1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * The objective of this program is to provide a DMU/ZAP/SPA stress test 27 * that runs entirely in userland, is easy to use, and easy to extend. 28 * 29 * The overall design of the ztest program is as follows: 30 * 31 * (1) For each major functional area (e.g. adding vdevs to a pool, 32 * creating and destroying datasets, reading and writing objects, etc) 33 * we have a simple routine to test that functionality. These 34 * individual routines do not have to do anything "stressful". 35 * 36 * (2) We turn these simple functionality tests into a stress test by 37 * running them all in parallel, with as many threads as desired, 38 * and spread across as many datasets, objects, and vdevs as desired. 39 * 40 * (3) While all this is happening, we inject faults into the pool to 41 * verify that self-healing data really works. 42 * 43 * (4) Every time we open a dataset, we change its checksum and compression 44 * functions. Thus even individual objects vary from block to block 45 * in which checksum they use and whether they're compressed. 46 * 47 * (5) To verify that we never lose on-disk consistency after a crash, 48 * we run the entire test in a child of the main process. 49 * At random times, the child self-immolates with a SIGKILL. 50 * This is the software equivalent of pulling the power cord. 51 * The parent then runs the test again, using the existing 52 * storage pool, as many times as desired. 53 * 54 * (6) To verify that we don't have future leaks or temporal incursions, 55 * many of the functional tests record the transaction group number 56 * as part of their data. When reading old data, they verify that 57 * the transaction group number is less than the current, open txg. 58 * If you add a new test, please do this if applicable. 59 * 60 * When run with no arguments, ztest runs for about five minutes and 61 * produces no output if successful. To get a little bit of information, 62 * specify -V. To get more information, specify -VV, and so on. 63 * 64 * To turn this into an overnight stress test, use -T to specify run time. 65 * 66 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 67 * to increase the pool capacity, fanout, and overall stress level. 68 * 69 * The -N(okill) option will suppress kills, so each child runs to completion. 70 * This can be useful when you're trying to distinguish temporal incursions 71 * from plain old race conditions. 72 */ 73 74 #include <sys/zfs_context.h> 75 #include <sys/spa.h> 76 #include <sys/dmu.h> 77 #include <sys/txg.h> 78 #include <sys/dbuf.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zil.h> 89 #include <sys/zil_impl.h> 90 #include <sys/vdev_impl.h> 91 #include <sys/vdev_file.h> 92 #include <sys/spa_impl.h> 93 #include <sys/metaslab_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/dsl_dataset.h> 96 #include <sys/refcount.h> 97 #include <stdio.h> 98 #include <stdio_ext.h> 99 #include <stdlib.h> 100 #include <unistd.h> 101 #include <signal.h> 102 #include <umem.h> 103 #include <dlfcn.h> 104 #include <ctype.h> 105 #include <math.h> 106 #include <sys/fs/zfs.h> 107 #include <libnvpair.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */ 128 129 #define BT_MAGIC 0x123456789abcdefULL 130 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) 131 132 enum ztest_io_type { 133 ZTEST_IO_WRITE_TAG, 134 ZTEST_IO_WRITE_PATTERN, 135 ZTEST_IO_WRITE_ZEROES, 136 ZTEST_IO_TRUNCATE, 137 ZTEST_IO_SETATTR, 138 ZTEST_IO_TYPES 139 }; 140 141 typedef struct ztest_block_tag { 142 uint64_t bt_magic; 143 uint64_t bt_objset; 144 uint64_t bt_object; 145 uint64_t bt_offset; 146 uint64_t bt_gen; 147 uint64_t bt_txg; 148 uint64_t bt_crtxg; 149 } ztest_block_tag_t; 150 151 typedef struct bufwad { 152 uint64_t bw_index; 153 uint64_t bw_txg; 154 uint64_t bw_data; 155 } bufwad_t; 156 157 /* 158 * XXX -- fix zfs range locks to be generic so we can use them here. 159 */ 160 typedef enum { 161 RL_READER, 162 RL_WRITER, 163 RL_APPEND 164 } rl_type_t; 165 166 typedef struct rll { 167 void *rll_writer; 168 int rll_readers; 169 mutex_t rll_lock; 170 cond_t rll_cv; 171 } rll_t; 172 173 typedef struct rl { 174 uint64_t rl_object; 175 uint64_t rl_offset; 176 uint64_t rl_size; 177 rll_t *rl_lock; 178 } rl_t; 179 180 #define ZTEST_RANGE_LOCKS 64 181 #define ZTEST_OBJECT_LOCKS 64 182 183 /* 184 * Object descriptor. Used as a template for object lookup/create/remove. 185 */ 186 typedef struct ztest_od { 187 uint64_t od_dir; 188 uint64_t od_object; 189 dmu_object_type_t od_type; 190 dmu_object_type_t od_crtype; 191 uint64_t od_blocksize; 192 uint64_t od_crblocksize; 193 uint64_t od_gen; 194 uint64_t od_crgen; 195 char od_name[MAXNAMELEN]; 196 } ztest_od_t; 197 198 /* 199 * Per-dataset state. 200 */ 201 typedef struct ztest_ds { 202 objset_t *zd_os; 203 zilog_t *zd_zilog; 204 uint64_t zd_seq; 205 ztest_od_t *zd_od; /* debugging aid */ 206 char zd_name[MAXNAMELEN]; 207 mutex_t zd_dirobj_lock; 208 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 209 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 210 } ztest_ds_t; 211 212 /* 213 * Per-iteration state. 214 */ 215 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 216 217 typedef struct ztest_info { 218 ztest_func_t *zi_func; /* test function */ 219 uint64_t zi_iters; /* iterations per execution */ 220 uint64_t *zi_interval; /* execute every <interval> seconds */ 221 uint64_t zi_call_count; /* per-pass count */ 222 uint64_t zi_call_time; /* per-pass time */ 223 uint64_t zi_call_next; /* next time to call this function */ 224 } ztest_info_t; 225 226 /* 227 * Note: these aren't static because we want dladdr() to work. 228 */ 229 ztest_func_t ztest_dmu_read_write; 230 ztest_func_t ztest_dmu_write_parallel; 231 ztest_func_t ztest_dmu_object_alloc_free; 232 ztest_func_t ztest_dmu_commit_callbacks; 233 ztest_func_t ztest_zap; 234 ztest_func_t ztest_zap_parallel; 235 ztest_func_t ztest_zil_commit; 236 ztest_func_t ztest_dmu_read_write_zcopy; 237 ztest_func_t ztest_dmu_objset_create_destroy; 238 ztest_func_t ztest_dmu_prealloc; 239 ztest_func_t ztest_fzap; 240 ztest_func_t ztest_dmu_snapshot_create_destroy; 241 ztest_func_t ztest_dsl_prop_get_set; 242 ztest_func_t ztest_spa_prop_get_set; 243 ztest_func_t ztest_spa_create_destroy; 244 ztest_func_t ztest_fault_inject; 245 ztest_func_t ztest_ddt_repair; 246 ztest_func_t ztest_dmu_snapshot_hold; 247 ztest_func_t ztest_spa_rename; 248 ztest_func_t ztest_scrub; 249 ztest_func_t ztest_dsl_dataset_promote_busy; 250 ztest_func_t ztest_vdev_attach_detach; 251 ztest_func_t ztest_vdev_LUN_growth; 252 ztest_func_t ztest_vdev_add_remove; 253 ztest_func_t ztest_vdev_aux_add_remove; 254 ztest_func_t ztest_split_pool; 255 256 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 257 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 258 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 259 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 260 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 261 262 ztest_info_t ztest_info[] = { 263 { ztest_dmu_read_write, 1, &zopt_always }, 264 { ztest_dmu_write_parallel, 10, &zopt_always }, 265 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 266 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 267 { ztest_zap, 30, &zopt_always }, 268 { ztest_zap_parallel, 100, &zopt_always }, 269 { ztest_split_pool, 1, &zopt_always }, 270 { ztest_zil_commit, 1, &zopt_incessant }, 271 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 272 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 273 { ztest_dsl_prop_get_set, 1, &zopt_often }, 274 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 275 #if 0 276 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 277 #endif 278 { ztest_fzap, 1, &zopt_sometimes }, 279 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 280 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 281 { ztest_fault_inject, 1, &zopt_sometimes }, 282 { ztest_ddt_repair, 1, &zopt_sometimes }, 283 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 284 { ztest_spa_rename, 1, &zopt_rarely }, 285 { ztest_scrub, 1, &zopt_rarely }, 286 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 287 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 288 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 289 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 290 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 291 }; 292 293 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 294 295 /* 296 * The following struct is used to hold a list of uncalled commit callbacks. 297 * The callbacks are ordered by txg number. 298 */ 299 typedef struct ztest_cb_list { 300 mutex_t zcl_callbacks_lock; 301 list_t zcl_callbacks; 302 } ztest_cb_list_t; 303 304 /* 305 * Stuff we need to share writably between parent and child. 306 */ 307 typedef struct ztest_shared { 308 char *zs_pool; 309 spa_t *zs_spa; 310 hrtime_t zs_proc_start; 311 hrtime_t zs_proc_stop; 312 hrtime_t zs_thread_start; 313 hrtime_t zs_thread_stop; 314 hrtime_t zs_thread_kill; 315 uint64_t zs_enospc_count; 316 uint64_t zs_vdev_next_leaf; 317 uint64_t zs_vdev_aux; 318 uint64_t zs_alloc; 319 uint64_t zs_space; 320 mutex_t zs_vdev_lock; 321 rwlock_t zs_name_lock; 322 ztest_info_t zs_info[ZTEST_FUNCS]; 323 uint64_t zs_splits; 324 uint64_t zs_mirrors; 325 ztest_ds_t zs_zd[]; 326 } ztest_shared_t; 327 328 #define ID_PARALLEL -1ULL 329 330 static char ztest_dev_template[] = "%s/%s.%llua"; 331 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 332 ztest_shared_t *ztest_shared; 333 uint64_t *ztest_seq; 334 335 static int ztest_random_fd; 336 static int ztest_dump_core = 1; 337 338 static boolean_t ztest_exiting; 339 340 /* Global commit callback list */ 341 static ztest_cb_list_t zcl; 342 343 extern uint64_t metaslab_gang_bang; 344 extern uint64_t metaslab_df_alloc_threshold; 345 static uint64_t metaslab_sz; 346 347 enum ztest_object { 348 ZTEST_META_DNODE = 0, 349 ZTEST_DIROBJ, 350 ZTEST_OBJECTS 351 }; 352 353 static void usage(boolean_t) __NORETURN; 354 355 /* 356 * These libumem hooks provide a reasonable set of defaults for the allocator's 357 * debugging facilities. 358 */ 359 const char * 360 _umem_debug_init() 361 { 362 return ("default,verbose"); /* $UMEM_DEBUG setting */ 363 } 364 365 const char * 366 _umem_logging_init(void) 367 { 368 return ("fail,contents"); /* $UMEM_LOGGING setting */ 369 } 370 371 #define FATAL_MSG_SZ 1024 372 373 char *fatal_msg; 374 375 static void 376 fatal(int do_perror, char *message, ...) 377 { 378 va_list args; 379 int save_errno = errno; 380 char buf[FATAL_MSG_SZ]; 381 382 (void) fflush(stdout); 383 384 va_start(args, message); 385 (void) sprintf(buf, "ztest: "); 386 /* LINTED */ 387 (void) vsprintf(buf + strlen(buf), message, args); 388 va_end(args); 389 if (do_perror) { 390 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 391 ": %s", strerror(save_errno)); 392 } 393 (void) fprintf(stderr, "%s\n", buf); 394 fatal_msg = buf; /* to ease debugging */ 395 if (ztest_dump_core) 396 abort(); 397 exit(3); 398 } 399 400 static int 401 str2shift(const char *buf) 402 { 403 const char *ends = "BKMGTPEZ"; 404 int i; 405 406 if (buf[0] == '\0') 407 return (0); 408 for (i = 0; i < strlen(ends); i++) { 409 if (toupper(buf[0]) == ends[i]) 410 break; 411 } 412 if (i == strlen(ends)) { 413 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 414 buf); 415 usage(B_FALSE); 416 } 417 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 418 return (10*i); 419 } 420 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 421 usage(B_FALSE); 422 /* NOTREACHED */ 423 } 424 425 static uint64_t 426 nicenumtoull(const char *buf) 427 { 428 char *end; 429 uint64_t val; 430 431 val = strtoull(buf, &end, 0); 432 if (end == buf) { 433 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 434 usage(B_FALSE); 435 } else if (end[0] == '.') { 436 double fval = strtod(buf, &end); 437 fval *= pow(2, str2shift(end)); 438 if (fval > UINT64_MAX) { 439 (void) fprintf(stderr, "ztest: value too large: %s\n", 440 buf); 441 usage(B_FALSE); 442 } 443 val = (uint64_t)fval; 444 } else { 445 int shift = str2shift(end); 446 if (shift >= 64 || (val << shift) >> shift != val) { 447 (void) fprintf(stderr, "ztest: value too large: %s\n", 448 buf); 449 usage(B_FALSE); 450 } 451 val <<= shift; 452 } 453 return (val); 454 } 455 456 static void 457 usage(boolean_t requested) 458 { 459 char nice_vdev_size[10]; 460 char nice_gang_bang[10]; 461 FILE *fp = requested ? stdout : stderr; 462 463 nicenum(zopt_vdev_size, nice_vdev_size); 464 nicenum(metaslab_gang_bang, nice_gang_bang); 465 466 (void) fprintf(fp, "Usage: %s\n" 467 "\t[-v vdevs (default: %llu)]\n" 468 "\t[-s size_of_each_vdev (default: %s)]\n" 469 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 470 "\t[-m mirror_copies (default: %d)]\n" 471 "\t[-r raidz_disks (default: %d)]\n" 472 "\t[-R raidz_parity (default: %d)]\n" 473 "\t[-d datasets (default: %d)]\n" 474 "\t[-t threads (default: %d)]\n" 475 "\t[-g gang_block_threshold (default: %s)]\n" 476 "\t[-i init_count (default: %d)] initialize pool i times\n" 477 "\t[-k kill_percentage (default: %llu%%)]\n" 478 "\t[-p pool_name (default: %s)]\n" 479 "\t[-f dir (default: %s)] file directory for vdev files\n" 480 "\t[-V] verbose (use multiple times for ever more blather)\n" 481 "\t[-E] use existing pool instead of creating new one\n" 482 "\t[-T time (default: %llu sec)] total run time\n" 483 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 484 "\t[-P passtime (default: %llu sec)] time per pass\n" 485 "\t[-h] (print help)\n" 486 "", 487 cmdname, 488 (u_longlong_t)zopt_vdevs, /* -v */ 489 nice_vdev_size, /* -s */ 490 zopt_ashift, /* -a */ 491 zopt_mirrors, /* -m */ 492 zopt_raidz, /* -r */ 493 zopt_raidz_parity, /* -R */ 494 zopt_datasets, /* -d */ 495 zopt_threads, /* -t */ 496 nice_gang_bang, /* -g */ 497 zopt_init, /* -i */ 498 (u_longlong_t)zopt_killrate, /* -k */ 499 zopt_pool, /* -p */ 500 zopt_dir, /* -f */ 501 (u_longlong_t)zopt_time, /* -T */ 502 (u_longlong_t)zopt_maxloops, /* -F */ 503 (u_longlong_t)zopt_passtime); /* -P */ 504 exit(requested ? 0 : 1); 505 } 506 507 static void 508 process_options(int argc, char **argv) 509 { 510 int opt; 511 uint64_t value; 512 513 /* By default, test gang blocks for blocks 32K and greater */ 514 metaslab_gang_bang = 32 << 10; 515 516 while ((opt = getopt(argc, argv, 517 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) { 518 value = 0; 519 switch (opt) { 520 case 'v': 521 case 's': 522 case 'a': 523 case 'm': 524 case 'r': 525 case 'R': 526 case 'd': 527 case 't': 528 case 'g': 529 case 'i': 530 case 'k': 531 case 'T': 532 case 'P': 533 case 'F': 534 value = nicenumtoull(optarg); 535 } 536 switch (opt) { 537 case 'v': 538 zopt_vdevs = value; 539 break; 540 case 's': 541 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 542 break; 543 case 'a': 544 zopt_ashift = value; 545 break; 546 case 'm': 547 zopt_mirrors = value; 548 break; 549 case 'r': 550 zopt_raidz = MAX(1, value); 551 break; 552 case 'R': 553 zopt_raidz_parity = MIN(MAX(value, 1), 3); 554 break; 555 case 'd': 556 zopt_datasets = MAX(1, value); 557 break; 558 case 't': 559 zopt_threads = MAX(1, value); 560 break; 561 case 'g': 562 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 563 break; 564 case 'i': 565 zopt_init = value; 566 break; 567 case 'k': 568 zopt_killrate = value; 569 break; 570 case 'p': 571 zopt_pool = strdup(optarg); 572 break; 573 case 'f': 574 zopt_dir = strdup(optarg); 575 break; 576 case 'V': 577 zopt_verbose++; 578 break; 579 case 'E': 580 zopt_init = 0; 581 break; 582 case 'T': 583 zopt_time = value; 584 break; 585 case 'P': 586 zopt_passtime = MAX(1, value); 587 break; 588 case 'F': 589 zopt_maxloops = MAX(1, value); 590 break; 591 case 'h': 592 usage(B_TRUE); 593 break; 594 case '?': 595 default: 596 usage(B_FALSE); 597 break; 598 } 599 } 600 601 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 602 603 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 604 UINT64_MAX >> 2); 605 } 606 607 static void 608 ztest_kill(ztest_shared_t *zs) 609 { 610 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 611 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 612 (void) kill(getpid(), SIGKILL); 613 } 614 615 static uint64_t 616 ztest_random(uint64_t range) 617 { 618 uint64_t r; 619 620 if (range == 0) 621 return (0); 622 623 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 624 fatal(1, "short read from /dev/urandom"); 625 626 return (r % range); 627 } 628 629 /* ARGSUSED */ 630 static void 631 ztest_record_enospc(const char *s) 632 { 633 ztest_shared->zs_enospc_count++; 634 } 635 636 static uint64_t 637 ztest_get_ashift(void) 638 { 639 if (zopt_ashift == 0) 640 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 641 return (zopt_ashift); 642 } 643 644 static nvlist_t * 645 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 646 { 647 char pathbuf[MAXPATHLEN]; 648 uint64_t vdev; 649 nvlist_t *file; 650 651 if (ashift == 0) 652 ashift = ztest_get_ashift(); 653 654 if (path == NULL) { 655 path = pathbuf; 656 657 if (aux != NULL) { 658 vdev = ztest_shared->zs_vdev_aux; 659 (void) sprintf(path, ztest_aux_template, 660 zopt_dir, zopt_pool, aux, vdev); 661 } else { 662 vdev = ztest_shared->zs_vdev_next_leaf++; 663 (void) sprintf(path, ztest_dev_template, 664 zopt_dir, zopt_pool, vdev); 665 } 666 } 667 668 if (size != 0) { 669 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 670 if (fd == -1) 671 fatal(1, "can't open %s", path); 672 if (ftruncate(fd, size) != 0) 673 fatal(1, "can't ftruncate %s", path); 674 (void) close(fd); 675 } 676 677 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 678 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 679 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 680 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 681 682 return (file); 683 } 684 685 static nvlist_t * 686 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 687 { 688 nvlist_t *raidz, **child; 689 int c; 690 691 if (r < 2) 692 return (make_vdev_file(path, aux, size, ashift)); 693 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 694 695 for (c = 0; c < r; c++) 696 child[c] = make_vdev_file(path, aux, size, ashift); 697 698 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 699 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 700 VDEV_TYPE_RAIDZ) == 0); 701 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 702 zopt_raidz_parity) == 0); 703 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 704 child, r) == 0); 705 706 for (c = 0; c < r; c++) 707 nvlist_free(child[c]); 708 709 umem_free(child, r * sizeof (nvlist_t *)); 710 711 return (raidz); 712 } 713 714 static nvlist_t * 715 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 716 int r, int m) 717 { 718 nvlist_t *mirror, **child; 719 int c; 720 721 if (m < 1) 722 return (make_vdev_raidz(path, aux, size, ashift, r)); 723 724 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 725 726 for (c = 0; c < m; c++) 727 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 728 729 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 730 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 731 VDEV_TYPE_MIRROR) == 0); 732 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 733 child, m) == 0); 734 735 for (c = 0; c < m; c++) 736 nvlist_free(child[c]); 737 738 umem_free(child, m * sizeof (nvlist_t *)); 739 740 return (mirror); 741 } 742 743 static nvlist_t * 744 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 745 int log, int r, int m, int t) 746 { 747 nvlist_t *root, **child; 748 int c; 749 750 ASSERT(t > 0); 751 752 