t *zilog;
1249 	uint64_t seq;
1250 	uint64_t objects;
1251 	ztest_replay_t zr;
1252 
1253 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1254 	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1255 	    (u_longlong_t)za->za_instance);
1256 
1257 	basemode = DS_MODE_TYPE(za->za_instance);
1258 	if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER)
1259 		basemode = DS_MODE_USER;
1260 
1261 	/*
1262 	 * If this dataset exists from a previous run, process its replay log
1263 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1264 	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1265 	 */
1266 	if (ztest_random(2) == 0 &&
1267 	    dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) {
1268 		zr.zr_os = os;
1269 		zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL);
1270 		dmu_objset_close(os);
1271 	}
1272 
1273 	/*
1274 	 * There may be an old instance of the dataset we're about to
1275 	 * create lying around from a previous run.  If so, destroy it
1276 	 * and all of its snapshots.
1277 	 */
1278 	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1279 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1280 
1281 	/*
1282 	 * Verify that the destroyed dataset is no longer in the namespace.
1283 	 */
1284 	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1285 	if (error != ENOENT)
1286 		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1287 		    name, os);
1288 
1289 	/*
1290 	 * Verify that we can create a new dataset.
1291 	 */
1292 	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
1293 	    ztest_create_cb, NULL);
1294 	if (error) {
1295 		if (error == ENOSPC) {
1296 			ztest_record_enospc("dmu_objset_create");
1297 			(void) rw_unlock(&ztest_shared->zs_name_lock);
1298 			return;
1299 		}
1300 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1301 	}
1302 
1303 	error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1304 	if (error) {
1305 		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1306 	}
1307 
1308 	/*
1309 	 * Open the intent log for it.
1310 	 */
1311 	zilog = zil_open(os, NULL);
1312 
1313 	/*
1314 	 * Put a random number of objects in there.
1315 	 */
1316 	objects = ztest_random(20);
1317 	seq = 0;
1318 	while (objects-- != 0) {
1319 		uint64_t object;
1320 		dmu_tx_t *tx = dmu_tx_create(os);
1321 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1322 		error = dmu_tx_assign(tx, TXG_WAIT);
1323 		if (error) {
1324 			dmu_tx_abort(tx);
1325 		} else {
1326 			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1327 			    DMU_OT_NONE, 0, tx);
1328 			ztest_set_random_blocksize(os, object, tx);
1329 			seq = ztest_log_create(zilog, tx, object,
1330 			    DMU_OT_UINT64_OTHER);
1331 			dmu_write(os, object, 0, sizeof (name), name, tx);
1332 			dmu_tx_commit(tx);
1333 		}
1334 		if (ztest_random(5) == 0) {
1335 			zil_commit(zilog, seq, object);
1336 		}
1337 		if (ztest_random(100) == 0) {
1338 			error = zil_suspend(zilog);
1339 			if (error == 0) {
1340 				zil_resume(zilog);
1341 			}
1342 		}
1343 	}
1344 
1345 	/*
1346 	 * Verify that we cannot create an existing dataset.
1347 	 */
1348 	error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL);
1349 	if (error != EEXIST)
1350 		fatal(0, "created existing dataset, error = %d", error);
1351 
1352 	/*
1353 	 * Verify that multiple dataset holds are allowed, but only when
1354 	 * the new access mode is compatible with the base mode.
1355 	 */
1356 	if (basemode == DS_MODE_OWNER) {
1357 		error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER,
1358 		    &os2);
1359 		if (error)
1360 			fatal(0, "dmu_objset_open('%s') = %d", name, error);
1361 		else
1362 			dmu_objset_close(os2);
1363 	}
1364 	error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2);
1365 	expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0;
1366 	if (error != expected_error)
1367 		fatal(0, "dmu_objset_open('%s') = %d, expected %d",
1368 		    name, error, expected_error);
1369 	if (error == 0)
1370 		dmu_objset_close(os2);
1371 
1372 	zil_close(zilog);
1373 	dmu_objset_close(os);
1374 
1375 	error = dmu_objset_destroy(name);
1376 	if (error)
1377 		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1378 
1379 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1380 }
1381 
1382 /*
1383  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1384  */
1385 void
1386 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1387 {
1388 	int error;
1389 	objset_t *os = za->za_os;
1390 	char snapname[100];
1391 	char osname[MAXNAMELEN];
1392 
1393 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1394 	dmu_objset_name(os, osname);
1395 	(void) snprintf(snapname, 100, "%s@%llu", osname,
1396 	    (u_longlong_t)za->za_instance);
1397 
1398 	error = dmu_objset_destroy(snapname);
1399 	if (error != 0 && error != ENOENT)
1400 		fatal(0, "dmu_objset_destroy() = %d", error);
1401 	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE);
1402 	if (error == ENOSPC)
1403 		ztest_record_enospc("dmu_take_snapshot");
1404 	else if (error != 0 && error != EEXIST)
1405 		fatal(0, "dmu_take_snapshot() = %d", error);
1406 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1407 }
1408 
1409 #define	ZTEST_TRAVERSE_BLOCKS	1000
1410 
1411 static int
1412 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg)
1413 {
1414 	ztest_args_t *za = arg;
1415 	zbookmark_t *zb = &bc->bc_bookmark;
1416 	blkptr_t *bp = &bc->bc_blkptr;
1417 	dnode_phys_t *dnp = bc->bc_dnode;
1418 	traverse_handle_t *th = za->za_th;
1419 	uint64_t size = BP_GET_LSIZE(bp);
1420 
1421 	/*
1422 	 * Level -1 indicates the objset_phys_t or something in its intent log.
1423 	 */
1424 	if (zb->zb_level == -1) {
1425 		if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1426 			ASSERT3U(zb->zb_object, ==, 0);
1427 			ASSERT3U(zb->zb_blkid, ==, 0);
1428 			ASSERT3U(size, ==, sizeof (objset_phys_t));
1429 			za->za_zil_seq = 0;
1430 		} else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
1431 			ASSERT3U(zb->zb_object, ==, 0);
1432 			ASSERT3U(zb->zb_blkid, >, za->za_zil_seq);
1433 			za->za_zil_seq = zb->zb_blkid;
1434 		} else {
1435 			ASSERT3U(zb->zb_object, !=, 0);	/* lr_write_t */
1436 		}
1437 
1438 		return (0);
1439 	}
1440 
1441 	ASSERT(dnp != NULL);
1442 
1443 	if (bc->bc_errno)
1444 		return (ERESTART);
1445 
1446 	/*
1447 	 * Once in a while, abort the traverse.   We only do this to odd
1448 	 * instance numbers to ensure that even ones can run to completion.
1449 	 */
1450 	if ((za->za_instance & 1) && ztest_random(10000) == 0)
1451 		return (EINTR);
1452 
1453 	if (bp->blk_birth == 0) {
1454 		ASSERT(th->th_advance & ADVANCE_HOLES);
1455 		return (0);
1456 	}
1457 
1458 	if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) &&
1459 	    bc == &th->th_cache[ZB_DN_CACHE][0]) {
1460 		ASSERT(bc->bc_data == NULL);
1461 		return (0);
1462 	}
1463 
1464 	ASSERT(bc->bc_data != NULL);
1465 
1466 	/*
1467 	 * This is an expensive question, so don't ask it too often.
1468 	 */
1469 	if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) {
1470 		void *xbuf = umem_alloc(size, UMEM_NOFAIL);
1471 		if (arc_tryread(spa, bp, xbuf) == 0) {
1472 			ASSERT(bcmp(bc->bc_data, xbuf, size) == 0);
1473 		}
1474 		umem_free(xbuf, size);
1475 	}
1476 
1477 	if (zb->zb_level > 0) {
1478 		ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift);
1479 		return (0);
1480 	}
1481 
1482 	ASSERT(zb->zb_level == 0);
1483 	ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT);
1484 
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Verify that live pool traversal works.
1490  */
1491 void
1492 ztest_traverse(ztest_args_t *za)
1493 {
1494 	spa_t *spa = za->za_spa;
1495 	traverse_handle_t *th = za->za_th;
1496 	int rc, advance;
1497 	uint64_t cbstart, cblimit;
1498 
1499 	if (th == NULL) {
1500 		advance = 0;
1501 
1502 		if (ztest_random(2) == 0)
1503 			advance |= ADVANCE_PRE;
1504 
1505 		if (ztest_random(2) == 0)
1506 			advance |= ADVANCE_PRUNE;
1507 
1508 		if (ztest_random(2) == 0)
1509 			advance |= ADVANCE_DATA;
1510 
1511 		if (ztest_random(2) == 0)
1512 			advance |= ADVANCE_HOLES;
1513 
1514 		if (ztest_random(2) == 0)
1515 			advance |= ADVANCE_ZIL;
1516 
1517 		th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance,
1518 		    ZIO_FLAG_CANFAIL);
1519 
1520 		traverse_add_pool(th, 0, -1ULL);
1521 	}
1522 
1523 	advance = th->th_advance;
1524 	cbstart = th->th_callbacks;
1525 	cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000);
1526 
1527 	while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit)
1528 		continue;
1529 
1530 	if (zopt_verbose >= 5)
1531 		(void) printf("traverse %s%s%s%s %llu blocks to "
1532 		    "<%llu, %llu, %lld, %llx>%s\n",
1533 		    (advance & ADVANCE_PRE) ? "pre" : "post",
1534 		    (advance & ADVANCE_PRUNE) ? "|prune" : "",
1535 		    (advance & ADVANCE_DATA) ? "|data" : "",
1536 		    (advance & ADVANCE_HOLES) ? "|holes" : "",
1537 		    (u_longlong_t)(th->th_callbacks - cbstart),
1538 		    (u_longlong_t)th->th_lastcb.zb_objset,
1539 		    (u_longlong_t)th->th_lastcb.zb_object,
1540 		    (u_longlong_t)th->th_lastcb.zb_level,
1541 		    (u_longlong_t)th->th_lastcb.zb_blkid,
1542 		    rc == 0 ? " [done]" :
1543 		    rc == EINTR ? " [aborted]" :
1544 		    rc == EAGAIN ? "" :
1545 		    strerror(rc));
1546 
1547 	if (rc != EAGAIN) {
1548 		if (rc != 0 && rc != EINTR)
1549 			fatal(0, "traverse_more(%p) = %d", th, rc);
1550 		traverse_fini(th);
1551 		za->za_th = NULL;
1552 	}
1553 }
1554 
1555 /*
1556  * Verify that dmu_object_{alloc,free} work as expected.
