1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE * 2, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 extern int metaslab_preload_limit; 189 190 static ztest_shared_opts_t *ztest_shared_opts; 191 static ztest_shared_opts_t ztest_opts; 192 193 typedef struct ztest_shared_ds { 194 uint64_t zd_seq; 195 } ztest_shared_ds_t; 196 197 static ztest_shared_ds_t *ztest_shared_ds; 198 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 199 200 #define BT_MAGIC 0x123456789abcdefULL 201 #define MAXFAULTS() \ 202 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 203 204 enum ztest_io_type { 205 ZTEST_IO_WRITE_TAG, 206 ZTEST_IO_WRITE_PATTERN, 207 ZTEST_IO_WRITE_ZEROES, 208 ZTEST_IO_TRUNCATE, 209 ZTEST_IO_SETATTR, 210 ZTEST_IO_REWRITE, 211 ZTEST_IO_TYPES 212 }; 213 214 typedef struct ztest_block_tag { 215 uint64_t bt_magic; 216 uint64_t bt_objset; 217 uint64_t bt_object; 218 uint64_t bt_offset; 219 uint64_t bt_gen; 220 uint64_t bt_txg; 221 uint64_t bt_crtxg; 222 } ztest_block_tag_t; 223 224 typedef struct bufwad { 225 uint64_t bw_index; 226 uint64_t bw_txg; 227 uint64_t bw_data; 228 } bufwad_t; 229 230 /* 231 * XXX -- fix zfs range locks to be generic so we can use them here. 232 */ 233 typedef enum { 234 RL_READER, 235 RL_WRITER, 236 RL_APPEND 237 } rl_type_t; 238 239 typedef struct rll { 240 void *rll_writer; 241 int rll_readers; 242 mutex_t rll_lock; 243 cond_t rll_cv; 244 } rll_t; 245 246 typedef struct rl { 247 uint64_t rl_object; 248 uint64_t rl_offset; 249 uint64_t rl_size; 250 rll_t *rl_lock; 251 } rl_t; 252 253 #define ZTEST_RANGE_LOCKS 64 254 #define ZTEST_OBJECT_LOCKS 64 255 256 /* 257 * Object descriptor. Used as a template for object lookup/create/remove. 258 */ 259 typedef struct ztest_od { 260 uint64_t od_dir; 261 uint64_t od_object; 262 dmu_object_type_t od_type; 263 dmu_object_type_t od_crtype; 264 uint64_t od_blocksize; 265 uint64_t od_crblocksize; 266 uint64_t od_gen; 267 uint64_t od_crgen; 268 char od_name[MAXNAMELEN]; 269 } ztest_od_t; 270 271 /* 272 * Per-dataset state. 273 */ 274 typedef struct ztest_ds { 275 ztest_shared_ds_t *zd_shared; 276 objset_t *zd_os; 277 rwlock_t zd_zilog_lock; 278 zilog_t *zd_zilog; 279 ztest_od_t *zd_od; /* debugging aid */ 280 char zd_name[MAXNAMELEN]; 281 mutex_t zd_dirobj_lock; 282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 283 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 284 } ztest_ds_t; 285 286 /* 287 * Per-iteration state. 288 */ 289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 290 291 typedef struct ztest_info { 292 ztest_func_t *zi_func; /* test function */ 293 uint64_t zi_iters; /* iterations per execution */ 294 uint64_t *zi_interval; /* execute every <interval> seconds */ 295 } ztest_info_t; 296 297 typedef struct ztest_shared_callstate { 298 uint64_t zc_count; /* per-pass count */ 299 uint64_t zc_time; /* per-pass time */ 300 uint64_t zc_next; /* next time to call this function */ 301 } ztest_shared_callstate_t; 302 303 static ztest_shared_callstate_t *ztest_shared_callstate; 304 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 305 306 /* 307 * Note: these aren't static because we want dladdr() to work. 308 */ 309 ztest_func_t ztest_dmu_read_write; 310 ztest_func_t ztest_dmu_write_parallel; 311 ztest_func_t ztest_dmu_object_alloc_free; 312 ztest_func_t ztest_dmu_commit_callbacks; 313 ztest_func_t ztest_zap; 314 ztest_func_t ztest_zap_parallel; 315 ztest_func_t ztest_zil_commit; 316 ztest_func_t ztest_zil_remount; 317 ztest_func_t ztest_dmu_read_write_zcopy; 318 ztest_func_t ztest_dmu_objset_create_destroy; 319 ztest_func_t ztest_dmu_prealloc; 320 ztest_func_t ztest_fzap; 321 ztest_func_t ztest_dmu_snapshot_create_destroy; 322 ztest_func_t ztest_dsl_prop_get_set; 323 ztest_func_t ztest_spa_prop_get_set; 324 ztest_func_t ztest_spa_create_destroy; 325 ztest_func_t ztest_fault_inject; 326 ztest_func_t ztest_ddt_repair; 327 ztest_func_t ztest_dmu_snapshot_hold; 328 ztest_func_t ztest_spa_rename; 329 ztest_func_t ztest_scrub; 330 ztest_func_t ztest_dsl_dataset_promote_busy; 331 ztest_func_t ztest_vdev_attach_detach; 332 ztest_func_t ztest_vdev_LUN_growth; 333 ztest_func_t ztest_vdev_add_remove; 334 ztest_func_t ztest_vdev_aux_add_remove; 335 ztest_func_t ztest_split_pool; 336 ztest_func_t ztest_reguid; 337 ztest_func_t ztest_spa_upgrade; 338 339 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 340 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 341 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 342 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 343 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 344 345 ztest_info_t ztest_info[] = { 346 { ztest_dmu_read_write, 1, &zopt_always }, 347 { ztest_dmu_write_parallel, 10, &zopt_always }, 348 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 349 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 350 { ztest_zap, 30, &zopt_always }, 351 { ztest_zap_parallel, 100, &zopt_always }, 352 { ztest_split_pool, 1, &zopt_always }, 353 { ztest_zil_commit, 1, &zopt_incessant }, 354 { ztest_zil_remount, 1, &zopt_sometimes }, 355 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 356 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 357 { ztest_dsl_prop_get_set, 1, &zopt_often }, 358 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 359 #if 0 360 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 361 #endif 362 { ztest_fzap, 1, &zopt_sometimes }, 363 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 364 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 365 { ztest_fault_inject, 1, &zopt_sometimes }, 366 { ztest_ddt_repair, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 368 { ztest_reguid, 1, &zopt_rarely }, 369 { ztest_spa_rename, 1, &zopt_rarely }, 370 { ztest_scrub, 1, &zopt_rarely }, 371 { ztest_spa_upgrade, 1, &zopt_rarely }, 372 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 373 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 374 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 375 { ztest_vdev_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 { ztest_vdev_aux_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 }; 380 381 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 382 383 /* 384 * The following struct is used to hold a list of uncalled commit callbacks. 385 * The callbacks are ordered by txg number. 386 */ 387 typedef struct ztest_cb_list { 388 mutex_t zcl_callbacks_lock; 389 list_t zcl_callbacks; 390 } ztest_cb_list_t; 391 392 /* 393 * Stuff we need to share writably between parent and child. 394 */ 395 typedef struct ztest_shared { 396 boolean_t zs_do_init; 397 hrtime_t zs_proc_start; 398 hrtime_t zs_proc_stop; 399 hrtime_t zs_thread_start; 400 hrtime_t zs_thread_stop; 401 hrtime_t zs_thread_kill; 402 uint64_t zs_enospc_count; 403 uint64_t zs_vdev_next_leaf; 404 uint64_t zs_vdev_aux; 405 uint64_t zs_alloc; 406 uint64_t zs_space; 407 uint64_t zs_splits; 408 uint64_t zs_mirrors; 409 uint64_t zs_metaslab_sz; 410 uint64_t zs_metaslab_df_alloc_threshold; 411 uint64_t zs_guid; 412 } ztest_shared_t; 413 414 #define ID_PARALLEL -1ULL 415 416 static char ztest_dev_template[] = "%s/%s.%llua"; 417 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 418 ztest_shared_t *ztest_shared; 419 420 static spa_t *ztest_spa = NULL; 421 static ztest_ds_t *ztest_ds; 422 423 static mutex_t ztest_vdev_lock; 424 425 /* 426 * The ztest_name_lock protects the pool and dataset namespace used by 427 * the individual tests. To modify the namespace, consumers must grab 428 * this lock as writer. Grabbing the lock as reader will ensure that the 429 * namespace does not change while the lock is held. 430 */ 431 static rwlock_t ztest_name_lock; 432 433 static boolean_t ztest_dump_core = B_TRUE; 434 static boolean_t ztest_exiting; 435 436 /* Global commit callback list */ 437 static ztest_cb_list_t zcl; 438 439 enum ztest_object { 440 ZTEST_META_DNODE = 0, 441 ZTEST_DIROBJ, 442 ZTEST_OBJECTS 443 }; 444 445 static void usage(boolean_t) __NORETURN; 446 447 /* 448 * These libumem hooks provide a reasonable set of defaults for the allocator's 449 * debugging facilities. 450 */ 451 const char * 452 _umem_debug_init() 453 { 454 return ("default,verbose"); /* $UMEM_DEBUG setting */ 455 } 456 457 const char * 458 _umem_logging_init(void) 459 { 460 return ("fail,contents"); /* $UMEM_LOGGING setting */ 461 } 462 463 #define FATAL_MSG_SZ 1024 464 465 char *fatal_msg; 466 467 static void 468 fatal(int do_perror, char *message, ...) 469 { 470 va_list args; 471 int save_errno = errno; 472 char buf[FATAL_MSG_SZ]; 473 474 (void) fflush(stdout); 475 476 va_start(args, message); 477 (void) sprintf(buf, "ztest: "); 478 /* LINTED */ 479 (void) vsprintf(buf + strlen(buf), message, args); 480 va_end(args); 481 if (do_perror) { 482 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 483 ": %s", strerror(save_errno)); 484 } 485 (void) fprintf(stderr, "%s\n", buf); 486 fatal_msg = buf; /* to ease debugging */ 487 if (ztest_dump_core) 488 abort(); 489 exit(3); 490 } 491 492 static int 493 str2shift(const char *buf) 494 { 495 const char *ends = "BKMGTPEZ"; 496 int i; 497 498 if (buf[0] == '\0') 499 return (0); 500 for (i = 0; i < strlen(ends); i++) { 501 if (toupper(buf[0]) == ends[i]) 502 break; 503 } 504 if (i == strlen(ends)) { 505 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 506 buf); 507 usage(B_FALSE); 508 } 509 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 510 return (10*i); 511 } 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 513 usage(B_FALSE); 514 /* NOTREACHED */ 515 } 516 517 static uint64_t 518 nicenumtoull(const char *buf) 519 { 520 char *end; 521 uint64_t val; 522 523 val = strtoull(buf, &end, 0); 524 if (end == buf) { 525 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 526 usage(B_FALSE); 527 } else if (end[0] == '.') { 528 double fval = strtod(buf, &end); 529 fval *= pow(2, str2shift(end)); 530 if (fval > UINT64_MAX) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val = (uint64_t)fval; 536 } else { 537 int shift = str2shift(end); 538 if (shift >= 64 || (val << shift) >> shift != val) { 539 (void) fprintf(stderr, "ztest: value too large: %s\n", 540 buf); 541 usage(B_FALSE); 542 } 543 val <<= shift; 544 } 545 return (val); 546 } 547 548 static void 549 usage(boolean_t requested) 550 { 551 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 552 553 char nice_vdev_size[10]; 554 char nice_gang_bang[10]; 555 FILE *fp = requested ? stdout : stderr; 556 557 nicenum(zo->zo_vdev_size, nice_vdev_size); 558 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 559 560 (void) fprintf(fp, "Usage: %s\n" 561 "\t[-v vdevs (default: %llu)]\n" 562 "\t[-s size_of_each_vdev (default: %s)]\n" 563 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 564 "\t[-m mirror_copies (default: %d)]\n" 565 "\t[-r raidz_disks (default: %d)]\n" 566 "\t[-R raidz_parity (default: %d)]\n" 567 "\t[-d datasets (default: %d)]\n" 568 "\t[-t threads (default: %d)]\n" 569 "\t[-g gang_block_threshold (default: %s)]\n" 570 "\t[-i init_count (default: %d)] initialize pool i times\n" 571 "\t[-k kill_percentage (default: %llu%%)]\n" 572 "\t[-p pool_name (default: %s)]\n" 573 "\t[-f dir (default: %s)] file directory for vdev files\n" 574 "\t[-V] verbose (use multiple times for ever more blather)\n" 575 "\t[-E] use existing pool instead of creating new one\n" 576 "\t[-T time (default: %llu sec)] total run time\n" 577 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 578 "\t[-P passtime (default: %llu sec)] time per pass\n" 579 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 580 "\t[-h] (print help)\n" 581 "", 582 zo->zo_pool, 583 (u_longlong_t)zo->zo_vdevs, /* -v */ 584 nice_vdev_size, /* -s */ 585 zo->zo_ashift, /* -a */ 586 zo->zo_mirrors, /* -m */ 587 zo->zo_raidz, /* -r */ 588 zo->zo_raidz_parity, /* -R */ 589 zo->zo_datasets, /* -d */ 590 zo->zo_threads, /* -t */ 591 nice_gang_bang, /* -g */ 592 zo->zo_init, /* -i */ 593 (u_longlong_t)zo->zo_killrate, /* -k */ 594 zo->zo_pool, /* -p */ 595 zo->zo_dir, /* -f */ 596 (u_longlong_t)zo->zo_time, /* -T */ 597 (u_longlong_t)zo->zo_maxloops, /* -F */ 598 (u_longlong_t)zo->zo_passtime); 599 exit(requested ? 0 : 1); 600 } 601 602 static void 603 process_options(int argc, char **argv) 604 { 605 char *path; 606 ztest_shared_opts_t *zo = &ztest_opts; 607 608 int opt; 609 uint64_t value; 610 char altdir[MAXNAMELEN] = { 0 }; 611 612 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 613 614 while ((opt = getopt(argc, argv, 615 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 616 value = 0; 617 switch (opt) { 618 case 'v': 619 case 's': 620 case 'a': 621 case 'm': 622 case 'r': 623 case 'R': 624 case 'd': 625 case 't': 626 case 'g': 627 case 'i': 628 case 'k': 629 case 'T': 630 case 'P': 631 case 'F': 632 value = nicenumtoull(optarg); 633 } 634 switch (opt) { 635 case 'v': 636 zo->zo_vdevs = value; 637 break; 638 case 's': 639 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 640 break; 641 case 'a': 642 zo->zo_ashift = value; 643 break; 644 case 'm': 645 zo->zo_mirrors = value; 646 break; 647 case 'r': 648 zo->zo_raidz = MAX(1, value); 649 break; 650 case 'R': 651 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 652 break; 653 case 'd': 654 zo->zo_datasets = MAX(1, value); 655 break; 656 case 't': 657 zo->zo_threads = MAX(1, value); 658 break; 659 case 'g': 660 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 661 value); 662 break; 663 case 'i': 664 zo->zo_init = value; 665 break; 666 case 'k': 667 zo->zo_killrate = value; 668 break; 669 case 'p': 670 (void) strlcpy(zo->zo_pool, optarg, 671 sizeof (zo->zo_pool)); 672 break; 673 case 'f': 674 path = realpath(optarg, NULL); 675 if (path == NULL) { 676 (void) fprintf(stderr, "error: %s: %s\n", 677 optarg, strerror(errno)); 678 usage(B_FALSE); 679 } else { 680 (void) strlcpy(zo->zo_dir, path, 681 sizeof (zo->zo_dir)); 682 } 683 break; 684 case 'V': 685 zo->zo_verbose++; 686 break; 687 case 'E': 688 zo->zo_init = 0; 689 break; 690 case 'T': 691 zo->zo_time = value; 692 break; 693 case 'P': 694 zo->zo_passtime = MAX(1, value); 695 break; 696 case 'F': 697 zo->zo_maxloops = MAX(1, value); 698 break; 699 case 'B': 700 (void) strlcpy(altdir, optarg, sizeof (altdir)); 701 break; 702 case 'h': 703 usage(B_TRUE); 704 break; 705 case '?': 706 default: 707 usage(B_FALSE); 708 break; 709 } 710 } 711 712 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 713 714 zo->zo_vdevtime = 715 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 716 UINT64_MAX >> 2); 717 718 if (strlen(altdir) > 0) { 719 char *cmd; 720 char *realaltdir; 721 char *bin; 722 char *ztest; 723 char *isa; 724 int isalen; 725 726 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 729 VERIFY(NULL != realpath(getexecname(), cmd)); 730 if (0 != access(altdir, F_OK)) { 731 ztest_dump_core = B_FALSE; 732 fatal(B_TRUE, "invalid alternate ztest path: %s", 733 altdir); 734 } 735 VERIFY(NULL != realpath(altdir, realaltdir)); 736 737 /* 738 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 739 * We want to extract <isa> to determine if we should use 740 * 32 or 64 bit binaries. 741 */ 742 bin = strstr(cmd, "/usr/bin/"); 743 ztest = strstr(bin, "/ztest"); 744 isa = bin + 9; 745 isalen = ztest - isa; 746 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 747 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 748 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 749 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 750 751 if (0 != access(zo->zo_alt_ztest, X_OK)) { 752 ztest_dump_core = B_FALSE; 753 fatal(B_TRUE, "invalid alternate ztest: %s", 754 zo->zo_alt_ztest); 755 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 756 ztest_dump_core = B_FALSE; 757 fatal(B_TRUE, "invalid alternate lib directory %s", 758 zo->zo_alt_libpath); 759 } 760 761 umem_free(cmd, MAXPATHLEN); 762 umem_free(realaltdir, MAXPATHLEN); 763 } 764 } 765 766 static void 767 ztest_kill(ztest_shared_t *zs) 768 { 769 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 770 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 771 772 /* 773 * Before we kill off ztest, make sure that the config is updated. 774 * See comment above spa_config_sync(). 