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 753 754 for (c = 0; c < t; c++) { 755 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 756 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 757 log) == 0); 758 } 759 760 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 761 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 762 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 763 child, t) == 0); 764 765 for (c = 0; c < t; c++) 766 nvlist_free(child[c]); 767 768 umem_free(child, t * sizeof (nvlist_t *)); 769 770 return (root); 771 } 772 773 static int 774 ztest_random_blocksize(void) 775 { 776 return (1 << (SPA_MINBLOCKSHIFT + 777 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 778 } 779 780 static int 781 ztest_random_ibshift(void) 782 { 783 return (DN_MIN_INDBLKSHIFT + 784 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 785 } 786 787 static uint64_t 788 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 789 { 790 uint64_t top; 791 vdev_t *rvd = spa->spa_root_vdev; 792 vdev_t *tvd; 793 794 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 795 796 do { 797 top = ztest_random(rvd->vdev_children); 798 tvd = rvd->vdev_child[top]; 799 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 800 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 801 802 return (top); 803 } 804 805 static uint64_t 806 ztest_random_dsl_prop(zfs_prop_t prop) 807 { 808 uint64_t value; 809 810 do { 811 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 812 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 813 814 return (value); 815 } 816 817 static int 818 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 819 boolean_t inherit) 820 { 821 const char *propname = zfs_prop_to_name(prop); 822 const char *valname; 823 char setpoint[MAXPATHLEN]; 824 uint64_t curval; 825 int error; 826 827 error = dsl_prop_set(osname, propname, 828 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 829 sizeof (value), 1, &value); 830 831 if (error == ENOSPC) { 832 ztest_record_enospc(FTAG); 833 return (error); 834 } 835 ASSERT3U(error, ==, 0); 836 837 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 838 1, &curval, setpoint), ==, 0); 839 840 if (zopt_verbose >= 6) { 841 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 842 (void) printf("%s %s = %s at '%s'\n", 843 osname, propname, valname, setpoint); 844 } 845 846 return (error); 847 } 848 849 static int 850 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 851 { 852 spa_t *spa = zs->zs_spa; 853 nvlist_t *props = NULL; 854 int error; 855 856 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 857 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 858 859 error = spa_prop_set(spa, props); 860 861 nvlist_free(props); 862 863 if (error == ENOSPC) { 864 ztest_record_enospc(FTAG); 865 return (error); 866 } 867 ASSERT3U(error, ==, 0); 868 869 return (error); 870 } 871 872 static void 873 ztest_rll_init(rll_t *rll) 874 { 875 rll->rll_writer = NULL; 876 rll->rll_readers = 0; 877 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 878 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 879 } 880 881 static void 882 ztest_rll_destroy(rll_t *rll) 883 { 884 ASSERT(rll->rll_writer == NULL); 885 ASSERT(rll->rll_readers == 0); 886 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 887 VERIFY(cond_destroy(&rll->rll_cv) == 0); 888 } 889 890 static void 891 ztest_rll_lock(rll_t *rll, rl_type_t type) 892 { 893 VERIFY(mutex_lock(&rll->rll_lock) == 0); 894 895 if (type == RL_READER) { 896 while (rll->rll_writer != NULL) 897 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 898 rll->rll_readers++; 899 } else { 900 while (rll->rll_writer != NULL || rll->rll_readers) 901 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 902 rll->rll_writer = curthread; 903 } 904 905 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 906 } 907 908 static void 909 ztest_rll_unlock(rll_t *rll) 910 { 911 VERIFY(mutex_lock(&rll->rll_lock) == 0); 912 913 if (rll->rll_writer) { 914 ASSERT(rll->rll_readers == 0); 915 rll->rll_writer = NULL; 916 } else { 917 ASSERT(rll->rll_readers != 0); 918 ASSERT(rll->rll_writer == NULL); 919 rll->rll_readers--; 920 } 921 922 if (rll->rll_writer == NULL && rll->rll_readers == 0) 923 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 924 925 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 926 } 927 928 static void 929 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 930 { 931 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 932 933 ztest_rll_lock(rll, type); 934 } 935 936 static void 937 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 938 { 939 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 940 941 ztest_rll_unlock(rll); 942 } 943 944 static rl_t * 945 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 946 uint64_t size, rl_type_t type) 947 { 948 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 949 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 950 rl_t *rl; 951 952 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 953 rl->rl_object = object; 954 rl->rl_offset = offset; 955 rl->rl_size = size; 956 rl->rl_lock = rll; 957 958 ztest_rll_lock(rll, type); 959 960 return (rl); 961 } 962 963 static void 964 ztest_range_unlock(rl_t *rl) 965 { 966 rll_t *rll = rl->rl_lock; 967 968 ztest_rll_unlock(rll); 969 970 umem_free(rl, sizeof (*rl)); 971 } 972 973 static void 974 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 975 { 976 zd->zd_os = os; 977 zd->zd_zilog = dmu_objset_zil(os); 978 zd->zd_seq = 0; 979 dmu_objset_name(os, zd->zd_name); 980 981 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 982 983 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 984 ztest_rll_init(&zd->zd_object_lock[l]); 985 986 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 987 ztest_rll_init(&zd->zd_range_lock[l]); 988 } 989 990 static void 991 ztest_zd_fini(ztest_ds_t *zd) 992 { 993 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 994 995 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 996 ztest_rll_destroy(&zd->zd_object_lock[l]); 997 998 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 999 ztest_rll_destroy(&zd->zd_range_lock[l]); 1000 } 1001 1002 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1003 1004 static uint64_t 1005 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1006 { 1007 uint64_t txg; 1008 int error; 1009 1010 /* 1011 * Attempt to assign tx to some transaction group. 1012 */ 1013 error = dmu_tx_assign(tx, txg_how); 1014 if (error) { 1015 if (error == ERESTART) { 1016 ASSERT(txg_how == TXG_NOWAIT); 1017 dmu_tx_wait(tx); 1018 } else { 1019 ASSERT3U(error, ==, ENOSPC); 1020 ztest_record_enospc(tag); 1021 } 1022 dmu_tx_abort(tx); 1023 return (0); 1024 } 1025 txg = dmu_tx_get_txg(tx); 1026 ASSERT(txg != 0); 1027 return (txg); 1028 } 1029 1030 static void 1031 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1032 { 1033 uint64_t *ip = buf; 1034 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1035 1036 while (ip < ip_end) 1037 *ip++ = value; 1038 } 1039 1040 static boolean_t 1041 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1042 { 1043 uint64_t *ip = buf; 1044 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1045 uint64_t diff = 0; 1046 1047 while (ip < ip_end) 1048 diff |= (value - *ip++); 1049 1050 return (diff == 0); 1051 } 1052 1053 static void 1054 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1055 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1056 { 1057 bt->bt_magic = BT_MAGIC; 1058 bt->bt_objset = dmu_objset_id(os); 1059 bt->bt_object = object; 1060 bt->bt_offset = offset; 1061 bt->bt_gen = gen; 1062 bt->bt_txg = txg; 1063 bt->bt_crtxg = crtxg; 1064 } 1065 1066 static void 1067 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1068 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1069 { 1070 ASSERT(bt->bt_magic == BT_MAGIC); 1071 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1072 ASSERT(bt->bt_object == object); 1073 ASSERT(bt->bt_offset == offset); 1074 ASSERT(bt->bt_gen <= gen); 1075 ASSERT(bt->bt_txg <= txg); 1076 ASSERT(bt->bt_crtxg == crtxg); 1077 } 1078 1079 static ztest_block_tag_t * 1080 ztest_bt_bonus(dmu_buf_t *db) 1081 { 1082 dmu_object_info_t doi; 1083 ztest_block_tag_t *bt; 1084 1085 dmu_object_info_from_db(db, &doi); 1086 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1087 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1088 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1089 1090 return (bt); 1091 } 1092 1093 /* 1094 * ZIL logging ops 1095 */ 1096 1097 #define lrz_type lr_mode 1098 #define lrz_blocksize lr_uid 1099 #define lrz_ibshift lr_gid 1100 #define lrz_bonustype lr_rdev 1101 #define lrz_bonuslen lr_crtime[1] 1102 1103 static uint64_t 1104 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1105 { 1106 char *name = (void *)(lr + 1); /* name follows lr */ 1107 size_t namesize = strlen(name) + 1; 1108 itx_t *itx; 1109 1110 if (zil_replaying(zd->zd_zilog, tx)) 1111 return (0); 1112 1113 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1114 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1115 sizeof (*lr) + namesize - sizeof (lr_t)); 1116 1117 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1118 } 1119 1120 static uint64_t 1121 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1122 { 1123 char *name = (void *)(lr + 1); /* name follows lr */ 1124 size_t namesize = strlen(name) + 1; 1125 itx_t *itx; 1126 1127 if (zil_replaying(zd->zd_zilog, tx)) 1128 return (0); 1129 1130 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1131 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1132 sizeof (*lr) + namesize - sizeof (lr_t)); 1133 1134 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1135 } 1136 1137 static uint64_t 1138 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1139 { 1140 itx_t *itx; 1141 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1142 1143 if (zil_replaying(zd->zd_zilog, tx)) 1144 return (0); 1145 1146 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1147 write_state = WR_INDIRECT; 1148 1149 itx = zil_itx_create(TX_WRITE, 1150 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1151 1152 if (write_state == WR_COPIED && 1153 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1154 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1155 zil_itx_destroy(itx); 1156 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1157 write_state = WR_NEED_COPY; 1158 } 1159 itx->itx_private = zd; 1160 itx->itx_wr_state = write_state; 1161 itx->itx_sync = (ztest_random(8) == 0); 1162 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1163 1164 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1165 sizeof (*lr) - sizeof (lr_t)); 1166 1167 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1168 } 1169 1170 static uint64_t 1171 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1172 { 1173 itx_t *itx; 1174 1175 if (zil_replaying(zd->zd_zilog, tx)) 1176 return (0); 1177 1178 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1179 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1180 sizeof (*lr) - sizeof (lr_t)); 1181 1182 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1183 } 1184 1185 static uint64_t 1186 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1187 { 1188 itx_t *itx; 1189 1190 if (zil_replaying(zd->zd_zilog, tx)) 1191 return (0); 1192 1193 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1194 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1195 sizeof (*lr) - sizeof (lr_t)); 1196 1197 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1198 } 1199 1200 /* 1201 * ZIL replay ops 1202 */ 1203 static int 1204 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1205 { 1206 char *name = (void *)(lr + 1); /* name follows lr */ 1207 objset_t *os = zd->zd_os; 1208 ztest_block_tag_t *bbt; 1209 dmu_buf_t *db; 1210 dmu_tx_t *tx; 1211 uint64_t txg; 1212 int error = 0; 1213 1214 if (byteswap) 1215 byteswap_uint64_array(lr, sizeof (*lr)); 1216 1217 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1218 ASSERT(name[0] != '\0'); 1219 1220 tx = dmu_tx_create(os); 1221 1222 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1223 1224 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1225 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1226 } else { 1227 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1228 } 1229 1230 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1231 if (txg == 0) 1232 return (ENOSPC); 1233 1234 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1235 1236 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1237 if (lr->lr_foid == 0) { 1238 lr->lr_foid = zap_create(os, 1239 lr->lrz_type, lr->lrz_bonustype, 1240 lr->lrz_bonuslen, tx); 1241 } else { 1242 error = zap_create_claim(os, lr->lr_foid, 1243 lr->lrz_type, lr->lrz_bonustype, 1244 lr->lrz_bonuslen, tx); 1245 } 1246 } else { 1247 if (lr->lr_foid == 0) { 1248 lr->lr_foid = dmu_object_alloc(os, 1249 lr->lrz_type, 0, lr->lrz_bonustype, 1250 lr->lrz_bonuslen, tx); 1251 } else { 1252 error = dmu_object_claim(os, lr->lr_foid, 1253 lr->lrz_type, 0, lr->lrz_bonustype, 1254 lr->lrz_bonuslen, tx); 1255 } 1256 } 1257 1258 if (error) { 1259 ASSERT3U(error, ==, EEXIST); 1260 ASSERT(zd->zd_zilog->zl_replay); 1261 dmu_tx_commit(tx); 1262 return (error); 1263 } 1264 1265 ASSERT(lr->lr_foid != 0); 1266 1267 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1268 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1269 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1270 1271 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1272 bbt = ztest_bt_bonus(db); 1273 dmu_buf_will_dirty(db, tx); 1274 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1275 dmu_buf_rele(db, FTAG); 1276 1277 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1278 &lr->lr_foid, tx)); 1279 1280 (void) ztest_log_create(zd, tx, lr); 1281 1282 dmu_tx_commit(tx); 1283 1284 return (0); 1285 } 1286 1287 static int 1288 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1289 { 1290 char *name = (void *)(lr + 1); /* name follows lr */ 1291 objset_t *os = zd->zd_os; 1292 dmu_object_info_t doi; 1293 dmu_tx_t *tx; 1294 uint64_t object, txg; 1295 1296 if (byteswap) 1297 byteswap_uint64_array(lr, sizeof (*lr)); 1298 1299 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1300 ASSERT(name[0] != '\0'); 1301 1302 VERIFY3U(0, ==, 1303 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1304 ASSERT(object != 0); 1305 1306 ztest_object_lock(zd, object, RL_WRITER); 1307 1308 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1309 1310 tx = dmu_tx_create(os); 1311 1312 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1313 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1314 1315 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1316 if (txg == 0) { 1317 ztest_object_unlock(zd, object); 1318 return (ENOSPC); 1319 } 1320 1321 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1322 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1323 } else { 1324 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1325 } 1326 1327 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1328 1329 (void) ztest_log_remove(zd, tx, lr); 1330 1331 dmu_tx_commit(tx); 1332 1333 ztest_object_unlock(zd, object); 1334 1335 return (0); 1336 } 1337 1338 static int 1339 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1340 { 1341 objset_t *os = zd->zd_os; 1342 void *data = lr + 1; /* data follows lr */ 1343 uint64_t offset, length; 1344 ztest_block_tag_t *bt = data; 1345 ztest_block_tag_t *bbt; 1346 uint64_t gen, txg, lrtxg, crtxg; 1347 dmu_object_info_t doi; 1348 dmu_tx_t *tx; 1349 dmu_buf_t *db; 1350 arc_buf_t *abuf = NULL; 1351 rl_t *rl; 1352 1353 if (byteswap) 1354 byteswap_uint64_array(lr, sizeof (*lr)); 1355 1356 offset = lr->lr_offset; 1357 length = lr->lr_length; 1358 1359 /* If it's a dmu_sync() block, write the whole block */ 1360 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1361 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1362 if (length < blocksize) { 1363 offset -= offset % blocksize; 1364 length = blocksize; 1365 } 1366 } 1367 1368 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1369 byteswap_uint64_array(bt, sizeof (*bt)); 1370 1371 if (bt->bt_magic != BT_MAGIC) 1372 bt = NULL; 1373 1374 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1375 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1376 1377 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1378 1379 dmu_object_info_from_db(db, &doi); 1380 1381 bbt = ztest_bt_bonus(db); 1382 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1383 gen = bbt->bt_gen; 1384 crtxg = bbt->bt_crtxg; 1385 lrtxg = lr->lr_common.lrc_txg; 1386 1387 tx = dmu_tx_create(os); 1388 1389 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1390 1391 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1392 P2PHASE(offset, length) == 0) 1393 abuf = dmu_request_arcbuf(db, length); 1394 1395 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1396 if (txg == 0) { 1397 if (abuf != NULL) 1398 dmu_return_arcbuf(abuf); 1399 dmu_buf_rele(db, FTAG); 1400 ztest_range_unlock(rl); 1401 ztest_object_unlock(zd, lr->lr_foid); 1402 return (ENOSPC); 1403 } 1404 1405 if (bt != NULL) { 1406 /* 1407 * Usually, verify the old data before writing new data -- 1408 * but not always, because we also want to verify correct 1409 * behavior when the data was not recently read into cache. 1410 */ 1411 ASSERT(offset % doi.doi_data_block_size == 0); 1412 if (ztest_random(4) != 0) { 1413 int prefetch = ztest_random(2) ? 1414 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1415 ztest_block_tag_t rbt; 1416 1417 VERIFY(dmu_read(os, lr->lr_foid, offset, 1418 sizeof (rbt), &rbt, prefetch) == 0); 1419 if (rbt.bt_magic == BT_MAGIC) { 1420 ztest_bt_verify(&rbt, os, lr->lr_foid, 1421 offset, gen, txg, crtxg); 1422 } 1423 } 1424 1425 /* 1426 * Writes can appear to be newer than the bonus buffer because 1427 * the ztest_get_data() callback does a dmu_read() of the 1428 * open-context data, which may be different than the data 1429 * as it was when the write was generated. 1430 */ 1431 if (zd->zd_zilog->zl_replay) { 1432 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1433 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1434 bt->bt_crtxg); 1435 } 1436 1437 /* 1438 * Set the bt's gen/txg to the bonus buffer's gen/txg 1439 * so that all of the usual ASSERTs will work. 1440 */ 1441 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1442 } 1443 1444 if (abuf == NULL) { 1445 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1446 } else { 1447 bcopy(data, abuf->b_data, length); 1448 dmu_assign_arcbuf(db, offset, abuf, tx); 1449 } 1450 1451 (void) ztest_log_write(zd, tx, lr); 1452 1453 dmu_buf_rele(db, FTAG); 1454 1455 dmu_tx_commit(tx); 1456 1457 ztest_range_unlock(rl); 1458 ztest_object_unlock(zd, lr->lr_foid); 1459 1460 return (0); 1461 } 1462 1463 static int 1464 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1465 { 1466 objset_t *os = zd->zd_os; 1467 dmu_tx_t *tx; 1468 uint64_t txg; 1469 rl_t *rl; 1470 1471 if (byteswap) 1472 byteswap_uint64_array(lr, sizeof (*lr)); 1473 1474 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1475 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1476 RL_WRITER); 1477 1478 tx = dmu_tx_create(os); 1479 1480 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1481 1482 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1483 if (txg == 0) { 1484 ztest_range_unlock(rl); 1485 ztest_object_unlock(zd, lr->lr_foid); 1486 return (ENOSPC); 1487 } 1488 1489 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1490 lr->lr_length, tx) == 0); 1491 1492 (void) ztest_log_truncate(zd, tx, lr); 1493 1494 dmu_tx_commit(tx); 1495 1496 ztest_range_unlock(rl); 1497 ztest_object_unlock(zd, lr->lr_foid); 1498 1499 return (0); 1500 } 1501 1502 static int 1503 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1504 { 1505 objset_t *os = zd->zd_os; 1506 dmu_tx_t *tx; 1507 dmu_buf_t *db; 1508 ztest_block_tag_t *bbt; 1509 uint64_t txg, lrtxg, crtxg; 1510 1511 if (byteswap) 1512 byteswap_uint64_array(lr, sizeof (*lr)); 1513 1514 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1515 1516 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1517 1518 tx = dmu_tx_create(os); 1519 dmu_tx_hold_bonus(tx, lr->lr_foid); 1520 1521 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1522 if (txg == 0) { 1523 dmu_buf_rele(db, FTAG); 1524 ztest_object_unlock(zd, lr->lr_foid); 1525 return (ENOSPC); 1526 } 1527 1528 bbt = ztest_bt_bonus(db); 1529 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1530 crtxg = bbt->bt_crtxg; 1531 lrtxg = lr->lr_common.lrc_txg; 1532 1533 if (zd->zd_zilog->zl_replay) { 1534 ASSERT(lr->lr_size != 0); 1535 ASSERT(lr->lr_mode != 0); 1536 ASSERT(lrtxg != 0); 1537 } else { 1538 /* 1539 * Randomly change the size and increment the generation. 