1557  */
1558 void
1559 ztest_dmu_object_alloc_free(ztest_args_t *za)
1560 {
1561 	objset_t *os = za->za_os;
1562 	dmu_buf_t *db;
1563 	dmu_tx_t *tx;
1564 	uint64_t batchobj, object, batchsize, endoff, temp;
1565 	int b, c, error, bonuslen;
1566 	dmu_object_info_t *doi = &za->za_doi;
1567 	char osname[MAXNAMELEN];
1568 
1569 	dmu_objset_name(os, osname);
1570 
1571 	endoff = -8ULL;
1572 	batchsize = 2;
1573 
1574 	/*
1575 	 * Create a batch object if necessary, and record it in the directory.
1576 	 */
1577 	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1578 	    sizeof (uint64_t), &batchobj));
1579 	if (batchobj == 0) {
1580 		tx = dmu_tx_create(os);
1581 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1582 		    sizeof (uint64_t));
1583 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1584 		error = dmu_tx_assign(tx, TXG_WAIT);
1585 		if (error) {
1586 			ztest_record_enospc("create a batch object");
1587 			dmu_tx_abort(tx);
1588 			return;
1589 		}
1590 		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1591 		    DMU_OT_NONE, 0, tx);
1592 		ztest_set_random_blocksize(os, batchobj, tx);
1593 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1594 		    sizeof (uint64_t), &batchobj, tx);
1595 		dmu_tx_commit(tx);
1596 	}
1597 
1598 	/*
1599 	 * Destroy the previous batch of objects.
1600 	 */
1601 	for (b = 0; b < batchsize; b++) {
1602 		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1603 		    sizeof (uint64_t), &object));
1604 		if (object == 0)
1605 			continue;
1606 		/*
1607 		 * Read and validate contents.
1608 		 * We expect the nth byte of the bonus buffer to be n.
1609 		 */
1610 		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1611 		za->za_dbuf = db;
1612 
1613 		dmu_object_info_from_db(db, doi);
1614 		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1615 		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1616 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1617 
1618 		bonuslen = doi->doi_bonus_size;
1619 
1620 		for (c = 0; c < bonuslen; c++) {
1621 			if (((uint8_t *)db->db_data)[c] !=
1622 			    (uint8_t)(c + bonuslen)) {
1623 				fatal(0,
1624 				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1625 				    osname, object, c,
1626 				    ((uint8_t *)db->db_data)[c],
1627 				    (uint8_t)(c + bonuslen));
1628 			}
1629 		}
1630 
1631 		dmu_buf_rele(db, FTAG);
1632 		za->za_dbuf = NULL;
1633 
1634 		/*
1635 		 * We expect the word at endoff to be our object number.
1636 		 */
1637 		VERIFY(0 == dmu_read(os, object, endoff,
1638 		    sizeof (uint64_t), &temp));
1639 
1640 		if (temp != object) {
1641 			fatal(0, "bad data in %s, got %llu, expected %llu",
1642 			    osname, temp, object);
1643 		}
1644 
1645 		/*
1646 		 * Destroy old object and clear batch entry.
1647 		 */
1648 		tx = dmu_tx_create(os);
1649 		dmu_tx_hold_write(tx, batchobj,
1650 		    b * sizeof (uint64_t), sizeof (uint64_t));
1651 		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1652 		error = dmu_tx_assign(tx, TXG_WAIT);
1653 		if (error) {
1654 			ztest_record_enospc("free object");
1655 			dmu_tx_abort(tx);
1656 			return;
1657 		}
1658 		error = dmu_object_free(os, object, tx);
1659 		if (error) {
1660 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1661 			    osname, object, error);
1662 		}
1663 		object = 0;
1664 
1665 		dmu_object_set_checksum(os, batchobj,
1666 		    ztest_random_checksum(), tx);
1667 		dmu_object_set_compress(os, batchobj,
1668 		    ztest_random_compress(), tx);
1669 
1670 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1671 		    sizeof (uint64_t), &object, tx);
1672 
1673 		dmu_tx_commit(tx);
1674 	}
1675 
1676 	/*
1677 	 * Before creating the new batch of objects, generate a bunch of churn.
1678 	 */
1679 	for (b = ztest_random(100); b > 0; b--) {
1680 		tx = dmu_tx_create(os);
1681 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1682 		error = dmu_tx_assign(tx, TXG_WAIT);
1683 		if (error) {
1684 			ztest_record_enospc("churn objects");
1685 			dmu_tx_abort(tx);
1686 			return;
1687 		}
1688 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1689 		    DMU_OT_NONE, 0, tx);
1690 		ztest_set_random_blocksize(os, object, tx);
1691 		error = dmu_object_free(os, object, tx);
1692 		if (error) {
1693 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1694 			    osname, object, error);
1695 		}
1696 		dmu_tx_commit(tx);
1697 	}
1698 
1699 	/*
1700 	 * Create a new batch of objects with randomly chosen
1701 	 * blocksizes and record them in the batch directory.
1702 	 */
1703 	for (b = 0; b < batchsize; b++) {
1704 		uint32_t va_blksize;
1705 		u_longlong_t va_nblocks;
1706 
1707 		tx = dmu_tx_create(os);
1708 		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1709 		    sizeof (uint64_t));
1710 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1711 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1712 		    sizeof (uint64_t));
1713 		error = dmu_tx_assign(tx, TXG_WAIT);
1714 		if (error) {
1715 			ztest_record_enospc("create batchobj");
1716 			dmu_tx_abort(tx);
1717 			return;
1718 		}
1719 		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1720 
1721 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1722 		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1723 
1724 		ztest_set_random_blocksize(os, object, tx);
1725 
1726 		dmu_object_set_checksum(os, object,
1727 		    ztest_random_checksum(), tx);
1728 		dmu_object_set_compress(os, object,
1729 		    ztest_random_compress(), tx);
1730 
1731 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1732 		    sizeof (uint64_t), &object, tx);
1733 
1734 		/*
1735 		 * Write to both the bonus buffer and the regular data.
1736 		 */
1737 		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1738 		za->za_dbuf = db;
1739 		ASSERT3U(bonuslen, <=, db->db_size);
1740 
1741 		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1742 		ASSERT3S(va_nblocks, >=, 0);
1743 
1744 		dmu_buf_will_dirty(db, tx);
1745 
1746 		/*
1747 		 * See comments above regarding the contents of
1748 		 * the bonus buffer and the word at endoff.
1749 		 */
1750 		for (c = 0; c < bonuslen; c++)
1751 			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1752 
1753 		dmu_buf_rele(db, FTAG);
1754 		za->za_dbuf = NULL;
1755 
1756 		/*
1757 		 * Write to a large offset to increase indirection.
1758 		 */
1759 		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1760 
1761 		dmu_tx_commit(tx);
1762 	}
1763 }
1764 
1765 /*
1766  * Verify that dmu_{read,write} work as expected.
1767  */
1768 typedef struct bufwad {
1769 	uint64_t	bw_index;
1770 	uint64_t	bw_txg;
1771 	uint64_t	bw_data;
1772 } bufwad_t;
1773 
1774 typedef struct dmu_read_write_dir {
1775 	uint64_t	dd_packobj;
1776 	uint64_t	dd_bigobj;
1777 	uint64_t	dd_chunk;
1778 } dmu_read_write_dir_t;
1779 
1780 void
1781 ztest_dmu_read_write(ztest_args_t *za)
1782 {
1783 	objset_t *os = za->za_os;
1784 	dmu_read_write_dir_t dd;
1785 	dmu_tx_t *tx;
1786 	int i, freeit, error;
1787 	uint64_t n, s, txg;
1788 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
1789 	uint64_t packoff, packsize, bigoff, bigsize;
1790 	uint64_t regions = 997;
1791 	uint64_t stride = 123456789ULL;
1792 	uint64_t width = 40;
1793 	int free_percent = 5;
1794 
1795 	/*
1796 	 * This test uses two objects, packobj and bigobj, that are always
1797 	 * updated together (i.e. in the same tx) so that their contents are
1798 	 * in sync and can be compared.  Their contents relate to each other
1799 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
1800 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
1801 	 * for any index n, there are three bufwads that should be identical:
1802 	 *
1803 	 *	packobj, at offset n * sizeof (bufwad_t)
1804 	 *	bigobj, at the head of the nth chunk
1805 	 *	bigobj, at the tail of the nth chunk
1806 	 *
1807 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
1808 	 * and it doesn't have any relation to the object blocksize.
1809 	 * The only requirement is that it can hold at least two bufwads.
1810 	 *
1811 	 * Normally, we write the bufwad to each of these locations.