775 */ 776 mutex_enter(&spa_namespace_lock); 777 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 778 mutex_exit(&spa_namespace_lock); 779 780 zfs_dbgmsg_print(FTAG); 781 (void) kill(getpid(), SIGKILL); 782 } 783 784 static uint64_t 785 ztest_random(uint64_t range) 786 { 787 uint64_t r; 788 789 ASSERT3S(ztest_fd_rand, >=, 0); 790 791 if (range == 0) 792 return (0); 793 794 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 795 fatal(1, "short read from /dev/urandom"); 796 797 return (r % range); 798 } 799 800 /* ARGSUSED */ 801 static void 802 ztest_record_enospc(const char *s) 803 { 804 ztest_shared->zs_enospc_count++; 805 } 806 807 static uint64_t 808 ztest_get_ashift(void) 809 { 810 if (ztest_opts.zo_ashift == 0) 811 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 812 return (ztest_opts.zo_ashift); 813 } 814 815 static nvlist_t * 816 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 817 { 818 char pathbuf[MAXPATHLEN]; 819 uint64_t vdev; 820 nvlist_t *file; 821 822 if (ashift == 0) 823 ashift = ztest_get_ashift(); 824 825 if (path == NULL) { 826 path = pathbuf; 827 828 if (aux != NULL) { 829 vdev = ztest_shared->zs_vdev_aux; 830 (void) snprintf(path, sizeof (pathbuf), 831 ztest_aux_template, ztest_opts.zo_dir, 832 pool == NULL ? ztest_opts.zo_pool : pool, 833 aux, vdev); 834 } else { 835 vdev = ztest_shared->zs_vdev_next_leaf++; 836 (void) snprintf(path, sizeof (pathbuf), 837 ztest_dev_template, ztest_opts.zo_dir, 838 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 839 } 840 } 841 842 if (size != 0) { 843 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 844 if (fd == -1) 845 fatal(1, "can't open %s", path); 846 if (ftruncate(fd, size) != 0) 847 fatal(1, "can't ftruncate %s", path); 848 (void) close(fd); 849 } 850 851 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 854 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 855 856 return (file); 857 } 858 859 static nvlist_t * 860 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 861 uint64_t ashift, int r) 862 { 863 nvlist_t *raidz, **child; 864 int c; 865 866 if (r < 2) 867 return (make_vdev_file(path, aux, pool, size, ashift)); 868 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 869 870 for (c = 0; c < r; c++) 871 child[c] = make_vdev_file(path, aux, pool, size, ashift); 872 873 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 874 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 875 VDEV_TYPE_RAIDZ) == 0); 876 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 877 ztest_opts.zo_raidz_parity) == 0); 878 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 879 child, r) == 0); 880 881 for (c = 0; c < r; c++) 882 nvlist_free(child[c]); 883 884 umem_free(child, r * sizeof (nvlist_t *)); 885 886 return (raidz); 887 } 888 889 static nvlist_t * 890 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 891 uint64_t ashift, int r, int m) 892 { 893 nvlist_t *mirror, **child; 894 int c; 895 896 if (m < 1) 897 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 898 899 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < m; c++) 902 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 903 904 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 905 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 906 VDEV_TYPE_MIRROR) == 0); 907 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 908 child, m) == 0); 909 910 for (c = 0; c < m; c++) 911 nvlist_free(child[c]); 912 913 umem_free(child, m * sizeof (nvlist_t *)); 914 915 return (mirror); 916 } 917 918 static nvlist_t * 919 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 920 int log, int r, int m, int t) 921 { 922 nvlist_t *root, **child; 923 int c; 924 925 ASSERT(t > 0); 926 927 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 928 929 for (c = 0; c < t; c++) { 930 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 931 r, m); 932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 933 log) == 0); 934 } 935 936 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 937 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 938 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 939 child, t) == 0); 940 941 for (c = 0; c < t; c++) 942 nvlist_free(child[c]); 943 944 umem_free(child, t * sizeof (nvlist_t *)); 945 946 return (root); 947 } 948 949 /* 950 * Find a random spa version. Returns back a random spa version in the 951 * range [initial_version, SPA_VERSION_FEATURES]. 952 */ 953 static uint64_t 954 ztest_random_spa_version(uint64_t initial_version) 955 { 956 uint64_t version = initial_version; 957 958 if (version <= SPA_VERSION_BEFORE_FEATURES) { 959 version = version + 960 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 961 } 962 963 if (version > SPA_VERSION_BEFORE_FEATURES) 964 version = SPA_VERSION_FEATURES; 965 966 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 967 return (version); 968 } 969 970 /* 971 * Find the largest ashift used 972 */ 973 static uint64_t 974 ztest_spa_get_ashift() { 975 uint64_t i; 976 uint64_t ashift = SPA_MINBLOCKSHIFT; 977 vdev_t *rvd = ztest_spa->spa_root_vdev; 978 979 for (i = 0; i < rvd->vdev_children; i++) { 980 ashift = MAX(ashift, rvd->vdev_child[i]->vdev_ashift); 981 } 982 return (ashift); 983 } 984 985 static int 986 ztest_random_blocksize(void) 987 { 988 // Choose a block size >= the ashift. 989 uint64_t block_shift = 990 ztest_random(SPA_MAXBLOCKSHIFT - ztest_spa_get_ashift() + 1); 991 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 992 } 993 994 static int 995 ztest_random_ibshift(void) 996 { 997 return (DN_MIN_INDBLKSHIFT + 998 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 999 } 1000 1001 static uint64_t 1002 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1003 { 1004 uint64_t top; 1005 vdev_t *rvd = spa->spa_root_vdev; 1006 vdev_t *tvd; 1007 1008 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1009 1010 do { 1011 top = ztest_random(rvd->vdev_children); 1012 tvd = rvd->vdev_child[top]; 1013 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1014 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1015 1016 return (top); 1017 } 1018 1019 static uint64_t 1020 ztest_random_dsl_prop(zfs_prop_t prop) 1021 { 1022 uint64_t value; 1023 1024 do { 1025 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1026 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1027 1028 return (value); 1029 } 1030 1031 static int 1032 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1033 boolean_t inherit) 1034 { 1035 const char *propname = zfs_prop_to_name(prop); 1036 const char *valname; 1037 char setpoint[MAXPATHLEN]; 1038 uint64_t curval; 1039 int error; 1040 1041 error = dsl_prop_set_int(osname, propname, 1042 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1043 1044 if (error == ENOSPC) { 1045 ztest_record_enospc(FTAG); 1046 return (error); 1047 } 1048 ASSERT0(error); 1049 1050 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1051 1052 if (ztest_opts.zo_verbose >= 6) { 1053 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1054 (void) printf("%s %s = %s at '%s'\n", 1055 osname, propname, valname, setpoint); 1056 } 1057 1058 return (error); 1059 } 1060 1061 static int 1062 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1063 { 1064 spa_t *spa = ztest_spa; 1065 nvlist_t *props = NULL; 1066 int error; 1067 1068 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1069 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1070 1071 error = spa_prop_set(spa, props); 1072 1073 nvlist_free(props); 1074 1075 if (error == ENOSPC) { 1076 ztest_record_enospc(FTAG); 1077 return (error); 1078 } 1079 ASSERT0(error); 1080 1081 return (error); 1082 } 1083 1084 static void 1085 ztest_rll_init(rll_t *rll) 1086 { 1087 rll->rll_writer = NULL; 1088 rll->rll_readers = 0; 1089 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1090 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1091 } 1092 1093 static void 1094 ztest_rll_destroy(rll_t *rll) 1095 { 1096 ASSERT(rll->rll_writer == NULL); 1097 ASSERT(rll->rll_readers == 0); 1098 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1099 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1100 } 1101 1102 static void 1103 ztest_rll_lock(rll_t *rll, rl_type_t type) 1104 { 1105 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1106 1107 if (type == RL_READER) { 1108 while (rll->rll_writer != NULL) 1109 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1110 rll->rll_readers++; 1111 } else { 1112 while (rll->rll_writer != NULL || rll->rll_readers) 1113 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1114 rll->rll_writer = curthread; 1115 } 1116 1117 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1118 } 1119 1120 static void 1121 ztest_rll_unlock(rll_t *rll) 1122 { 1123 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1124 1125 if (rll->rll_writer) { 1126 ASSERT(rll->rll_readers == 0); 1127 rll->rll_writer = NULL; 1128 } else { 1129 ASSERT(rll->rll_readers != 0); 1130 ASSERT(rll->rll_writer == NULL); 1131 rll->rll_readers--; 1132 } 1133 1134 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1135 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1136 1137 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1138 } 1139 1140 static void 1141 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1142 { 1143 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1144 1145 ztest_rll_lock(rll, type); 1146 } 1147 1148 static void 1149 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1150 { 1151 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1152 1153 ztest_rll_unlock(rll); 1154 } 1155 1156 static rl_t * 1157 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1158 uint64_t size, rl_type_t type) 1159 { 1160 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1161 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1162 rl_t *rl; 1163 1164 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1165 rl->rl_object = object; 1166 rl->rl_offset = offset; 1167 rl->rl_size = size; 1168 rl->rl_lock = rll; 1169 1170 ztest_rll_lock(rll, type); 1171 1172 return (rl); 1173 } 1174 1175 static void 1176 ztest_range_unlock(rl_t *rl) 1177 { 1178 rll_t *rll = rl->rl_lock; 1179 1180 ztest_rll_unlock(rll); 1181 1182 umem_free(rl, sizeof (*rl)); 1183 } 1184 1185 static void 1186 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1187 { 1188 zd->zd_os = os; 1189 zd->zd_zilog = dmu_objset_zil(os); 1190 zd->zd_shared = szd; 1191 dmu_objset_name(os, zd->zd_name); 1192 1193 if (zd->zd_shared != NULL) 1194 zd->zd_shared->zd_seq = 0; 1195 1196 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1197 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1198 1199 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1200 ztest_rll_init(&zd->zd_object_lock[l]); 1201 1202 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1203 ztest_rll_init(&zd->zd_range_lock[l]); 1204 } 1205 1206 static void 1207 ztest_zd_fini(ztest_ds_t *zd) 1208 { 1209 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1210 1211 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1212 ztest_rll_destroy(&zd->zd_object_lock[l]); 1213 1214 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1215 ztest_rll_destroy(&zd->zd_range_lock[l]); 1216 } 1217 1218 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1219 1220 static uint64_t 1221 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1222 { 1223 uint64_t txg; 1224 int error; 1225 1226 /* 1227 * Attempt to assign tx to some transaction group. 1228 */ 1229 error = dmu_tx_assign(tx, txg_how); 1230 if (error) { 1231 if (error == ERESTART) { 1232 ASSERT(txg_how == TXG_NOWAIT); 1233 dmu_tx_wait(tx); 1234 } else { 1235 ASSERT3U(error, ==, ENOSPC); 1236 ztest_record_enospc(tag); 1237 } 1238 dmu_tx_abort(tx); 1239 return (0); 1240 } 1241 txg = dmu_tx_get_txg(tx); 1242 ASSERT(txg != 0); 1243 return (txg); 1244 } 1245 1246 static void 1247 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1248 { 1249 uint64_t *ip = buf; 1250 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1251 1252 while (ip < ip_end) 1253 *ip++ = value; 1254 } 1255 1256 static boolean_t 1257 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1258 { 1259 uint64_t *ip = buf; 1260 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1261 uint64_t diff = 0; 1262 1263 while (ip < ip_end) 1264 diff |= (value - *ip++); 1265 1266 return (diff == 0); 1267 } 1268 1269 static void 1270 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1271 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1272 { 1273 bt->bt_magic = BT_MAGIC; 1274 bt->bt_objset = dmu_objset_id(os); 1275 bt->bt_object = object; 1276 bt->bt_offset = offset; 1277 bt->bt_gen = gen; 1278 bt->bt_txg = txg; 1279 bt->bt_crtxg = crtxg; 1280 } 1281 1282 static void 1283 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1284 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1285 { 1286 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1287 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1288 ASSERT3U(bt->bt_object, ==, object); 1289 ASSERT3U(bt->bt_offset, ==, offset); 1290 ASSERT3U(bt->bt_gen, <=, gen); 1291 ASSERT3U(bt->bt_txg, <=, txg); 1292 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1293 } 1294 1295 static ztest_block_tag_t * 1296 ztest_bt_bonus(dmu_buf_t *db) 1297 { 1298 dmu_object_info_t doi; 1299 ztest_block_tag_t *bt; 1300 1301 dmu_object_info_from_db(db, &doi); 1302 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1303 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1304 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1305 1306 return (bt); 1307 } 1308 1309 /* 1310 * ZIL logging ops 1311 */ 1312 1313 #define lrz_type lr_mode 1314 #define lrz_blocksize lr_uid 1315 #define lrz_ibshift lr_gid 1316 #define lrz_bonustype lr_rdev 1317 #define lrz_bonuslen lr_crtime[1] 1318 1319 static void 1320 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1321 { 1322 char *name = (void *)(lr + 1); /* name follows lr */ 1323 size_t namesize = strlen(name) + 1; 1324 itx_t *itx; 1325 1326 if (zil_replaying(zd->zd_zilog, tx)) 1327 return; 1328 1329 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1330 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1331 sizeof (*lr) + namesize - sizeof (lr_t)); 1332 1333 zil_itx_assign(zd->zd_zilog, itx, tx); 1334 } 1335 1336 static void 1337 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1338 { 1339 char *name = (void *)(lr + 1); /* name follows lr */ 1340 size_t namesize = strlen(name) + 1; 1341 itx_t *itx; 1342 1343 if (zil_replaying(zd->zd_zilog, tx)) 1344 return; 1345 1346 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1347 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1348 sizeof (*lr) + namesize - sizeof (lr_t)); 1349 1350 itx->itx_oid = object; 1351 zil_itx_assign(zd->zd_zilog, itx, tx); 1352 } 1353 1354 static void 1355 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1356 { 1357 itx_t *itx; 1358 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1359 1360 if (zil_replaying(zd->zd_zilog, tx)) 1361 return; 1362 1363 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1364 write_state = WR_INDIRECT; 1365 1366 itx = zil_itx_create(TX_WRITE, 1367 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1368 1369 if (write_state == WR_COPIED && 1370 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1371 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1372 zil_itx_destroy(itx); 1373 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1374 write_state = WR_NEED_COPY; 1375 } 1376 itx->itx_private = zd; 1377 itx->itx_wr_state = write_state; 1378 itx->itx_sync = (ztest_random(8) == 0); 1379 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1380 1381 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1382 sizeof (*lr) - sizeof (lr_t)); 1383 1384 zil_itx_assign(zd->zd_zilog, itx, tx); 1385 } 1386 1387 static void 1388 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1389 { 1390 itx_t *itx; 1391 1392 if (zil_replaying(zd->zd_zilog, tx)) 1393 return; 1394 1395 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1396 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1397 sizeof (*lr) - sizeof (lr_t)); 1398 1399 itx->itx_sync = B_FALSE; 1400 zil_itx_assign(zd->zd_zilog, itx, tx); 1401 } 1402 1403 static void 1404 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1405 { 1406 itx_t *itx; 1407 1408 if (zil_replaying(zd->zd_zilog, tx)) 1409 return; 1410 1411 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1412 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1413 sizeof (*lr) - sizeof (lr_t)); 1414 1415 itx->itx_sync = B_FALSE; 1416 zil_itx_assign(zd->zd_zilog, itx, tx); 1417 } 1418 1419 /* 1420 * ZIL replay ops 1421 */ 1422 