1540 */ 1541 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1542 sizeof (*bbt); 1543 lr->lr_mode = bbt->bt_gen + 1; 1544 ASSERT(lrtxg == 0); 1545 } 1546 1547 /* 1548 * Verify that the current bonus buffer is not newer than our txg. 1549 */ 1550 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1551 MAX(txg, lrtxg), crtxg); 1552 1553 dmu_buf_will_dirty(db, tx); 1554 1555 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1556 ASSERT3U(lr->lr_size, <=, db->db_size); 1557 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1558 bbt = ztest_bt_bonus(db); 1559 1560 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1561 1562 dmu_buf_rele(db, FTAG); 1563 1564 (void) ztest_log_setattr(zd, tx, lr); 1565 1566 dmu_tx_commit(tx); 1567 1568 ztest_object_unlock(zd, lr->lr_foid); 1569 1570 return (0); 1571 } 1572 1573 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1574 NULL, /* 0 no such transaction type */ 1575 ztest_replay_create, /* TX_CREATE */ 1576 NULL, /* TX_MKDIR */ 1577 NULL, /* TX_MKXATTR */ 1578 NULL, /* TX_SYMLINK */ 1579 ztest_replay_remove, /* TX_REMOVE */ 1580 NULL, /* TX_RMDIR */ 1581 NULL, /* TX_LINK */ 1582 NULL, /* TX_RENAME */ 1583 ztest_replay_write, /* TX_WRITE */ 1584 ztest_replay_truncate, /* TX_TRUNCATE */ 1585 ztest_replay_setattr, /* TX_SETATTR */ 1586 NULL, /* TX_ACL */ 1587 NULL, /* TX_CREATE_ACL */ 1588 NULL, /* TX_CREATE_ATTR */ 1589 NULL, /* TX_CREATE_ACL_ATTR */ 1590 NULL, /* TX_MKDIR_ACL */ 1591 NULL, /* TX_MKDIR_ATTR */ 1592 NULL, /* TX_MKDIR_ACL_ATTR */ 1593 NULL, /* TX_WRITE2 */ 1594 }; 1595 1596 /* 1597 * ZIL get_data callbacks 1598 */ 1599 1600 static void 1601 ztest_get_done(zgd_t *zgd, int error) 1602 { 1603 ztest_ds_t *zd = zgd->zgd_private; 1604 uint64_t object = zgd->zgd_rl->rl_object; 1605 1606 if (zgd->zgd_db) 1607 dmu_buf_rele(zgd->zgd_db, zgd); 1608 1609 ztest_range_unlock(zgd->zgd_rl); 1610 ztest_object_unlock(zd, object); 1611 1612 if (error == 0 && zgd->zgd_bp) 1613 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1614 1615 umem_free(zgd, sizeof (*zgd)); 1616 } 1617 1618 static int 1619 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1620 { 1621 ztest_ds_t *zd = arg; 1622 objset_t *os = zd->zd_os; 1623 uint64_t object = lr->lr_foid; 1624 uint64_t offset = lr->lr_offset; 1625 uint64_t size = lr->lr_length; 1626 blkptr_t *bp = &lr->lr_blkptr; 1627 uint64_t txg = lr->lr_common.lrc_txg; 1628 uint64_t crtxg; 1629 dmu_object_info_t doi; 1630 dmu_buf_t *db; 1631 zgd_t *zgd; 1632 int error; 1633 1634 ztest_object_lock(zd, object, RL_READER); 1635 error = dmu_bonus_hold(os, object, FTAG, &db); 1636 if (error) { 1637 ztest_object_unlock(zd, object); 1638 return (error); 1639 } 1640 1641 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1642 1643 if (crtxg == 0 || crtxg > txg) { 1644 dmu_buf_rele(db, FTAG); 1645 ztest_object_unlock(zd, object); 1646 return (ENOENT); 1647 } 1648 1649 dmu_object_info_from_db(db, &doi); 1650 dmu_buf_rele(db, FTAG); 1651 db = NULL; 1652 1653 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1654 zgd->zgd_zilog = zd->zd_zilog; 1655 zgd->zgd_private = zd; 1656 1657 if (buf != NULL) { /* immediate write */ 1658 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1659 RL_READER); 1660 1661 error = dmu_read(os, object, offset, size, buf, 1662 DMU_READ_NO_PREFETCH); 1663 ASSERT(error == 0); 1664 } else { 1665 size = doi.doi_data_block_size; 1666 if (ISP2(size)) { 1667 offset = P2ALIGN(offset, size); 1668 } else { 1669 ASSERT(offset < size); 1670 offset = 0; 1671 } 1672 1673 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1674 RL_READER); 1675 1676 error = dmu_buf_hold(os, object, offset, zgd, &db, 1677 DMU_READ_NO_PREFETCH); 1678 1679 if (error == 0) { 1680 zgd->zgd_db = db; 1681 zgd->zgd_bp = bp; 1682 1683 ASSERT(db->db_offset == offset); 1684 ASSERT(db->db_size == size); 1685 1686 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1687 ztest_get_done, zgd); 1688 1689 if (error == 0) 1690 return (0); 1691 } 1692 } 1693 1694 ztest_get_done(zgd, error); 1695 1696 return (error); 1697 } 1698 1699 static void * 1700 ztest_lr_alloc(size_t lrsize, char *name) 1701 { 1702 char *lr; 1703 size_t namesize = name ? strlen(name) + 1 : 0; 1704 1705 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1706 1707 if (name) 1708 bcopy(name, lr + lrsize, namesize); 1709 1710 return (lr); 1711 } 1712 1713 void 1714 ztest_lr_free(void *lr, size_t lrsize, char *name) 1715 { 1716 size_t namesize = name ? strlen(name) + 1 : 0; 1717 1718 umem_free(lr, lrsize + namesize); 1719 } 1720 1721 /* 1722 * Lookup a bunch of objects. Returns the number of objects not found. 1723 */ 1724 static int 1725 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1726 { 1727 int missing = 0; 1728 int error; 1729 1730 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1731 1732 for (int i = 0; i < count; i++, od++) { 1733 od->od_object = 0; 1734 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1735 sizeof (uint64_t), 1, &od->od_object); 1736 if (error) { 1737 ASSERT(error == ENOENT); 1738 ASSERT(od->od_object == 0); 1739 missing++; 1740 } else { 1741 dmu_buf_t *db; 1742 ztest_block_tag_t *bbt; 1743 dmu_object_info_t doi; 1744 1745 ASSERT(od->od_object != 0); 1746 ASSERT(missing == 0); /* there should be no gaps */ 1747 1748 ztest_object_lock(zd, od->od_object, RL_READER); 1749 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1750 od->od_object, FTAG, &db)); 1751 dmu_object_info_from_db(db, &doi); 1752 bbt = ztest_bt_bonus(db); 1753 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1754 od->od_type = doi.doi_type; 1755 od->od_blocksize = doi.doi_data_block_size; 1756 od->od_gen = bbt->bt_gen; 1757 dmu_buf_rele(db, FTAG); 1758 ztest_object_unlock(zd, od->od_object); 1759 } 1760 } 1761 1762 return (missing); 1763 } 1764 1765 static int 1766 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1767 { 1768 int missing = 0; 1769 1770 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1771 1772 for (int i = 0; i < count; i++, od++) { 1773 if (missing) { 1774 od->od_object = 0; 1775 missing++; 1776 continue; 1777 } 1778 1779 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1780 1781 lr->lr_doid = od->od_dir; 1782 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1783 lr->lrz_type = od->od_crtype; 1784 lr->lrz_blocksize = od->od_crblocksize; 1785 lr->lrz_ibshift = ztest_random_ibshift(); 1786 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1787 lr->lrz_bonuslen = dmu_bonus_max(); 1788 lr->lr_gen = od->od_crgen; 1789 lr->lr_crtime[0] = time(NULL); 1790 1791 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1792 ASSERT(missing == 0); 1793 od->od_object = 0; 1794 missing++; 1795 } else { 1796 od->od_object = lr->lr_foid; 1797 od->od_type = od->od_crtype; 1798 od->od_blocksize = od->od_crblocksize; 1799 od->od_gen = od->od_crgen; 1800 ASSERT(od->od_object != 0); 1801 } 1802 1803 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1804 } 1805 1806 return (missing); 1807 } 1808 1809 static int 1810 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1811 { 1812 int missing = 0; 1813 int error; 1814 1815 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1816 1817 od += count - 1; 1818 1819 for (int i = count - 1; i >= 0; i--, od--) { 1820 if (missing) { 1821 missing++; 1822 continue; 1823 } 1824 1825 if (od->od_object == 0) 1826 continue; 1827 1828 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1829 1830 lr->lr_doid = od->od_dir; 1831 1832 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1833 ASSERT3U(error, ==, ENOSPC); 1834 missing++; 1835 } else { 1836 od->od_object = 0; 1837 } 1838 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1839 } 1840 1841 return (missing); 1842 } 1843 1844 static int 1845 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1846 void *data) 1847 { 1848 lr_write_t *lr; 1849 int error; 1850 1851 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1852 1853 lr->lr_foid = object; 1854 lr->lr_offset = offset; 1855 lr->lr_length = size; 1856 lr->lr_blkoff = 0; 1857 BP_ZERO(&lr->lr_blkptr); 1858 1859 bcopy(data, lr + 1, size); 1860 1861 error = ztest_replay_write(zd, lr, B_FALSE); 1862 1863 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1864 1865 return (error); 1866 } 1867 1868 static int 1869 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1870 { 1871 lr_truncate_t *lr; 1872 int error; 1873 1874 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1875 1876 lr->lr_foid = object; 1877 lr->lr_offset = offset; 1878 lr->lr_length = size; 1879 1880 error = ztest_replay_truncate(zd, lr, B_FALSE); 1881 1882 ztest_lr_free(lr, sizeof (*lr), NULL); 1883 1884 return (error); 1885 } 1886 1887 static int 1888 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1889 { 1890 lr_setattr_t *lr; 1891 int error; 1892 1893 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1894 1895 lr->lr_foid = object; 1896 lr->lr_size = 0; 1897 lr->lr_mode = 0; 1898 1899 error = ztest_replay_setattr(zd, lr, B_FALSE); 1900 1901 ztest_lr_free(lr, sizeof (*lr), NULL); 1902 1903 return (error); 1904 } 1905 1906 static void 1907 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1908 { 1909 objset_t *os = zd->zd_os; 1910 dmu_tx_t *tx; 1911 uint64_t txg; 1912 rl_t *rl; 1913 1914 txg_wait_synced(dmu_objset_pool(os), 0); 1915 1916 ztest_object_lock(zd, object, RL_READER); 1917 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1918 1919 tx = dmu_tx_create(os); 1920 1921 dmu_tx_hold_write(tx, object, offset, size); 1922 1923 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1924 1925 if (txg != 0) { 1926 dmu_prealloc(os, object, offset, size, tx); 1927 dmu_tx_commit(tx); 1928 txg_wait_synced(dmu_objset_pool(os), txg); 1929 } else { 1930 (void) dmu_free_long_range(os, object, offset, size); 1931 } 1932 1933 ztest_range_unlock(rl); 1934 ztest_object_unlock(zd, object); 1935 } 1936 1937 static void 1938 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1939 { 1940 ztest_block_tag_t wbt; 1941 dmu_object_info_t doi; 1942 enum ztest_io_type io_type; 1943 uint64_t blocksize; 1944 void *data; 1945 1946 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1947 blocksize = doi.doi_data_block_size; 1948 data = umem_alloc(blocksize, UMEM_NOFAIL); 1949 1950 /* 1951 * Pick an i/o type at random, biased toward writing block tags. 1952 */ 1953 io_type = ztest_random(ZTEST_IO_TYPES); 1954 if (ztest_random(2) == 0) 1955 io_type = ZTEST_IO_WRITE_TAG; 1956 1957 switch (io_type) { 1958 1959 case ZTEST_IO_WRITE_TAG: 1960 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1961 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1962 break; 1963 1964 case ZTEST_IO_WRITE_PATTERN: 1965 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1966 if (ztest_random(2) == 0) { 1967 /* 1968 * Induce fletcher2 collisions to ensure that 1969 * zio_ddt_collision() detects and resolves them 1970 * when using fletcher2-verify for deduplication. 1971 */ 1972 ((uint64_t *)data)[0] ^= 1ULL << 63; 1973 ((uint64_t *)data)[4] ^= 1ULL << 63; 1974 } 1975 (void) ztest_write(zd, object, offset, blocksize, data); 1976 break; 1977 1978 case ZTEST_IO_WRITE_ZEROES: 1979 bzero(data, blocksize); 1980 (void) ztest_write(zd, object, offset, blocksize, data); 1981 break; 1982 1983 case ZTEST_IO_TRUNCATE: 1984 (void) ztest_truncate(zd, object, offset, blocksize); 1985 break; 1986 1987 case ZTEST_IO_SETATTR: 1988 (void) ztest_setattr(zd, object); 1989 break; 1990 } 1991 1992 umem_free(data, blocksize); 1993 } 1994 1995 /* 1996 * Initialize an object description template. 1997 */ 1998 static void 1999 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2000 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2001 { 2002 od->od_dir = ZTEST_DIROBJ; 2003 od->od_object = 0; 2004 2005 od->od_crtype = type; 2006 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2007 od->od_crgen = gen; 2008 2009 od->od_type = DMU_OT_NONE; 2010 od->od_blocksize = 0; 2011 od->od_gen = 0; 2012 2013 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2014 tag, (int64_t)id, index); 2015 } 2016 2017 /* 2018 * Lookup or create the objects for a test using the od template. 2019 * If the objects do not all exist, or if 'remove' is specified, 2020 * remove any existing objects and create new ones. Otherwise, 2021 * use the existing objects. 2022 */ 2023 static int 2024 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2025 { 2026 int count = size / sizeof (*od); 2027 int rv = 0; 2028 2029 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2030 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2031 (ztest_remove(zd, od, count) != 0 || 2032 ztest_create(zd, od, count) != 0)) 2033 rv = -1; 2034 zd->zd_od = od; 2035 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2036 2037 return (rv); 2038 } 2039 2040 /* ARGSUSED */ 2041 void 2042 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2043 { 2044 zilog_t *zilog = zd->zd_zilog; 2045 2046 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2047 2048 /* 2049 * Remember the committed values in zd, which is in parent/child 2050 * shared memory. If we die, the next iteration of ztest_run() 2051 * will verify that the log really does contain this record. 2052 */ 2053 mutex_enter(&zilog->zl_lock); 2054 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2055 zd->zd_seq = zilog->zl_commit_lr_seq; 2056 mutex_exit(&zilog->zl_lock); 2057 } 2058 2059 /* 2060 * Verify that we can't destroy an active pool, create an existing pool, 2061 * or create a pool with a bad vdev spec. 2062 */ 2063 /* ARGSUSED */ 2064 void 2065 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2066 { 2067 ztest_shared_t *zs = ztest_shared; 2068 spa_t *spa; 2069 nvlist_t *nvroot; 2070 2071 /* 2072 * Attempt to create using a bad file. 2073 */ 2074 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2075 VERIFY3U(ENOENT, ==, 2076 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2077 nvlist_free(nvroot); 2078 2079 /* 2080 * Attempt to create using a bad mirror. 2081 */ 2082 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2083 VERIFY3U(ENOENT, ==, 2084 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2085 nvlist_free(nvroot); 2086 2087 /* 2088 * Attempt to create an existing pool. It shouldn't matter 2089 * what's in the nvroot; we should fail with EEXIST. 2090 */ 2091 (void) rw_rdlock(&zs->zs_name_lock); 2092 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2093 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2094 nvlist_free(nvroot); 2095 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2096 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2097 spa_close(spa, FTAG); 2098 2099 (void) rw_unlock(&zs->zs_name_lock); 2100 } 2101 2102 static vdev_t * 2103 vdev_lookup_by_path(vdev_t *vd, const char *path) 2104 { 2105 vdev_t *mvd; 2106 2107 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2108 return (vd); 2109 2110 for (int c = 0; c < vd->vdev_children; c++) 2111 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2112 NULL) 2113 return (mvd); 2114 2115 return (NULL); 2116 } 2117 2118 /* 2119 * Find the first available hole which can be used as a top-level. 2120 */ 2121 int 2122 find_vdev_hole(spa_t *spa) 2123 { 2124 vdev_t *rvd = spa->spa_root_vdev; 2125 int c; 2126 2127 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2128 2129 for (c = 0; c < rvd->vdev_children; c++) { 2130 vdev_t *cvd = rvd->vdev_child[c]; 2131 2132 if (cvd->vdev_ishole) 2133 break; 2134 } 2135 return (c); 2136 } 2137 2138 /* 2139 * Verify that vdev_add() works as expected. 2140 */ 2141 /* ARGSUSED */ 2142 void 2143 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2144 { 2145 ztest_shared_t *zs = ztest_shared; 2146 spa_t *spa = zs->zs_spa; 2147 uint64_t leaves; 2148 uint64_t guid; 2149 nvlist_t *nvroot; 2150 int error; 2151 2152 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2153 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; 2154 2155 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2156 2157 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2158 2159 /* 2160 * If we have slogs then remove them 1/4 of the time. 2161 */ 2162 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2163 /* 2164 * Grab the guid from the head of the log class rotor. 2165 */ 2166 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2167 2168 spa_config_exit(spa, SCL_VDEV, FTAG); 2169 2170 /* 2171 * We have to grab the zs_name_lock as writer to 2172 * prevent a race between removing a slog (dmu_objset_find) 2173 * and destroying a dataset. Removing the slog will 2174 * grab a reference on the dataset which may cause 2175 * dmu_objset_destroy() to fail with EBUSY thus 2176 * leaving the dataset in an inconsistent state. 2177 */ 2178 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2179 error = spa_vdev_remove(spa, guid, B_FALSE); 2180 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2181 2182 if (error && error != EEXIST) 2183 fatal(0, "spa_vdev_remove() = %d", error); 2184 } else { 2185 spa_config_exit(spa, SCL_VDEV, FTAG); 2186 2187 /* 2188 * Make 1/4 of the devices be log devices. 2189 */ 2190 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2191 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); 2192 2193 error = spa_vdev_add(spa, nvroot); 2194 nvlist_free(nvroot); 2195 2196 if (error == ENOSPC) 2197 ztest_record_enospc("spa_vdev_add"); 2198 else if (error != 0) 2199 fatal(0, "spa_vdev_add() = %d", error); 2200 } 2201 2202 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2203 } 2204 2205 /* 2206 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2207 */ 2208 /* ARGSUSED */ 2209 void 2210 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2211 { 2212 ztest_shared_t *zs = ztest_shared; 2213 spa_t *spa = zs->zs_spa; 2214 vdev_t *rvd = spa->spa_root_vdev; 2215 spa_aux_vdev_t *sav; 2216 char *aux; 2217 uint64_t guid = 0; 2218 int error; 2219 2220 if (ztest_random(2) == 0) { 2221 sav = &spa->spa_spares; 2222 aux = ZPOOL_CONFIG_SPARES; 2223 } else { 2224 sav = &spa->spa_l2cache; 2225 aux = ZPOOL_CONFIG_L2CACHE; 2226 } 2227 2228 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2229 2230 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2231 2232 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2233 /* 2234 * Pick a random device to remove. 