1812 	 * However, free_percent of the time we instead write zeroes to
1813 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
1814 	 * bigobj to packobj, we can verify that the DMU is correctly
1815 	 * tracking which parts of an object are allocated and free,
1816 	 * and that the contents of the allocated blocks are correct.
1817 	 */
1818 
1819 	/*
1820 	 * Read the directory info.  If it's the first time, set things up.
1821 	 */
1822 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1823 	    sizeof (dd), &dd));
1824 	if (dd.dd_chunk == 0) {
1825 		ASSERT(dd.dd_packobj == 0);
1826 		ASSERT(dd.dd_bigobj == 0);
1827 		tx = dmu_tx_create(os);
1828 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
1829 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1830 		error = dmu_tx_assign(tx, TXG_WAIT);
1831 		if (error) {
1832 			ztest_record_enospc("create r/w directory");
1833 			dmu_tx_abort(tx);
1834 			return;
1835 		}
1836 
1837 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1838 		    DMU_OT_NONE, 0, tx);
1839 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1840 		    DMU_OT_NONE, 0, tx);
1841 		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
1842 
1843 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
1844 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
1845 
1846 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
1847 		    tx);
1848 		dmu_tx_commit(tx);
1849 	}
1850 
1851 	/*
1852 	 * Prefetch a random chunk of the big object.
1853 	 * Our aim here is to get some async reads in flight
1854 	 * for blocks that we may free below; the DMU should
1855 	 * handle this race correctly.
1856 	 */
1857 	n = ztest_random(regions) * stride + ztest_random(width);
1858 	s = 1 + ztest_random(2 * width - 1);
1859 	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
1860 
1861 	/*
1862 	 * Pick a random index and compute the offsets into packobj and bigobj.
1863 	 */
1864 	n = ztest_random(regions) * stride + ztest_random(width);
1865 	s = 1 + ztest_random(width - 1);
1866 
1867 	packoff = n * sizeof (bufwad_t);
1868 	packsize = s * sizeof (bufwad_t);
1869 
1870 	bigoff = n * dd.dd_chunk;
1871 	bigsize = s * dd.dd_chunk;
1872 
1873 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
1874 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
1875 
1876 	/*
1877 	 * free_percent of the time, free a range of bigobj rather than
1878 	 * overwriting it.
1879 	 */
1880 	freeit = (ztest_random(100) < free_percent);
1881 
1882 	/*
1883 	 * Read the current contents of our objects.
1884 	 */
1885 	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf);
1886 	ASSERT3U(error, ==, 0);
1887 	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf);
1888 	ASSERT3U(error, ==, 0);
1889 
1890 	/*
1891 	 * Get a tx for the mods to both packobj and bigobj.
1892 	 */
1893 	tx = dmu_tx_create(os);
1894 
1895 	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
1896 
1897 	if (freeit)
1898 		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
1899 	else
1900 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
1901 
1902 	error = dmu_tx_assign(tx, TXG_WAIT);
1903 
1904 	if (error) {
1905 		ztest_record_enospc("dmu r/w range");
1906 		dmu_tx_abort(tx);
1907 		umem_free(packbuf, packsize);
1908 		umem_free(bigbuf, bigsize);
1909 		return;
1910 	}
1911 
1912 	txg = dmu_tx_get_txg(tx);
1913 
1914 	/*
1915 	 * For each index from n to n + s, verify that the existing bufwad
1916 	 * in packobj matches the bufwads at the head and tail of the
1917 	 * corresponding chunk in bigobj.  Then update all three bufwads
1918 	 * with the new values we want to write out.
1919 	 */
1920 	for (i = 0; i < s; i++) {
1921 		/* LINTED */
1922 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
1923 		/* LINTED */
1924 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
1925 		/* LINTED */
1926 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
1927 
1928 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
1929 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
1930 
1931 		if (pack->bw_txg > txg)
1932 			fatal(0, "future leak: got %llx, open txg is %llx",
1933 			    pack->bw_txg, txg);
1934 
1935 		if (pack->bw_data != 0 && pack->bw_index != n + i)
1936 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
1937 			    pack->bw_index, n, i);
1938 
1939 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
1940 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
1941 
1942 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
1943 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
1944 
1945 		if (freeit) {
1946 			bzero(pack, sizeof (bufwad_t));
1947 		} else {
1948 			pack->bw_index = n + i;
1949 			pack->bw_txg = txg;
1950 			pack->bw_data = 1 + ztest_random(-2ULL);
1951 		}
1952 		*bigH = *pack;
1953 		*bigT = *pack;
1954 	}
1955 
1956 	/*
1957 	 * We've verified all the old bufwads, and made new ones.
1958 	 * Now write them out.
1959 	 */
1960 	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
1961 
1962 	if (freeit) {
1963 		if (zopt_verbose >= 6) {
1964 			(void) printf("freeing offset %llx size %llx"
1965 			    " txg %llx\n",
1966 			    (u_longlong_t)bigoff,
1967 			    (u_longlong_t)bigsize,
1968 			    (u_longlong_t)txg);
1969 		}
1970 		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
1971 		    bigsize, tx));
1972 	} else {
1973 		if (zopt_verbose >= 6) {
1974 			(void) printf("writing offset %llx size %llx"
1975 			    " txg %llx\n",
1976 			    (u_longlong_t)bigoff,
1977 			    (u_longlong_t)bigsize,
1978 			    (u_longlong_t)txg);
1979 		}
1980 		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
1981 	}
1982 
1983 	dmu_tx_commit(tx);
1984 
1985 	/*
1986 	 * Sanity check the stuff we just wrote.
1987 	 */
1988 	{
1989 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
1990 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
1991 
1992 		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
1993 		    packsize, packcheck));
1994 		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
1995 		    bigsize, bigcheck));
1996 
1997 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
1998 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
1999 
2000 		umem_free(packcheck, packsize);
2001 		umem_free(bigcheck, bigsize);
2002 	}
2003 
2004 	umem_free(packbuf, packsize);
2005 	umem_free(bigbuf, bigsize);
2006 }
2007 
2008 void
2009 ztest_dmu_check_future_leak(ztest_args_t *za)
2010 {
2011 	objset_t *os = za->za_os;
2012 	dmu_buf_t *db;
2013 	ztest_block_tag_t *bt;
2014 	dmu_object_info_t *doi = &za->za_doi;
2015 
2016 	/*
2017 	 * Make sure that, if there is a write record in the bonus buffer
2018 	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2019 	 * last synced txg of the pool.
2020 	 */
2021 	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2022 	za->za_dbuf = db;
2023 	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2024 	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2025 	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2026 	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2027 	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2028 	if (bt->bt_objset != 0) {
2029 		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2030 		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2031 		ASSERT3U(bt->bt_offset, ==, -1ULL);
2032 		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2033 	}
2034 	dmu_buf_rele(db, FTAG);
2035 	za->za_dbuf = NULL;
2036 }
2037 
2038 void
2039 ztest_dmu_write_parallel(ztest_args_t *za)
2040 {
2041 	objset_t *os = za->za_os;
2042 	ztest_block_tag_t *rbt = &za->za_rbt;
2043 	ztest_block_tag_t *wbt = &za->za_wbt;
2044 	const size_t btsize = sizeof (ztest_block_tag_t);
2045 	dmu_buf_t *db;
2046 	int b, error;
2047 	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2048 	int do_free = 0;
2049 	uint64_t off, txg_how;
2050 	mutex_t *lp;
2051 	char osname[MAXNAMELEN];
2052 	char iobuf[SPA_MAXBLOCKSIZE];
2053 	blkptr_t blk = { 0 };
2054 	uint64_t blkoff;
2055 	zbookmark_t zb;
2056 	dmu_tx_t *tx = dmu_tx_create(os);
2057 
2058 	dmu_objset_name(os, osname);
2059 
2060 	/*
2061 	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2062 	 * to verify that having multiple threads writing to the same object
2063 	 * in parallel doesn't cause any trouble.
2064 	 */
2065 	if (ztest_random(4) == 0) {
2066 		/*
2067 		 * Do the bonus buffer instead of a regular block.
2068 		 * We need a lock to serialize resize vs. others,
2069 		 * so we hash on the objset ID.
2070 		 */
2071 		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2072 		off = -1ULL;
2073 		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2074 	} else {
2075 		b = ztest_random(ZTEST_SYNC_LOCKS);
2076 		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2077 		if (ztest_random(4) == 0) {
2078 			do_free = 1;
2079 			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2080 		} else {
2081 			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2082 		}
2083 	}
2084 
2085 	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2086 	error = dmu_tx_assign(tx, txg_how);
2087 	if (error) {
2088 		if (error == ERESTART) {
2089 			ASSERT(txg_how == TXG_NOWAIT);
2090 			dmu_tx_wait(tx);
2091 		} else {
2092 			ztest_record_enospc("dmu write parallel");
2093 		}
2094 		dmu_tx_abort(tx);
2095 		return;
2096 	}
2097 
2098 	lp = &ztest_shared->zs_sync_lock[b];
2099 	(void) mutex_lock(lp);
2100 
2101 	wbt->bt_objset = dmu_objset_id(os);
2102 	wbt->bt_object = ZTEST_DIROBJ;
2103 	wbt->bt_offset = off;
2104 	wbt->bt_txg = dmu_tx_get_txg(tx);
2105 	wbt->bt_thread = za->za_instance;
2106 	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2107 
2108 	if (off == -1ULL) {
2109 		dmu_object_info_t *doi = &za->za_doi;
2110 		char *dboff;
2111 
2112 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2113 		za->za_dbuf = db;
2114 		dmu_object_info_from_db(db, doi);
2115 		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2116 		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2117 		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2118 		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2119 		bcopy(dboff, rbt, btsize);
2120 		if (rbt->bt_objset != 0) {
2121 			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2122 			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2123 			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2124 			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2125 		}
2126 		if (ztest_random(10) == 0) {
2127 			int newsize = (ztest_random(db->db_size /
2128 			    btsize) + 1) * btsize;
2129 
2130 			ASSERT3U(newsize, >=, btsize);
2131 			ASSERT3U(newsize, <=, db->db_size);
2132 			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2133 			dboff = (char *)db->db_data + newsize - btsize;
2134 		}
2135 		dmu_buf_will_dirty(db, tx);
2136 		bcopy(wbt, dboff, btsize);
2137 		dmu_buf_rele(db, FTAG);
2138 		za->za_dbuf = NULL;
2139 	} else if (do_free) {
2140 		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2141 	} else {
2142 		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2143 	}
2144 
2145 	(void) mutex_unlock(lp);
2146 
2147 	if (ztest_random(1000) == 0)
2148 		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2149 
2150 	dmu_tx_commit(tx);
2151 
2152 	if (ztest_random(10000) == 0)
2153 		txg_wait_synced(dmu_objset_pool(os), wbt->bt_txg);
2154 
2155 	if (off == -1ULL || do_free)
2156 		return;
2157 
2158 	if (ztest_random(2) != 0)
2159 		return;
2160 
2161 	/*
2162 	 * dmu_sync() the block we just wrote.