static int 1423 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1424 { 1425 char *name = (void *)(lr + 1); /* name follows lr */ 1426 objset_t *os = zd->zd_os; 1427 ztest_block_tag_t *bbt; 1428 dmu_buf_t *db; 1429 dmu_tx_t *tx; 1430 uint64_t txg; 1431 int error = 0; 1432 1433 if (byteswap) 1434 byteswap_uint64_array(lr, sizeof (*lr)); 1435 1436 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1437 ASSERT(name[0] != '\0'); 1438 1439 tx = dmu_tx_create(os); 1440 1441 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1442 1443 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1444 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1445 } else { 1446 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1447 } 1448 1449 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1450 if (txg == 0) 1451 return (ENOSPC); 1452 1453 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1454 1455 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1456 if (lr->lr_foid == 0) { 1457 lr->lr_foid = zap_create(os, 1458 lr->lrz_type, lr->lrz_bonustype, 1459 lr->lrz_bonuslen, tx); 1460 } else { 1461 error = zap_create_claim(os, lr->lr_foid, 1462 lr->lrz_type, lr->lrz_bonustype, 1463 lr->lrz_bonuslen, tx); 1464 } 1465 } else { 1466 if (lr->lr_foid == 0) { 1467 lr->lr_foid = dmu_object_alloc(os, 1468 lr->lrz_type, 0, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } else { 1471 error = dmu_object_claim(os, lr->lr_foid, 1472 lr->lrz_type, 0, lr->lrz_bonustype, 1473 lr->lrz_bonuslen, tx); 1474 } 1475 } 1476 1477 if (error) { 1478 ASSERT3U(error, ==, EEXIST); 1479 ASSERT(zd->zd_zilog->zl_replay); 1480 dmu_tx_commit(tx); 1481 return (error); 1482 } 1483 1484 ASSERT(lr->lr_foid != 0); 1485 1486 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1487 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1488 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1489 1490 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1491 bbt = ztest_bt_bonus(db); 1492 dmu_buf_will_dirty(db, tx); 1493 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1494 dmu_buf_rele(db, FTAG); 1495 1496 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1497 &lr->lr_foid, tx)); 1498 1499 (void) ztest_log_create(zd, tx, lr); 1500 1501 dmu_tx_commit(tx); 1502 1503 return (0); 1504 } 1505 1506 static int 1507 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1508 { 1509 char *name = (void *)(lr + 1); /* name follows lr */ 1510 objset_t *os = zd->zd_os; 1511 dmu_object_info_t doi; 1512 dmu_tx_t *tx; 1513 uint64_t object, txg; 1514 1515 if (byteswap) 1516 byteswap_uint64_array(lr, sizeof (*lr)); 1517 1518 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1519 ASSERT(name[0] != '\0'); 1520 1521 VERIFY3U(0, ==, 1522 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1523 ASSERT(object != 0); 1524 1525 ztest_object_lock(zd, object, RL_WRITER); 1526 1527 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1528 1529 tx = dmu_tx_create(os); 1530 1531 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1532 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1533 1534 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1535 if (txg == 0) { 1536 ztest_object_unlock(zd, object); 1537 return (ENOSPC); 1538 } 1539 1540 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1541 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1542 } else { 1543 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1544 } 1545 1546 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1547 1548 (void) ztest_log_remove(zd, tx, lr, object); 1549 1550 dmu_tx_commit(tx); 1551 1552 ztest_object_unlock(zd, object); 1553 1554 return (0); 1555 } 1556 1557 static int 1558 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1559 { 1560 objset_t *os = zd->zd_os; 1561 void *data = lr + 1; /* data follows lr */ 1562 uint64_t offset, length; 1563 ztest_block_tag_t *bt = data; 1564 ztest_block_tag_t *bbt; 1565 uint64_t gen, txg, lrtxg, crtxg; 1566 dmu_object_info_t doi; 1567 dmu_tx_t *tx; 1568 dmu_buf_t *db; 1569 arc_buf_t *abuf = NULL; 1570 rl_t *rl; 1571 1572 if (byteswap) 1573 byteswap_uint64_array(lr, sizeof (*lr)); 1574 1575 offset = lr->lr_offset; 1576 length = lr->lr_length; 1577 1578 /* If it's a dmu_sync() block, write the whole block */ 1579 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1580 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1581 if (length < blocksize) { 1582 offset -= offset % blocksize; 1583 length = blocksize; 1584 } 1585 } 1586 1587 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1588 byteswap_uint64_array(bt, sizeof (*bt)); 1589 1590 if (bt->bt_magic != BT_MAGIC) 1591 bt = NULL; 1592 1593 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1594 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1595 1596 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1597 1598 dmu_object_info_from_db(db, &doi); 1599 1600 bbt = ztest_bt_bonus(db); 1601 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1602 gen = bbt->bt_gen; 1603 crtxg = bbt->bt_crtxg; 1604 lrtxg = lr->lr_common.lrc_txg; 1605 1606 tx = dmu_tx_create(os); 1607 1608 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1609 1610 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1611 P2PHASE(offset, length) == 0) 1612 abuf = dmu_request_arcbuf(db, length); 1613 1614 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1615 if (txg == 0) { 1616 if (abuf != NULL) 1617 dmu_return_arcbuf(abuf); 1618 dmu_buf_rele(db, FTAG); 1619 ztest_range_unlock(rl); 1620 ztest_object_unlock(zd, lr->lr_foid); 1621 return (ENOSPC); 1622 } 1623 1624 if (bt != NULL) { 1625 /* 1626 * Usually, verify the old data before writing new data -- 1627 * but not always, because we also want to verify correct 1628 * behavior when the data was not recently read into cache. 1629 */ 1630 ASSERT(offset % doi.doi_data_block_size == 0); 1631 if (ztest_random(4) != 0) { 1632 int prefetch = ztest_random(2) ? 1633 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1634 ztest_block_tag_t rbt; 1635 1636 VERIFY(dmu_read(os, lr->lr_foid, offset, 1637 sizeof (rbt), &rbt, prefetch) == 0); 1638 if (rbt.bt_magic == BT_MAGIC) { 1639 ztest_bt_verify(&rbt, os, lr->lr_foid, 1640 offset, gen, txg, crtxg); 1641 } 1642 } 1643 1644 /* 1645 * Writes can appear to be newer than the bonus buffer because 1646 * the ztest_get_data() callback does a dmu_read() of the 1647 * open-context data, which may be different than the data 1648 * as it was when the write was generated. 1649 */ 1650 if (zd->zd_zilog->zl_replay) { 1651 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1652 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1653 bt->bt_crtxg); 1654 } 1655 1656 /* 1657 * Set the bt's gen/txg to the bonus buffer's gen/txg 1658 * so that all of the usual ASSERTs will work. 1659 */ 1660 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1661 } 1662 1663 if (abuf == NULL) { 1664 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1665 } else { 1666 bcopy(data, abuf->b_data, length); 1667 dmu_assign_arcbuf(db, offset, abuf, tx); 1668 } 1669 1670 (void) ztest_log_write(zd, tx, lr); 1671 1672 dmu_buf_rele(db, FTAG); 1673 1674 dmu_tx_commit(tx); 1675 1676 ztest_range_unlock(rl); 1677 ztest_object_unlock(zd, lr->lr_foid); 1678 1679 return (0); 1680 } 1681 1682 static int 1683 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1684 { 1685 objset_t *os = zd->zd_os; 1686 dmu_tx_t *tx; 1687 uint64_t txg; 1688 rl_t *rl; 1689 1690 if (byteswap) 1691 byteswap_uint64_array(lr, sizeof (*lr)); 1692 1693 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1694 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1695 RL_WRITER); 1696 1697 tx = dmu_tx_create(os); 1698 1699 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1700 1701 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1702 if (txg == 0) { 1703 ztest_range_unlock(rl); 1704 ztest_object_unlock(zd, lr->lr_foid); 1705 return (ENOSPC); 1706 } 1707 1708 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1709 lr->lr_length, tx) == 0); 1710 1711 (void) ztest_log_truncate(zd, tx, lr); 1712 1713 dmu_tx_commit(tx); 1714 1715 ztest_range_unlock(rl); 1716 ztest_object_unlock(zd, lr->lr_foid); 1717 1718 return (0); 1719 } 1720 1721 static int 1722 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1723 { 1724 objset_t *os = zd->zd_os; 1725 dmu_tx_t *tx; 1726 dmu_buf_t *db; 1727 ztest_block_tag_t *bbt; 1728 uint64_t txg, lrtxg, crtxg; 1729 1730 if (byteswap) 1731 byteswap_uint64_array(lr, sizeof (*lr)); 1732 1733 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1734 1735 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1736 1737 tx = dmu_tx_create(os); 1738 dmu_tx_hold_bonus(tx, lr->lr_foid); 1739 1740 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1741 if (txg == 0) { 1742 dmu_buf_rele(db, FTAG); 1743 ztest_object_unlock(zd, lr->lr_foid); 1744 return (ENOSPC); 1745 } 1746 1747 bbt = ztest_bt_bonus(db); 1748 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1749 crtxg = bbt->bt_crtxg; 1750 lrtxg = lr->lr_common.lrc_txg; 1751 1752 if (zd->zd_zilog->zl_replay) { 1753 ASSERT(lr->lr_size != 0); 1754 ASSERT(lr->lr_mode != 0); 1755 ASSERT(lrtxg != 0); 1756 } else { 1757 /* 1758 * Randomly change the size and increment the generation. 1759 */ 1760 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1761 sizeof (*bbt); 1762 lr->lr_mode = bbt->bt_gen + 1; 1763 ASSERT(lrtxg == 0); 1764 } 1765 1766 /* 1767 * Verify that the current bonus buffer is not newer than our txg. 1768 */ 1769 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1770 MAX(txg, lrtxg), crtxg); 1771 1772 dmu_buf_will_dirty(db, tx); 1773 1774 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1775 ASSERT3U(lr->lr_size, <=, db->db_size); 1776 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1777 bbt = ztest_bt_bonus(db); 1778 1779 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1780 1781 dmu_buf_rele(db, FTAG); 1782 1783 (void) ztest_log_setattr(zd, tx, lr); 1784 1785 dmu_tx_commit(tx); 1786 1787 ztest_object_unlock(zd, lr->lr_foid); 1788 1789 return (0); 1790 } 1791 1792 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1793 NULL, /* 0 no such transaction type */ 1794 ztest_replay_create, /* TX_CREATE */ 1795 NULL, /* TX_MKDIR */ 1796 NULL, /* TX_MKXATTR */ 1797 NULL, /* TX_SYMLINK */ 1798 ztest_replay_remove, /* TX_REMOVE */ 1799 NULL, /* TX_RMDIR */ 1800 NULL, /* TX_LINK */ 1801 NULL, /* TX_RENAME */ 1802 ztest_replay_write, /* TX_WRITE */ 1803 ztest_replay_truncate, /* TX_TRUNCATE */ 1804 ztest_replay_setattr, /* TX_SETATTR */ 1805 NULL, /* TX_ACL */ 1806 NULL, /* TX_CREATE_ACL */ 1807 NULL, /* TX_CREATE_ATTR */ 1808 NULL, /* TX_CREATE_ACL_ATTR */ 1809 NULL, /* TX_MKDIR_ACL */ 1810 NULL, /* TX_MKDIR_ATTR */ 1811 NULL, /* TX_MKDIR_ACL_ATTR */ 1812 NULL, /* TX_WRITE2 */ 1813 }; 1814 1815 /* 1816 * ZIL get_data callbacks 1817 */ 1818 1819 static void 1820 ztest_get_done(zgd_t *zgd, int error) 1821 { 1822 ztest_ds_t *zd = zgd->zgd_private; 1823 uint64_t object = zgd->zgd_rl->rl_object; 1824 1825 if (zgd->zgd_db) 1826 dmu_buf_rele(zgd->zgd_db, zgd); 1827 1828 ztest_range_unlock(zgd->zgd_rl); 1829 ztest_object_unlock(zd, object); 1830 1831 if (error == 0 && zgd->zgd_bp) 1832 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1833 1834 umem_free(zgd, sizeof (*zgd)); 1835 } 1836 1837 static int 1838 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1839 { 1840 ztest_ds_t *zd = arg; 1841 objset_t *os = zd->zd_os; 1842 uint64_t object = lr->lr_foid; 1843 uint64_t offset = lr->lr_offset; 1844 uint64_t size = lr->lr_length; 1845 blkptr_t *bp = &lr->lr_blkptr; 1846 uint64_t txg = lr->lr_common.lrc_txg; 1847 uint64_t crtxg; 1848 dmu_object_info_t doi; 1849 dmu_buf_t *db; 1850 zgd_t *zgd; 1851 int error; 1852 1853 ztest_object_lock(zd, object, RL_READER); 1854 error = dmu_bonus_hold(os, object, FTAG, &db); 1855 if (error) { 1856 ztest_object_unlock(zd, object); 1857 return (error); 1858 } 1859 1860 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1861 1862 if (crtxg == 0 || crtxg > txg) { 1863 dmu_buf_rele(db, FTAG); 1864 ztest_object_unlock(zd, object); 1865 return (ENOENT); 1866 } 1867 1868 dmu_object_info_from_db(db, &doi); 1869 dmu_buf_rele(db, FTAG); 1870 db = NULL; 1871 1872 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1873 zgd->zgd_zilog = zd->zd_zilog; 1874 zgd->zgd_private = zd; 1875 1876 if (buf != NULL) { /* immediate write */ 1877 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1878 RL_READER); 1879 1880 error = dmu_read(os, object, offset, size, buf, 1881 DMU_READ_NO_PREFETCH); 1882 ASSERT(error == 0); 1883 } else { 1884 size = doi.doi_data_block_size; 1885 if (ISP2(size)) { 1886 offset = P2ALIGN(offset, size); 1887 } else { 1888 ASSERT(offset < size); 1889 offset = 0; 1890 } 1891 1892 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1893 RL_READER); 1894 1895 error = dmu_buf_hold(os, object, offset, zgd, &db, 1896 DMU_READ_NO_PREFETCH); 1897 1898 if (error == 0) { 1899 blkptr_t *obp = dmu_buf_get_blkptr(db); 1900 if (obp) { 1901 ASSERT(BP_IS_HOLE(bp)); 1902 *bp = *obp; 1903 } 1904 1905 zgd->zgd_db = db; 1906 zgd->zgd_bp = bp; 1907 1908 ASSERT(db->db_offset == offset); 1909 ASSERT(db->db_size == size); 1910 1911 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1912 ztest_get_done, zgd); 1913 1914 if (error == 0) 1915 return (0); 1916 } 1917 } 1918 1919 ztest_get_done(zgd, error); 1920 1921 return (error); 1922 } 1923 1924 static void * 1925 ztest_lr_alloc(size_t lrsize, char *name) 1926 { 1927 char *lr; 1928 size_t namesize = name ? strlen(name) + 1 : 0; 1929 1930 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1931 1932 if (name) 1933 bcopy(name, lr + lrsize, namesize); 1934 1935 return (lr); 1936 } 1937 1938 void 1939 ztest_lr_free(void *lr, size_t lrsize, char *name) 1940 { 1941 size_t namesize = name ? strlen(name) + 1 : 0; 1942 1943 umem_free(lr, lrsize + namesize); 1944 } 1945 1946 /* 1947 * Lookup a bunch of objects. Returns the number of objects not found. 1948 */ 1949 static int 1950 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1951 { 1952 int missing = 0; 1953 int error; 1954 1955 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1956 1957 for (int i = 0; i < count; i++, od++) { 1958 od->od_object = 0; 1959 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1960 sizeof (uint64_t), 1, &od->od_object); 1961 if (error) { 1962 ASSERT(error == ENOENT); 1963 ASSERT(od->od_object == 0); 1964 missing++; 1965 } else { 1966 dmu_buf_t *db; 1967 ztest_block_tag_t *bbt; 1968 dmu_object_info_t doi; 1969 1970 ASSERT(od->od_object != 0); 1971 ASSERT(missing == 0); /* there should be no gaps */ 1972 1973 ztest_object_lock(zd, od->od_object, RL_READER); 1974 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1975 od->od_object, FTAG, &db)); 1976 dmu_object_info_from_db(db, &doi); 1977 bbt = ztest_bt_bonus(db); 1978 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1979 od->od_type = doi.doi_type; 1980 od->od_blocksize = doi.doi_data_block_size; 1981 od->od_gen = bbt->bt_gen; 1982 dmu_buf_rele(db, FTAG); 1983 ztest_object_unlock(zd, od->od_object); 1984 } 1985 } 1986 1987 return (missing); 1988 } 1989 1990 static int 1991 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1992 { 1993 int missing = 0; 1994 1995 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1996 1997 for (int i = 0; i < count; i++, od++) { 1998 if (missing) { 1999 od->od_object = 0; 2000 missing++; 2001 continue; 2002 } 2003 2004 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2005 2006 lr->lr_doid = od->od_dir; 2007 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2008 lr->lrz_type = od->od_crtype; 2009 lr->lrz_blocksize = od->od_crblocksize; 2010 lr->lrz_ibshift = ztest_random_ibshift(); 2011 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2012 lr->lrz_bonuslen = dmu_bonus_max(); 2013 lr->lr_gen = od->od_crgen; 2014 lr->lr_crtime[0] = time(NULL); 2015 2016 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2017 ASSERT(missing == 0); 2018 od->od_object = 0; 2019 missing++; 2020 } else { 2021 od->od_object = lr->lr_foid; 2022 od->od_type = od->od_crtype; 2023 od->od_blocksize = od->od_crblocksize; 2024 od->od_gen = od->od_crgen; 2025 ASSERT(od->od_object != 0); 2026 } 2027 2028 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2029 } 2030 2031 return (missing); 2032 } 2033 2034 static int 2035 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2036 { 2037 int missing = 0; 2038 int error; 2039 2040 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2041 2042 od += count - 1; 2043 2044 for (int i = count - 1; i >= 0; i--, od--) { 2045 if (missing) { 2046 missing++; 2047 continue; 2048 } 2049 2050 /* 2051 * No object was found. 