2235 */ 2236 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2237 } else { 2238 /* 2239 * Find an unused device we can add. 2240 */ 2241 zs->zs_vdev_aux = 0; 2242 for (;;) { 2243 char path[MAXPATHLEN]; 2244 int c; 2245 (void) sprintf(path, ztest_aux_template, zopt_dir, 2246 zopt_pool, aux, zs->zs_vdev_aux); 2247 for (c = 0; c < sav->sav_count; c++) 2248 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2249 path) == 0) 2250 break; 2251 if (c == sav->sav_count && 2252 vdev_lookup_by_path(rvd, path) == NULL) 2253 break; 2254 zs->zs_vdev_aux++; 2255 } 2256 } 2257 2258 spa_config_exit(spa, SCL_VDEV, FTAG); 2259 2260 if (guid == 0) { 2261 /* 2262 * Add a new device. 2263 */ 2264 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2265 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2266 error = spa_vdev_add(spa, nvroot); 2267 if (error != 0) 2268 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2269 nvlist_free(nvroot); 2270 } else { 2271 /* 2272 * Remove an existing device. Sometimes, dirty its 2273 * vdev state first to make sure we handle removal 2274 * of devices that have pending state changes. 2275 */ 2276 if (ztest_random(2) == 0) 2277 (void) vdev_online(spa, guid, 0, NULL); 2278 2279 error = spa_vdev_remove(spa, guid, B_FALSE); 2280 if (error != 0 && error != EBUSY) 2281 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2282 } 2283 2284 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2285 } 2286 2287 /* 2288 * split a pool if it has mirror tlvdevs 2289 */ 2290 /* ARGSUSED */ 2291 void 2292 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2293 { 2294 ztest_shared_t *zs = ztest_shared; 2295 spa_t *spa = zs->zs_spa; 2296 vdev_t *rvd = spa->spa_root_vdev; 2297 nvlist_t *tree, **child, *config, *split, **schild; 2298 uint_t c, children, schildren = 0, lastlogid = 0; 2299 int error = 0; 2300 2301 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2302 2303 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2304 if (zs->zs_mirrors < 3 || zopt_raidz > 1) { 2305 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2306 return; 2307 } 2308 2309 /* clean up the old pool, if any */ 2310 (void) spa_destroy("splitp"); 2311 2312 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2313 2314 /* generate a config from the existing config */ 2315 mutex_enter(&spa->spa_props_lock); 2316 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2317 &tree) == 0); 2318 mutex_exit(&spa->spa_props_lock); 2319 2320 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2321 &children) == 0); 2322 2323 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2324 for (c = 0; c < children; c++) { 2325 vdev_t *tvd = rvd->vdev_child[c]; 2326 nvlist_t **mchild; 2327 uint_t mchildren; 2328 2329 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2330 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2331 0) == 0); 2332 VERIFY(nvlist_add_string(schild[schildren], 2333 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2334 VERIFY(nvlist_add_uint64(schild[schildren], 2335 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2336 if (lastlogid == 0) 2337 lastlogid = schildren; 2338 ++schildren; 2339 continue; 2340 } 2341 lastlogid = 0; 2342 VERIFY(nvlist_lookup_nvlist_array(child[c], 2343 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2344 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2345 } 2346 2347 /* OK, create a config that can be used to split */ 2348 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2349 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2350 VDEV_TYPE_ROOT) == 0); 2351 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2352 lastlogid != 0 ? lastlogid : schildren) == 0); 2353 2354 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2355 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2356 2357 for (c = 0; c < schildren; c++) 2358 nvlist_free(schild[c]); 2359 free(schild); 2360 nvlist_free(split); 2361 2362 spa_config_exit(spa, SCL_VDEV, FTAG); 2363 2364 (void) rw_wrlock(&zs->zs_name_lock); 2365 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2366 (void) rw_unlock(&zs->zs_name_lock); 2367 2368 nvlist_free(config); 2369 2370 if (error == 0) { 2371 (void) printf("successful split - results:\n"); 2372 mutex_enter(&spa_namespace_lock); 2373 show_pool_stats(spa); 2374 show_pool_stats(spa_lookup("splitp")); 2375 mutex_exit(&spa_namespace_lock); 2376 ++zs->zs_splits; 2377 --zs->zs_mirrors; 2378 } 2379 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2380 2381 } 2382 2383 /* 2384 * Verify that we can attach and detach devices. 2385 */ 2386 /* ARGSUSED */ 2387 void 2388 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2389 { 2390 ztest_shared_t *zs = ztest_shared; 2391 spa_t *spa = zs->zs_spa; 2392 spa_aux_vdev_t *sav = &spa->spa_spares; 2393 vdev_t *rvd = spa->spa_root_vdev; 2394 vdev_t *oldvd, *newvd, *pvd; 2395 nvlist_t *root; 2396 uint64_t leaves; 2397 uint64_t leaf, top; 2398 uint64_t ashift = ztest_get_ashift(); 2399 uint64_t oldguid, pguid; 2400 size_t oldsize, newsize; 2401 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2402 int replacing; 2403 int oldvd_has_siblings = B_FALSE; 2404 int newvd_is_spare = B_FALSE; 2405 int oldvd_is_log; 2406 int error, expected_error; 2407 2408 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2409 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 2410 2411 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2412 2413 /* 2414 * Decide whether to do an attach or a replace. 2415 */ 2416 replacing = ztest_random(2); 2417 2418 /* 2419 * Pick a random top-level vdev. 2420 */ 2421 top = ztest_random_vdev_top(spa, B_TRUE); 2422 2423 /* 2424 * Pick a random leaf within it. 2425 */ 2426 leaf = ztest_random(leaves); 2427 2428 /* 2429 * Locate this vdev. 2430 */ 2431 oldvd = rvd->vdev_child[top]; 2432 if (zs->zs_mirrors >= 1) { 2433 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2434 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2435 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2436 } 2437 if (zopt_raidz > 1) { 2438 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2439 ASSERT(oldvd->vdev_children == zopt_raidz); 2440 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2441 } 2442 2443 /* 2444 * If we're already doing an attach or replace, oldvd may be a 2445 * mirror vdev -- in which case, pick a random child. 2446 */ 2447 while (oldvd->vdev_children != 0) { 2448 oldvd_has_siblings = B_TRUE; 2449 ASSERT(oldvd->vdev_children >= 2); 2450 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2451 } 2452 2453 oldguid = oldvd->vdev_guid; 2454 oldsize = vdev_get_min_asize(oldvd); 2455 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2456 (void) strcpy(oldpath, oldvd->vdev_path); 2457 pvd = oldvd->vdev_parent; 2458 pguid = pvd->vdev_guid; 2459 2460 /* 2461 * If oldvd has siblings, then half of the time, detach it. 2462 */ 2463 if (oldvd_has_siblings && ztest_random(2) == 0) { 2464 spa_config_exit(spa, SCL_VDEV, FTAG); 2465 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2466 if (error != 0 && error != ENODEV && error != EBUSY && 2467 error != ENOTSUP) 2468 fatal(0, "detach (%s) returned %d", oldpath, error); 2469 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2470 return; 2471 } 2472 2473 /* 2474 * For the new vdev, choose with equal probability between the two 2475 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2476 */ 2477 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2478 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2479 newvd_is_spare = B_TRUE; 2480 (void) strcpy(newpath, newvd->vdev_path); 2481 } else { 2482 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2483 zopt_dir, zopt_pool, top * leaves + leaf); 2484 if (ztest_random(2) == 0) 2485 newpath[strlen(newpath) - 1] = 'b'; 2486 newvd = vdev_lookup_by_path(rvd, newpath); 2487 } 2488 2489 if (newvd) { 2490 newsize = vdev_get_min_asize(newvd); 2491 } else { 2492 /* 2493 * Make newsize a little bigger or smaller than oldsize. 2494 * If it's smaller, the attach should fail. 2495 * If it's larger, and we're doing a replace, 2496 * we should get dynamic LUN growth when we're done. 2497 */ 2498 newsize = 10 * oldsize / (9 + ztest_random(3)); 2499 } 2500 2501 /* 2502 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2503 * unless it's a replace; in that case any non-replacing parent is OK. 2504 * 2505 * If newvd is already part of the pool, it should fail with EBUSY. 2506 * 2507 * If newvd is too small, it should fail with EOVERFLOW. 2508 */ 2509 if (pvd->vdev_ops != &vdev_mirror_ops && 2510 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2511 pvd->vdev_ops == &vdev_replacing_ops || 2512 pvd->vdev_ops == &vdev_spare_ops)) 2513 expected_error = ENOTSUP; 2514 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2515 expected_error = ENOTSUP; 2516 else if (newvd == oldvd) 2517 expected_error = replacing ? 0 : EBUSY; 2518 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2519 expected_error = EBUSY; 2520 else if (newsize < oldsize) 2521 expected_error = EOVERFLOW; 2522 else if (ashift > oldvd->vdev_top->vdev_ashift) 2523 expected_error = EDOM; 2524 else 2525 expected_error = 0; 2526 2527 spa_config_exit(spa, SCL_VDEV, FTAG); 2528 2529 /* 2530 * Build the nvlist describing newpath. 2531 */ 2532 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2533 ashift, 0, 0, 0, 1); 2534 2535 error = spa_vdev_attach(spa, oldguid, root, replacing); 2536 2537 nvlist_free(root); 2538 2539 /* 2540 * If our parent was the replacing vdev, but the replace completed, 2541 * then instead of failing with ENOTSUP we may either succeed, 2542 * fail with ENODEV, or fail with EOVERFLOW. 2543 */ 2544 if (expected_error == ENOTSUP && 2545 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2546 expected_error = error; 2547 2548 /* 2549 * If someone grew the LUN, the replacement may be too small. 2550 */ 2551 if (error == EOVERFLOW || error == EBUSY) 2552 expected_error = error; 2553 2554 /* XXX workaround 6690467 */ 2555 if (error != expected_error && expected_error != EBUSY) { 2556 fatal(0, "attach (%s %llu, %s %llu, %d) " 2557 "returned %d, expected %d", 2558 oldpath, (longlong_t)oldsize, newpath, 2559 (longlong_t)newsize, replacing, error, expected_error); 2560 } 2561 2562 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2563 } 2564 2565 /* 2566 * Callback function which expands the physical size of the vdev. 2567 */ 2568 vdev_t * 2569 grow_vdev(vdev_t *vd, void *arg) 2570 { 2571 spa_t *spa = vd->vdev_spa; 2572 size_t *newsize = arg; 2573 size_t fsize; 2574 int fd; 2575 2576 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2577 ASSERT(vd->vdev_ops->vdev_op_leaf); 2578 2579 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2580 return (vd); 2581 2582 fsize = lseek(fd, 0, SEEK_END); 2583 (void) ftruncate(fd, *newsize); 2584 2585 if (zopt_verbose >= 6) { 2586 (void) printf("%s grew from %lu to %lu bytes\n", 2587 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2588 } 2589 (void) close(fd); 2590 return (NULL); 2591 } 2592 2593 /* 2594 * Callback function which expands a given vdev by calling vdev_online(). 2595 */ 2596 /* ARGSUSED */ 2597 vdev_t * 2598 online_vdev(vdev_t *vd, void *arg) 2599 { 2600 spa_t *spa = vd->vdev_spa; 2601 vdev_t *tvd = vd->vdev_top; 2602 uint64_t guid = vd->vdev_guid; 2603 uint64_t generation = spa->spa_config_generation + 1; 2604 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2605 int error; 2606 2607 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2608 ASSERT(vd->vdev_ops->vdev_op_leaf); 2609 2610 /* Calling vdev_online will initialize the new metaslabs */ 2611 spa_config_exit(spa, SCL_STATE, spa); 2612 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2613 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2614 2615 /* 2616 * If vdev_online returned an error or the underlying vdev_open 2617 * failed then we abort the expand. The only way to know that 2618 * vdev_open fails is by checking the returned newstate. 2619 */ 2620 if (error || newstate != VDEV_STATE_HEALTHY) { 2621 if (zopt_verbose >= 5) { 2622 (void) printf("Unable to expand vdev, state %llu, " 2623 "error %d\n", (u_longlong_t)newstate, error); 2624 } 2625 return (vd); 2626 } 2627 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2628 2629 /* 2630 * Since we dropped the lock we need to ensure that we're 2631 * still talking to the original vdev. It's possible this 2632 * vdev may have been detached/replaced while we were 2633 * trying to online it. 2634 */ 2635 if (generation != spa->spa_config_generation) { 2636 if (zopt_verbose >= 5) { 2637 (void) printf("vdev configuration has changed, " 2638 "guid %llu, state %llu, expected gen %llu, " 2639 "got gen %llu\n", 2640 (u_longlong_t)guid, 2641 (u_longlong_t)tvd->vdev_state, 2642 (u_longlong_t)generation, 2643 (u_longlong_t)spa->spa_config_generation); 2644 } 2645 return (vd); 2646 } 2647 return (NULL); 2648 } 2649 2650 /* 2651 * Traverse the vdev tree calling the supplied function. 2652 * We continue to walk the tree until we either have walked all 2653 * children or we receive a non-NULL return from the callback. 2654 * If a NULL callback is passed, then we just return back the first 2655 * leaf vdev we encounter. 2656 */ 2657 vdev_t * 2658 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2659 { 2660 if (vd->vdev_ops->vdev_op_leaf) { 2661 if (func == NULL) 2662 return (vd); 2663 else 2664 return (func(vd, arg)); 2665 } 2666 2667 for (uint_t c = 0; c < vd->vdev_children; c++) { 2668 vdev_t *cvd = vd->vdev_child[c]; 2669 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2670 return (cvd); 2671 } 2672 return (NULL); 2673 } 2674 2675 /* 2676 * Verify that dynamic LUN growth works as expected. 2677 */ 2678 /* ARGSUSED */ 2679 void 2680 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2681 { 2682 ztest_shared_t *zs = ztest_shared; 2683 spa_t *spa = zs->zs_spa; 2684 vdev_t *vd, *tvd; 2685 metaslab_class_t *mc; 2686 metaslab_group_t *mg; 2687 size_t psize, newsize; 2688 uint64_t top; 2689 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2690 2691 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2692 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2693 2694 top = ztest_random_vdev_top(spa, B_TRUE); 2695 2696 tvd = spa->spa_root_vdev->vdev_child[top]; 2697 mg = tvd->vdev_mg; 2698 mc = mg->mg_class; 2699 old_ms_count = tvd->vdev_ms_count; 2700 old_class_space = metaslab_class_get_space(mc); 2701 2702 /* 2703 * Determine the size of the first leaf vdev associated with 2704 * our top-level device. 2705 */ 2706 vd = vdev_walk_tree(tvd, NULL, NULL); 2707 ASSERT3P(vd, !=, NULL); 2708 ASSERT(vd->vdev_ops->vdev_op_leaf); 2709 2710 psize = vd->vdev_psize; 2711 2712 /* 2713 * We only try to expand the vdev if it's healthy, less than 4x its 2714 * original size, and it has a valid psize. 2715 */ 2716 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2717 psize == 0 || psize >= 4 * zopt_vdev_size) { 2718 spa_config_exit(spa, SCL_STATE, spa); 2719 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2720 return; 2721 } 2722 ASSERT(psize > 0); 2723 newsize = psize + psize / 8; 2724 ASSERT3U(newsize, >, psize); 2725 2726 if (zopt_verbose >= 6) { 2727 (void) printf("Expanding LUN %s from %lu to %lu\n", 2728 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2729 } 2730 2731 /* 2732 * Growing the vdev is a two step process: 2733 * 1). expand the physical size (i.e. relabel) 2734 * 2). online the vdev to create the new metaslabs 2735 */ 2736 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2737 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2738 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2739 if (zopt_verbose >= 5) { 2740 (void) printf("Could not expand LUN because " 2741 "the vdev configuration changed.\n"); 2742 } 2743 spa_config_exit(spa, SCL_STATE, spa); 2744 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2745 return; 2746 } 2747 2748 spa_config_exit(spa, SCL_STATE, spa); 2749 2750 /* 2751 * Expanding the LUN will update the config asynchronously, 2752 * thus we must wait for the async thread to complete any 2753 * pending tasks before proceeding. 2754 */ 2755 for (;;) { 2756 boolean_t done; 2757 mutex_enter(&spa->spa_async_lock); 2758 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2759 mutex_exit(&spa->spa_async_lock); 2760 if (done) 2761 break; 2762 txg_wait_synced(spa_get_dsl(spa), 0); 2763 (void) poll(NULL, 0, 100); 2764 } 2765 2766 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2767 2768 tvd = spa->spa_root_vdev->vdev_child[top]; 2769 new_ms_count = tvd->vdev_ms_count; 2770 new_class_space = metaslab_class_get_space(mc); 2771 2772 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2773 if (zopt_verbose >= 5) { 2774 (void) printf("Could not verify LUN expansion due to " 2775 "intervening vdev offline or remove.\n"); 2776 } 2777 spa_config_exit(spa, SCL_STATE, spa); 2778 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2779 return; 2780 } 2781 2782 /* 2783 * Make sure we were able to grow the vdev. 2784 */ 2785 if (new_ms_count <= old_ms_count) 2786 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2787 old_ms_count, new_ms_count); 2788 2789 /* 2790 * Make sure we were able to grow the pool. 2791 */ 2792 if (new_class_space <= old_class_space) 2793 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2794 old_class_space, new_class_space); 2795 2796 if (zopt_verbose >= 5) { 2797 char oldnumbuf[6], newnumbuf[6]; 2798 2799 nicenum(old_class_space, oldnumbuf); 2800 nicenum(new_class_space, newnumbuf); 2801 (void) printf("%s grew from %s to %s\n", 2802 spa->spa_name, oldnumbuf, newnumbuf); 2803 } 2804 2805 spa_config_exit(spa, SCL_STATE, spa); 2806 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2807 } 2808 2809 /* 2810 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2811 */ 2812 /* ARGSUSED */ 2813 static void 2814 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2815 { 2816 /* 2817 * Create the objects common to all ztest datasets. 2818 */ 2819 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2820 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2821 } 2822 2823 /* ARGSUSED */ 2824 static int 2825 ztest_objset_destroy_cb(const char *name, void *arg) 2826 { 2827 objset_t *os; 2828 dmu_object_info_t doi; 2829 int error; 2830 2831 /* 2832 * Verify that the dataset contains a directory object. 2833 */ 2834 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2835 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2836 if (error != ENOENT) { 2837 /* We could have crashed in the middle of destroying it */ 2838 ASSERT3U(error, ==, 0); 2839 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2840 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2841 } 2842 dmu_objset_rele(os, FTAG); 2843 2844 /* 2845 * Destroy the dataset. 