2163 	 */
2164 	(void) mutex_lock(lp);
2165 
2166 	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2167 	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2168 	za->za_dbuf = db;
2169 	if (error) {
2170 		dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n",
2171 		    osname, ZTEST_DIROBJ, blkoff, error);
2172 		(void) mutex_unlock(lp);
2173 		return;
2174 	}
2175 	blkoff = off - blkoff;
2176 	error = dmu_sync(NULL, db, &blk, wbt->bt_txg, NULL, NULL);
2177 	dmu_buf_rele(db, FTAG);
2178 	za->za_dbuf = NULL;
2179 
2180 	(void) mutex_unlock(lp);
2181 
2182 	if (error) {
2183 		dprintf("dmu_sync(%s, %d, %llx) = %d\n",
2184 		    osname, ZTEST_DIROBJ, off, error);
2185 		return;
2186 	}
2187 
2188 	if (blk.blk_birth == 0)		/* concurrent free */
2189 		return;
2190 
2191 	txg_suspend(dmu_objset_pool(os));
2192 
2193 	ASSERT(blk.blk_fill == 1);
2194 	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2195 	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2196 	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2197 
2198 	/*
2199 	 * Read the block that dmu_sync() returned to make sure its contents
2200 	 * match what we wrote.  We do this while still txg_suspend()ed
2201 	 * to ensure that the block can't be reused before we read it.
2202 	 */
2203 	zb.zb_objset = dmu_objset_id(os);
2204 	zb.zb_object = ZTEST_DIROBJ;
2205 	zb.zb_level = 0;
2206 	zb.zb_blkid = off / bs;
2207 	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2208 	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2209 	ASSERT3U(error, ==, 0);
2210 
2211 	txg_resume(dmu_objset_pool(os));
2212 
2213 	bcopy(&iobuf[blkoff], rbt, btsize);
2214 
2215 	if (rbt->bt_objset == 0)		/* concurrent free */
2216 		return;
2217 
2218 	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2219 	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2220 	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2221 
2222 	/*
2223 	 * The semantic of dmu_sync() is that we always push the most recent
2224 	 * version of the data, so in the face of concurrent updates we may
2225 	 * see a newer version of the block.  That's OK.
2226 	 */
2227 	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2228 	if (rbt->bt_thread == wbt->bt_thread)
2229 		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2230 	else
2231 		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2232 }
2233 
2234 /*
2235  * Verify that zap_{create,destroy,add,remove,update} work as expected.
2236  */
2237 #define	ZTEST_ZAP_MIN_INTS	1
2238 #define	ZTEST_ZAP_MAX_INTS	4
2239 #define	ZTEST_ZAP_MAX_PROPS	1000
2240 
2241 void
2242 ztest_zap(ztest_args_t *za)
2243 {
2244 	objset_t *os = za->za_os;
2245 	uint64_t object;
2246 	uint64_t txg, last_txg;
2247 	uint64_t value[ZTEST_ZAP_MAX_INTS];
2248 	uint64_t zl_ints, zl_intsize, prop;
2249 	int i, ints;
2250 	dmu_tx_t *tx;
2251 	char propname[100], txgname[100];
2252 	int error;
2253 	char osname[MAXNAMELEN];
2254 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2255 
2256 	dmu_objset_name(os, osname);
2257 
2258 	/*
2259 	 * Create a new object if necessary, and record it in the directory.
2260 	 */
2261 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2262 	    sizeof (uint64_t), &object));
2263 
2264 	if (object == 0) {
2265 		tx = dmu_tx_create(os);
2266 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2267 		    sizeof (uint64_t));
2268 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2269 		error = dmu_tx_assign(tx, TXG_WAIT);
2270 		if (error) {
2271 			ztest_record_enospc("create zap test obj");
2272 			dmu_tx_abort(tx);
2273 			return;
2274 		}
2275 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2276 		if (error) {
2277 			fatal(0, "zap_create('%s', %llu) = %d",
2278 			    osname, object, error);
2279 		}
2280 		ASSERT(object != 0);
2281 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2282 		    sizeof (uint64_t), &object, tx);
2283 		/*
2284 		 * Generate a known hash collision, and verify that
2285 		 * we can lookup and remove both entries.
2286 		 */
2287 		for (i = 0; i < 2; i++) {
2288 			value[i] = i;
2289 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2290 			    1, &value[i], tx);
2291 			ASSERT3U(error, ==, 0);
2292 		}
2293 		for (i = 0; i < 2; i++) {
2294 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2295 			    1, &value[i], tx);
2296 			ASSERT3U(error, ==, EEXIST);
2297 			error = zap_length(os, object, hc[i],
2298 			    &zl_intsize, &zl_ints);
2299 			ASSERT3U(error, ==, 0);
2300 			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2301 			ASSERT3U(zl_ints, ==, 1);
2302 		}
2303 		for (i = 0; i < 2; i++) {
2304 			error = zap_remove(os, object, hc[i], tx);
2305 			ASSERT3U(error, ==, 0);
2306 		}
2307 
2308 		dmu_tx_commit(tx);
2309 	}
2310 
2311 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2312 
2313 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2314 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2315 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2316 	bzero(value, sizeof (value));
2317 	last_txg = 0;
2318 
2319 	/*
2320 	 * If these zap entries already exist, validate their contents.
2321 	 */
2322 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2323 	if (error == 0) {
2324 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2325 		ASSERT3U(zl_ints, ==, 1);
2326 
2327 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2328 		    zl_ints, &last_txg) == 0);
2329 
2330 		VERIFY(zap_length(os, object, propname, &zl_intsize,
2331 		    &zl_ints) == 0);
2332 
2333 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2334 		ASSERT3U(zl_ints, ==, ints);
2335 
2336 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2337 		    zl_ints, value) == 0);
2338 
2339 		for (i = 0; i < ints; i++) {
2340 			ASSERT3U(value[i], ==, last_txg + object + i);
2341 		}
2342 	} else {
2343 		ASSERT3U(error, ==, ENOENT);
2344 	}
2345 
2346 	/*
2347 	 * Atomically update two entries in our zap object.
2348 	 * The first is named txg_%llu, and contains the txg
2349 	 * in which the property was last updated.  The second
2350 	 * is named prop_%llu, and the nth element of its value
2351 	 * should be txg + object + n.
2352 	 */
2353 	tx = dmu_tx_create(os);
2354 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2355 	error = dmu_tx_assign(tx, TXG_WAIT);
2356 	if (error) {
2357 		ztest_record_enospc("create zap entry");
2358 		dmu_tx_abort(tx);
2359 		return;
2360 	}
2361 	txg = dmu_tx_get_txg(tx);
2362 
2363 	if (last_txg > txg)
2364 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2365 
2366 	for (i = 0; i < ints; i++)
2367 		value[i] = txg + object + i;
2368 
2369 	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2370 	if (error)
2371 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2372 		    osname, object, txgname, error);
2373 
2374 	error = zap_update(os, object, propname, sizeof (uint64_t),
2375 	    ints, value, tx);
2376 	if (error)
2377 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2378 		    osname, object, propname, error);
2379 
2380 	dmu_tx_commit(tx);
2381 
2382 	/*
2383 	 * Remove a random pair of entries.
2384 	 */
2385 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2386 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2387 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2388 
2389 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2390 
2391 	if (error == ENOENT)
2392 		return;
2393 
2394 	ASSERT3U(error, ==, 0);
2395 
2396 	tx = dmu_tx_create(os);
2397 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2398 	error = dmu_tx_assign(tx, TXG_WAIT);
2399 	if (error) {
2400 		ztest_record_enospc("remove zap entry");
2401 		dmu_tx_abort(tx);
2402 		return;
2403 	}
2404 	error = zap_remove(os, object, txgname, tx);
2405 	if (error)
2406 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2407 		    osname, object, txgname, error);
2408 
2409 	error = zap_remove(os, object, propname, tx);
2410 	if (error)
2411 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2412 		    osname, object, propname, error);
2413 
2414 	dmu_tx_commit(tx);
2415 
2416 	/*
2417 	 * Once in a while, destroy the object.