2052 */ 2053 if (od->od_object == 0) 2054 continue; 2055 2056 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2057 2058 lr->lr_doid = od->od_dir; 2059 2060 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2061 ASSERT3U(error, ==, ENOSPC); 2062 missing++; 2063 } else { 2064 od->od_object = 0; 2065 } 2066 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2067 } 2068 2069 return (missing); 2070 } 2071 2072 static int 2073 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2074 void *data) 2075 { 2076 lr_write_t *lr; 2077 int error; 2078 2079 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2080 2081 lr->lr_foid = object; 2082 lr->lr_offset = offset; 2083 lr->lr_length = size; 2084 lr->lr_blkoff = 0; 2085 BP_ZERO(&lr->lr_blkptr); 2086 2087 bcopy(data, lr + 1, size); 2088 2089 error = ztest_replay_write(zd, lr, B_FALSE); 2090 2091 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2092 2093 return (error); 2094 } 2095 2096 static int 2097 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2098 { 2099 lr_truncate_t *lr; 2100 int error; 2101 2102 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2103 2104 lr->lr_foid = object; 2105 lr->lr_offset = offset; 2106 lr->lr_length = size; 2107 2108 error = ztest_replay_truncate(zd, lr, B_FALSE); 2109 2110 ztest_lr_free(lr, sizeof (*lr), NULL); 2111 2112 return (error); 2113 } 2114 2115 static int 2116 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2117 { 2118 lr_setattr_t *lr; 2119 int error; 2120 2121 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2122 2123 lr->lr_foid = object; 2124 lr->lr_size = 0; 2125 lr->lr_mode = 0; 2126 2127 error = ztest_replay_setattr(zd, lr, B_FALSE); 2128 2129 ztest_lr_free(lr, sizeof (*lr), NULL); 2130 2131 return (error); 2132 } 2133 2134 static void 2135 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2136 { 2137 objset_t *os = zd->zd_os; 2138 dmu_tx_t *tx; 2139 uint64_t txg; 2140 rl_t *rl; 2141 2142 txg_wait_synced(dmu_objset_pool(os), 0); 2143 2144 ztest_object_lock(zd, object, RL_READER); 2145 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2146 2147 tx = dmu_tx_create(os); 2148 2149 dmu_tx_hold_write(tx, object, offset, size); 2150 2151 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2152 2153 if (txg != 0) { 2154 dmu_prealloc(os, object, offset, size, tx); 2155 dmu_tx_commit(tx); 2156 txg_wait_synced(dmu_objset_pool(os), txg); 2157 } else { 2158 (void) dmu_free_long_range(os, object, offset, size); 2159 } 2160 2161 ztest_range_unlock(rl); 2162 ztest_object_unlock(zd, object); 2163 } 2164 2165 static void 2166 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2167 { 2168 int err; 2169 ztest_block_tag_t wbt; 2170 dmu_object_info_t doi; 2171 enum ztest_io_type io_type; 2172 uint64_t blocksize; 2173 void *data; 2174 2175 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2176 blocksize = doi.doi_data_block_size; 2177 data = umem_alloc(blocksize, UMEM_NOFAIL); 2178 2179 /* 2180 * Pick an i/o type at random, biased toward writing block tags. 2181 */ 2182 io_type = ztest_random(ZTEST_IO_TYPES); 2183 if (ztest_random(2) == 0) 2184 io_type = ZTEST_IO_WRITE_TAG; 2185 2186 (void) rw_rdlock(&zd->zd_zilog_lock); 2187 2188 switch (io_type) { 2189 2190 case ZTEST_IO_WRITE_TAG: 2191 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2192 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2193 break; 2194 2195 case ZTEST_IO_WRITE_PATTERN: 2196 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2197 if (ztest_random(2) == 0) { 2198 /* 2199 * Induce fletcher2 collisions to ensure that 2200 * zio_ddt_collision() detects and resolves them 2201 * when using fletcher2-verify for deduplication. 2202 */ 2203 ((uint64_t *)data)[0] ^= 1ULL << 63; 2204 ((uint64_t *)data)[4] ^= 1ULL << 63; 2205 } 2206 (void) ztest_write(zd, object, offset, blocksize, data); 2207 break; 2208 2209 case ZTEST_IO_WRITE_ZEROES: 2210 bzero(data, blocksize); 2211 (void) ztest_write(zd, object, offset, blocksize, data); 2212 break; 2213 2214 case ZTEST_IO_TRUNCATE: 2215 (void) ztest_truncate(zd, object, offset, blocksize); 2216 break; 2217 2218 case ZTEST_IO_SETATTR: 2219 (void) ztest_setattr(zd, object); 2220 break; 2221 2222 case ZTEST_IO_REWRITE: 2223 (void) rw_rdlock(&ztest_name_lock); 2224 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2225 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2226 B_FALSE); 2227 VERIFY(err == 0 || err == ENOSPC); 2228 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2229 ZFS_PROP_COMPRESSION, 2230 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2231 B_FALSE); 2232 VERIFY(err == 0 || err == ENOSPC); 2233 (void) rw_unlock(&ztest_name_lock); 2234 2235 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2236 DMU_READ_NO_PREFETCH)); 2237 2238 (void) ztest_write(zd, object, offset, blocksize, data); 2239 break; 2240 } 2241 2242 (void) rw_unlock(&zd->zd_zilog_lock); 2243 2244 umem_free(data, blocksize); 2245 } 2246 2247 /* 2248 * Initialize an object description template. 2249 */ 2250 static void 2251 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2252 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2253 { 2254 od->od_dir = ZTEST_DIROBJ; 2255 od->od_object = 0; 2256 2257 od->od_crtype = type; 2258 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2259 od->od_crgen = gen; 2260 2261 od->od_type = DMU_OT_NONE; 2262 od->od_blocksize = 0; 2263 od->od_gen = 0; 2264 2265 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2266 tag, (int64_t)id, index); 2267 } 2268 2269 /* 2270 * Lookup or create the objects for a test using the od template. 2271 * If the objects do not all exist, or if 'remove' is specified, 2272 * remove any existing objects and create new ones. Otherwise, 2273 * use the existing objects. 2274 */ 2275 static int 2276 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2277 { 2278 int count = size / sizeof (*od); 2279 int rv = 0; 2280 2281 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2282 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2283 (ztest_remove(zd, od, count) != 0 || 2284 ztest_create(zd, od, count) != 0)) 2285 rv = -1; 2286 zd->zd_od = od; 2287 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2288 2289 return (rv); 2290 } 2291 2292 /* ARGSUSED */ 2293 void 2294 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2295 { 2296 zilog_t *zilog = zd->zd_zilog; 2297 2298 (void) rw_rdlock(&zd->zd_zilog_lock); 2299 2300 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2301 2302 /* 2303 * Remember the committed values in zd, which is in parent/child 2304 * shared memory. If we die, the next iteration of ztest_run() 2305 * will verify that the log really does contain this record. 2306 */ 2307 mutex_enter(&zilog->zl_lock); 2308 ASSERT(zd->zd_shared != NULL); 2309 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2310 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2311 mutex_exit(&zilog->zl_lock); 2312 2313 (void) rw_unlock(&zd->zd_zilog_lock); 2314 } 2315 2316 /* 2317 * This function is designed to simulate the operations that occur during a 2318 * mount/unmount operation. We hold the dataset across these operations in an 2319 * attempt to expose any implicit assumptions about ZIL management. 2320 */ 2321 /* ARGSUSED */ 2322 void 2323 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2324 { 2325 objset_t *os = zd->zd_os; 2326 2327 /* 2328 * We grab the zd_dirobj_lock to ensure that no other thread is 2329 * updating the zil (i.e. adding in-memory log records) and the 2330 * zd_zilog_lock to block any I/O. 2331 */ 2332 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2333 (void) rw_wrlock(&zd->zd_zilog_lock); 2334 2335 /* zfsvfs_teardown() */ 2336 zil_close(zd->zd_zilog); 2337 2338 /* zfsvfs_setup() */ 2339 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2340 zil_replay(os, zd, ztest_replay_vector); 2341 2342 (void) rw_unlock(&zd->zd_zilog_lock); 2343 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2344 } 2345 2346 /* 2347 * Verify that we can't destroy an active pool, create an existing pool, 2348 * or create a pool with a bad vdev spec. 2349 */ 2350 /* ARGSUSED */ 2351 void 2352 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2353 { 2354 ztest_shared_opts_t *zo = &ztest_opts; 2355 spa_t *spa; 2356 nvlist_t *nvroot; 2357 2358 /* 2359 * Attempt to create using a bad file. 2360 */ 2361 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2362 VERIFY3U(ENOENT, ==, 2363 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2364 nvlist_free(nvroot); 2365 2366 /* 2367 * Attempt to create using a bad mirror. 2368 */ 2369 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2370 VERIFY3U(ENOENT, ==, 2371 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2372 nvlist_free(nvroot); 2373 2374 /* 2375 * Attempt to create an existing pool. It shouldn't matter 2376 * what's in the nvroot; we should fail with EEXIST. 2377 */ 2378 (void) rw_rdlock(&ztest_name_lock); 2379 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2380 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2381 nvlist_free(nvroot); 2382 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2383 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2384 spa_close(spa, FTAG); 2385 2386 (void) rw_unlock(&ztest_name_lock); 2387 } 2388 2389 /* ARGSUSED */ 2390 void 2391 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2392 { 2393 spa_t *spa; 2394 uint64_t initial_version = SPA_VERSION_INITIAL; 2395 uint64_t version, newversion; 2396 nvlist_t *nvroot, *props; 2397 char *name; 2398 2399 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2400 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2401 2402 /* 2403 * Clean up from previous runs. 2404 */ 2405 (void) spa_destroy(name); 2406 2407 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2408 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2409 2410 /* 2411 * If we're configuring a RAIDZ device then make sure that the 2412 * the initial version is capable of supporting that feature. 2413 */ 2414 switch (ztest_opts.zo_raidz_parity) { 2415 case 0: 2416 case 1: 2417 initial_version = SPA_VERSION_INITIAL; 2418 break; 2419 case 2: 2420 initial_version = SPA_VERSION_RAIDZ2; 2421 break; 2422 case 3: 2423 initial_version = SPA_VERSION_RAIDZ3; 2424 break; 2425 } 2426 2427 /* 2428 * Create a pool with a spa version that can be upgraded. Pick 2429 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2430 */ 2431 do { 2432 version = ztest_random_spa_version(initial_version); 2433 } while (version > SPA_VERSION_BEFORE_FEATURES); 2434 2435 props = fnvlist_alloc(); 2436 fnvlist_add_uint64(props, 2437 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2438 VERIFY0(spa_create(name, nvroot, props, NULL)); 2439 fnvlist_free(nvroot); 2440 fnvlist_free(props); 2441 2442 VERIFY0(spa_open(name, &spa, FTAG)); 2443 VERIFY3U(spa_version(spa), ==, version); 2444 newversion = ztest_random_spa_version(version + 1); 2445 2446 if (ztest_opts.zo_verbose >= 4) { 2447 (void) printf("upgrading spa version from %llu to %llu\n", 2448 (u_longlong_t)version, (u_longlong_t)newversion); 2449 } 2450 2451 spa_upgrade(spa, newversion); 2452 VERIFY3U(spa_version(spa), >, version); 2453 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2454 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2455 spa_close(spa, FTAG); 2456 2457 strfree(name); 2458 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2459 } 2460 2461 static vdev_t * 2462 vdev_lookup_by_path(vdev_t *vd, const char *path) 2463 { 2464 vdev_t *mvd; 2465 2466 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2467 return (vd); 2468 2469 for (int c = 0; c < vd->vdev_children; c++) 2470 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2471 NULL) 2472 return (mvd); 2473 2474 return (NULL); 2475 } 2476 2477 /* 2478 * Find the first available hole which can be used as a top-level. 2479 */ 2480 int 2481 find_vdev_hole(spa_t *spa) 2482 { 2483 vdev_t *rvd = spa->spa_root_vdev; 2484 int c; 2485 2486 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2487 2488 for (c = 0; c < rvd->vdev_children; c++) { 2489 vdev_t *cvd = rvd->vdev_child[c]; 2490 2491 if (cvd->vdev_ishole) 2492 break; 2493 } 2494 return (c); 2495 } 2496 2497 /* 2498 * Verify that vdev_add() works as expected. 2499 */ 2500 /* ARGSUSED */ 2501 void 2502 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2503 { 2504 ztest_shared_t *zs = ztest_shared; 2505 spa_t *spa = ztest_spa; 2506 uint64_t leaves; 2507 uint64_t guid; 2508 nvlist_t *nvroot; 2509 int error; 2510 2511 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2512 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2513 2514 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2515 2516 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2517 2518 /* 2519 * If we have slogs then remove them 1/4 of the time. 2520 */ 2521 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2522 /* 2523 * Grab the guid from the head of the log class rotor. 2524 */ 2525 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2526 2527 spa_config_exit(spa, SCL_VDEV, FTAG); 2528 2529 /* 2530 * We have to grab the zs_name_lock as writer to 2531 * prevent a race between removing a slog (dmu_objset_find) 2532 * and destroying a dataset. Removing the slog will 2533 * grab a reference on the dataset which may cause 2534 * dmu_objset_destroy() to fail with EBUSY thus 2535 * leaving the dataset in an inconsistent state. 2536 */ 2537 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2538 error = spa_vdev_remove(spa, guid, B_FALSE); 2539 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2540 2541 if (error && error != EEXIST) 2542 fatal(0, "spa_vdev_remove() = %d", error); 2543 } else { 2544 spa_config_exit(spa, SCL_VDEV, FTAG); 2545 2546 /* 2547 * Make 1/4 of the devices be log devices. 2548 */ 2549 nvroot = make_vdev_root(NULL, NULL, NULL, 2550 ztest_opts.zo_vdev_size, 0, 2551 ztest_random(4) == 0, ztest_opts.zo_raidz, 2552 zs->zs_mirrors, 1); 2553 2554 error = spa_vdev_add(spa, nvroot); 2555 nvlist_free(nvroot); 2556 2557 if (error == ENOSPC) 2558 ztest_record_enospc("spa_vdev_add"); 2559 else if (error != 0) 2560 fatal(0, "spa_vdev_add() = %d", error); 2561 } 2562 2563 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2564 } 2565 2566 /* 2567 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2568 */ 2569 /* ARGSUSED */ 2570 void 2571 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2572 { 2573 ztest_shared_t *zs = ztest_shared; 2574 spa_t *spa = ztest_spa; 2575 vdev_t *rvd = spa->spa_root_vdev; 2576 spa_aux_vdev_t *sav; 2577 char *aux; 2578 uint64_t guid = 0; 2579 int error; 2580 2581 if (ztest_random(2) == 0) { 2582 sav = &spa->spa_spares; 2583 aux = ZPOOL_CONFIG_SPARES; 2584 } else { 2585 sav = &spa->spa_l2cache; 2586 aux = ZPOOL_CONFIG_L2CACHE; 2587 } 2588 2589 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2590 2591 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2592 2593 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2594 /* 2595 * Pick a random device to remove. 2596 */ 2597 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2598 } else { 2599 /* 2600 * Find an unused device we can add. 2601 */ 2602 zs->zs_vdev_aux = 0; 2603 for (;;) { 2604 char path[MAXPATHLEN]; 2605 int c; 2606 (void) snprintf(path, sizeof (path), ztest_aux_template, 2607 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2608 zs->zs_vdev_aux); 2609 for (c = 0; c < sav->sav_count; c++) 2610 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2611 path) == 0) 2612 break; 2613 if (c == sav->sav_count && 2614 vdev_lookup_by_path(rvd, path) == NULL) 2615 break; 2616 zs->zs_vdev_aux++; 2617 } 2618 } 2619 2620 spa_config_exit(spa, SCL_VDEV, FTAG); 2621 2622 if (guid == 0) { 2623 /* 2624 * Add a new device. 2625 */ 2626 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2627 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2628 error = spa_vdev_add(spa, nvroot); 2629 if (error != 0) 2630 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2631 nvlist_free(nvroot); 2632 } else { 2633 /* 2634 * Remove an existing device. Sometimes, dirty its 2635 * vdev state first to make sure we handle removal 2636 * of devices that have pending state changes. 