2846 */ 2847 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2848 return (0); 2849 } 2850 2851 static boolean_t 2852 ztest_snapshot_create(char *osname, uint64_t id) 2853 { 2854 char snapname[MAXNAMELEN]; 2855 int error; 2856 2857 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2858 (u_longlong_t)id); 2859 2860 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2861 NULL, B_FALSE); 2862 if (error == ENOSPC) { 2863 ztest_record_enospc(FTAG); 2864 return (B_FALSE); 2865 } 2866 if (error != 0 && error != EEXIST) 2867 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2868 return (B_TRUE); 2869 } 2870 2871 static boolean_t 2872 ztest_snapshot_destroy(char *osname, uint64_t id) 2873 { 2874 char snapname[MAXNAMELEN]; 2875 int error; 2876 2877 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2878 (u_longlong_t)id); 2879 2880 error = dmu_objset_destroy(snapname, B_FALSE); 2881 if (error != 0 && error != ENOENT) 2882 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2883 return (B_TRUE); 2884 } 2885 2886 /* ARGSUSED */ 2887 void 2888 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2889 { 2890 ztest_shared_t *zs = ztest_shared; 2891 ztest_ds_t zdtmp; 2892 int iters; 2893 int error; 2894 objset_t *os, *os2; 2895 char name[MAXNAMELEN]; 2896 zilog_t *zilog; 2897 2898 (void) rw_rdlock(&zs->zs_name_lock); 2899 2900 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2901 zs->zs_pool, (u_longlong_t)id); 2902 2903 /* 2904 * If this dataset exists from a previous run, process its replay log 2905 * half of the time. If we don't replay it, then dmu_objset_destroy() 2906 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2907 */ 2908 if (ztest_random(2) == 0 && 2909 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2910 ztest_zd_init(&zdtmp, os); 2911 zil_replay(os, &zdtmp, ztest_replay_vector); 2912 ztest_zd_fini(&zdtmp); 2913 dmu_objset_disown(os, FTAG); 2914 } 2915 2916 /* 2917 * There may be an old instance of the dataset we're about to 2918 * create lying around from a previous run. If so, destroy it 2919 * and all of its snapshots. 2920 */ 2921 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2922 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2923 2924 /* 2925 * Verify that the destroyed dataset is no longer in the namespace. 2926 */ 2927 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2928 2929 /* 2930 * Verify that we can create a new dataset. 2931 */ 2932 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 2933 ztest_objset_create_cb, NULL); 2934 if (error) { 2935 if (error == ENOSPC) { 2936 ztest_record_enospc(FTAG); 2937 (void) rw_unlock(&zs->zs_name_lock); 2938 return; 2939 } 2940 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2941 } 2942 2943 VERIFY3U(0, ==, 2944 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2945 2946 ztest_zd_init(&zdtmp, os); 2947 2948 /* 2949 * Open the intent log for it. 2950 */ 2951 zilog = zil_open(os, ztest_get_data); 2952 2953 /* 2954 * Put some objects in there, do a little I/O to them, 2955 * and randomly take a couple of snapshots along the way. 2956 */ 2957 iters = ztest_random(5); 2958 for (int i = 0; i < iters; i++) { 2959 ztest_dmu_object_alloc_free(&zdtmp, id); 2960 if (ztest_random(iters) == 0) 2961 (void) ztest_snapshot_create(name, i); 2962 } 2963 2964 /* 2965 * Verify that we cannot create an existing dataset. 2966 */ 2967 VERIFY3U(EEXIST, ==, 2968 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2969 2970 /* 2971 * Verify that we can hold an objset that is also owned. 2972 */ 2973 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2974 dmu_objset_rele(os2, FTAG); 2975 2976 /* 2977 * Verify that we cannot own an objset that is already owned. 2978 */ 2979 VERIFY3U(EBUSY, ==, 2980 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2981 2982 zil_close(zilog); 2983 dmu_objset_disown(os, FTAG); 2984 ztest_zd_fini(&zdtmp); 2985 2986 (void) rw_unlock(&zs->zs_name_lock); 2987 } 2988 2989 /* 2990 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 2991 */ 2992 void 2993 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 2994 { 2995 ztest_shared_t *zs = ztest_shared; 2996 2997 (void) rw_rdlock(&zs->zs_name_lock); 2998 (void) ztest_snapshot_destroy(zd->zd_name, id); 2999 (void) ztest_snapshot_create(zd->zd_name, id); 3000 (void) rw_unlock(&zs->zs_name_lock); 3001 } 3002 3003 /* 3004 * Cleanup non-standard snapshots and clones. 3005 */ 3006 void 3007 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3008 { 3009 char snap1name[MAXNAMELEN]; 3010 char clone1name[MAXNAMELEN]; 3011 char snap2name[MAXNAMELEN]; 3012 char clone2name[MAXNAMELEN]; 3013 char snap3name[MAXNAMELEN]; 3014 int error; 3015 3016 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3017 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3018 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3019 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3020 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3021 3022 error = dmu_objset_destroy(clone2name, B_FALSE); 3023 if (error && error != ENOENT) 3024 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3025 error = dmu_objset_destroy(snap3name, B_FALSE); 3026 if (error && error != ENOENT) 3027 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3028 error = dmu_objset_destroy(snap2name, B_FALSE); 3029 if (error && error != ENOENT) 3030 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3031 error = dmu_objset_destroy(clone1name, B_FALSE); 3032 if (error && error != ENOENT) 3033 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3034 error = dmu_objset_destroy(snap1name, B_FALSE); 3035 if (error && error != ENOENT) 3036 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3037 } 3038 3039 /* 3040 * Verify dsl_dataset_promote handles EBUSY 3041 */ 3042 void 3043 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3044 { 3045 ztest_shared_t *zs = ztest_shared; 3046 objset_t *clone; 3047 dsl_dataset_t *ds; 3048 char snap1name[MAXNAMELEN]; 3049 char clone1name[MAXNAMELEN]; 3050 char snap2name[MAXNAMELEN]; 3051 char clone2name[MAXNAMELEN]; 3052 char snap3name[MAXNAMELEN]; 3053 char *osname = zd->zd_name; 3054 int error; 3055 3056 (void) rw_rdlock(&zs->zs_name_lock); 3057 3058 ztest_dsl_dataset_cleanup(osname, id); 3059 3060 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3061 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3062 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3063 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3064 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3065 3066 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 3067 NULL, B_FALSE); 3068 if (error && error != EEXIST) { 3069 if (error == ENOSPC) { 3070 ztest_record_enospc(FTAG); 3071 goto out; 3072 } 3073 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3074 } 3075 3076 error = dmu_objset_hold(snap1name, FTAG, &clone); 3077 if (error) 3078 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3079 3080 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3081 dmu_objset_rele(clone, FTAG); 3082 if (error) { 3083 if (error == ENOSPC) { 3084 ztest_record_enospc(FTAG); 3085 goto out; 3086 } 3087 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3088 } 3089 3090 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 3091 NULL, B_FALSE); 3092 if (error && error != EEXIST) { 3093 if (error == ENOSPC) { 3094 ztest_record_enospc(FTAG); 3095 goto out; 3096 } 3097 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3098 } 3099 3100 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 3101 NULL, B_FALSE); 3102 if (error && error != EEXIST) { 3103 if (error == ENOSPC) { 3104 ztest_record_enospc(FTAG); 3105 goto out; 3106 } 3107 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3108 } 3109 3110 error = dmu_objset_hold(snap3name, FTAG, &clone); 3111 if (error) 3112 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3113 3114 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3115 dmu_objset_rele(clone, FTAG); 3116 if (error) { 3117 if (error == ENOSPC) { 3118 ztest_record_enospc(FTAG); 3119 goto out; 3120 } 3121 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3122 } 3123 3124 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3125 if (error) 3126 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3127 error = dsl_dataset_promote(clone2name, NULL); 3128 if (error != EBUSY) 3129 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3130 error); 3131 dsl_dataset_disown(ds, FTAG); 3132 3133 out: 3134 ztest_dsl_dataset_cleanup(osname, id); 3135 3136 (void) rw_unlock(&zs->zs_name_lock); 3137 } 3138 3139 /* 3140 * Verify that dmu_object_{alloc,free} work as expected. 3141 */ 3142 void 3143 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3144 { 3145 ztest_od_t od[4]; 3146 int batchsize = sizeof (od) / sizeof (od[0]); 3147 3148 for (int b = 0; b < batchsize; b++) 3149 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3150 3151 /* 3152 * Destroy the previous batch of objects, create a new batch, 3153 * and do some I/O on the new objects. 3154 */ 3155 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3156 return; 3157 3158 while (ztest_random(4 * batchsize) != 0) 3159 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3160 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3161 } 3162 3163 /* 3164 * Verify that dmu_{read,write} work as expected. 3165 */ 3166 void 3167 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3168 { 3169 objset_t *os = zd->zd_os; 3170 ztest_od_t od[2]; 3171 dmu_tx_t *tx; 3172 int i, freeit, error; 3173 uint64_t n, s, txg; 3174 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3175 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3176 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3177 uint64_t regions = 997; 3178 uint64_t stride = 123456789ULL; 3179 uint64_t width = 40; 3180 int free_percent = 5; 3181 3182 /* 3183 * This test uses two objects, packobj and bigobj, that are always 3184 * updated together (i.e. in the same tx) so that their contents are 3185 * in sync and can be compared. Their contents relate to each other 3186 * in a simple way: packobj is a dense array of 'bufwad' structures, 3187 * while bigobj is a sparse array of the same bufwads. Specifically, 3188 * for any index n, there are three bufwads that should be identical: 3189 * 3190 * packobj, at offset n * sizeof (bufwad_t) 3191 * bigobj, at the head of the nth chunk 3192 * bigobj, at the tail of the nth chunk 3193 * 3194 * The chunk size is arbitrary. It doesn't have to be a power of two, 3195 * and it doesn't have any relation to the object blocksize. 3196 * The only requirement is that it can hold at least two bufwads. 3197 * 3198 * Normally, we write the bufwad to each of these locations. 3199 * However, free_percent of the time we instead write zeroes to 3200 * packobj and perform a dmu_free_range() on bigobj. By comparing 3201 * bigobj to packobj, we can verify that the DMU is correctly 3202 * tracking which parts of an object are allocated and free, 3203 * and that the contents of the allocated blocks are correct. 3204 */ 3205 3206 /* 3207 * Read the directory info. If it's the first time, set things up. 3208 */ 3209 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3210 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3211 3212 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3213 return; 3214 3215 bigobj = od[0].od_object; 3216 packobj = od[1].od_object; 3217 chunksize = od[0].od_gen; 3218 ASSERT(chunksize == od[1].od_gen); 3219 3220 /* 3221 * Prefetch a random chunk of the big object. 3222 * Our aim here is to get some async reads in flight 3223 * for blocks that we may free below; the DMU should 3224 * handle this race correctly. 3225 */ 3226 n = ztest_random(regions) * stride + ztest_random(width); 3227 s = 1 + ztest_random(2 * width - 1); 3228 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3229 3230 /* 3231 * Pick a random index and compute the offsets into packobj and bigobj. 3232 */ 3233 n = ztest_random(regions) * stride + ztest_random(width); 3234 s = 1 + ztest_random(width - 1); 3235 3236 packoff = n * sizeof (bufwad_t); 3237 packsize = s * sizeof (bufwad_t); 3238 3239 bigoff = n * chunksize; 3240 bigsize = s * chunksize; 3241 3242 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3243 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3244 3245 /* 3246 * free_percent of the time, free a range of bigobj rather than 3247 * overwriting it. 3248 */ 3249 freeit = (ztest_random(100) < free_percent); 3250 3251 /* 3252 * Read the current contents of our objects. 3253 */ 3254 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3255 DMU_READ_PREFETCH); 3256 ASSERT3U(error, ==, 0); 3257 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3258 DMU_READ_PREFETCH); 3259 ASSERT3U(error, ==, 0); 3260 3261 /* 3262 * Get a tx for the mods to both packobj and bigobj. 3263 */ 3264 tx = dmu_tx_create(os); 3265 3266 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3267 3268 if (freeit) 3269 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3270 else 3271 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3272 3273 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3274 if (txg == 0) { 3275 umem_free(packbuf, packsize); 3276 umem_free(bigbuf, bigsize); 3277 return; 3278 } 3279 3280 dmu_object_set_checksum(os, bigobj, 3281 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3282 3283 dmu_object_set_compress(os, bigobj, 3284 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3285 3286 /* 3287 * For each index from n to n + s, verify that the existing bufwad 3288 * in packobj matches the bufwads at the head and tail of the 3289 * corresponding chunk in bigobj. Then update all three bufwads 3290 * with the new values we want to write out. 3291 */ 3292 for (i = 0; i < s; i++) { 3293 /* LINTED */ 3294 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3295 /* LINTED */ 3296 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3297 /* LINTED */ 3298 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3299 3300 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3301 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3302 3303 if (pack->bw_txg > txg) 3304 fatal(0, "future leak: got %llx, open txg is %llx", 3305 pack->bw_txg, txg); 3306 3307 if (pack->bw_data != 0 && pack->bw_index != n + i) 3308 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3309 pack->bw_index, n, i); 3310 3311 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3312 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3313 3314 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3315 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3316 3317 if (freeit) { 3318 bzero(pack, sizeof (bufwad_t)); 3319 } else { 3320 pack->bw_index = n + i; 3321 pack->bw_txg = txg; 3322 pack->bw_data = 1 + ztest_random(-2ULL); 3323 } 3324 *bigH = *pack; 3325 *bigT = *pack; 3326 } 3327 3328 /* 3329 * We've verified all the old bufwads, and made new ones. 3330 * Now write them out. 3331 */ 3332 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3333 3334 if (freeit) { 3335 if (zopt_verbose >= 7) { 3336 (void) printf("freeing offset %llx size %llx" 3337 " txg %llx\n", 3338 (u_longlong_t)bigoff, 3339 (u_longlong_t)bigsize, 3340 (u_longlong_t)txg); 3341 } 3342 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3343 } else { 3344 if (zopt_verbose >= 7) { 3345 (void) printf("writing offset %llx size %llx" 3346 " txg %llx\n", 3347 (u_longlong_t)bigoff, 3348 (u_longlong_t)bigsize, 3349 (u_longlong_t)txg); 3350 } 3351 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3352 } 3353 3354 dmu_tx_commit(tx); 3355 3356 /* 3357 * Sanity check the stuff we just wrote. 3358 */ 3359 { 3360 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3361 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3362 3363 VERIFY(0 == dmu_read(os, packobj, packoff, 3364 packsize, packcheck, DMU_READ_PREFETCH)); 3365 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3366 bigsize, bigcheck, DMU_READ_PREFETCH)); 3367 3368 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3369 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3370 3371 umem_free(packcheck, packsize); 3372 umem_free(bigcheck, bigsize); 3373 } 3374 3375 umem_free(packbuf, packsize); 3376 umem_free(bigbuf, bigsize); 3377 } 3378 3379 void 3380 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3381 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3382 { 3383 uint64_t i; 3384 bufwad_t *pack; 3385 bufwad_t *bigH; 3386 bufwad_t *bigT; 3387 3388 /* 3389 * For each index from n to n + s, verify that the existing bufwad 3390 * in packobj matches the bufwads at the head and tail of the 3391 * corresponding chunk in bigobj. Then update all three bufwads 3392 * with the new values we want to write out. 3393 */ 3394 for (i = 0; i < s; i++) { 3395 /* LINTED */ 3396 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3397 /* LINTED */ 3398 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3399 /* LINTED */ 3400 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3401 3402 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3403 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3404 3405 if (pack->bw_txg > txg) 3406 fatal(0, "future leak: got %llx, open txg is %llx", 3407 pack->bw_txg, txg); 3408 3409 if (pack->bw_data != 0 && pack->bw_index != n + i) 3410 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3411 pack->bw_index, n, i); 3412 3413 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3414 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3415 3416 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3417 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3418 3419 pack->bw_index = n + i; 3420 pack->bw_txg = txg; 3421 pack->bw_data = 1 + ztest_random(-2ULL); 3422 3423 *bigH = *pack; 3424 *bigT = *pack; 3425 } 3426 } 3427 3428 void 3429 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3430 { 3431 objset_t *os = zd->zd_os; 3432 ztest_od_t od[2]; 3433 dmu_tx_t *tx; 3434 uint64_t i; 3435 int error; 3436 uint64_t n, s, txg; 3437 bufwad_t *packbuf, *bigbuf; 3438 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3439 uint64_t blocksize = ztest_random_blocksize(); 3440 uint64_t chunksize = blocksize; 3441 uint64_t regions = 997; 3442 uint64_t stride = 123456789ULL; 3443 uint64_t width = 9; 3444 dmu_buf_t *bonus_db; 3445 arc_buf_t **bigbuf_arcbufs; 3446 dmu_object_info_t doi; 3447 3448 /* 3449 * This test uses two objects, packobj and bigobj, that are always 3450 * updated together (i.e. in the same tx) so that their contents are 3451 * in sync and can be compared. Their contents relate to each other 3452 * in a simple way: packobj is a dense array of 'bufwad' structures, 3453 * while bigobj is a sparse array of the same bufwads. Specifically, 3454 * for any index n, there are three bufwads that should be identical: 3455 * 3456 * packobj, at offset n * sizeof (bufwad_t) 3457 * bigobj, at the head of the nth chunk 3458 * bigobj, at the tail of the nth chunk 3459 * 3460 * The chunk size is set equal to bigobj block size so that 3461 * dmu_assign_arcbuf() can be tested for object updates. 3462 */ 3463 3464 /* 3465 * Read the directory info. If it's the first time, set things up. 3466 */ 3467 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3468 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3469 3470 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3471 return; 3472 3473 bigobj = od[0].od_object; 3474 packobj = od[1].od_object; 3475 blocksize = od[0].od_blocksize; 3476 chunksize = blocksize; 3477 ASSERT(chunksize == od[1].od_gen); 3478 3479 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3480 VERIFY(ISP2(doi.doi_data_block_size)); 3481 VERIFY(chunksize == doi.doi_data_block_size); 3482 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3483 3484 /* 3485 * Pick a random index and compute the offsets into packobj and bigobj. 3486 */ 3487 n = ztest_random(regions) * stride + ztest_random(width); 3488 s = 1 + ztest_random(width - 1); 3489 3490 packoff = n * sizeof (bufwad_t); 3491 packsize = s * sizeof (bufwad_t); 3492 3493 bigoff = n * chunksize; 3494 bigsize = s * chunksize; 3495 3496 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3497 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3498 3499 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3500 3501 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3502 3503 /* 3504 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3505 * Iteration 1 test zcopy to already referenced dbufs. 