2418 	 */
2419 	if (ztest_random(1000) != 0)
2420 		return;
2421 
2422 	tx = dmu_tx_create(os);
2423 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2424 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2425 	error = dmu_tx_assign(tx, TXG_WAIT);
2426 	if (error) {
2427 		ztest_record_enospc("destroy zap object");
2428 		dmu_tx_abort(tx);
2429 		return;
2430 	}
2431 	error = zap_destroy(os, object, tx);
2432 	if (error)
2433 		fatal(0, "zap_destroy('%s', %llu) = %d",
2434 		    osname, object, error);
2435 	object = 0;
2436 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2437 	    &object, tx);
2438 	dmu_tx_commit(tx);
2439 }
2440 
2441 void
2442 ztest_zap_parallel(ztest_args_t *za)
2443 {
2444 	objset_t *os = za->za_os;
2445 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
2446 	dmu_tx_t *tx;
2447 	int i, namelen, error;
2448 	char name[20], string_value[20];
2449 	void *data;
2450 
2451 	/*
2452 	 * Generate a random name of the form 'xxx.....' where each
2453 	 * x is a random printable character and the dots are dots.
2454 	 * There are 94 such characters, and the name length goes from
2455 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
2456 	 */
2457 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
2458 
2459 	for (i = 0; i < 3; i++)
2460 		name[i] = '!' + ztest_random('~' - '!' + 1);
2461 	for (; i < namelen - 1; i++)
2462 		name[i] = '.';
2463 	name[i] = '\0';
2464 
2465 	if (ztest_random(2) == 0)
2466 		object = ZTEST_MICROZAP_OBJ;
2467 	else
2468 		object = ZTEST_FATZAP_OBJ;
2469 
2470 	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
2471 		wsize = sizeof (txg);
2472 		wc = 1;
2473 		data = &txg;
2474 	} else {
2475 		wsize = 1;
2476 		wc = namelen;
2477 		data = string_value;
2478 	}
2479 
2480 	count = -1ULL;
2481 	VERIFY(zap_count(os, object, &count) == 0);
2482 	ASSERT(count != -1ULL);
2483 
2484 	/*
2485 	 * Select an operation: length, lookup, add, update, remove.
2486 	 */
2487 	i = ztest_random(5);
2488 
2489 	if (i >= 2) {
2490 		tx = dmu_tx_create(os);
2491 		dmu_tx_hold_zap(tx, object, TRUE, NULL);
2492 		error = dmu_tx_assign(tx, TXG_WAIT);
2493 		if (error) {
2494 			ztest_record_enospc("zap parallel");
2495 			dmu_tx_abort(tx);
2496 			return;
2497 		}
2498 		txg = dmu_tx_get_txg(tx);
2499 		bcopy(name, string_value, namelen);
2500 	} else {
2501 		tx = NULL;
2502 		txg = 0;
2503 		bzero(string_value, namelen);
2504 	}
2505 
2506 	switch (i) {
2507 
2508 	case 0:
2509 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
2510 		if (error == 0) {
2511 			ASSERT3U(wsize, ==, zl_wsize);
2512 			ASSERT3U(wc, ==, zl_wc);
2513 		} else {
2514 			ASSERT3U(error, ==, ENOENT);
2515 		}
2516 		break;
2517 
2518 	case 1:
2519 		error = zap_lookup(os, object, name, wsize, wc, data);
2520 		if (error == 0) {
2521 			if (data == string_value &&
2522 			    bcmp(name, data, namelen) != 0)
2523 				fatal(0, "name '%s' != val '%s' len %d",
2524 				    name, data, namelen);
2525 		} else {
2526 			ASSERT3U(error, ==, ENOENT);
2527 		}
2528 		break;
2529 
2530 	case 2:
2531 		error = zap_add(os, object, name, wsize, wc, data, tx);
2532 		ASSERT(error == 0 || error == EEXIST);
2533 		break;
2534 
2535 	case 3:
2536 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
2537 		break;
2538 
2539 	case 4:
2540 		error = zap_remove(os, object, name, tx);
2541 		ASSERT(error == 0 || error == ENOENT);
2542 		break;
2543 	}
2544 
2545 	if (tx != NULL)
2546 		dmu_tx_commit(tx);
2547 }
2548 
2549 void
2550 ztest_dsl_prop_get_set(ztest_args_t *za)
2551 {
2552 	objset_t *os = za->za_os;
2553 	int i, inherit;
2554 	uint64_t value;
2555 	const char *prop, *valname;
2556 	char setpoint[MAXPATHLEN];
2557 	char osname[MAXNAMELEN];
2558 	int error;
2559 
2560 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
2561 
2562 	dmu_objset_name(os, osname);
2563 
2564 	for (i = 0; i < 2; i++) {
2565 		if (i == 0) {
2566 			prop = "checksum";
2567 			value = ztest_random_checksum();
2568 			inherit = (value == ZIO_CHECKSUM_INHERIT);
2569 		} else {
2570 			prop = "compression";
2571 			value = ztest_random_compress();
2572 			inherit = (value == ZIO_COMPRESS_INHERIT);
2573 		}
2574 
2575 		error = dsl_prop_set(osname, prop, sizeof (value),
2576 		    !inherit, &value);
2577 
2578 		if (error == ENOSPC) {
2579 			ztest_record_enospc("dsl_prop_set");
2580 			break;
2581 		}
2582 
2583 		ASSERT3U(error, ==, 0);
2584 
2585 		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
2586 		    1, &value, setpoint), ==, 0);
2587 
2588 		if (i == 0)
2589 			valname = zio_checksum_table[value].ci_name;
2590 		else
2591 			valname = zio_compress_table[value].ci_name;
2592 
2593 		if (zopt_verbose >= 6) {
2594 			(void) printf("%s %s = %s for '%s'\n",
2595 			    osname, prop, valname, setpoint);
2596 		}
2597 	}
2598 
2599 	(void) rw_unlock(&ztest_shared->zs_name_lock);
2600 }
2601 
2602 /*
2603  * Inject random faults into the on-disk data.
2604  */
2605 void
2606 ztest_fault_inject(ztest_args_t *za)
2607 {
2608 	int fd;
2609 	uint64_t offset;
2610 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
2611 	uint64_t bad = 0x1990c0ffeedecade;
2612 	uint64_t top, leaf;
2613 	char path0[MAXPATHLEN];
2614 	char pathrand[MAXPATHLEN];
2615 	size_t fsize;
2616 	spa_t *spa = za->za_spa;
2617 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
2618 	int iters = 1000;
2619 	int maxfaults = zopt_maxfaults;
2620 	vdev_t *vd0 = NULL;
2621 	uint64_t guid0 = 0;
2622 
2623 	ASSERT(leaves >= 1);
2624 
2625 	/*
2626 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2627 	 */
2628 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2629 
2630 	if (ztest_random(2) == 0) {
2631 		/*
2632 		 * Inject errors on a normal data device.
2633 		 */
2634 		top = ztest_random(spa->spa_root_vdev->vdev_children);
2635 		leaf = ztest_random(leaves);
2636 
2637 		/*
2638 		 * Generate paths to the first leaf in this top-level vdev,
2639 		 * and to the random leaf we selected.  We'll induce transient
2640 		 * write failures and random online/offline activity on leaf 0,
2641 		 * and we'll write random garbage to the randomly chosen leaf.
2642 		 */
2643 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
2644 		    zopt_dir, zopt_pool, top * leaves + 0);
2645 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
2646 		    zopt_dir, zopt_pool, top * leaves + leaf);
2647 
2648 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
2649 		if (vd0 != NULL && maxfaults != 1) {
2650 			/*
2651 			 * Make vd0 explicitly claim to be unreadable,
2652 			 * or unwriteable, or reach behind its back
2653 			 * and close the underlying fd.  We can do this if
2654 			 * maxfaults == 0 because we'll fail and reexecute,
2655 			 * and we can do it if maxfaults >= 2 because we'll
2656 			 * have enough redundancy.  If maxfaults == 1, the
2657 			 * combination of this with injection of random data
2658 			 * corruption below exceeds the pool's fault tolerance.
2659 			 */
2660 			vdev_file_t *vf = vd0->vdev_tsd;
2661 
2662 			if (vf != NULL && ztest_random(3) == 0) {
2663 				(void) close(vf->vf_vnode->v_fd);
2664 				vf->vf_vnode->v_fd = -1;
2665 			} else if (ztest_random(2) == 0) {
2666 				vd0->vdev_cant_read = B_TRUE;
2667 			} else {
2668 				vd0->vdev_cant_write = B_TRUE;
2669 			}
2670 			guid0 = vd0->vdev_guid;
2671 		}
2672 	} else {
2673 		/*
2674 		 * Inject errors on an l2cache device.
2675 		 */
2676 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
2677 
2678 		if (sav->sav_count == 0) {
2679 			spa_config_exit(spa, SCL_STATE, FTAG);
2680 			return;
2681 		}
2682 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
2683 		guid0 = vd0->vdev_guid;
2684 		(void) strcpy(path0, vd0->vdev_path);
2685 		(void) strcpy(pathrand, vd0->vdev_path);
2686 
2687 		leaf = 0;
2688 		leaves = 1;
2689 		maxfaults = INT_MAX;	/* no limit on cache devices */
2690 	}
2691 
2692 	dprintf("damaging %s and %s\n", path0, pathrand);
2693 
2694 	spa_config_exit(spa, SCL_STATE, FTAG);
2695 
2696 	if (maxfaults == 0)
2697 		return;
2698 
2699 	/*
2700 	 * If we can tolerate two or more faults, randomly online/offline vd0.
2701 	 */
2702 	if (maxfaults >= 2 && guid0 != 0) {
2703 		if (ztest_random(10) < 6)
2704 			(void) vdev_offline(spa, guid0, B_TRUE);
2705 		else
2706 			(void) vdev_online(spa, guid0, B_FALSE, NULL);
2707 	}
2708 
2709 	/*
2710 	 * We have at least single-fault tolerance, so inject data corruption.