2637 */ 2638 if (ztest_random(2) == 0) 2639 (void) vdev_online(spa, guid, 0, NULL); 2640 2641 error = spa_vdev_remove(spa, guid, B_FALSE); 2642 if (error != 0 && error != EBUSY) 2643 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2644 } 2645 2646 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2647 } 2648 2649 /* 2650 * split a pool if it has mirror tlvdevs 2651 */ 2652 /* ARGSUSED */ 2653 void 2654 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2655 { 2656 ztest_shared_t *zs = ztest_shared; 2657 spa_t *spa = ztest_spa; 2658 vdev_t *rvd = spa->spa_root_vdev; 2659 nvlist_t *tree, **child, *config, *split, **schild; 2660 uint_t c, children, schildren = 0, lastlogid = 0; 2661 int error = 0; 2662 2663 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2664 2665 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2666 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2667 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2668 return; 2669 } 2670 2671 /* clean up the old pool, if any */ 2672 (void) spa_destroy("splitp"); 2673 2674 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2675 2676 /* generate a config from the existing config */ 2677 mutex_enter(&spa->spa_props_lock); 2678 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2679 &tree) == 0); 2680 mutex_exit(&spa->spa_props_lock); 2681 2682 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2683 &children) == 0); 2684 2685 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2686 for (c = 0; c < children; c++) { 2687 vdev_t *tvd = rvd->vdev_child[c]; 2688 nvlist_t **mchild; 2689 uint_t mchildren; 2690 2691 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2692 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2693 0) == 0); 2694 VERIFY(nvlist_add_string(schild[schildren], 2695 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2696 VERIFY(nvlist_add_uint64(schild[schildren], 2697 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2698 if (lastlogid == 0) 2699 lastlogid = schildren; 2700 ++schildren; 2701 continue; 2702 } 2703 lastlogid = 0; 2704 VERIFY(nvlist_lookup_nvlist_array(child[c], 2705 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2706 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2707 } 2708 2709 /* OK, create a config that can be used to split */ 2710 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2711 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2712 VDEV_TYPE_ROOT) == 0); 2713 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2714 lastlogid != 0 ? lastlogid : schildren) == 0); 2715 2716 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2717 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2718 2719 for (c = 0; c < schildren; c++) 2720 nvlist_free(schild[c]); 2721 free(schild); 2722 nvlist_free(split); 2723 2724 spa_config_exit(spa, SCL_VDEV, FTAG); 2725 2726 (void) rw_wrlock(&ztest_name_lock); 2727 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2728 (void) rw_unlock(&ztest_name_lock); 2729 2730 nvlist_free(config); 2731 2732 if (error == 0) { 2733 (void) printf("successful split - results:\n"); 2734 mutex_enter(&spa_namespace_lock); 2735 show_pool_stats(spa); 2736 show_pool_stats(spa_lookup("splitp")); 2737 mutex_exit(&spa_namespace_lock); 2738 ++zs->zs_splits; 2739 --zs->zs_mirrors; 2740 } 2741 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2742 2743 } 2744 2745 /* 2746 * Verify that we can attach and detach devices. 2747 */ 2748 /* ARGSUSED */ 2749 void 2750 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2751 { 2752 ztest_shared_t *zs = ztest_shared; 2753 spa_t *spa = ztest_spa; 2754 spa_aux_vdev_t *sav = &spa->spa_spares; 2755 vdev_t *rvd = spa->spa_root_vdev; 2756 vdev_t *oldvd, *newvd, *pvd; 2757 nvlist_t *root; 2758 uint64_t leaves; 2759 uint64_t leaf, top; 2760 uint64_t ashift = ztest_get_ashift(); 2761 uint64_t oldguid, pguid; 2762 uint64_t oldsize, newsize; 2763 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2764 int replacing; 2765 int oldvd_has_siblings = B_FALSE; 2766 int newvd_is_spare = B_FALSE; 2767 int oldvd_is_log; 2768 int error, expected_error; 2769 2770 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2771 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2772 2773 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2774 2775 /* 2776 * Decide whether to do an attach or a replace. 2777 */ 2778 replacing = ztest_random(2); 2779 2780 /* 2781 * Pick a random top-level vdev. 2782 */ 2783 top = ztest_random_vdev_top(spa, B_TRUE); 2784 2785 /* 2786 * Pick a random leaf within it. 2787 */ 2788 leaf = ztest_random(leaves); 2789 2790 /* 2791 * Locate this vdev. 2792 */ 2793 oldvd = rvd->vdev_child[top]; 2794 if (zs->zs_mirrors >= 1) { 2795 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2796 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2797 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2798 } 2799 if (ztest_opts.zo_raidz > 1) { 2800 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2801 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2802 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2803 } 2804 2805 /* 2806 * If we're already doing an attach or replace, oldvd may be a 2807 * mirror vdev -- in which case, pick a random child. 2808 */ 2809 while (oldvd->vdev_children != 0) { 2810 oldvd_has_siblings = B_TRUE; 2811 ASSERT(oldvd->vdev_children >= 2); 2812 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2813 } 2814 2815 oldguid = oldvd->vdev_guid; 2816 oldsize = vdev_get_min_asize(oldvd); 2817 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2818 (void) strcpy(oldpath, oldvd->vdev_path); 2819 pvd = oldvd->vdev_parent; 2820 pguid = pvd->vdev_guid; 2821 2822 /* 2823 * If oldvd has siblings, then half of the time, detach it. 2824 */ 2825 if (oldvd_has_siblings && ztest_random(2) == 0) { 2826 spa_config_exit(spa, SCL_VDEV, FTAG); 2827 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2828 if (error != 0 && error != ENODEV && error != EBUSY && 2829 error != ENOTSUP) 2830 fatal(0, "detach (%s) returned %d", oldpath, error); 2831 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2832 return; 2833 } 2834 2835 /* 2836 * For the new vdev, choose with equal probability between the two 2837 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2838 */ 2839 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2840 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2841 newvd_is_spare = B_TRUE; 2842 (void) strcpy(newpath, newvd->vdev_path); 2843 } else { 2844 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2845 ztest_opts.zo_dir, ztest_opts.zo_pool, 2846 top * leaves + leaf); 2847 if (ztest_random(2) == 0) 2848 newpath[strlen(newpath) - 1] = 'b'; 2849 newvd = vdev_lookup_by_path(rvd, newpath); 2850 } 2851 2852 if (newvd) { 2853 newsize = vdev_get_min_asize(newvd); 2854 } else { 2855 /* 2856 * Make newsize a little bigger or smaller than oldsize. 2857 * If it's smaller, the attach should fail. 2858 * If it's larger, and we're doing a replace, 2859 * we should get dynamic LUN growth when we're done. 2860 */ 2861 newsize = 10 * oldsize / (9 + ztest_random(3)); 2862 } 2863 2864 /* 2865 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2866 * unless it's a replace; in that case any non-replacing parent is OK. 2867 * 2868 * If newvd is already part of the pool, it should fail with EBUSY. 2869 * 2870 * If newvd is too small, it should fail with EOVERFLOW. 2871 */ 2872 if (pvd->vdev_ops != &vdev_mirror_ops && 2873 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2874 pvd->vdev_ops == &vdev_replacing_ops || 2875 pvd->vdev_ops == &vdev_spare_ops)) 2876 expected_error = ENOTSUP; 2877 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2878 expected_error = ENOTSUP; 2879 else if (newvd == oldvd) 2880 expected_error = replacing ? 0 : EBUSY; 2881 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2882 expected_error = EBUSY; 2883 else if (newsize < oldsize) 2884 expected_error = EOVERFLOW; 2885 else if (ashift > oldvd->vdev_top->vdev_ashift) 2886 expected_error = EDOM; 2887 else 2888 expected_error = 0; 2889 2890 spa_config_exit(spa, SCL_VDEV, FTAG); 2891 2892 /* 2893 * Build the nvlist describing newpath. 2894 */ 2895 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2896 ashift, 0, 0, 0, 1); 2897 2898 error = spa_vdev_attach(spa, oldguid, root, replacing); 2899 2900 nvlist_free(root); 2901 2902 /* 2903 * If our parent was the replacing vdev, but the replace completed, 2904 * then instead of failing with ENOTSUP we may either succeed, 2905 * fail with ENODEV, or fail with EOVERFLOW. 2906 */ 2907 if (expected_error == ENOTSUP && 2908 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2909 expected_error = error; 2910 2911 /* 2912 * If someone grew the LUN, the replacement may be too small. 2913 */ 2914 if (error == EOVERFLOW || error == EBUSY) 2915 expected_error = error; 2916 2917 /* XXX workaround 6690467 */ 2918 if (error != expected_error && expected_error != EBUSY) { 2919 fatal(0, "attach (%s %llu, %s %llu, %d) " 2920 "returned %d, expected %d", 2921 oldpath, oldsize, newpath, 2922 newsize, replacing, error, expected_error); 2923 } 2924 2925 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2926 } 2927 2928 /* 2929 * Callback function which expands the physical size of the vdev. 2930 */ 2931 vdev_t * 2932 grow_vdev(vdev_t *vd, void *arg) 2933 { 2934 spa_t *spa = vd->vdev_spa; 2935 size_t *newsize = arg; 2936 size_t fsize; 2937 int fd; 2938 2939 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2940 ASSERT(vd->vdev_ops->vdev_op_leaf); 2941 2942 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2943 return (vd); 2944 2945 fsize = lseek(fd, 0, SEEK_END); 2946 (void) ftruncate(fd, *newsize); 2947 2948 if (ztest_opts.zo_verbose >= 6) { 2949 (void) printf("%s grew from %lu to %lu bytes\n", 2950 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2951 } 2952 (void) close(fd); 2953 return (NULL); 2954 } 2955 2956 /* 2957 * Callback function which expands a given vdev by calling vdev_online(). 2958 */ 2959 /* ARGSUSED */ 2960 vdev_t * 2961 online_vdev(vdev_t *vd, void *arg) 2962 { 2963 spa_t *spa = vd->vdev_spa; 2964 vdev_t *tvd = vd->vdev_top; 2965 uint64_t guid = vd->vdev_guid; 2966 uint64_t generation = spa->spa_config_generation + 1; 2967 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2968 int error; 2969 2970 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2971 ASSERT(vd->vdev_ops->vdev_op_leaf); 2972 2973 /* Calling vdev_online will initialize the new metaslabs */ 2974 spa_config_exit(spa, SCL_STATE, spa); 2975 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2976 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2977 2978 /* 2979 * If vdev_online returned an error or the underlying vdev_open 2980 * failed then we abort the expand. The only way to know that 2981 * vdev_open fails is by checking the returned newstate. 2982 */ 2983 if (error || newstate != VDEV_STATE_HEALTHY) { 2984 if (ztest_opts.zo_verbose >= 5) { 2985 (void) printf("Unable to expand vdev, state %llu, " 2986 "error %d\n", (u_longlong_t)newstate, error); 2987 } 2988 return (vd); 2989 } 2990 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2991 2992 /* 2993 * Since we dropped the lock we need to ensure that we're 2994 * still talking to the original vdev. It's possible this 2995 * vdev may have been detached/replaced while we were 2996 * trying to online it. 2997 */ 2998 if (generation != spa->spa_config_generation) { 2999 if (ztest_opts.zo_verbose >= 5) { 3000 (void) printf("vdev configuration has changed, " 3001 "guid %llu, state %llu, expected gen %llu, " 3002 "got gen %llu\n", 3003 (u_longlong_t)guid, 3004 (u_longlong_t)tvd->vdev_state, 3005 (u_longlong_t)generation, 3006 (u_longlong_t)spa->spa_config_generation); 3007 } 3008 return (vd); 3009 } 3010 return (NULL); 3011 } 3012 3013 /* 3014 * Traverse the vdev tree calling the supplied function. 3015 * We continue to walk the tree until we either have walked all 3016 * children or we receive a non-NULL return from the callback. 3017 * If a NULL callback is passed, then we just return back the first 3018 * leaf vdev we encounter. 3019 */ 3020 vdev_t * 3021 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3022 { 3023 if (vd->vdev_ops->vdev_op_leaf) { 3024 if (func == NULL) 3025 return (vd); 3026 else 3027 return (func(vd, arg)); 3028 } 3029 3030 for (uint_t c = 0; c < vd->vdev_children; c++) { 3031 vdev_t *cvd = vd->vdev_child[c]; 3032 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3033 return (cvd); 3034 } 3035 return (NULL); 3036 } 3037 3038 /* 3039 * Verify that dynamic LUN growth works as expected. 3040 */ 3041 /* ARGSUSED */ 3042 void 3043 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3044 { 3045 spa_t *spa = ztest_spa; 3046 vdev_t *vd, *tvd; 3047 metaslab_class_t *mc; 3048 metaslab_group_t *mg; 3049 size_t psize, newsize; 3050 uint64_t top; 3051 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3052 3053 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3054 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3055 3056 top = ztest_random_vdev_top(spa, B_TRUE); 3057 3058 tvd = spa->spa_root_vdev->vdev_child[top]; 3059 mg = tvd->vdev_mg; 3060 mc = mg->mg_class; 3061 old_ms_count = tvd->vdev_ms_count; 3062 old_class_space = metaslab_class_get_space(mc); 3063 3064 /* 3065 * Determine the size of the first leaf vdev associated with 3066 * our top-level device. 3067 */ 3068 vd = vdev_walk_tree(tvd, NULL, NULL); 3069 ASSERT3P(vd, !=, NULL); 3070 ASSERT(vd->vdev_ops->vdev_op_leaf); 3071 3072 psize = vd->vdev_psize; 3073 3074 /* 3075 * We only try to expand the vdev if it's healthy, less than 4x its 3076 * original size, and it has a valid psize. 3077 */ 3078 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3079 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3080 spa_config_exit(spa, SCL_STATE, spa); 3081 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3082 return; 3083 } 3084 ASSERT(psize > 0); 3085 newsize = psize + psize / 8; 3086 ASSERT3U(newsize, >, psize); 3087 3088 if (ztest_opts.zo_verbose >= 6) { 3089 (void) printf("Expanding LUN %s from %lu to %lu\n", 3090 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3091 } 3092 3093 /* 3094 * Growing the vdev is a two step process: 3095 * 1). expand the physical size (i.e. relabel) 3096 * 2). online the vdev to create the new metaslabs 3097 */ 3098 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3099 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3100 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3101 if (ztest_opts.zo_verbose >= 5) { 3102 (void) printf("Could not expand LUN because " 3103 "the vdev configuration changed.\n"); 3104 } 3105 spa_config_exit(spa, SCL_STATE, spa); 3106 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3107 return; 3108 } 3109 3110 spa_config_exit(spa, SCL_STATE, spa); 3111 3112 /* 3113 * Expanding the LUN will update the config asynchronously, 3114 * thus we must wait for the async thread to complete any 3115 * pending tasks before proceeding. 3116 */ 3117 for (;;) { 3118 boolean_t done; 3119 mutex_enter(&spa->spa_async_lock); 3120 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3121 mutex_exit(&spa->spa_async_lock); 3122 if (done) 3123 break; 3124 txg_wait_synced(spa_get_dsl(spa), 0); 3125 (void) poll(NULL, 0, 100); 3126 } 3127 3128 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3129 3130 tvd = spa->spa_root_vdev->vdev_child[top]; 3131 new_ms_count = tvd->vdev_ms_count; 3132 new_class_space = metaslab_class_get_space(mc); 3133 3134 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3135 if (ztest_opts.zo_verbose >= 5) { 3136 (void) printf("Could not verify LUN expansion due to " 3137 "intervening vdev offline or remove.\n"); 3138 } 3139 spa_config_exit(spa, SCL_STATE, spa); 3140 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3141 return; 3142 } 3143 3144 /* 3145 * Make sure we were able to grow the vdev. 3146 */ 3147 if (new_ms_count <= old_ms_count) 3148 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3149 old_ms_count, new_ms_count); 3150 3151 /* 3152 * Make sure we were able to grow the pool. 3153 */ 3154 if (new_class_space <= old_class_space) 3155 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3156 old_class_space, new_class_space); 3157 3158 if (ztest_opts.zo_verbose >= 5) { 3159 char oldnumbuf[6], newnumbuf[6]; 3160 3161 nicenum(old_class_space, oldnumbuf); 3162 nicenum(new_class_space, newnumbuf); 3163 (void) printf("%s grew from %s to %s\n", 3164 spa->spa_name, oldnumbuf, newnumbuf); 3165 } 3166 3167 spa_config_exit(spa, SCL_STATE, spa); 3168 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3169 } 3170 3171 /* 3172 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3173 */ 3174 /* ARGSUSED */ 3175 static void 3176 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3177 { 3178 /* 3179 * Create the objects common to all ztest datasets. 