3506 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3507 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3508 * Iteration 4 test zcopy when dbuf is no longer dirty. 3509 * Iteration 5 test zcopy when it can't be done. 3510 * Iteration 6 one more zcopy write. 3511 */ 3512 for (i = 0; i < 7; i++) { 3513 uint64_t j; 3514 uint64_t off; 3515 3516 /* 3517 * In iteration 5 (i == 5) use arcbufs 3518 * that don't match bigobj blksz to test 3519 * dmu_assign_arcbuf() when it can't directly 3520 * assign an arcbuf to a dbuf. 3521 */ 3522 for (j = 0; j < s; j++) { 3523 if (i != 5) { 3524 bigbuf_arcbufs[j] = 3525 dmu_request_arcbuf(bonus_db, chunksize); 3526 } else { 3527 bigbuf_arcbufs[2 * j] = 3528 dmu_request_arcbuf(bonus_db, chunksize / 2); 3529 bigbuf_arcbufs[2 * j + 1] = 3530 dmu_request_arcbuf(bonus_db, chunksize / 2); 3531 } 3532 } 3533 3534 /* 3535 * Get a tx for the mods to both packobj and bigobj. 3536 */ 3537 tx = dmu_tx_create(os); 3538 3539 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3540 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3541 3542 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3543 if (txg == 0) { 3544 umem_free(packbuf, packsize); 3545 umem_free(bigbuf, bigsize); 3546 for (j = 0; j < s; j++) { 3547 if (i != 5) { 3548 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3549 } else { 3550 dmu_return_arcbuf( 3551 bigbuf_arcbufs[2 * j]); 3552 dmu_return_arcbuf( 3553 bigbuf_arcbufs[2 * j + 1]); 3554 } 3555 } 3556 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3557 dmu_buf_rele(bonus_db, FTAG); 3558 return; 3559 } 3560 3561 /* 3562 * 50% of the time don't read objects in the 1st iteration to 3563 * test dmu_assign_arcbuf() for the case when there're no 3564 * existing dbufs for the specified offsets. 3565 */ 3566 if (i != 0 || ztest_random(2) != 0) { 3567 error = dmu_read(os, packobj, packoff, 3568 packsize, packbuf, DMU_READ_PREFETCH); 3569 ASSERT3U(error, ==, 0); 3570 error = dmu_read(os, bigobj, bigoff, bigsize, 3571 bigbuf, DMU_READ_PREFETCH); 3572 ASSERT3U(error, ==, 0); 3573 } 3574 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3575 n, chunksize, txg); 3576 3577 /* 3578 * We've verified all the old bufwads, and made new ones. 3579 * Now write them out. 3580 */ 3581 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3582 if (zopt_verbose >= 7) { 3583 (void) printf("writing offset %llx size %llx" 3584 " txg %llx\n", 3585 (u_longlong_t)bigoff, 3586 (u_longlong_t)bigsize, 3587 (u_longlong_t)txg); 3588 } 3589 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3590 dmu_buf_t *dbt; 3591 if (i != 5) { 3592 bcopy((caddr_t)bigbuf + (off - bigoff), 3593 bigbuf_arcbufs[j]->b_data, chunksize); 3594 } else { 3595 bcopy((caddr_t)bigbuf + (off - bigoff), 3596 bigbuf_arcbufs[2 * j]->b_data, 3597 chunksize / 2); 3598 bcopy((caddr_t)bigbuf + (off - bigoff) + 3599 chunksize / 2, 3600 bigbuf_arcbufs[2 * j + 1]->b_data, 3601 chunksize / 2); 3602 } 3603 3604 if (i == 1) { 3605 VERIFY(dmu_buf_hold(os, bigobj, off, 3606 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3607 } 3608 if (i != 5) { 3609 dmu_assign_arcbuf(bonus_db, off, 3610 bigbuf_arcbufs[j], tx); 3611 } else { 3612 dmu_assign_arcbuf(bonus_db, off, 3613 bigbuf_arcbufs[2 * j], tx); 3614 dmu_assign_arcbuf(bonus_db, 3615 off + chunksize / 2, 3616 bigbuf_arcbufs[2 * j + 1], tx); 3617 } 3618 if (i == 1) { 3619 dmu_buf_rele(dbt, FTAG); 3620 } 3621 } 3622 dmu_tx_commit(tx); 3623 3624 /* 3625 * Sanity check the stuff we just wrote. 3626 */ 3627 { 3628 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3629 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3630 3631 VERIFY(0 == dmu_read(os, packobj, packoff, 3632 packsize, packcheck, DMU_READ_PREFETCH)); 3633 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3634 bigsize, bigcheck, DMU_READ_PREFETCH)); 3635 3636 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3637 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3638 3639 umem_free(packcheck, packsize); 3640 umem_free(bigcheck, bigsize); 3641 } 3642 if (i == 2) { 3643 txg_wait_open(dmu_objset_pool(os), 0); 3644 } else if (i == 3) { 3645 txg_wait_synced(dmu_objset_pool(os), 0); 3646 } 3647 } 3648 3649 dmu_buf_rele(bonus_db, FTAG); 3650 umem_free(packbuf, packsize); 3651 umem_free(bigbuf, bigsize); 3652 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3653 } 3654 3655 /* ARGSUSED */ 3656 void 3657 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3658 { 3659 ztest_od_t od[1]; 3660 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3661 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3662 3663 /* 3664 * Have multiple threads write to large offsets in an object 3665 * to verify that parallel writes to an object -- even to the 3666 * same blocks within the object -- doesn't cause any trouble. 3667 */ 3668 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3669 3670 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3671 return; 3672 3673 while (ztest_random(10) != 0) 3674 ztest_io(zd, od[0].od_object, offset); 3675 } 3676 3677 void 3678 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3679 { 3680 ztest_od_t od[1]; 3681 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3682 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3683 uint64_t count = ztest_random(20) + 1; 3684 uint64_t blocksize = ztest_random_blocksize(); 3685 void *data; 3686 3687 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3688 3689 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3690 return; 3691 3692 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3693 return; 3694 3695 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3696 3697 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3698 3699 while (ztest_random(count) != 0) { 3700 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3701 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3702 data) != 0) 3703 break; 3704 while (ztest_random(4) != 0) 3705 ztest_io(zd, od[0].od_object, randoff); 3706 } 3707 3708 umem_free(data, blocksize); 3709 } 3710 3711 /* 3712 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3713 */ 3714 #define ZTEST_ZAP_MIN_INTS 1 3715 #define ZTEST_ZAP_MAX_INTS 4 3716 #define ZTEST_ZAP_MAX_PROPS 1000 3717 3718 void 3719 ztest_zap(ztest_ds_t *zd, uint64_t id) 3720 { 3721 objset_t *os = zd->zd_os; 3722 ztest_od_t od[1]; 3723 uint64_t object; 3724 uint64_t txg, last_txg; 3725 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3726 uint64_t zl_ints, zl_intsize, prop; 3727 int i, ints; 3728 dmu_tx_t *tx; 3729 char propname[100], txgname[100]; 3730 int error; 3731 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3732 3733 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3734 3735 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3736 return; 3737 3738 object = od[0].od_object; 3739 3740 /* 3741 * Generate a known hash collision, and verify that 3742 * we can lookup and remove both entries. 3743 */ 3744 tx = dmu_tx_create(os); 3745 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3746 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3747 if (txg == 0) 3748 return; 3749 for (i = 0; i < 2; i++) { 3750 value[i] = i; 3751 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3752 1, &value[i], tx)); 3753 } 3754 for (i = 0; i < 2; i++) { 3755 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3756 sizeof (uint64_t), 1, &value[i], tx)); 3757 VERIFY3U(0, ==, 3758 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3759 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3760 ASSERT3U(zl_ints, ==, 1); 3761 } 3762 for (i = 0; i < 2; i++) { 3763 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3764 } 3765 dmu_tx_commit(tx); 3766 3767 /* 3768 * Generate a buch of random entries. 3769 */ 3770 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3771 3772 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3773 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3774 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3775 bzero(value, sizeof (value)); 3776 last_txg = 0; 3777 3778 /* 3779 * If these zap entries already exist, validate their contents. 3780 */ 3781 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3782 if (error == 0) { 3783 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3784 ASSERT3U(zl_ints, ==, 1); 3785 3786 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3787 zl_ints, &last_txg) == 0); 3788 3789 VERIFY(zap_length(os, object, propname, &zl_intsize, 3790 &zl_ints) == 0); 3791 3792 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3793 ASSERT3U(zl_ints, ==, ints); 3794 3795 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3796 zl_ints, value) == 0); 3797 3798 for (i = 0; i < ints; i++) { 3799 ASSERT3U(value[i], ==, last_txg + object + i); 3800 } 3801 } else { 3802 ASSERT3U(error, ==, ENOENT); 3803 } 3804 3805 /* 3806 * Atomically update two entries in our zap object. 3807 * The first is named txg_%llu, and contains the txg 3808 * in which the property was last updated. The second 3809 * is named prop_%llu, and the nth element of its value 3810 * should be txg + object + n. 3811 */ 3812 tx = dmu_tx_create(os); 3813 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3814 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3815 if (txg == 0) 3816 return; 3817 3818 if (last_txg > txg) 3819 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3820 3821 for (i = 0; i < ints; i++) 3822 value[i] = txg + object + i; 3823 3824 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3825 1, &txg, tx)); 3826 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3827 ints, value, tx)); 3828 3829 dmu_tx_commit(tx); 3830 3831 /* 3832 * Remove a random pair of entries. 3833 */ 3834 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3835 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3836 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3837 3838 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3839 3840 if (error == ENOENT) 3841 return; 3842 3843 ASSERT3U(error, ==, 0); 3844 3845 tx = dmu_tx_create(os); 3846 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3847 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3848 if (txg == 0) 3849 return; 3850 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3851 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3852 dmu_tx_commit(tx); 3853 } 3854 3855 /* 3856 * Testcase to test the upgrading of a microzap to fatzap. 3857 */ 3858 void 3859 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3860 { 3861 objset_t *os = zd->zd_os; 3862 ztest_od_t od[1]; 3863 uint64_t object, txg; 3864 3865 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3866 3867 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3868 return; 3869 3870 object = od[0].od_object; 3871 3872 /* 3873 * Add entries to this ZAP and make sure it spills over 3874 * and gets upgraded to a fatzap. Also, since we are adding 3875 * 2050 entries we should see ptrtbl growth and leaf-block split. 3876 */ 3877 for (int i = 0; i < 2050; i++) { 3878 char name[MAXNAMELEN]; 3879 uint64_t value = i; 3880 dmu_tx_t *tx; 3881 int error; 3882 3883 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3884 id, value); 3885 3886 tx = dmu_tx_create(os); 3887 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3888 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3889 if (txg == 0) 3890 return; 3891 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3892 &value, tx); 3893 ASSERT(error == 0 || error == EEXIST); 3894 dmu_tx_commit(tx); 3895 } 3896 } 3897 3898 /* ARGSUSED */ 3899 void 3900 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3901 { 3902 objset_t *os = zd->zd_os; 3903 ztest_od_t od[1]; 3904 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3905 dmu_tx_t *tx; 3906 int i, namelen, error; 3907 int micro = ztest_random(2); 3908 char name[20], string_value[20]; 3909 void *data; 3910 3911 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3912 3913 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3914 return; 3915 3916 object = od[0].od_object; 3917 3918 /* 3919 * Generate a random name of the form 'xxx.....' where each 3920 * x is a random printable character and the dots are dots. 3921 * There are 94 such characters, and the name length goes from 3922 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3923 */ 3924 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3925 3926 for (i = 0; i < 3; i++) 3927 name[i] = '!' + ztest_random('~' - '!' + 1); 3928 for (; i < namelen - 1; i++) 3929 name[i] = '.'; 3930 name[i] = '\0'; 3931 3932 if ((namelen & 1) || micro) { 3933 wsize = sizeof (txg); 3934 wc = 1; 3935 data = &txg; 3936 } else { 3937 wsize = 1; 3938 wc = namelen; 3939 data = string_value; 3940 } 3941 3942 count = -1ULL; 3943 VERIFY(zap_count(os, object, &count) == 0); 3944 ASSERT(count != -1ULL); 3945 3946 /* 3947 * Select an operation: length, lookup, add, update, remove. 3948 */ 3949 i = ztest_random(5); 3950 3951 if (i >= 2) { 3952 tx = dmu_tx_create(os); 3953 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3954 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3955 if (txg == 0) 3956 return; 3957 bcopy(name, string_value, namelen); 3958 } else { 3959 tx = NULL; 3960 txg = 0; 3961 bzero(string_value, namelen); 3962 } 3963 3964 switch (i) { 3965 3966 case 0: 3967 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3968 if (error == 0) { 3969 ASSERT3U(wsize, ==, zl_wsize); 3970 ASSERT3U(wc, ==, zl_wc); 3971 } else { 3972 ASSERT3U(error, ==, ENOENT); 3973 } 3974 break; 3975 3976 case 1: 3977 error = zap_lookup(os, object, name, wsize, wc, data); 3978 if (error == 0) { 3979 if (data == string_value && 3980 bcmp(name, data, namelen) != 0) 3981 fatal(0, "name '%s' != val '%s' len %d", 3982 name, data, namelen); 3983 } else { 3984 ASSERT3U(error, ==, ENOENT); 3985 } 3986 break; 3987 3988 case 2: 3989 error = zap_add(os, object, name, wsize, wc, data, tx); 3990 ASSERT(error == 0 || error == EEXIST); 3991 break; 3992 3993 case 3: 3994 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3995 break; 3996 3997 case 4: 3998 error = zap_remove(os, object, name, tx); 3999 ASSERT(error == 0 || error == ENOENT); 4000 break; 4001 } 4002 4003 if (tx != NULL) 4004 dmu_tx_commit(tx); 4005 } 4006 4007 /* 4008 * Commit callback data. 4009 */ 4010 typedef struct ztest_cb_data { 4011 list_node_t zcd_node; 4012 uint64_t zcd_txg; 4013 int zcd_expected_err; 4014 boolean_t zcd_added; 4015 boolean_t zcd_called; 4016 spa_t *zcd_spa; 4017 } ztest_cb_data_t; 4018 4019 /* This is the actual commit callback function */ 4020 static void 4021 ztest_commit_callback(void *arg, int error) 4022 { 4023 ztest_cb_data_t *data = arg; 4024 uint64_t synced_txg; 4025 4026 VERIFY(data != NULL); 4027 VERIFY3S(data->zcd_expected_err, ==, error); 4028 VERIFY(!data->zcd_called); 4029 4030 synced_txg = spa_last_synced_txg(data->zcd_spa); 4031 if (data->zcd_txg > synced_txg) 4032 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4033 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4034 synced_txg); 4035 4036 data->zcd_called = B_TRUE; 4037 4038 if (error == ECANCELED) { 4039 ASSERT3U(data->zcd_txg, ==, 0); 4040 ASSERT(!data->zcd_added); 4041 4042 /* 4043 * The private callback data should be destroyed here, but 4044 * since we are going to check the zcd_called field after 4045 * dmu_tx_abort(), we will destroy it there. 4046 */ 4047 return; 4048 } 4049 4050 /* Was this callback added to the global callback list? */ 4051 if (!data->zcd_added) 4052 goto out; 4053 4054 ASSERT3U(data->zcd_txg, !=, 0); 4055 4056 /* Remove our callback from the list */ 4057 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4058 list_remove(&zcl.zcl_callbacks, data); 4059 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4060 4061 out: 4062 umem_free(data, sizeof (ztest_cb_data_t)); 4063 } 4064 4065 /* Allocate and initialize callback data structure */ 4066 static ztest_cb_data_t * 4067 ztest_create_cb_data(objset_t *os, uint64_t txg) 4068 { 4069 ztest_cb_data_t *cb_data; 4070 4071 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4072 4073 cb_data->zcd_txg = txg; 4074 cb_data->zcd_spa = dmu_objset_spa(os); 4075 4076 return (cb_data); 4077 } 4078 4079 /* 4080 * If a number of txgs equal to this threshold have been created after a commit 4081 * callback has been registered but not called, then we assume there is an 4082 * implementation bug. 4083 */ 4084 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4085 4086 /* 4087 * Commit callback test. 4088 */ 4089 void 4090 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4091 { 4092 objset_t *os = zd->zd_os; 4093 ztest_od_t od[1]; 4094 dmu_tx_t *tx; 4095 ztest_cb_data_t *cb_data[3], *tmp_cb; 4096 uint64_t old_txg, txg; 4097 int i, error; 4098 4099 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4100 4101 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4102 return; 4103 4104 tx = dmu_tx_create(os); 4105 4106 cb_data[0] = ztest_create_cb_data(os, 0); 4107 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4108 4109 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4110 4111 /* Every once in a while, abort the transaction on purpose */ 4112 if (ztest_random(100) == 0) 4113 error = -1; 4114 4115 if (!error) 4116 error = dmu_tx_assign(tx, TXG_NOWAIT); 4117 4118 txg = error ? 0 : dmu_tx_get_txg(tx); 4119 4120 cb_data[0]->zcd_txg = txg; 4121 cb_data[1] = ztest_create_cb_data(os, txg); 4122 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4123 4124 if (error) { 4125 /* 4126 * It's not a strict requirement to call the registered 4127 * callbacks from inside dmu_tx_abort(), but that's what 4128 * it's supposed to happen in the current implementation 4129 * so we will check for that. 4130 */ 4131 for (i = 0; i < 2; i++) { 4132 cb_data[i]->zcd_expected_err = ECANCELED; 4133 VERIFY(!cb_data[i]->zcd_called); 4134 } 4135 4136 dmu_tx_abort(tx); 4137 4138 for (i = 0; i < 2; i++) { 4139 VERIFY(cb_data[i]->zcd_called); 4140 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4141 } 4142 4143 return; 4144 } 4145 4146 cb_data[2] = ztest_create_cb_data(os, txg); 4147 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4148 4149 /* 4150 * Read existing data to make sure there isn't a future leak. 4151 */ 4152 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4153 &old_txg, DMU_READ_PREFETCH)); 4154 4155 if (old_txg > txg) 4156 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4157 old_txg, txg); 4158 4159 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4160 4161 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4162 4163 /* 4164 * Since commit callbacks don't have any ordering requirement and since 4165 * it is theoretically possible for a commit callback to be called 4166 * after an arbitrary amount of time has elapsed since its txg has been 4167 * synced, it is difficult to reliably determine whether a commit 4168 * callback hasn't been called due to high load or due to a flawed 4169 * implementation. 4170 * 4171 * In practice, we will assume that if after a certain number of txgs a 4172 * commit callback hasn't been called, then most likely there's an 4173 * implementation bug.. 4174 */ 4175 tmp_cb = list_head(&zcl.zcl_callbacks); 4176 if (tmp_cb != NULL && 4177 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4178 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4179 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4180 } 4181 4182 /* 4183 * Let's find the place to insert our callbacks. 