2711 	 */
2712 	fd = open(pathrand, O_RDWR);
2713 
2714 	if (fd == -1)	/* we hit a gap in the device namespace */
2715 		return;
2716 
2717 	fsize = lseek(fd, 0, SEEK_END);
2718 
2719 	while (--iters != 0) {
2720 		offset = ztest_random(fsize / (leaves << bshift)) *
2721 		    (leaves << bshift) + (leaf << bshift) +
2722 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
2723 
2724 		if (offset >= fsize)
2725 			continue;
2726 
2727 		if (zopt_verbose >= 6)
2728 			(void) printf("injecting bad word into %s,"
2729 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
2730 
2731 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
2732 			fatal(1, "can't inject bad word at 0x%llx in %s",
2733 			    offset, pathrand);
2734 	}
2735 
2736 	(void) close(fd);
2737 }
2738 
2739 /*
2740  * Scrub the pool.
2741  */
2742 void
2743 ztest_scrub(ztest_args_t *za)
2744 {
2745 	spa_t *spa = za->za_spa;
2746 
2747 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2748 	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
2749 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2750 }
2751 
2752 /*
2753  * Rename the pool to a different name and then rename it back.
2754  */
2755 void
2756 ztest_spa_rename(ztest_args_t *za)
2757 {
2758 	char *oldname, *newname;
2759 	int error;
2760 	spa_t *spa;
2761 
2762 	(void) rw_wrlock(&ztest_shared->zs_name_lock);
2763 
2764 	oldname = za->za_pool;
2765 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
2766 	(void) strcpy(newname, oldname);
2767 	(void) strcat(newname, "_tmp");
2768 
2769 	/*
2770 	 * Do the rename
2771 	 */
2772 	error = spa_rename(oldname, newname);
2773 	if (error)
2774 		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
2775 		    newname, error);
2776 
2777 	/*
2778 	 * Try to open it under the old name, which shouldn't exist
2779 	 */
2780 	error = spa_open(oldname, &spa, FTAG);
2781 	if (error != ENOENT)
2782 		fatal(0, "spa_open('%s') = %d", oldname, error);
2783 
2784 	/*
2785 	 * Open it under the new name and make sure it's still the same spa_t.
2786 	 */
2787 	error = spa_open(newname, &spa, FTAG);
2788 	if (error != 0)
2789 		fatal(0, "spa_open('%s') = %d", newname, error);
2790 
2791 	ASSERT(spa == za->za_spa);
2792 	spa_close(spa, FTAG);
2793 
2794 	/*
2795 	 * Rename it back to the original
2796 	 */
2797 	error = spa_rename(newname, oldname);
2798 	if (error)
2799 		fatal(0, "spa_rename('%s', '%s') = %d", newname,
2800 		    oldname, error);
2801 
2802 	/*
2803 	 * Make sure it can still be opened
2804 	 */
2805 	error = spa_open(oldname, &spa, FTAG);
2806 	if (error != 0)
2807 		fatal(0, "spa_open('%s') = %d", oldname, error);
2808 
2809 	ASSERT(spa == za->za_spa);
2810 	spa_close(spa, FTAG);
2811 
2812 	umem_free(newname, strlen(newname) + 1);
2813 
2814 	(void) rw_unlock(&ztest_shared->zs_name_lock);
2815 }
2816 
2817 
2818 /*
2819  * Completely obliterate one disk.
2820  */
2821 static void
2822 ztest_obliterate_one_disk(uint64_t vdev)
2823 {
2824 	int fd;
2825 	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
2826 	size_t fsize;
2827 
2828 	if (zopt_maxfaults < 2)
2829 		return;
2830 
2831 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2832 	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
2833 
2834 	fd = open(dev_name, O_RDWR);
2835 
2836 	if (fd == -1)
2837 		fatal(1, "can't open %s", dev_name);
2838 
2839 	/*
2840 	 * Determine the size.
2841 	 */
2842 	fsize = lseek(fd, 0, SEEK_END);
2843 
2844 	(void) close(fd);
2845 
2846 	/*
2847 	 * Rename the old device to dev_name.old (useful for debugging).
2848 	 */
2849 	VERIFY(rename(dev_name, copy_name) == 0);
2850 
2851 	/*
2852 	 * Create a new one.
2853 	 */
2854 	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
2855 	VERIFY(ftruncate(fd, fsize) == 0);
2856 	(void) close(fd);
2857 }
2858 
2859 static void
2860 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
2861 {
2862 	char dev_name[MAXPATHLEN];
2863 	nvlist_t *root;
2864 	int error;
2865 	uint64_t guid;
2866 	vdev_t *vd;
2867 
2868 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2869 
2870 	/*
2871 	 * Build the nvlist describing dev_name.
2872 	 */
2873 	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
2874 
2875 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2876 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
2877 		guid = 0;
2878 	else
2879 		guid = vd->vdev_guid;
2880 	spa_config_exit(spa, SCL_VDEV, FTAG);
2881 	error = spa_vdev_attach(spa, guid, root, B_TRUE);
2882 	if (error != 0 &&
2883 	    error != EBUSY &&
2884 	    error != ENOTSUP &&
2885 	    error != ENODEV &&
2886 	    error != EDOM)
2887 		fatal(0, "spa_vdev_attach(in-place) = %d", error);
2888 
2889 	nvlist_free(root);
2890 }
2891 
2892 static void
2893 ztest_verify_blocks(char *pool)
2894 {
2895 	int status;
2896 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
2897 	char zbuf[1024];
2898 	char *bin;
2899 	char *ztest;
2900 	char *isa;
2901 	int isalen;
2902 	FILE *fp;
2903 
2904 	(void) realpath(getexecname(), zdb);
2905 
2906 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
2907 	bin = strstr(zdb, "/usr/bin/");
2908 	ztest = strstr(bin, "/ztest");
2909 	isa = bin + 8;
2910 	isalen = ztest - isa;
2911 	isa = strdup(isa);
2912 	/* LINTED */
2913 	(void) sprintf(bin,
2914 	    "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache -O %s %s",
2915 	    isalen,
2916 	    isa,
2917 	    zopt_verbose >= 3 ? "s" : "",
2918 	    zopt_verbose >= 4 ? "v" : "",
2919 	    ztest_random(2) == 0 ? "pre" : "post", pool);
2920 	free(isa);
2921 
2922 	if (zopt_verbose >= 5)
2923 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
2924 
2925 	fp = popen(zdb, "r");
2926 
2927 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
2928 		if (zopt_verbose >= 3)
2929 			(void) printf("%s", zbuf);
2930 
2931 	status = pclose(fp);
2932 
2933 	if (status == 0)
2934 		return;
2935 
2936 	ztest_dump_core = 0;
2937 	if (WIFEXITED(status))
2938 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
2939 	else
2940 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
2941 }
2942 
2943 static void
2944 ztest_walk_pool_directory(char *header)
2945 {
2946 	spa_t *spa = NULL;
2947 
2948 	if (zopt_verbose >= 6)
2949 		(void) printf("%s\n", header);
2950 
2951 	mutex_enter(&spa_namespace_lock);
2952 	while ((spa = spa_next(spa)) != NULL)
2953 		if (zopt_verbose >= 6)
2954 			(void) printf("\t%s\n", spa_name(spa));
2955 	mutex_exit(&spa_namespace_lock);
2956 }
2957 
2958 static void
2959 ztest_spa_import_export(char *oldname, char *newname)
2960 {
2961 	nvlist_t *config;
2962 	uint64_t pool_guid;
2963 	spa_t *spa;
2964 	int error;
2965 
2966 	if (zopt_verbose >= 4) {
2967 		(void) printf("import/export: old = %s, new = %s\n",
2968 		    oldname, newname);
2969 	}
2970 
2971 	/*
2972 	 * Clean up from previous runs.
2973 	 */
2974 	(void) spa_destroy(newname);
2975 
2976 	/*
2977 	 * Get the pool's configuration and guid.
2978 	 */
2979 	error = spa_open(oldname, &spa, FTAG);
2980 	if (error)
2981 		fatal(0, "spa_open('%s') = %d", oldname, error);
2982 
2983 	pool_guid = spa_guid(spa);
2984 	spa_close(spa, FTAG);
2985 
2986 	ztest_walk_pool_directory("pools before export");
2987 
2988 	/*
2989 	 * Export it.
2990 	 */
2991 	error = spa_export(oldname, &config, B_FALSE);
2992 	if (error)
2993 		fatal(0, "spa_export('%s') = %d", oldname, error);
2994 
2995 	ztest_walk_pool_directory("pools after export");
2996 
2997 	/*
2998 	 * Import it under the new name.
2999 	 */
3000 	error = spa_import(newname, config, NULL);
3001 	if (error)
3002 		fatal(0, "spa_import('%s') = %d", newname, error);
3003 
3004 	ztest_walk_pool_directory("pools after import");
3005 
3006 	/*
3007 	 * Try to import it again -- should fail with EEXIST.
3008 	 */
3009 	error = spa_import(newname, config, NULL);
3010 	if (error != EEXIST)
3011 		fatal(0, "spa_import('%s') twice", newname);
3012 
3013 	/*
3014 	 * Try to import it under a different name -- should fail with EEXIST.
3015 	 */
3016 	error = spa_import(oldname, config, NULL);
3017 	if (error != EEXIST)
3018 		fatal(0, "spa_import('%s') under multiple names", newname);
3019 
3020 	/*
3021 	 * Verify that the pool is no longer visible under the old name.