3180 */ 3181 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3182 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3183 } 3184 3185 static int 3186 ztest_dataset_create(char *dsname) 3187 { 3188 uint64_t zilset = ztest_random(100); 3189 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3190 ztest_objset_create_cb, NULL); 3191 3192 if (err || zilset < 80) 3193 return (err); 3194 3195 if (ztest_opts.zo_verbose >= 6) 3196 (void) printf("Setting dataset %s to sync always\n", dsname); 3197 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3198 ZFS_SYNC_ALWAYS, B_FALSE)); 3199 } 3200 3201 /* ARGSUSED */ 3202 static int 3203 ztest_objset_destroy_cb(const char *name, void *arg) 3204 { 3205 objset_t *os; 3206 dmu_object_info_t doi; 3207 int error; 3208 3209 /* 3210 * Verify that the dataset contains a directory object. 3211 */ 3212 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3213 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3214 if (error != ENOENT) { 3215 /* We could have crashed in the middle of destroying it */ 3216 ASSERT0(error); 3217 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3218 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3219 } 3220 dmu_objset_disown(os, FTAG); 3221 3222 /* 3223 * Destroy the dataset. 3224 */ 3225 if (strchr(name, '@') != NULL) { 3226 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3227 } else { 3228 VERIFY0(dsl_destroy_head(name)); 3229 } 3230 return (0); 3231 } 3232 3233 static boolean_t 3234 ztest_snapshot_create(char *osname, uint64_t id) 3235 { 3236 char snapname[MAXNAMELEN]; 3237 int error; 3238 3239 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3240 3241 error = dmu_objset_snapshot_one(osname, snapname); 3242 if (error == ENOSPC) { 3243 ztest_record_enospc(FTAG); 3244 return (B_FALSE); 3245 } 3246 if (error != 0 && error != EEXIST) { 3247 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3248 snapname, error); 3249 } 3250 return (B_TRUE); 3251 } 3252 3253 static boolean_t 3254 ztest_snapshot_destroy(char *osname, uint64_t id) 3255 { 3256 char snapname[MAXNAMELEN]; 3257 int error; 3258 3259 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3260 (u_longlong_t)id); 3261 3262 error = dsl_destroy_snapshot(snapname, B_FALSE); 3263 if (error != 0 && error != ENOENT) 3264 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3265 return (B_TRUE); 3266 } 3267 3268 /* ARGSUSED */ 3269 void 3270 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3271 { 3272 ztest_ds_t zdtmp; 3273 int iters; 3274 int error; 3275 objset_t *os, *os2; 3276 char name[MAXNAMELEN]; 3277 zilog_t *zilog; 3278 3279 (void) rw_rdlock(&ztest_name_lock); 3280 3281 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3282 ztest_opts.zo_pool, (u_longlong_t)id); 3283 3284 /* 3285 * If this dataset exists from a previous run, process its replay log 3286 * half of the time. If we don't replay it, then dmu_objset_destroy() 3287 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3288 */ 3289 if (ztest_random(2) == 0 && 3290 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3291 ztest_zd_init(&zdtmp, NULL, os); 3292 zil_replay(os, &zdtmp, ztest_replay_vector); 3293 ztest_zd_fini(&zdtmp); 3294 dmu_objset_disown(os, FTAG); 3295 } 3296 3297 /* 3298 * There may be an old instance of the dataset we're about to 3299 * create lying around from a previous run. If so, destroy it 3300 * and all of its snapshots. 3301 */ 3302 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3303 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3304 3305 /* 3306 * Verify that the destroyed dataset is no longer in the namespace. 3307 */ 3308 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3309 FTAG, &os)); 3310 3311 /* 3312 * Verify that we can create a new dataset. 3313 */ 3314 error = ztest_dataset_create(name); 3315 if (error) { 3316 if (error == ENOSPC) { 3317 ztest_record_enospc(FTAG); 3318 (void) rw_unlock(&ztest_name_lock); 3319 return; 3320 } 3321 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3322 } 3323 3324 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3325 3326 ztest_zd_init(&zdtmp, NULL, os); 3327 3328 /* 3329 * Open the intent log for it. 3330 */ 3331 zilog = zil_open(os, ztest_get_data); 3332 3333 /* 3334 * Put some objects in there, do a little I/O to them, 3335 * and randomly take a couple of snapshots along the way. 3336 */ 3337 iters = ztest_random(5); 3338 for (int i = 0; i < iters; i++) { 3339 ztest_dmu_object_alloc_free(&zdtmp, id); 3340 if (ztest_random(iters) == 0) 3341 (void) ztest_snapshot_create(name, i); 3342 } 3343 3344 /* 3345 * Verify that we cannot create an existing dataset. 3346 */ 3347 VERIFY3U(EEXIST, ==, 3348 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3349 3350 /* 3351 * Verify that we can hold an objset that is also owned. 3352 */ 3353 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3354 dmu_objset_rele(os2, FTAG); 3355 3356 /* 3357 * Verify that we cannot own an objset that is already owned. 3358 */ 3359 VERIFY3U(EBUSY, ==, 3360 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3361 3362 zil_close(zilog); 3363 dmu_objset_disown(os, FTAG); 3364 ztest_zd_fini(&zdtmp); 3365 3366 (void) rw_unlock(&ztest_name_lock); 3367 } 3368 3369 /* 3370 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3371 */ 3372 void 3373 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3374 { 3375 (void) rw_rdlock(&ztest_name_lock); 3376 (void) ztest_snapshot_destroy(zd->zd_name, id); 3377 (void) ztest_snapshot_create(zd->zd_name, id); 3378 (void) rw_unlock(&ztest_name_lock); 3379 } 3380 3381 /* 3382 * Cleanup non-standard snapshots and clones. 3383 */ 3384 void 3385 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3386 { 3387 char snap1name[MAXNAMELEN]; 3388 char clone1name[MAXNAMELEN]; 3389 char snap2name[MAXNAMELEN]; 3390 char clone2name[MAXNAMELEN]; 3391 char snap3name[MAXNAMELEN]; 3392 int error; 3393 3394 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3395 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3396 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3397 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3398 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3399 3400 error = dsl_destroy_head(clone2name); 3401 if (error && error != ENOENT) 3402 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3403 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3404 if (error && error != ENOENT) 3405 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3406 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3407 if (error && error != ENOENT) 3408 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3409 error = dsl_destroy_head(clone1name); 3410 if (error && error != ENOENT) 3411 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3412 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3413 if (error && error != ENOENT) 3414 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3415 } 3416 3417 /* 3418 * Verify dsl_dataset_promote handles EBUSY 3419 */ 3420 void 3421 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3422 { 3423 objset_t *os; 3424 char snap1name[MAXNAMELEN]; 3425 char clone1name[MAXNAMELEN]; 3426 char snap2name[MAXNAMELEN]; 3427 char clone2name[MAXNAMELEN]; 3428 char snap3name[MAXNAMELEN]; 3429 char *osname = zd->zd_name; 3430 int error; 3431 3432 (void) rw_rdlock(&ztest_name_lock); 3433 3434 ztest_dsl_dataset_cleanup(osname, id); 3435 3436 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3437 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3438 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3439 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3440 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3441 3442 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3443 if (error && error != EEXIST) { 3444 if (error == ENOSPC) { 3445 ztest_record_enospc(FTAG); 3446 goto out; 3447 } 3448 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3449 } 3450 3451 error = dmu_objset_clone(clone1name, snap1name); 3452 if (error) { 3453 if (error == ENOSPC) { 3454 ztest_record_enospc(FTAG); 3455 goto out; 3456 } 3457 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3458 } 3459 3460 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3461 if (error && error != EEXIST) { 3462 if (error == ENOSPC) { 3463 ztest_record_enospc(FTAG); 3464 goto out; 3465 } 3466 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3467 } 3468 3469 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3470 if (error && error != EEXIST) { 3471 if (error == ENOSPC) { 3472 ztest_record_enospc(FTAG); 3473 goto out; 3474 } 3475 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3476 } 3477 3478 error = dmu_objset_clone(clone2name, snap3name); 3479 if (error) { 3480 if (error == ENOSPC) { 3481 ztest_record_enospc(FTAG); 3482 goto out; 3483 } 3484 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3485 } 3486 3487 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3488 if (error) 3489 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3490 error = dsl_dataset_promote(clone2name, NULL); 3491 if (error == ENOSPC) { 3492 dmu_objset_disown(os, FTAG); 3493 ztest_record_enospc(FTAG); 3494 goto out; 3495 } 3496 if (error != EBUSY) 3497 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3498 error); 3499 dmu_objset_disown(os, FTAG); 3500 3501 out: 3502 ztest_dsl_dataset_cleanup(osname, id); 3503 3504 (void) rw_unlock(&ztest_name_lock); 3505 } 3506 3507 /* 3508 * Verify that dmu_object_{alloc,free} work as expected. 3509 */ 3510 void 3511 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3512 { 3513 ztest_od_t od[4]; 3514 int batchsize = sizeof (od) / sizeof (od[0]); 3515 3516 for (int b = 0; b < batchsize; b++) 3517 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3518 3519 /* 3520 * Destroy the previous batch of objects, create a new batch, 3521 * and do some I/O on the new objects. 3522 */ 3523 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3524 return; 3525 3526 while (ztest_random(4 * batchsize) != 0) 3527 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3528 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3529 } 3530 3531 /* 3532 * Verify that dmu_{read,write} work as expected. 3533 */ 3534 void 3535 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3536 { 3537 objset_t *os = zd->zd_os; 3538 ztest_od_t od[2]; 3539 dmu_tx_t *tx; 3540 int i, freeit, error; 3541 uint64_t n, s, txg; 3542 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3543 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3544 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3545 uint64_t regions = 997; 3546 uint64_t stride = 123456789ULL; 3547 uint64_t width = 40; 3548 int free_percent = 5; 3549 3550 /* 3551 * This test uses two objects, packobj and bigobj, that are always 3552 * updated together (i.e. in the same tx) so that their contents are 3553 * in sync and can be compared. Their contents relate to each other 3554 * in a simple way: packobj is a dense array of 'bufwad' structures, 3555 * while bigobj is a sparse array of the same bufwads. Specifically, 3556 * for any index n, there are three bufwads that should be identical: 3557 * 3558 * packobj, at offset n * sizeof (bufwad_t) 3559 * bigobj, at the head of the nth chunk 3560 * bigobj, at the tail of the nth chunk 3561 * 3562 * The chunk size is arbitrary. It doesn't have to be a power of two, 3563 * and it doesn't have any relation to the object blocksize. 3564 * The only requirement is that it can hold at least two bufwads. 3565 * 3566 * Normally, we write the bufwad to each of these locations. 3567 * However, free_percent of the time we instead write zeroes to 3568 * packobj and perform a dmu_free_range() on bigobj. By comparing 3569 * bigobj to packobj, we can verify that the DMU is correctly 3570 * tracking which parts of an object are allocated and free, 3571 * and that the contents of the allocated blocks are correct. 3572 */ 3573 3574 /* 3575 * Read the directory info. If it's the first time, set things up. 3576 */ 3577 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3578 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3579 3580 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3581 return; 3582 3583 bigobj = od[0].od_object; 3584 packobj = od[1].od_object; 3585 chunksize = od[0].od_gen; 3586 ASSERT(chunksize == od[1].od_gen); 3587 3588 /* 3589 * Prefetch a random chunk of the big object. 3590 * Our aim here is to get some async reads in flight 3591 * for blocks that we may free below; the DMU should 3592 * handle this race correctly. 3593 */ 3594 n = ztest_random(regions) * stride + ztest_random(width); 3595 s = 1 + ztest_random(2 * width - 1); 3596 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3597 3598 /* 3599 * Pick a random index and compute the offsets into packobj and bigobj. 3600 */ 3601 n = ztest_random(regions) * stride + ztest_random(width); 3602 s = 1 + ztest_random(width - 1); 3603 3604 packoff = n * sizeof (bufwad_t); 3605 packsize = s * sizeof (bufwad_t); 3606 3607 bigoff = n * chunksize; 3608 bigsize = s * chunksize; 3609 3610 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3611 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3612 3613 /* 3614 * free_percent of the time, free a range of bigobj rather than 3615 * overwriting it. 3616 */ 3617 freeit = (ztest_random(100) < free_percent); 3618 3619 /* 3620 * Read the current contents of our objects. 3621 */ 3622 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3623 DMU_READ_PREFETCH); 3624 ASSERT0(error); 3625 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3626 DMU_READ_PREFETCH); 3627 ASSERT0(error); 3628 3629 /* 3630 * Get a tx for the mods to both packobj and bigobj. 3631 */ 3632 tx = dmu_tx_create(os); 3633 3634 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3635 3636 if (freeit) 3637 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3638 else 3639 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3640 3641 /* This accounts for setting the checksum/compression. */ 3642 dmu_tx_hold_bonus(tx, bigobj); 3643 3644 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3645 if (txg == 0) { 3646 umem_free(packbuf, packsize); 3647 umem_free(bigbuf, bigsize); 3648 return; 3649 } 3650 3651 enum zio_checksum cksum; 3652 do { 3653 cksum = (enum zio_checksum) 3654 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3655 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3656 dmu_object_set_checksum(os, bigobj, cksum, tx); 3657 3658 enum zio_compress comp; 3659 do { 3660 comp = (enum zio_compress) 3661 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3662 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3663 dmu_object_set_compress(os, bigobj, comp, tx); 3664 3665 /* 3666 * For each index from n to n + s, verify that the existing bufwad 3667 * in packobj matches the bufwads at the head and tail of the 3668 * corresponding chunk in bigobj. Then update all three bufwads 3669 * with the new values we want to write out. 3670 */ 3671 for (i = 0; i < s; i++) { 3672 /* LINTED */ 3673 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3674 /* LINTED */ 3675 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3676 /* LINTED */ 3677 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3678 3679 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3680 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3681 3682 if (pack->bw_txg > txg) 3683 fatal(0, "future leak: got %llx, open txg is %llx", 3684 pack->bw_txg, txg); 3685 3686 if (pack->bw_data != 0 && pack->bw_index != n + i) 3687 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3688 pack->bw_index, n, i); 3689 3690 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3691 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3692 3693 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3694 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3695 3696 if (freeit) { 3697 bzero(pack, sizeof (bufwad_t)); 3698 } else { 3699 pack->bw_index = n + i; 3700 pack->bw_txg = txg; 3701 pack->bw_data = 1 + ztest_random(-2ULL); 3702 } 3703 *bigH = *pack; 3704 *bigT = *pack; 3705 } 3706 3707 /* 3708 * We've verified all the old bufwads, and made new ones. 3709 * Now write them out. 3710 */ 3711 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3712 3713 if (freeit) { 3714 if (ztest_opts.zo_verbose >= 7) { 3715 (void) printf("freeing offset %llx size %llx" 3716 " txg %llx\n", 3717 (u_longlong_t)bigoff, 3718 (u_longlong_t)bigsize, 3719 (u_longlong_t)txg); 3720 } 3721 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3722 } else { 3723 if (ztest_opts.zo_verbose >= 7) { 3724 (void) printf("writing offset %llx size %llx" 3725 " txg %llx\n", 3726 (u_longlong_t)bigoff, 3727 (u_longlong_t)bigsize, 3728 (u_longlong_t)txg); 3729 } 3730 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3731 } 3732 3733 dmu_tx_commit(tx); 3734 3735 /* 3736 * Sanity check the stuff we just wrote. 