4184 * 4185 * Even though the list is ordered by txg, it is possible for the 4186 * insertion point to not be the end because our txg may already be 4187 * quiescing at this point and other callbacks in the open txg 4188 * (from other objsets) may have sneaked in. 4189 */ 4190 tmp_cb = list_tail(&zcl.zcl_callbacks); 4191 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4192 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4193 4194 /* Add the 3 callbacks to the list */ 4195 for (i = 0; i < 3; i++) { 4196 if (tmp_cb == NULL) 4197 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4198 else 4199 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4200 cb_data[i]); 4201 4202 cb_data[i]->zcd_added = B_TRUE; 4203 VERIFY(!cb_data[i]->zcd_called); 4204 4205 tmp_cb = cb_data[i]; 4206 } 4207 4208 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4209 4210 dmu_tx_commit(tx); 4211 } 4212 4213 /* ARGSUSED */ 4214 void 4215 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4216 { 4217 zfs_prop_t proplist[] = { 4218 ZFS_PROP_CHECKSUM, 4219 ZFS_PROP_COMPRESSION, 4220 ZFS_PROP_COPIES, 4221 ZFS_PROP_DEDUP 4222 }; 4223 ztest_shared_t *zs = ztest_shared; 4224 4225 (void) rw_rdlock(&zs->zs_name_lock); 4226 4227 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4228 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4229 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4230 4231 (void) rw_unlock(&zs->zs_name_lock); 4232 } 4233 4234 /* ARGSUSED */ 4235 void 4236 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4237 { 4238 ztest_shared_t *zs = ztest_shared; 4239 nvlist_t *props = NULL; 4240 4241 (void) rw_rdlock(&zs->zs_name_lock); 4242 4243 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4244 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4245 4246 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4247 4248 if (zopt_verbose >= 6) 4249 dump_nvlist(props, 4); 4250 4251 nvlist_free(props); 4252 4253 (void) rw_unlock(&zs->zs_name_lock); 4254 } 4255 4256 /* 4257 * Test snapshot hold/release and deferred destroy. 4258 */ 4259 void 4260 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4261 { 4262 int error; 4263 objset_t *os = zd->zd_os; 4264 objset_t *origin; 4265 char snapname[100]; 4266 char fullname[100]; 4267 char clonename[100]; 4268 char tag[100]; 4269 char osname[MAXNAMELEN]; 4270 4271 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4272 4273 dmu_objset_name(os, osname); 4274 4275 (void) snprintf(snapname, 100, "sh1_%llu", id); 4276 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4277 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4278 (void) snprintf(tag, 100, "%tag_%llu", id); 4279 4280 /* 4281 * Clean up from any previous run. 4282 */ 4283 (void) dmu_objset_destroy(clonename, B_FALSE); 4284 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4285 (void) dmu_objset_destroy(fullname, B_FALSE); 4286 4287 /* 4288 * Create snapshot, clone it, mark snap for deferred destroy, 4289 * destroy clone, verify snap was also destroyed. 4290 */ 4291 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4292 if (error) { 4293 if (error == ENOSPC) { 4294 ztest_record_enospc("dmu_objset_snapshot"); 4295 goto out; 4296 } 4297 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4298 } 4299 4300 error = dmu_objset_hold(fullname, FTAG, &origin); 4301 if (error) 4302 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4303 4304 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4305 dmu_objset_rele(origin, FTAG); 4306 if (error) { 4307 if (error == ENOSPC) { 4308 ztest_record_enospc("dmu_objset_clone"); 4309 goto out; 4310 } 4311 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4312 } 4313 4314 error = dmu_objset_destroy(fullname, B_TRUE); 4315 if (error) { 4316 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4317 fullname, error); 4318 } 4319 4320 error = dmu_objset_destroy(clonename, B_FALSE); 4321 if (error) 4322 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4323 4324 error = dmu_objset_hold(fullname, FTAG, &origin); 4325 if (error != ENOENT) 4326 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4327 4328 /* 4329 * Create snapshot, add temporary hold, verify that we can't 4330 * destroy a held snapshot, mark for deferred destroy, 4331 * release hold, verify snapshot was destroyed. 4332 */ 4333 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4334 if (error) { 4335 if (error == ENOSPC) { 4336 ztest_record_enospc("dmu_objset_snapshot"); 4337 goto out; 4338 } 4339 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4340 } 4341 4342 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4343 if (error) 4344 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4345 4346 error = dmu_objset_destroy(fullname, B_FALSE); 4347 if (error != EBUSY) { 4348 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4349 fullname, error); 4350 } 4351 4352 error = dmu_objset_destroy(fullname, B_TRUE); 4353 if (error) { 4354 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4355 fullname, error); 4356 } 4357 4358 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4359 if (error) 4360 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4361 4362 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4363 4364 out: 4365 (void) rw_unlock(&ztest_shared->zs_name_lock); 4366 } 4367 4368 /* 4369 * Inject random faults into the on-disk data. 4370 */ 4371 /* ARGSUSED */ 4372 void 4373 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4374 { 4375 ztest_shared_t *zs = ztest_shared; 4376 spa_t *spa = zs->zs_spa; 4377 int fd; 4378 uint64_t offset; 4379 uint64_t leaves; 4380 uint64_t bad = 0x1990c0ffeedecade; 4381 uint64_t top, leaf; 4382 char path0[MAXPATHLEN]; 4383 char pathrand[MAXPATHLEN]; 4384 size_t fsize; 4385 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4386 int iters = 1000; 4387 int maxfaults; 4388 int mirror_save; 4389 vdev_t *vd0 = NULL; 4390 uint64_t guid0 = 0; 4391 boolean_t islog = B_FALSE; 4392 4393 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4394 maxfaults = MAXFAULTS(); 4395 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 4396 mirror_save = zs->zs_mirrors; 4397 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4398 4399 ASSERT(leaves >= 1); 4400 4401 /* 4402 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4403 */ 4404 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4405 4406 if (ztest_random(2) == 0) { 4407 /* 4408 * Inject errors on a normal data device or slog device. 4409 */ 4410 top = ztest_random_vdev_top(spa, B_TRUE); 4411 leaf = ztest_random(leaves) + zs->zs_splits; 4412 4413 /* 4414 * Generate paths to the first leaf in this top-level vdev, 4415 * and to the random leaf we selected. We'll induce transient 4416 * write failures and random online/offline activity on leaf 0, 4417 * and we'll write random garbage to the randomly chosen leaf. 4418 */ 4419 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4420 zopt_dir, zopt_pool, top * leaves + zs->zs_splits); 4421 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4422 zopt_dir, zopt_pool, top * leaves + leaf); 4423 4424 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4425 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4426 islog = B_TRUE; 4427 4428 if (vd0 != NULL && maxfaults != 1) { 4429 /* 4430 * Make vd0 explicitly claim to be unreadable, 4431 * or unwriteable, or reach behind its back 4432 * and close the underlying fd. We can do this if 4433 * maxfaults == 0 because we'll fail and reexecute, 4434 * and we can do it if maxfaults >= 2 because we'll 4435 * have enough redundancy. If maxfaults == 1, the 4436 * combination of this with injection of random data 4437 * corruption below exceeds the pool's fault tolerance. 4438 */ 4439 vdev_file_t *vf = vd0->vdev_tsd; 4440 4441 if (vf != NULL && ztest_random(3) == 0) { 4442 (void) close(vf->vf_vnode->v_fd); 4443 vf->vf_vnode->v_fd = -1; 4444 } else if (ztest_random(2) == 0) { 4445 vd0->vdev_cant_read = B_TRUE; 4446 } else { 4447 vd0->vdev_cant_write = B_TRUE; 4448 } 4449 guid0 = vd0->vdev_guid; 4450 } 4451 } else { 4452 /* 4453 * Inject errors on an l2cache device. 4454 */ 4455 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4456 4457 if (sav->sav_count == 0) { 4458 spa_config_exit(spa, SCL_STATE, FTAG); 4459 return; 4460 } 4461 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4462 guid0 = vd0->vdev_guid; 4463 (void) strcpy(path0, vd0->vdev_path); 4464 (void) strcpy(pathrand, vd0->vdev_path); 4465 4466 leaf = 0; 4467 leaves = 1; 4468 maxfaults = INT_MAX; /* no limit on cache devices */ 4469 } 4470 4471 spa_config_exit(spa, SCL_STATE, FTAG); 4472 4473 /* 4474 * If we can tolerate two or more faults, or we're dealing 4475 * with a slog, randomly online/offline vd0. 4476 */ 4477 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4478 if (ztest_random(10) < 6) { 4479 int flags = (ztest_random(2) == 0 ? 4480 ZFS_OFFLINE_TEMPORARY : 0); 4481 4482 /* 4483 * We have to grab the zs_name_lock as writer to 4484 * prevent a race between offlining a slog and 4485 * destroying a dataset. Offlining the slog will 4486 * grab a reference on the dataset which may cause 4487 * dmu_objset_destroy() to fail with EBUSY thus 4488 * leaving the dataset in an inconsistent state. 4489 */ 4490 if (islog) 4491 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4492 4493 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4494 4495 if (islog) 4496 (void) rw_unlock(&ztest_shared->zs_name_lock); 4497 } else { 4498 (void) vdev_online(spa, guid0, 0, NULL); 4499 } 4500 } 4501 4502 if (maxfaults == 0) 4503 return; 4504 4505 /* 4506 * We have at least single-fault tolerance, so inject data corruption. 4507 */ 4508 fd = open(pathrand, O_RDWR); 4509 4510 if (fd == -1) /* we hit a gap in the device namespace */ 4511 return; 4512 4513 fsize = lseek(fd, 0, SEEK_END); 4514 4515 while (--iters != 0) { 4516 offset = ztest_random(fsize / (leaves << bshift)) * 4517 (leaves << bshift) + (leaf << bshift) + 4518 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4519 4520 if (offset >= fsize) 4521 continue; 4522 4523 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4524 if (mirror_save != zs->zs_mirrors) { 4525 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4526 (void) close(fd); 4527 return; 4528 } 4529 4530 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4531 fatal(1, "can't inject bad word at 0x%llx in %s", 4532 offset, pathrand); 4533 4534 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4535 4536 if (zopt_verbose >= 7) 4537 (void) printf("injected bad word into %s," 4538 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4539 } 4540 4541 (void) close(fd); 4542 } 4543 4544 /* 4545 * Verify that DDT repair works as expected. 4546 */ 4547 void 4548 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4549 { 4550 ztest_shared_t *zs = ztest_shared; 4551 spa_t *spa = zs->zs_spa; 4552 objset_t *os = zd->zd_os; 4553 ztest_od_t od[1]; 4554 uint64_t object, blocksize, txg, pattern, psize; 4555 enum zio_checksum checksum = spa_dedup_checksum(spa); 4556 dmu_buf_t *db; 4557 dmu_tx_t *tx; 4558 void *buf; 4559 blkptr_t blk; 4560 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4561 4562 blocksize = ztest_random_blocksize(); 4563 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4564 4565 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4566 4567 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4568 return; 4569 4570 /* 4571 * Take the name lock as writer to prevent anyone else from changing 4572 * the pool and dataset properies we need to maintain during this test. 4573 */ 4574 (void) rw_wrlock(&zs->zs_name_lock); 4575 4576 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4577 B_FALSE) != 0 || 4578 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4579 B_FALSE) != 0) { 4580 (void) rw_unlock(&zs->zs_name_lock); 4581 return; 4582 } 4583 4584 object = od[0].od_object; 4585 blocksize = od[0].od_blocksize; 4586 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4587 4588 ASSERT(object != 0); 4589 4590 tx = dmu_tx_create(os); 4591 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4592 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4593 if (txg == 0) { 4594 (void) rw_unlock(&zs->zs_name_lock); 4595 return; 4596 } 4597 4598 /* 4599 * Write all the copies of our block. 4600 */ 4601 for (int i = 0; i < copies; i++) { 4602 uint64_t offset = i * blocksize; 4603 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, 4604 DMU_READ_NO_PREFETCH) == 0); 4605 ASSERT(db->db_offset == offset); 4606 ASSERT(db->db_size == blocksize); 4607 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4608 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4609 dmu_buf_will_fill(db, tx); 4610 ztest_pattern_set(db->db_data, db->db_size, pattern); 4611 dmu_buf_rele(db, FTAG); 4612 } 4613 4614 dmu_tx_commit(tx); 4615 txg_wait_synced(spa_get_dsl(spa), txg); 4616 4617 /* 4618 * Find out what block we got. 4619 */ 4620 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, 4621 DMU_READ_NO_PREFETCH) == 0); 4622 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4623 dmu_buf_rele(db, FTAG); 4624 4625 /* 4626 * Damage the block. Dedup-ditto will save us when we read it later. 4627 */ 4628 psize = BP_GET_PSIZE(&blk); 4629 buf = zio_buf_alloc(psize); 4630 ztest_pattern_set(buf, psize, ~pattern); 4631 4632 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4633 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4634 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4635 4636 zio_buf_free(buf, psize); 4637 4638 (void) rw_unlock(&zs->zs_name_lock); 4639 } 4640 4641 /* 4642 * Scrub the pool. 4643 */ 4644 /* ARGSUSED */ 4645 void 4646 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4647 { 4648 ztest_shared_t *zs = ztest_shared; 4649 spa_t *spa = zs->zs_spa; 4650 4651 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4652 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4653 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4654 } 4655 4656 /* 4657 * Rename the pool to a different name and then rename it back. 4658 */ 4659 /* ARGSUSED */ 4660 void 4661 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4662 { 4663 ztest_shared_t *zs = ztest_shared; 4664 char *oldname, *newname; 4665 spa_t *spa; 4666 4667 (void) rw_wrlock(&zs->zs_name_lock); 4668 4669 oldname = zs->zs_pool; 4670 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4671 (void) strcpy(newname, oldname); 4672 (void) strcat(newname, "_tmp"); 4673 4674 /* 4675 * Do the rename 4676 */ 4677 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4678 4679 /* 4680 * Try to open it under the old name, which shouldn't exist 4681 */ 4682 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4683 4684 /* 4685 * Open it under the new name and make sure it's still the same spa_t. 4686 */ 4687 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4688 4689 ASSERT(spa == zs->zs_spa); 4690 spa_close(spa, FTAG); 4691 4692 /* 4693 * Rename it back to the original 4694 */ 4695 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4696 4697 /* 4698 * Make sure it can still be opened 4699 */ 4700 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4701 4702 ASSERT(spa == zs->zs_spa); 4703 spa_close(spa, FTAG); 4704 4705 umem_free(newname, strlen(newname) + 1); 4706 4707 (void) rw_unlock(&zs->zs_name_lock); 4708 } 4709 4710 /* 4711 * Verify pool integrity by running zdb. 4712 */ 4713 static void 4714 ztest_run_zdb(char *pool) 4715 { 4716 int status; 4717 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4718 char zbuf[1024]; 4719 char *bin; 4720 char *ztest; 4721 char *isa; 4722 int isalen; 4723 FILE *fp; 4724 4725 (void) realpath(getexecname(), zdb); 4726 4727 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4728 bin = strstr(zdb, "/usr/bin/"); 4729 ztest = strstr(bin, "/ztest"); 4730 isa = bin + 8; 4731 isalen = ztest - isa; 4732 isa = strdup(isa); 4733 /* LINTED */ 4734 (void) sprintf(bin, 4735 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 4736 isalen, 4737 isa, 4738 zopt_verbose >= 3 ? "s" : "", 4739 zopt_verbose >= 4 ? "v" : "", 4740 spa_config_path, 4741 pool); 4742 free(isa); 4743 4744 if (zopt_verbose >= 5) 4745 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4746 4747 fp = popen(zdb, "r"); 4748 4749 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4750 if (zopt_verbose >= 3) 4751 (void) printf("%s", zbuf); 4752 4753 status = pclose(fp); 4754 4755 if (status == 0) 4756 return; 4757 4758 ztest_dump_core = 0; 4759 if (WIFEXITED(status)) 4760 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4761 else 4762 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4763 } 4764 4765 static void 4766 ztest_walk_pool_directory(char *header) 4767 { 4768 spa_t *spa = NULL; 4769 4770 if (zopt_verbose >= 6) 4771 (void) printf("%s\n", header); 4772 4773 mutex_enter(&spa_namespace_lock); 4774 while ((spa = spa_next(spa)) != NULL) 4775 if (zopt_verbose >= 6) 4776 (void) printf("\t%s\n", spa_name(spa)); 4777 mutex_exit(&spa_namespace_lock); 4778 } 4779 4780 static void 4781 ztest_spa_import_export(char *oldname, char *newname) 4782 { 4783 nvlist_t *config, *newconfig; 4784 uint64_t pool_guid; 4785 spa_t *spa; 4786 4787 if (zopt_verbose >= 4) { 4788 (void) printf("import/export: old = %s, new = %s\n", 4789 oldname, newname); 4790 } 4791 4792 /* 4793 * Clean up from previous runs. 4794 */ 4795 (void) spa_destroy(newname); 4796 4797 /* 4798 * Get the pool's configuration and guid. 4799 */ 4800 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4801 4802 /* 4803 * Kick off a scrub to tickle scrub/export races. 4804 */ 4805 if (ztest_random(2) == 0) 4806 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4807 4808 pool_guid = spa_guid(spa); 4809 spa_close(spa, FTAG); 4810 4811 ztest_walk_pool_directory("pools before export"); 4812 4813 /* 4814 * Export it. 4815 */ 4816 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4817 4818 ztest_walk_pool_directory("pools after export"); 4819 4820 /* 4821 * Try to import it. 4822 */ 4823 newconfig = spa_tryimport(config); 4824 ASSERT(newconfig != NULL); 4825 nvlist_free(newconfig); 4826 4827 /* 4828 * Import it under the new name. 4829 */ 4830 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4831 4832 ztest_walk_pool_directory("pools after import"); 4833 4834 /* 4835 * Try to import it again -- should fail with EEXIST. 4836 */ 4837 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4838 4839 /* 4840 * Try to import it under a different name -- should fail with EEXIST. 