3022 	 */
3023 	error = spa_open(oldname, &spa, FTAG);
3024 	if (error != ENOENT)
3025 		fatal(0, "spa_open('%s') = %d", newname, error);
3026 
3027 	/*
3028 	 * Verify that we can open and close the pool using the new name.
3029 	 */
3030 	error = spa_open(newname, &spa, FTAG);
3031 	if (error)
3032 		fatal(0, "spa_open('%s') = %d", newname, error);
3033 	ASSERT(pool_guid == spa_guid(spa));
3034 	spa_close(spa, FTAG);
3035 
3036 	nvlist_free(config);
3037 }
3038 
3039 static void *
3040 ztest_resume(void *arg)
3041 {
3042 	spa_t *spa = arg;
3043 
3044 	while (!ztest_exiting) {
3045 		(void) poll(NULL, 0, 1000);
3046 
3047 		if (!spa_suspended(spa))
3048 			continue;
3049 
3050 		spa_vdev_state_enter(spa);
3051 		vdev_clear(spa, NULL);
3052 		(void) spa_vdev_state_exit(spa, NULL, 0);
3053 
3054 		zio_resume(spa);
3055 	}
3056 	return (NULL);
3057 }
3058 
3059 static void *
3060 ztest_thread(void *arg)
3061 {
3062 	ztest_args_t *za = arg;
3063 	ztest_shared_t *zs = ztest_shared;
3064 	hrtime_t now, functime;
3065 	ztest_info_t *zi;
3066 	int f, i;
3067 
3068 	while ((now = gethrtime()) < za->za_stop) {
3069 		/*
3070 		 * See if it's time to force a crash.
3071 		 */
3072 		if (now > za->za_kill) {
3073 			zs->zs_alloc = spa_get_alloc(za->za_spa);
3074 			zs->zs_space = spa_get_space(za->za_spa);
3075 			(void) kill(getpid(), SIGKILL);
3076 		}
3077 
3078 		/*
3079 		 * Pick a random function.
3080 		 */
3081 		f = ztest_random(ZTEST_FUNCS);
3082 		zi = &zs->zs_info[f];
3083 
3084 		/*
3085 		 * Decide whether to call it, based on the requested frequency.
3086 		 */
3087 		if (zi->zi_call_target == 0 ||
3088 		    (double)zi->zi_call_total / zi->zi_call_target >
3089 		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3090 			continue;
3091 
3092 		atomic_add_64(&zi->zi_calls, 1);
3093 		atomic_add_64(&zi->zi_call_total, 1);
3094 
3095 		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
3096 		    ZTEST_DIRSIZE;
3097 		za->za_diroff_shared = (1ULL << 63);
3098 
3099 		for (i = 0; i < zi->zi_iters; i++)
3100 			zi->zi_func(za);
3101 
3102 		functime = gethrtime() - now;
3103 
3104 		atomic_add_64(&zi->zi_call_time, functime);
3105 
3106 		if (zopt_verbose >= 4) {
3107 			Dl_info dli;
3108 			(void) dladdr((void *)zi->zi_func, &dli);
3109 			(void) printf("%6.2f sec in %s\n",
3110 			    (double)functime / NANOSEC, dli.dli_sname);
3111 		}
3112 
3113 		/*
3114 		 * If we're getting ENOSPC with some regularity, stop.
3115 		 */
3116 		if (zs->zs_enospc_count > 10)
3117 			break;
3118 	}
3119 
3120 	return (NULL);
3121 }
3122 
3123 /*
3124  * Kick off threads to run tests on all datasets in parallel.
3125  */
3126 static void
3127 ztest_run(char *pool)
3128 {
3129 	int t, d, error;
3130 	ztest_shared_t *zs = ztest_shared;
3131 	ztest_args_t *za;
3132 	spa_t *spa;
3133 	char name[100];
3134 	thread_t resume_tid;
3135 
3136 	ztest_exiting = B_FALSE;
3137 
3138 	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3139 	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3140 
3141 	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3142 		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3143 
3144 	/*
3145 	 * Destroy one disk before we even start.
3146 	 * It's mirrored, so everything should work just fine.
3147 	 * This makes us exercise fault handling very early in spa_load().
3148 	 */
3149 	ztest_obliterate_one_disk(0);
3150 
3151 	/*
3152 	 * Verify that the sum of the sizes of all blocks in the pool
3153 	 * equals the SPA's allocated space total.
3154 	 */
3155 	ztest_verify_blocks(pool);
3156 
3157 	/*
3158 	 * Kick off a replacement of the disk we just obliterated.
3159 	 */
3160 	kernel_init(FREAD | FWRITE);
3161 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3162 	ztest_replace_one_disk(spa, 0);
3163 	if (zopt_verbose >= 5)
3164 		show_pool_stats(spa);
3165 	spa_close(spa, FTAG);
3166 	kernel_fini();
3167 
3168 	kernel_init(FREAD | FWRITE);
3169 
3170 	/*
3171 	 * Verify that we can export the pool and reimport it under a
3172 	 * different name.
3173 	 */
3174 	if (ztest_random(2) == 0) {
3175 		(void) snprintf(name, 100, "%s_import", pool);
3176 		ztest_spa_import_export(pool, name);
3177 		ztest_spa_import_export(name, pool);
3178 	}
3179 
3180 	/*
3181 	 * Verify that we can loop over all pools.
3182 	 */
3183 	mutex_enter(&spa_namespace_lock);
3184 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3185 		if (zopt_verbose > 3) {
3186 			(void) printf("spa_next: found %s\n", spa_name(spa));
3187 		}
3188 	}
3189 	mutex_exit(&spa_namespace_lock);
3190 
3191 	/*
3192 	 * Open our pool.
3193 	 */
3194 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3195 
3196 	/*
3197 	 * Create a thread to periodically resume suspended I/O.
3198 	 */
3199 	VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND,
3200 	    &resume_tid) == 0);
3201 
3202 	/*
3203 	 * Verify that we can safely inquire about about any object,
3204 	 * whether it's allocated or not.  To make it interesting,
3205 	 * we probe a 5-wide window around each power of two.
3206 	 * This hits all edge cases, including zero and the max.
3207 	 */
3208 	for (t = 0; t < 64; t++) {
3209 		for (d = -5; d <= 5; d++) {
3210 			error = dmu_object_info(spa->spa_meta_objset,
3211 			    (1ULL << t) + d, NULL);
3212 			ASSERT(error == 0 || error == ENOENT ||
3213 			    error == EINVAL);
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * Now kick off all the tests that run in parallel.
3219 	 */
3220 	zs->zs_enospc_count = 0;
3221 
3222 	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3223 
3224 	if (zopt_verbose >= 4)
3225 		(void) printf("starting main threads...\n");
3226 
3227 	za[0].za_start = gethrtime();
3228 	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3229 	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3230 	za[0].za_kill = za[0].za_stop;
3231 	if (ztest_random(100) < zopt_killrate)
3232 		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3233 
3234 	for (t = 0; t < zopt_threads; t++) {
3235 		d = t % zopt_datasets;
3236 
3237 		(void) strcpy(za[t].za_pool, pool);
3238 		za[t].za_os = za[d].za_os;
3239 		za[t].za_spa = spa;
3240 		za[t].za_zilog = za[d].za_zilog;
3241 		za[t].za_instance = t;
3242 		za[t].za_random = ztest_random(-1ULL);
3243 		za[t].za_start = za[0].za_start;
3244 		za[t].za_stop = za[0].za_stop;
3245 		za[t].za_kill = za[0].za_kill;
3246 
3247 		if (t < zopt_datasets) {
3248 			ztest_replay_t zr;
3249 			int test_future = FALSE;
3250 			(void) rw_rdlock(&ztest_shared->zs_name_lock);
3251 			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3252 			error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
3253 			    ztest_create_cb, NULL);
3254 			if (error == EEXIST) {
3255 				test_future = TRUE;
3256 			} else if (error == ENOSPC) {
3257 				zs->zs_enospc_count++;
3258 				(void) rw_unlock(&ztest_shared->zs_name_lock);
3259 				break;
3260 			} else if (error != 0) {
3261 				fatal(0, "dmu_objset_create(%s) = %d",
3262 				    name, error);
3263 			}
3264 			error = dmu_objset_open(name, DMU_OST_OTHER,
3265 			    DS_MODE_USER, &za[d].za_os);
3266 			if (error)
3267 				fatal(0, "dmu_objset_open('%s') = %d",
3268 				    name, error);
3269 			(void) rw_unlock(&ztest_shared->zs_name_lock);
3270 			if (test_future)
3271 				ztest_dmu_check_future_leak(&za[t]);
3272 			zr.zr_os = za[d].za_os;
3273 			zil_replay(zr.zr_os, &zr, &zr.zr_assign,
3274 			    ztest_replay_vector, NULL);
3275 			za[d].za_zilog = zil_open(za[d].za_os, NULL);
3276 		}
3277 
3278 		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3279 		    &za[t].za_thread) == 0);
3280 	}
3281 
3282 	while (--t >= 0) {
3283 		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3284 		if (za[t].za_th)
3285 			traverse_fini(za[t].za_th);
3286 		if (t < zopt_datasets) {
3287 			zil_close(za[t].za_zilog);
3288 			dmu_objset_close(za[t].za_os);
3289 		}
3290 	}
3291 
3292 	if (zopt_verbose >= 3)
3293 		show_pool_stats(spa);
3294 
3295 	txg_wait_synced(spa_get_dsl(spa), 0);
3296 
3297 	zs->zs_alloc = spa_get_alloc(spa);
3298 	zs->zs_space = spa_get_space(spa);
3299 
3300 	/*
3301 	 * If we had out-of-space errors, destroy a random objset.