3737 */ 3738 { 3739 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3740 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3741 3742 VERIFY(0 == dmu_read(os, packobj, packoff, 3743 packsize, packcheck, DMU_READ_PREFETCH)); 3744 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3745 bigsize, bigcheck, DMU_READ_PREFETCH)); 3746 3747 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3748 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3749 3750 umem_free(packcheck, packsize); 3751 umem_free(bigcheck, bigsize); 3752 } 3753 3754 umem_free(packbuf, packsize); 3755 umem_free(bigbuf, bigsize); 3756 } 3757 3758 void 3759 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3760 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3761 { 3762 uint64_t i; 3763 bufwad_t *pack; 3764 bufwad_t *bigH; 3765 bufwad_t *bigT; 3766 3767 /* 3768 * For each index from n to n + s, verify that the existing bufwad 3769 * in packobj matches the bufwads at the head and tail of the 3770 * corresponding chunk in bigobj. Then update all three bufwads 3771 * with the new values we want to write out. 3772 */ 3773 for (i = 0; i < s; i++) { 3774 /* LINTED */ 3775 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3776 /* LINTED */ 3777 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3778 /* LINTED */ 3779 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3780 3781 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3782 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3783 3784 if (pack->bw_txg > txg) 3785 fatal(0, "future leak: got %llx, open txg is %llx", 3786 pack->bw_txg, txg); 3787 3788 if (pack->bw_data != 0 && pack->bw_index != n + i) 3789 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3790 pack->bw_index, n, i); 3791 3792 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3793 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3794 3795 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3796 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3797 3798 pack->bw_index = n + i; 3799 pack->bw_txg = txg; 3800 pack->bw_data = 1 + ztest_random(-2ULL); 3801 3802 *bigH = *pack; 3803 *bigT = *pack; 3804 } 3805 } 3806 3807 void 3808 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3809 { 3810 objset_t *os = zd->zd_os; 3811 ztest_od_t od[2]; 3812 dmu_tx_t *tx; 3813 uint64_t i; 3814 int error; 3815 uint64_t n, s, txg; 3816 bufwad_t *packbuf, *bigbuf; 3817 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3818 uint64_t blocksize = ztest_random_blocksize(); 3819 uint64_t chunksize = blocksize; 3820 uint64_t regions = 997; 3821 uint64_t stride = 123456789ULL; 3822 uint64_t width = 9; 3823 dmu_buf_t *bonus_db; 3824 arc_buf_t **bigbuf_arcbufs; 3825 dmu_object_info_t doi; 3826 3827 /* 3828 * This test uses two objects, packobj and bigobj, that are always 3829 * updated together (i.e. in the same tx) so that their contents are 3830 * in sync and can be compared. Their contents relate to each other 3831 * in a simple way: packobj is a dense array of 'bufwad' structures, 3832 * while bigobj is a sparse array of the same bufwads. Specifically, 3833 * for any index n, there are three bufwads that should be identical: 3834 * 3835 * packobj, at offset n * sizeof (bufwad_t) 3836 * bigobj, at the head of the nth chunk 3837 * bigobj, at the tail of the nth chunk 3838 * 3839 * The chunk size is set equal to bigobj block size so that 3840 * dmu_assign_arcbuf() can be tested for object updates. 3841 */ 3842 3843 /* 3844 * Read the directory info. If it's the first time, set things up. 3845 */ 3846 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3847 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3848 3849 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3850 return; 3851 3852 bigobj = od[0].od_object; 3853 packobj = od[1].od_object; 3854 blocksize = od[0].od_blocksize; 3855 chunksize = blocksize; 3856 ASSERT(chunksize == od[1].od_gen); 3857 3858 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3859 VERIFY(ISP2(doi.doi_data_block_size)); 3860 VERIFY(chunksize == doi.doi_data_block_size); 3861 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3862 3863 /* 3864 * Pick a random index and compute the offsets into packobj and bigobj. 3865 */ 3866 n = ztest_random(regions) * stride + ztest_random(width); 3867 s = 1 + ztest_random(width - 1); 3868 3869 packoff = n * sizeof (bufwad_t); 3870 packsize = s * sizeof (bufwad_t); 3871 3872 bigoff = n * chunksize; 3873 bigsize = s * chunksize; 3874 3875 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3876 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3877 3878 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3879 3880 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3881 3882 /* 3883 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3884 * Iteration 1 test zcopy to already referenced dbufs. 3885 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3886 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3887 * Iteration 4 test zcopy when dbuf is no longer dirty. 3888 * Iteration 5 test zcopy when it can't be done. 3889 * Iteration 6 one more zcopy write. 3890 */ 3891 for (i = 0; i < 7; i++) { 3892 uint64_t j; 3893 uint64_t off; 3894 3895 /* 3896 * In iteration 5 (i == 5) use arcbufs 3897 * that don't match bigobj blksz to test 3898 * dmu_assign_arcbuf() when it can't directly 3899 * assign an arcbuf to a dbuf. 3900 */ 3901 for (j = 0; j < s; j++) { 3902 if (i != 5) { 3903 bigbuf_arcbufs[j] = 3904 dmu_request_arcbuf(bonus_db, chunksize); 3905 } else { 3906 bigbuf_arcbufs[2 * j] = 3907 dmu_request_arcbuf(bonus_db, chunksize / 2); 3908 bigbuf_arcbufs[2 * j + 1] = 3909 dmu_request_arcbuf(bonus_db, chunksize / 2); 3910 } 3911 } 3912 3913 /* 3914 * Get a tx for the mods to both packobj and bigobj. 3915 */ 3916 tx = dmu_tx_create(os); 3917 3918 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3919 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3920 3921 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3922 if (txg == 0) { 3923 umem_free(packbuf, packsize); 3924 umem_free(bigbuf, bigsize); 3925 for (j = 0; j < s; j++) { 3926 if (i != 5) { 3927 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3928 } else { 3929 dmu_return_arcbuf( 3930 bigbuf_arcbufs[2 * j]); 3931 dmu_return_arcbuf( 3932 bigbuf_arcbufs[2 * j + 1]); 3933 } 3934 } 3935 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3936 dmu_buf_rele(bonus_db, FTAG); 3937 return; 3938 } 3939 3940 /* 3941 * 50% of the time don't read objects in the 1st iteration to 3942 * test dmu_assign_arcbuf() for the case when there're no 3943 * existing dbufs for the specified offsets. 3944 */ 3945 if (i != 0 || ztest_random(2) != 0) { 3946 error = dmu_read(os, packobj, packoff, 3947 packsize, packbuf, DMU_READ_PREFETCH); 3948 ASSERT0(error); 3949 error = dmu_read(os, bigobj, bigoff, bigsize, 3950 bigbuf, DMU_READ_PREFETCH); 3951 ASSERT0(error); 3952 } 3953 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3954 n, chunksize, txg); 3955 3956 /* 3957 * We've verified all the old bufwads, and made new ones. 3958 * Now write them out. 3959 */ 3960 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3961 if (ztest_opts.zo_verbose >= 7) { 3962 (void) printf("writing offset %llx size %llx" 3963 " txg %llx\n", 3964 (u_longlong_t)bigoff, 3965 (u_longlong_t)bigsize, 3966 (u_longlong_t)txg); 3967 } 3968 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3969 dmu_buf_t *dbt; 3970 if (i != 5) { 3971 bcopy((caddr_t)bigbuf + (off - bigoff), 3972 bigbuf_arcbufs[j]->b_data, chunksize); 3973 } else { 3974 bcopy((caddr_t)bigbuf + (off - bigoff), 3975 bigbuf_arcbufs[2 * j]->b_data, 3976 chunksize / 2); 3977 bcopy((caddr_t)bigbuf + (off - bigoff) + 3978 chunksize / 2, 3979 bigbuf_arcbufs[2 * j + 1]->b_data, 3980 chunksize / 2); 3981 } 3982 3983 if (i == 1) { 3984 VERIFY(dmu_buf_hold(os, bigobj, off, 3985 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3986 } 3987 if (i != 5) { 3988 dmu_assign_arcbuf(bonus_db, off, 3989 bigbuf_arcbufs[j], tx); 3990 } else { 3991 dmu_assign_arcbuf(bonus_db, off, 3992 bigbuf_arcbufs[2 * j], tx); 3993 dmu_assign_arcbuf(bonus_db, 3994 off + chunksize / 2, 3995 bigbuf_arcbufs[2 * j + 1], tx); 3996 } 3997 if (i == 1) { 3998 dmu_buf_rele(dbt, FTAG); 3999 } 4000 } 4001 dmu_tx_commit(tx); 4002 4003 /* 4004 * Sanity check the stuff we just wrote. 4005 */ 4006 { 4007 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4008 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4009 4010 VERIFY(0 == dmu_read(os, packobj, packoff, 4011 packsize, packcheck, DMU_READ_PREFETCH)); 4012 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4013 bigsize, bigcheck, DMU_READ_PREFETCH)); 4014 4015 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4016 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4017 4018 umem_free(packcheck, packsize); 4019 umem_free(bigcheck, bigsize); 4020 } 4021 if (i == 2) { 4022 txg_wait_open(dmu_objset_pool(os), 0); 4023 } else if (i == 3) { 4024 txg_wait_synced(dmu_objset_pool(os), 0); 4025 } 4026 } 4027 4028 dmu_buf_rele(bonus_db, FTAG); 4029 umem_free(packbuf, packsize); 4030 umem_free(bigbuf, bigsize); 4031 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4032 } 4033 4034 /* ARGSUSED */ 4035 void 4036 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4037 { 4038 ztest_od_t od[1]; 4039 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4040 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4041 4042 /* 4043 * Have multiple threads write to large offsets in an object 4044 * to verify that parallel writes to an object -- even to the 4045 * same blocks within the object -- doesn't cause any trouble. 4046 */ 4047 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4048 4049 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4050 return; 4051 4052 while (ztest_random(10) != 0) 4053 ztest_io(zd, od[0].od_object, offset); 4054 } 4055 4056 void 4057 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4058 { 4059 ztest_od_t od[1]; 4060 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4061 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4062 uint64_t count = ztest_random(20) + 1; 4063 uint64_t blocksize = ztest_random_blocksize(); 4064 void *data; 4065 4066 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4067 4068 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4069 return; 4070 4071 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4072 return; 4073 4074 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4075 4076 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4077 4078 while (ztest_random(count) != 0) { 4079 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4080 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4081 data) != 0) 4082 break; 4083 while (ztest_random(4) != 0) 4084 ztest_io(zd, od[0].od_object, randoff); 4085 } 4086 4087 umem_free(data, blocksize); 4088 } 4089 4090 /* 4091 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4092 */ 4093 #define ZTEST_ZAP_MIN_INTS 1 4094 #define ZTEST_ZAP_MAX_INTS 4 4095 #define ZTEST_ZAP_MAX_PROPS 1000 4096 4097 void 4098 ztest_zap(ztest_ds_t *zd, uint64_t id) 4099 { 4100 objset_t *os = zd->zd_os; 4101 ztest_od_t od[1]; 4102 uint64_t object; 4103 uint64_t txg, last_txg; 4104 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4105 uint64_t zl_ints, zl_intsize, prop; 4106 int i, ints; 4107 dmu_tx_t *tx; 4108 char propname[100], txgname[100]; 4109 int error; 4110 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4111 4112 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4113 4114 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4115 return; 4116 4117 object = od[0].od_object; 4118 4119 /* 4120 * Generate a known hash collision, and verify that 4121 * we can lookup and remove both entries. 4122 */ 4123 tx = dmu_tx_create(os); 4124 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4125 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4126 if (txg == 0) 4127 return; 4128 for (i = 0; i < 2; i++) { 4129 value[i] = i; 4130 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4131 1, &value[i], tx)); 4132 } 4133 for (i = 0; i < 2; i++) { 4134 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4135 sizeof (uint64_t), 1, &value[i], tx)); 4136 VERIFY3U(0, ==, 4137 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4138 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4139 ASSERT3U(zl_ints, ==, 1); 4140 } 4141 for (i = 0; i < 2; i++) { 4142 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4143 } 4144 dmu_tx_commit(tx); 4145 4146 /* 4147 * Generate a buch of random entries. 4148 */ 4149 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4150 4151 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4152 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4153 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4154 bzero(value, sizeof (value)); 4155 last_txg = 0; 4156 4157 /* 4158 * If these zap entries already exist, validate their contents. 4159 */ 4160 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4161 if (error == 0) { 4162 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4163 ASSERT3U(zl_ints, ==, 1); 4164 4165 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4166 zl_ints, &last_txg) == 0); 4167 4168 VERIFY(zap_length(os, object, propname, &zl_intsize, 4169 &zl_ints) == 0); 4170 4171 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4172 ASSERT3U(zl_ints, ==, ints); 4173 4174 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4175 zl_ints, value) == 0); 4176 4177 for (i = 0; i < ints; i++) { 4178 ASSERT3U(value[i], ==, last_txg + object + i); 4179 } 4180 } else { 4181 ASSERT3U(error, ==, ENOENT); 4182 } 4183 4184 /* 4185 * Atomically update two entries in our zap object. 4186 * The first is named txg_%llu, and contains the txg 4187 * in which the property was last updated. The second 4188 * is named prop_%llu, and the nth element of its value 4189 * should be txg + object + n. 4190 */ 4191 tx = dmu_tx_create(os); 4192 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4193 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4194 if (txg == 0) 4195 return; 4196 4197 if (last_txg > txg) 4198 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4199 4200 for (i = 0; i < ints; i++) 4201 value[i] = txg + object + i; 4202 4203 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4204 1, &txg, tx)); 4205 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4206 ints, value, tx)); 4207 4208 dmu_tx_commit(tx); 4209 4210 /* 4211 * Remove a random pair of entries. 4212 */ 4213 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4214 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4215 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4216 4217 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4218 4219 if (error == ENOENT) 4220 return; 4221 4222 ASSERT0(error); 4223 4224 tx = dmu_tx_create(os); 4225 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4226 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4227 if (txg == 0) 4228 return; 4229 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4230 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4231 dmu_tx_commit(tx); 4232 } 4233 4234 /* 4235 * Testcase to test the upgrading of a microzap to fatzap. 