4841 */ 4842 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4843 4844 /* 4845 * Verify that the pool is no longer visible under the old name. 4846 */ 4847 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4848 4849 /* 4850 * Verify that we can open and close the pool using the new name. 4851 */ 4852 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4853 ASSERT(pool_guid == spa_guid(spa)); 4854 spa_close(spa, FTAG); 4855 4856 nvlist_free(config); 4857 } 4858 4859 static void 4860 ztest_resume(spa_t *spa) 4861 { 4862 if (spa_suspended(spa) && zopt_verbose >= 6) 4863 (void) printf("resuming from suspended state\n"); 4864 spa_vdev_state_enter(spa, SCL_NONE); 4865 vdev_clear(spa, NULL); 4866 (void) spa_vdev_state_exit(spa, NULL, 0); 4867 (void) zio_resume(spa); 4868 } 4869 4870 static void * 4871 ztest_resume_thread(void *arg) 4872 { 4873 spa_t *spa = arg; 4874 4875 while (!ztest_exiting) { 4876 if (spa_suspended(spa)) 4877 ztest_resume(spa); 4878 (void) poll(NULL, 0, 100); 4879 } 4880 return (NULL); 4881 } 4882 4883 static void * 4884 ztest_deadman_thread(void *arg) 4885 { 4886 ztest_shared_t *zs = arg; 4887 int grace = 300; 4888 hrtime_t delta; 4889 4890 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4891 4892 (void) poll(NULL, 0, (int)(1000 * delta)); 4893 4894 fatal(0, "failed to complete within %d seconds of deadline", grace); 4895 4896 return (NULL); 4897 } 4898 4899 static void 4900 ztest_execute(ztest_info_t *zi, uint64_t id) 4901 { 4902 ztest_shared_t *zs = ztest_shared; 4903 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4904 hrtime_t functime = gethrtime(); 4905 4906 for (int i = 0; i < zi->zi_iters; i++) 4907 zi->zi_func(zd, id); 4908 4909 functime = gethrtime() - functime; 4910 4911 atomic_add_64(&zi->zi_call_count, 1); 4912 atomic_add_64(&zi->zi_call_time, functime); 4913 4914 if (zopt_verbose >= 4) { 4915 Dl_info dli; 4916 (void) dladdr((void *)zi->zi_func, &dli); 4917 (void) printf("%6.2f sec in %s\n", 4918 (double)functime / NANOSEC, dli.dli_sname); 4919 } 4920 } 4921 4922 static void * 4923 ztest_thread(void *arg) 4924 { 4925 uint64_t id = (uintptr_t)arg; 4926 ztest_shared_t *zs = ztest_shared; 4927 uint64_t call_next; 4928 hrtime_t now; 4929 ztest_info_t *zi; 4930 4931 while ((now = gethrtime()) < zs->zs_thread_stop) { 4932 /* 4933 * See if it's time to force a crash. 4934 */ 4935 if (now > zs->zs_thread_kill) 4936 ztest_kill(zs); 4937 4938 /* 4939 * If we're getting ENOSPC with some regularity, stop. 4940 */ 4941 if (zs->zs_enospc_count > 10) 4942 break; 4943 4944 /* 4945 * Pick a random function to execute. 4946 */ 4947 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4948 call_next = zi->zi_call_next; 4949 4950 if (now >= call_next && 4951 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4952 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4953 ztest_execute(zi, id); 4954 } 4955 4956 return (NULL); 4957 } 4958 4959 static void 4960 ztest_dataset_name(char *dsname, char *pool, int d) 4961 { 4962 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4963 } 4964 4965 static void 4966 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4967 { 4968 char name[MAXNAMELEN]; 4969 4970 ztest_dataset_name(name, zs->zs_pool, d); 4971 4972 if (zopt_verbose >= 3) 4973 (void) printf("Destroying %s to free up space\n", name); 4974 4975 /* 4976 * Cleanup any non-standard clones and snapshots. In general, 4977 * ztest thread t operates on dataset (t % zopt_datasets), 4978 * so there may be more than one thing to clean up. 4979 */ 4980 for (int t = d; t < zopt_threads; t += zopt_datasets) 4981 ztest_dsl_dataset_cleanup(name, t); 4982 4983 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4984 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4985 } 4986 4987 static void 4988 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 4989 { 4990 uint64_t usedobjs, dirobjs, scratch; 4991 4992 /* 4993 * ZTEST_DIROBJ is the object directory for the entire dataset. 4994 * Therefore, the number of objects in use should equal the 4995 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 4996 * If not, we have an object leak. 4997 * 4998 * Note that we can only check this in ztest_dataset_open(), 4999 * when the open-context and syncing-context values agree. 5000 * That's because zap_count() returns the open-context value, 5001 * while dmu_objset_space() returns the rootbp fill count. 5002 */ 5003 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5004 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5005 ASSERT3U(dirobjs + 1, ==, usedobjs); 5006 } 5007 5008 static int 5009 ztest_dataset_open(ztest_shared_t *zs, int d) 5010 { 5011 ztest_ds_t *zd = &zs->zs_zd[d]; 5012 uint64_t committed_seq = zd->zd_seq; 5013 objset_t *os; 5014 zilog_t *zilog; 5015 char name[MAXNAMELEN]; 5016 int error; 5017 5018 ztest_dataset_name(name, zs->zs_pool, d); 5019 5020 (void) rw_rdlock(&zs->zs_name_lock); 5021 5022 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 5023 ztest_objset_create_cb, NULL); 5024 if (error == ENOSPC) { 5025 (void) rw_unlock(&zs->zs_name_lock); 5026 ztest_record_enospc(FTAG); 5027 return (error); 5028 } 5029 ASSERT(error == 0 || error == EEXIST); 5030 5031 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 5032 (void) rw_unlock(&zs->zs_name_lock); 5033 5034 ztest_zd_init(zd, os); 5035 5036 zilog = zd->zd_zilog; 5037 5038 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5039 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5040 fatal(0, "missing log records: claimed %llu < committed %llu", 5041 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5042 5043 ztest_dataset_dirobj_verify(zd); 5044 5045 zil_replay(os, zd, ztest_replay_vector); 5046 5047 ztest_dataset_dirobj_verify(zd); 5048 5049 if (zopt_verbose >= 6) 5050 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5051 zd->zd_name, 5052 (u_longlong_t)zilog->zl_parse_blk_count, 5053 (u_longlong_t)zilog->zl_parse_lr_count, 5054 (u_longlong_t)zilog->zl_replaying_seq); 5055 5056 zilog = zil_open(os, ztest_get_data); 5057 5058 if (zilog->zl_replaying_seq != 0 && 5059 zilog->zl_replaying_seq < committed_seq) 5060 fatal(0, "missing log records: replayed %llu < committed %llu", 5061 zilog->zl_replaying_seq, committed_seq); 5062 5063 return (0); 5064 } 5065 5066 static void 5067 ztest_dataset_close(ztest_shared_t *zs, int d) 5068 { 5069 ztest_ds_t *zd = &zs->zs_zd[d]; 5070 5071 zil_close(zd->zd_zilog); 5072 dmu_objset_rele(zd->zd_os, zd); 5073 5074 ztest_zd_fini(zd); 5075 } 5076 5077 /* 5078 * Kick off threads to run tests on all datasets in parallel. 5079 */ 5080 static void 5081 ztest_run(ztest_shared_t *zs) 5082 { 5083 thread_t *tid; 5084 spa_t *spa; 5085 thread_t resume_tid; 5086 int error; 5087 5088 ztest_exiting = B_FALSE; 5089 5090 /* 5091 * Initialize parent/child shared state. 5092 */ 5093 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5094 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5095 5096 zs->zs_thread_start = gethrtime(); 5097 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 5098 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5099 zs->zs_thread_kill = zs->zs_thread_stop; 5100 if (ztest_random(100) < zopt_killrate) 5101 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 5102 5103 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5104 5105 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5106 offsetof(ztest_cb_data_t, zcd_node)); 5107 5108 /* 5109 * Open our pool. 5110 */ 5111 kernel_init(FREAD | FWRITE); 5112 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 5113 zs->zs_spa = spa; 5114 5115 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5116 5117 /* 5118 * We don't expect the pool to suspend unless maxfaults == 0, 5119 * in which case ztest_fault_inject() temporarily takes away 5120 * the only valid replica. 5121 */ 5122 if (MAXFAULTS() == 0) 5123 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5124 else 5125 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5126 5127 /* 5128 * Create a thread to periodically resume suspended I/O. 5129 */ 5130 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5131 &resume_tid) == 0); 5132 5133 /* 5134 * Create a deadman thread to abort() if we hang. 5135 */ 5136 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5137 NULL) == 0); 5138 5139 /* 5140 * Verify that we can safely inquire about about any object, 5141 * whether it's allocated or not. To make it interesting, 5142 * we probe a 5-wide window around each power of two. 5143 * This hits all edge cases, including zero and the max. 5144 */ 5145 for (int t = 0; t < 64; t++) { 5146 for (int d = -5; d <= 5; d++) { 5147 error = dmu_object_info(spa->spa_meta_objset, 5148 (1ULL << t) + d, NULL); 5149 ASSERT(error == 0 || error == ENOENT || 5150 error == EINVAL); 5151 } 5152 } 5153 5154 /* 5155 * If we got any ENOSPC errors on the previous run, destroy something. 5156 */ 5157 if (zs->zs_enospc_count != 0) { 5158 int d = ztest_random(zopt_datasets); 5159 ztest_dataset_destroy(zs, d); 5160 } 5161 zs->zs_enospc_count = 0; 5162 5163 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5164 5165 if (zopt_verbose >= 4) 5166 (void) printf("starting main threads...\n"); 5167 5168 /* 5169 * Kick off all the tests that run in parallel. 5170 */ 5171 for (int t = 0; t < zopt_threads; t++) { 5172 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5173 return; 5174 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5175 THR_BOUND, &tid[t]) == 0); 5176 } 5177 5178 /* 5179 * Wait for all of the tests to complete. We go in reverse order 5180 * so we don't close datasets while threads are still using them. 5181 */ 5182 for (int t = zopt_threads - 1; t >= 0; t--) { 5183 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5184 if (t < zopt_datasets) 5185 ztest_dataset_close(zs, t); 5186 } 5187 5188 txg_wait_synced(spa_get_dsl(spa), 0); 5189 5190 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5191 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5192 5193 umem_free(tid, zopt_threads * sizeof (thread_t)); 5194 5195 /* Kill the resume thread */ 5196 ztest_exiting = B_TRUE; 5197 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5198 ztest_resume(spa); 5199 5200 /* 5201 * Right before closing the pool, kick off a bunch of async I/O; 5202 * spa_close() should wait for it to complete. 5203 */ 5204 for (uint64_t object = 1; object < 50; object++) 5205 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5206 5207 spa_close(spa, FTAG); 5208 5209 /* 5210 * Verify that we can loop over all pools. 5211 */ 5212 mutex_enter(&spa_namespace_lock); 5213 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5214 if (zopt_verbose > 3) 5215 (void) printf("spa_next: found %s\n", spa_name(spa)); 5216 mutex_exit(&spa_namespace_lock); 5217 5218 /* 5219 * Verify that we can export the pool and reimport it under a 5220 * different name. 5221 */ 5222 if (ztest_random(2) == 0) { 5223 char name[MAXNAMELEN]; 5224 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5225 ztest_spa_import_export(zs->zs_pool, name); 5226 ztest_spa_import_export(name, zs->zs_pool); 5227 } 5228 5229 kernel_fini(); 5230 } 5231 5232 static void 5233 ztest_freeze(ztest_shared_t *zs) 5234 { 5235 ztest_ds_t *zd = &zs->zs_zd[0]; 5236 spa_t *spa; 5237 int numloops = 0; 5238 5239 if (zopt_verbose >= 3) 5240 (void) printf("testing spa_freeze()...\n"); 5241 5242 kernel_init(FREAD | FWRITE); 5243 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5244 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5245 5246 /* 5247 * Force the first log block to be transactionally allocated. 5248 * We have to do this before we freeze the pool -- otherwise 5249 * the log chain won't be anchored. 5250 */ 5251 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5252 ztest_dmu_object_alloc_free(zd, 0); 5253 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5254 } 5255 5256 txg_wait_synced(spa_get_dsl(spa), 0); 5257 5258 /* 5259 * Freeze the pool. This stops spa_sync() from doing anything, 5260 * so that the only way to record changes from now on is the ZIL. 5261 */ 5262 spa_freeze(spa); 5263 5264 /* 5265 * Run tests that generate log records but don't alter the pool config 5266 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5267 * We do a txg_wait_synced() after each iteration to force the txg 5268 * to increase well beyond the last synced value in the uberblock. 5269 * The ZIL should be OK with that. 5270 */ 5271 while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) { 5272 ztest_dmu_write_parallel(zd, 0); 5273 ztest_dmu_object_alloc_free(zd, 0); 5274 txg_wait_synced(spa_get_dsl(spa), 0); 5275 } 5276 5277 /* 5278 * Commit all of the changes we just generated. 5279 */ 5280 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5281 txg_wait_synced(spa_get_dsl(spa), 0); 5282 5283 /* 5284 * Close our dataset and close the pool. 5285 */ 5286 ztest_dataset_close(zs, 0); 5287 spa_close(spa, FTAG); 5288 kernel_fini(); 5289 5290 /* 5291 * Open and close the pool and dataset to induce log replay. 5292 */ 5293 kernel_init(FREAD | FWRITE); 5294 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5295 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5296 ztest_dataset_close(zs, 0); 5297 spa_close(spa, FTAG); 5298 kernel_fini(); 5299 5300 list_destroy(&zcl.zcl_callbacks); 5301 5302 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5303 5304 (void) rwlock_destroy(&zs->zs_name_lock); 5305 (void) _mutex_destroy(&zs->zs_vdev_lock); 5306 } 5307 5308 void 5309 print_time(hrtime_t t, char *timebuf) 5310 { 5311 hrtime_t s = t / NANOSEC; 5312 hrtime_t m = s / 60; 5313 hrtime_t h = m / 60; 5314 hrtime_t d = h / 24; 5315 5316 s -= m * 60; 5317 m -= h * 60; 5318 h -= d * 24; 5319 5320 timebuf[0] = '\0'; 5321 5322 if (d) 5323 (void) sprintf(timebuf, 5324 "%llud%02lluh%02llum%02llus", d, h, m, s); 5325 else if (h) 5326 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5327 else if (m) 5328 (void) sprintf(timebuf, "%llum%02llus", m, s); 5329 else 5330 (void) sprintf(timebuf, "%llus", s); 5331 } 5332 5333 static nvlist_t * 5334 make_random_props() 5335 { 5336 nvlist_t *props; 5337 5338 if (ztest_random(2) == 0) 5339 return (NULL); 5340 5341 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5342 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5343 5344 (void) printf("props:\n"); 5345 dump_nvlist(props, 4); 5346 5347 return (props); 5348 } 5349 5350 /* 5351 * Create a storage pool with the given name and initial vdev size. 5352 * Then test spa_freeze() functionality. 5353 */ 5354 static void 5355 ztest_init(ztest_shared_t *zs) 5356 { 5357 spa_t *spa; 5358 nvlist_t *nvroot, *props; 5359 5360 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5361 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5362 5363 kernel_init(FREAD | FWRITE); 5364 5365 /* 5366 * Create the storage pool. 5367 */ 5368 (void) spa_destroy(zs->zs_pool); 5369 ztest_shared->zs_vdev_next_leaf = 0; 5370 zs->zs_splits = 0; 5371 zs->zs_mirrors = zopt_mirrors; 5372 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5373 0, zopt_raidz, zs->zs_mirrors, 1); 5374 props = make_random_props(); 5375 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); 5376 nvlist_free(nvroot); 5377 5378 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5379 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5380 spa_close(spa, FTAG); 5381 5382 kernel_fini(); 5383 5384 ztest_run_zdb(zs->zs_pool); 5385 5386 ztest_freeze(zs); 5387 5388 ztest_run_zdb(zs->zs_pool); 5389 } 5390 5391 int 5392 main(int argc, char **argv) 5393 { 5394 int kills = 0; 5395 int iters = 0; 5396 ztest_shared_t *zs; 5397 size_t shared_size; 5398 ztest_info_t *zi; 5399 char timebuf[100]; 5400 char numbuf[6]; 5401 spa_t *spa; 5402 5403 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5404 5405 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5406 5407 process_options(argc, argv); 5408 5409 /* Override location of zpool.cache */ 5410 (void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir); 5411 5412 /* 5413 * Blow away any existing copy of zpool.cache 5414 */ 5415 if (zopt_init != 0) 5416 (void) remove(spa_config_path); 5417 5418 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5419 5420 zs = ztest_shared = (void *)mmap(0, 5421 P2ROUNDUP(shared_size, getpagesize()), 5422 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5423 5424 if (zopt_verbose >= 1) { 5425 (void) printf("%llu vdevs, %d datasets, %d threads," 5426 " %llu seconds...\n", 5427 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5428 (u_longlong_t)zopt_time); 5429 } 5430 5431 /* 5432 * Create and initialize our storage pool. 5433 */ 5434 for (int i = 1; i <= zopt_init; i++) { 5435 bzero(zs, sizeof (ztest_shared_t)); 5436 if (zopt_verbose >= 3 && zopt_init != 1) 5437 (void) printf("ztest_init(), pass %d\n", i); 5438 zs->zs_pool = zopt_pool; 5439 ztest_init(zs); 5440 } 5441 5442 zs->zs_pool = zopt_pool; 5443 zs->zs_proc_start = gethrtime(); 5444 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5445 5446 for (int f = 0; f < ZTEST_FUNCS; f++) { 5447 zi = &zs->zs_info[f]; 5448 *zi = ztest_info[f]; 5449 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5450 zi->zi_call_next = UINT64_MAX; 5451 else 5452 zi->zi_call_next = zs->zs_proc_start + 5453 ztest_random(2 * zi->zi_interval[0] + 1); 5454 } 5455 5456 /* 5457 * Run the tests in a loop. These tests include fault injection 5458 * to verify that self-healing data works, and forced crashes 5459 * to verify that we never lose on-disk consistency. 5460 */ 5461 while (gethrtime() < zs->zs_proc_stop) { 5462 int status; 5463 pid_t pid; 5464 5465 /* 5466 * Initialize the workload counters for each function. 5467 */ 5468 for (int f = 0; f < ZTEST_FUNCS; f++) { 5469 zi = &zs->zs_info[f]; 5470 zi->zi_call_count = 0; 5471 zi->zi_call_time = 0; 5472 } 5473 5474 /* Set the allocation switch size */ 5475 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5476 5477 pid = fork(); 5478 5479 if (pid == -1) 5480 fatal(1, "fork failed"); 5481 5482 if (pid == 0) { /* child */ 5483 struct rlimit rl = { 1024, 1024 }; 5484 (void) setrlimit(RLIMIT_NOFILE, &rl); 5485 (void) enable_extended_FILE_stdio(-1, -1); 5486 ztest_run(zs); 5487 exit(0); 5488 } 5489 5490 while (waitpid(pid, &status, 0) != pid) 5491 continue; 5492 5493 if (WIFEXITED(status)) { 5494 if (WEXITSTATUS(status) != 0) { 5495 (void) fprintf(stderr, 5496 "child exited with code %d\n", 5497 WEXITSTATUS(status)); 5498 exit(2); 5499 } 5500 } else if (WIFSIGNALED(status)) { 5501 if (WTERMSIG(status) != SIGKILL) { 5502 (void) fprintf(stderr, 5503 "child died with signal %d\n", 5504 WTERMSIG(status)); 5505 exit(3); 5506 } 5507 kills++; 5508 } else { 5509 (void) fprintf(stderr, "something strange happened " 5510 "to child\n"); 5511 exit(4); 5512 } 5513 5514 iters++; 5515 5516 if (zopt_verbose >= 1) { 5517 hrtime_t now = gethrtime(); 5518 5519 now = MIN(now, zs->zs_proc_stop); 5520 print_time(zs->zs_proc_stop - now, timebuf); 5521 nicenum(zs->zs_space, numbuf); 5522 5523 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5524 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5525 iters, 5526 WIFEXITED(status) ? "Complete" : "SIGKILL", 5527 (u_longlong_t)zs->zs_enospc_count, 5528 100.0 * zs->zs_alloc / zs->zs_space, 5529 numbuf, 5530 100.0 * (now - zs->zs_proc_start) / 5531 (zopt_time * NANOSEC), timebuf); 5532 } 5533 5534 if (zopt_verbose >= 2) { 5535 (void) printf("\nWorkload summary:\n\n"); 5536 (void) printf("%7s %9s %s\n", 5537 "Calls", "Time", "Function"); 5538 (void) printf("%7s %9s %s\n", 5539 "-----", "----", "--------"); 5540 for (int f = 0; f < ZTEST_FUNCS; f++) { 5541 Dl_info dli; 5542 5543 zi = &zs->zs_info[f]; 5544 print_time(zi->zi_call_time, timebuf); 5545 (void) dladdr((void *)zi->zi_func, &dli); 5546 (void) printf("%7llu %9s %s\n", 5547 (u_longlong_t)zi->zi_call_count, timebuf, 5548 dli.dli_sname); 5549 } 5550 (void) printf("\n"); 5551 } 5552 5553 /* 5554 * It's possible that we killed a child during a rename test, 5555 * in which case we'll have a 'ztest_tmp' pool lying around 5556 * instead of 'ztest'. Do a blind rename in case this happened. 5557 */ 5558 kernel_init(FREAD); 5559 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5560 spa_close(spa, FTAG); 5561 } else { 5562 char tmpname[MAXNAMELEN]; 5563 kernel_fini(); 5564 kernel_init(FREAD | FWRITE); 5565 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5566 zopt_pool); 5567 (void) spa_rename(tmpname, zopt_pool); 5568 } 5569 kernel_fini(); 5570 5571 ztest_run_zdb(zopt_pool); 5572 } 5573 5574 if (zopt_verbose >= 1) { 5575 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5576 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5577 } 5578 5579 return (0); 5580 } 5581