3302 	 */
3303 	if (zs->zs_enospc_count != 0) {
3304 		(void) rw_rdlock(&ztest_shared->zs_name_lock);
3305 		d = (int)ztest_random(zopt_datasets);
3306 		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3307 		if (zopt_verbose >= 3)
3308 			(void) printf("Destroying %s to free up space\n", name);
3309 		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3310 		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3311 		(void) rw_unlock(&ztest_shared->zs_name_lock);
3312 	}
3313 
3314 	txg_wait_synced(spa_get_dsl(spa), 0);
3315 
3316 	umem_free(za, zopt_threads * sizeof (ztest_args_t));
3317 
3318 	/* Kill the resume thread */
3319 	ztest_exiting = B_TRUE;
3320 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3321 
3322 	/*
3323 	 * Right before closing the pool, kick off a bunch of async I/O;
3324 	 * spa_close() should wait for it to complete.
3325 	 */
3326 	for (t = 1; t < 50; t++)
3327 		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
3328 
3329 	spa_close(spa, FTAG);
3330 
3331 	kernel_fini();
3332 }
3333 
3334 void
3335 print_time(hrtime_t t, char *timebuf)
3336 {
3337 	hrtime_t s = t / NANOSEC;
3338 	hrtime_t m = s / 60;
3339 	hrtime_t h = m / 60;
3340 	hrtime_t d = h / 24;
3341 
3342 	s -= m * 60;
3343 	m -= h * 60;
3344 	h -= d * 24;
3345 
3346 	timebuf[0] = '\0';
3347 
3348 	if (d)
3349 		(void) sprintf(timebuf,
3350 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
3351 	else if (h)
3352 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
3353 	else if (m)
3354 		(void) sprintf(timebuf, "%llum%02llus", m, s);
3355 	else
3356 		(void) sprintf(timebuf, "%llus", s);
3357 }
3358 
3359 /*
3360  * Create a storage pool with the given name and initial vdev size.
3361  * Then create the specified number of datasets in the pool.
3362  */
3363 static void
3364 ztest_init(char *pool)
3365 {
3366 	spa_t *spa;
3367 	int error;
3368 	nvlist_t *nvroot;
3369 
3370 	kernel_init(FREAD | FWRITE);
3371 
3372 	/*
3373 	 * Create the storage pool.
3374 	 */
3375 	(void) spa_destroy(pool);
3376 	ztest_shared->zs_vdev_primaries = 0;
3377 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
3378 	    0, zopt_raidz, zopt_mirrors, 1);
3379 	error = spa_create(pool, nvroot, NULL, NULL, NULL);
3380 	nvlist_free(nvroot);
3381 
3382 	if (error)
3383 		fatal(0, "spa_create() = %d", error);
3384 	error = spa_open(pool, &spa, FTAG);
3385 	if (error)
3386 		fatal(0, "spa_open() = %d", error);
3387 
3388 	if (zopt_verbose >= 3)
3389 		show_pool_stats(spa);
3390 
3391 	spa_close(spa, FTAG);
3392 
3393 	kernel_fini();
3394 }
3395 
3396 int
3397 main(int argc, char **argv)
3398 {
3399 	int kills = 0;
3400 	int iters = 0;
3401 	int i, f;
3402 	ztest_shared_t *zs;
3403 	ztest_info_t *zi;
3404 	char timebuf[100];
3405 	char numbuf[6];
3406 
3407 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
3408 
3409 	/* Override location of zpool.cache */
3410 	spa_config_path = "/tmp/zpool.cache";
3411 
3412 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
3413 
3414 	process_options(argc, argv);
3415 
3416 	argc -= optind;
3417 	argv += optind;
3418 
3419 	dprintf_setup(&argc, argv);
3420 
3421 	/*
3422 	 * Blow away any existing copy of zpool.cache
3423 	 */
3424 	if (zopt_init != 0)
3425 		(void) remove("/tmp/zpool.cache");
3426 
3427 	zs = ztest_shared = (void *)mmap(0,
3428 	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
3429 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
3430 
3431 	if (zopt_verbose >= 1) {
3432 		(void) printf("%llu vdevs, %d datasets, %d threads,"
3433 		    " %llu seconds...\n",
3434 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
3435 		    (u_longlong_t)zopt_time);
3436 	}
3437 
3438 	/*
3439 	 * Create and initialize our storage pool.
3440 	 */
3441 	for (i = 1; i <= zopt_init; i++) {
3442 		bzero(zs, sizeof (ztest_shared_t));
3443 		if (zopt_verbose >= 3 && zopt_init != 1)
3444 			(void) printf("ztest_init(), pass %d\n", i);
3445 		ztest_init(zopt_pool);
3446 	}
3447 
3448 	/*
3449 	 * Initialize the call targets for each function.
3450 	 */
3451 	for (f = 0; f < ZTEST_FUNCS; f++) {
3452 		zi = &zs->zs_info[f];
3453 
3454 		*zi = ztest_info[f];
3455 
3456 		if (*zi->zi_interval == 0)
3457 			zi->zi_call_target = UINT64_MAX;
3458 		else
3459 			zi->zi_call_target = zopt_time / *zi->zi_interval;
3460 	}
3461 
3462 	zs->zs_start_time = gethrtime();
3463 	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
3464 
3465 	/*
3466 	 * Run the tests in a loop.  These tests include fault injection
3467 	 * to verify that self-healing data works, and forced crashes
3468 	 * to verify that we never lose on-disk consistency.
3469 	 */
3470 	while (gethrtime() < zs->zs_stop_time) {
3471 		int status;
3472 		pid_t pid;
3473 		char *tmp;
3474 
3475 		/*
3476 		 * Initialize the workload counters for each function.
3477 		 */
3478 		for (f = 0; f < ZTEST_FUNCS; f++) {
3479 			zi = &zs->zs_info[f];
3480 			zi->zi_calls = 0;
3481 			zi->zi_call_time = 0;
3482 		}
3483 
3484 		pid = fork();
3485 
3486 		if (pid == -1)
3487 			fatal(1, "fork failed");
3488 
3489 		if (pid == 0) {	/* child */
3490 			struct rlimit rl = { 1024, 1024 };
3491 			(void) setrlimit(RLIMIT_NOFILE, &rl);
3492 			(void) enable_extended_FILE_stdio(-1, -1);
3493 			ztest_run(zopt_pool);
3494 			exit(0);
3495 		}
3496 
3497 		while (waitpid(pid, &status, 0) != pid)
3498 			continue;
3499 
3500 		if (WIFEXITED(status)) {
3501 			if (WEXITSTATUS(status) != 0) {
3502 				(void) fprintf(stderr,
3503 				    "child exited with code %d\n",
3504 				    WEXITSTATUS(status));
3505 				exit(2);
3506 			}
3507 		} else if (WIFSIGNALED(status)) {
3508 			if (WTERMSIG(status) != SIGKILL) {
3509 				(void) fprintf(stderr,
3510 				    "child died with signal %d\n",
3511 				    WTERMSIG(status));
3512 				exit(3);
3513 			}
3514 			kills++;
3515 		} else {
3516 			(void) fprintf(stderr, "something strange happened "
3517 			    "to child\n");
3518 			exit(4);
3519 		}
3520 
3521 		iters++;
3522 
3523 		if (zopt_verbose >= 1) {
3524 			hrtime_t now = gethrtime();
3525 
3526 			now = MIN(now, zs->zs_stop_time);
3527 			print_time(zs->zs_stop_time - now, timebuf);
3528 			nicenum(zs->zs_space, numbuf);
3529 
3530 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
3531 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
3532 			    iters,
3533 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
3534 			    (u_longlong_t)zs->zs_enospc_count,
3535 			    100.0 * zs->zs_alloc / zs->zs_space,
3536 			    numbuf,
3537 			    100.0 * (now - zs->zs_start_time) /
3538 			    (zopt_time * NANOSEC), timebuf);
3539 		}
3540 
3541 		if (zopt_verbose >= 2) {
3542 			(void) printf("\nWorkload summary:\n\n");
3543 			(void) printf("%7s %9s   %s\n",
3544 			    "Calls", "Time", "Function");
3545 			(void) printf("%7s %9s   %s\n",
3546 			    "-----", "----", "--------");
3547 			for (f = 0; f < ZTEST_FUNCS; f++) {
3548 				Dl_info dli;
3549 
3550 				zi = &zs->zs_info[f];
3551 				print_time(zi->zi_call_time, timebuf);
3552 				(void) dladdr((void *)zi->zi_func, &dli);
3553 				(void) printf("%7llu %9s   %s\n",
3554 				    (u_longlong_t)zi->zi_calls, timebuf,
3555 				    dli.dli_sname);
3556 			}
3557 			(void) printf("\n");
3558 		}
3559 
3560 		/*
3561 		 * It's possible that we killed a child during a rename test, in
3562 		 * which case we'll have a 'ztest_tmp' pool lying around instead
3563 		 * of 'ztest'.  Do a blind rename in case this happened.
3564 		 */
3565 		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
3566 		(void) strcpy(tmp, zopt_pool);
3567 		(void) strcat(tmp, "_tmp");
3568 		kernel_init(FREAD | FWRITE);
3569 		(void) spa_rename(tmp, zopt_pool);
3570 		kernel_fini();
3571 		umem_free(tmp, strlen(tmp) + 1);
3572 	}
3573 
3574 	ztest_verify_blocks(zopt_pool);
3575 
3576 	if (zopt_verbose >= 1) {
3577 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
3578 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
3579 	}
3580 
3581 	return (0);
3582 }
3583