4236 */ 4237 void 4238 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4239 { 4240 objset_t *os = zd->zd_os; 4241 ztest_od_t od[1]; 4242 uint64_t object, txg; 4243 4244 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4245 4246 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4247 return; 4248 4249 object = od[0].od_object; 4250 4251 /* 4252 * Add entries to this ZAP and make sure it spills over 4253 * and gets upgraded to a fatzap. Also, since we are adding 4254 * 2050 entries we should see ptrtbl growth and leaf-block split. 4255 */ 4256 for (int i = 0; i < 2050; i++) { 4257 char name[MAXNAMELEN]; 4258 uint64_t value = i; 4259 dmu_tx_t *tx; 4260 int error; 4261 4262 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4263 id, value); 4264 4265 tx = dmu_tx_create(os); 4266 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4267 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4268 if (txg == 0) 4269 return; 4270 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4271 &value, tx); 4272 ASSERT(error == 0 || error == EEXIST); 4273 dmu_tx_commit(tx); 4274 } 4275 } 4276 4277 /* ARGSUSED */ 4278 void 4279 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4280 { 4281 objset_t *os = zd->zd_os; 4282 ztest_od_t od[1]; 4283 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4284 dmu_tx_t *tx; 4285 int i, namelen, error; 4286 int micro = ztest_random(2); 4287 char name[20], string_value[20]; 4288 void *data; 4289 4290 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4291 4292 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4293 return; 4294 4295 object = od[0].od_object; 4296 4297 /* 4298 * Generate a random name of the form 'xxx.....' where each 4299 * x is a random printable character and the dots are dots. 4300 * There are 94 such characters, and the name length goes from 4301 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4302 */ 4303 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4304 4305 for (i = 0; i < 3; i++) 4306 name[i] = '!' + ztest_random('~' - '!' + 1); 4307 for (; i < namelen - 1; i++) 4308 name[i] = '.'; 4309 name[i] = '\0'; 4310 4311 if ((namelen & 1) || micro) { 4312 wsize = sizeof (txg); 4313 wc = 1; 4314 data = &txg; 4315 } else { 4316 wsize = 1; 4317 wc = namelen; 4318 data = string_value; 4319 } 4320 4321 count = -1ULL; 4322 VERIFY0(zap_count(os, object, &count)); 4323 ASSERT(count != -1ULL); 4324 4325 /* 4326 * Select an operation: length, lookup, add, update, remove. 4327 */ 4328 i = ztest_random(5); 4329 4330 if (i >= 2) { 4331 tx = dmu_tx_create(os); 4332 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4333 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4334 if (txg == 0) 4335 return; 4336 bcopy(name, string_value, namelen); 4337 } else { 4338 tx = NULL; 4339 txg = 0; 4340 bzero(string_value, namelen); 4341 } 4342 4343 switch (i) { 4344 4345 case 0: 4346 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4347 if (error == 0) { 4348 ASSERT3U(wsize, ==, zl_wsize); 4349 ASSERT3U(wc, ==, zl_wc); 4350 } else { 4351 ASSERT3U(error, ==, ENOENT); 4352 } 4353 break; 4354 4355 case 1: 4356 error = zap_lookup(os, object, name, wsize, wc, data); 4357 if (error == 0) { 4358 if (data == string_value && 4359 bcmp(name, data, namelen) != 0) 4360 fatal(0, "name '%s' != val '%s' len %d", 4361 name, data, namelen); 4362 } else { 4363 ASSERT3U(error, ==, ENOENT); 4364 } 4365 break; 4366 4367 case 2: 4368 error = zap_add(os, object, name, wsize, wc, data, tx); 4369 ASSERT(error == 0 || error == EEXIST); 4370 break; 4371 4372 case 3: 4373 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4374 break; 4375 4376 case 4: 4377 error = zap_remove(os, object, name, tx); 4378 ASSERT(error == 0 || error == ENOENT); 4379 break; 4380 } 4381 4382 if (tx != NULL) 4383 dmu_tx_commit(tx); 4384 } 4385 4386 /* 4387 * Commit callback data. 4388 */ 4389 typedef struct ztest_cb_data { 4390 list_node_t zcd_node; 4391 uint64_t zcd_txg; 4392 int zcd_expected_err; 4393 boolean_t zcd_added; 4394 boolean_t zcd_called; 4395 spa_t *zcd_spa; 4396 } ztest_cb_data_t; 4397 4398 /* This is the actual commit callback function */ 4399 static void 4400 ztest_commit_callback(void *arg, int error) 4401 { 4402 ztest_cb_data_t *data = arg; 4403 uint64_t synced_txg; 4404 4405 VERIFY(data != NULL); 4406 VERIFY3S(data->zcd_expected_err, ==, error); 4407 VERIFY(!data->zcd_called); 4408 4409 synced_txg = spa_last_synced_txg(data->zcd_spa); 4410 if (data->zcd_txg > synced_txg) 4411 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4412 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4413 synced_txg); 4414 4415 data->zcd_called = B_TRUE; 4416 4417 if (error == ECANCELED) { 4418 ASSERT0(data->zcd_txg); 4419 ASSERT(!data->zcd_added); 4420 4421 /* 4422 * The private callback data should be destroyed here, but 4423 * since we are going to check the zcd_called field after 4424 * dmu_tx_abort(), we will destroy it there. 4425 */ 4426 return; 4427 } 4428 4429 /* Was this callback added to the global callback list? */ 4430 if (!data->zcd_added) 4431 goto out; 4432 4433 ASSERT3U(data->zcd_txg, !=, 0); 4434 4435 /* Remove our callback from the list */ 4436 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4437 list_remove(&zcl.zcl_callbacks, data); 4438 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4439 4440 out: 4441 umem_free(data, sizeof (ztest_cb_data_t)); 4442 } 4443 4444 /* Allocate and initialize callback data structure */ 4445 static ztest_cb_data_t * 4446 ztest_create_cb_data(objset_t *os, uint64_t txg) 4447 { 4448 ztest_cb_data_t *cb_data; 4449 4450 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4451 4452 cb_data->zcd_txg = txg; 4453 cb_data->zcd_spa = dmu_objset_spa(os); 4454 4455 return (cb_data); 4456 } 4457 4458 /* 4459 * If a number of txgs equal to this threshold have been created after a commit 4460 * callback has been registered but not called, then we assume there is an 4461 * implementation bug. 4462 */ 4463 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4464 4465 /* 4466 * Commit callback test. 4467 */ 4468 void 4469 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4470 { 4471 objset_t *os = zd->zd_os; 4472 ztest_od_t od[1]; 4473 dmu_tx_t *tx; 4474 ztest_cb_data_t *cb_data[3], *tmp_cb; 4475 uint64_t old_txg, txg; 4476 int i, error; 4477 4478 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4479 4480 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4481 return; 4482 4483 tx = dmu_tx_create(os); 4484 4485 cb_data[0] = ztest_create_cb_data(os, 0); 4486 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4487 4488 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4489 4490 /* Every once in a while, abort the transaction on purpose */ 4491 if (ztest_random(100) == 0) 4492 error = -1; 4493 4494 if (!error) 4495 error = dmu_tx_assign(tx, TXG_NOWAIT); 4496 4497 txg = error ? 0 : dmu_tx_get_txg(tx); 4498 4499 cb_data[0]->zcd_txg = txg; 4500 cb_data[1] = ztest_create_cb_data(os, txg); 4501 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4502 4503 if (error) { 4504 /* 4505 * It's not a strict requirement to call the registered 4506 * callbacks from inside dmu_tx_abort(), but that's what 4507 * it's supposed to happen in the current implementation 4508 * so we will check for that. 4509 */ 4510 for (i = 0; i < 2; i++) { 4511 cb_data[i]->zcd_expected_err = ECANCELED; 4512 VERIFY(!cb_data[i]->zcd_called); 4513 } 4514 4515 dmu_tx_abort(tx); 4516 4517 for (i = 0; i < 2; i++) { 4518 VERIFY(cb_data[i]->zcd_called); 4519 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4520 } 4521 4522 return; 4523 } 4524 4525 cb_data[2] = ztest_create_cb_data(os, txg); 4526 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4527 4528 /* 4529 * Read existing data to make sure there isn't a future leak. 4530 */ 4531 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4532 &old_txg, DMU_READ_PREFETCH)); 4533 4534 if (old_txg > txg) 4535 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4536 old_txg, txg); 4537 4538 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4539 4540 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4541 4542 /* 4543 * Since commit callbacks don't have any ordering requirement and since 4544 * it is theoretically possible for a commit callback to be called 4545 * after an arbitrary amount of time has elapsed since its txg has been 4546 * synced, it is difficult to reliably determine whether a commit 4547 * callback hasn't been called due to high load or due to a flawed 4548 * implementation. 4549 * 4550 * In practice, we will assume that if after a certain number of txgs a 4551 * commit callback hasn't been called, then most likely there's an 4552 * implementation bug.. 4553 */ 4554 tmp_cb = list_head(&zcl.zcl_callbacks); 4555 if (tmp_cb != NULL && 4556 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4557 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4558 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4559 } 4560 4561 /* 4562 * Let's find the place to insert our callbacks. 4563 * 4564 * Even though the list is ordered by txg, it is possible for the 4565 * insertion point to not be the end because our txg may already be 4566 * quiescing at this point and other callbacks in the open txg 4567 * (from other objsets) may have sneaked in. 4568 */ 4569 tmp_cb = list_tail(&zcl.zcl_callbacks); 4570 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4571 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4572 4573 /* Add the 3 callbacks to the list */ 4574 for (i = 0; i < 3; i++) { 4575 if (tmp_cb == NULL) 4576 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4577 else 4578 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4579 cb_data[i]); 4580 4581 cb_data[i]->zcd_added = B_TRUE; 4582 VERIFY(!cb_data[i]->zcd_called); 4583 4584 tmp_cb = cb_data[i]; 4585 } 4586 4587 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4588 4589 dmu_tx_commit(tx); 4590 } 4591 4592 /* ARGSUSED */ 4593 void 4594 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4595 { 4596 zfs_prop_t proplist[] = { 4597 ZFS_PROP_CHECKSUM, 4598 ZFS_PROP_COMPRESSION, 4599 ZFS_PROP_COPIES, 4600 ZFS_PROP_DEDUP 4601 }; 4602 4603 (void) rw_rdlock(&ztest_name_lock); 4604 4605 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4606 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4607 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4608 4609 (void) rw_unlock(&ztest_name_lock); 4610 } 4611 4612 /* ARGSUSED */ 4613 void 4614 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4615 { 4616 nvlist_t *props = NULL; 4617 4618 (void) rw_rdlock(&ztest_name_lock); 4619 4620 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4621 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4622 4623 VERIFY0(spa_prop_get(ztest_spa, &props)); 4624 4625 if (ztest_opts.zo_verbose >= 6) 4626 dump_nvlist(props, 4); 4627 4628 nvlist_free(props); 4629 4630 (void) rw_unlock(&ztest_name_lock); 4631 } 4632 4633 static int 4634 user_release_one(const char *snapname, const char *holdname) 4635 { 4636 nvlist_t *snaps, *holds; 4637 int error; 4638 4639 snaps = fnvlist_alloc(); 4640 holds = fnvlist_alloc(); 4641 fnvlist_add_boolean(holds, holdname); 4642 fnvlist_add_nvlist(snaps, snapname, holds); 4643 fnvlist_free(holds); 4644 error = dsl_dataset_user_release(snaps, NULL); 4645 fnvlist_free(snaps); 4646 return (error); 4647 } 4648 4649 /* 4650 * Test snapshot hold/release and deferred destroy. 4651 */ 4652 void 4653 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4654 { 4655 int error; 4656 objset_t *os = zd->zd_os; 4657 objset_t *origin; 4658 char snapname[100]; 4659 char fullname[100]; 4660 char clonename[100]; 4661 char tag[100]; 4662 char osname[MAXNAMELEN]; 4663 nvlist_t *holds; 4664 4665 (void) rw_rdlock(&ztest_name_lock); 4666 4667 dmu_objset_name(os, osname); 4668 4669 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4670 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4671 (void) snprintf(clonename, sizeof (clonename), 4672 "%s/ch1_%llu", osname, id); 4673 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4674 4675 /* 4676 * Clean up from any previous run. 4677 */ 4678 error = dsl_destroy_head(clonename); 4679 if (error != ENOENT) 4680 ASSERT0(error); 4681 error = user_release_one(fullname, tag); 4682 if (error != ESRCH && error != ENOENT) 4683 ASSERT0(error); 4684 error = dsl_destroy_snapshot(fullname, B_FALSE); 4685 if (error != ENOENT) 4686 ASSERT0(error); 4687 4688 /* 4689 * Create snapshot, clone it, mark snap for deferred destroy, 4690 * destroy clone, verify snap was also destroyed. 4691 */ 4692 error = dmu_objset_snapshot_one(osname, snapname); 4693 if (error) { 4694 if (error == ENOSPC) { 4695 ztest_record_enospc("dmu_objset_snapshot"); 4696 goto out; 4697 } 4698 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4699 } 4700 4701 error = dmu_objset_clone(clonename, fullname); 4702 if (error) { 4703 if (error == ENOSPC) { 4704 ztest_record_enospc("dmu_objset_clone"); 4705 goto out; 4706 } 4707 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4708 } 4709 4710 error = dsl_destroy_snapshot(fullname, B_TRUE); 4711 if (error) { 4712 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4713 fullname, error); 4714 } 4715 4716 error = dsl_destroy_head(clonename); 4717 if (error) 4718 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4719 4720 error = dmu_objset_hold(fullname, FTAG, &origin); 4721 if (error != ENOENT) 4722 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4723 4724 /* 4725 * Create snapshot, add temporary hold, verify that we can't 4726 * destroy a held snapshot, mark for deferred destroy, 4727 * release hold, verify snapshot was destroyed. 4728 */ 4729 error = dmu_objset_snapshot_one(osname, snapname); 4730 if (error) { 4731 if (error == ENOSPC) { 4732 ztest_record_enospc("dmu_objset_snapshot"); 4733 goto out; 4734 } 4735 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4736 } 4737 4738 holds = fnvlist_alloc(); 4739 fnvlist_add_string(holds, fullname, tag); 4740 error = dsl_dataset_user_hold(holds, 0, NULL); 4741 fnvlist_free(holds); 4742 4743 if (error == ENOSPC) { 4744 ztest_record_enospc("dsl_dataset_user_hold"); 4745 goto out; 4746 } else if (error) { 4747 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4748 fullname, tag, error); 4749 } 4750 4751 error = dsl_destroy_snapshot(fullname, B_FALSE); 4752 if (error != EBUSY) { 4753 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4754 fullname, error); 4755 } 4756 4757 error = dsl_destroy_snapshot(fullname, B_TRUE); 4758 if (error) { 4759 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4760 fullname, error); 4761 } 4762 4763 error = user_release_one(fullname, tag); 4764 if (error) 4765 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4766 4767 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4768 4769 out: 4770 (void) rw_unlock(&ztest_name_lock); 4771 } 4772 4773 /* 4774 * Inject random faults into the on-disk data. 4775 */ 4776 /* ARGSUSED */ 4777 void 4778 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4779 { 4780 ztest_shared_t *zs = ztest_shared; 4781 spa_t *spa = ztest_spa; 4782 int fd; 4783 uint64_t offset; 4784 uint64_t leaves; 4785 uint64_t bad = 0x1990c0ffeedecade; 4786 uint64_t top, leaf; 4787 char path0[MAXPATHLEN]; 4788 char pathrand[MAXPATHLEN]; 4789 size_t fsize; 4790 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4791 int iters = 1000; 4792 int maxfaults; 4793 int mirror_save; 4794 vdev_t *vd0 = NULL; 4795 uint64_t guid0 = 0; 4796 boolean_t islog = B_FALSE; 4797 4798 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4799 maxfaults = MAXFAULTS(); 4800 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4801 mirror_save = zs->zs_mirrors; 4802 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4803 4804 ASSERT(leaves >= 1); 4805 4806 /* 4807 * Grab the name lock as reader. There are some operations 4808 * which don't like to have their vdevs changed while 4809 * they are in progress (i.e. spa_change_guid). Those 4810 * operations will have grabbed the name lock as writer. 4811 */ 4812 (void) rw_rdlock(&ztest_name_lock); 4813 4814 /* 4815 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4816 */ 4817 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4818 4819 if (ztest_random(2) == 0) { 4820 /* 4821 * Inject errors on a normal data device or slog device. 4822 */ 4823 top = ztest_random_vdev_top(spa, B_TRUE); 4824 leaf = ztest_random(leaves) + zs->zs_splits; 4825 4826 /* 4827 * Generate paths to the first leaf in this top-level vdev, 4828 * and to the random leaf we selected. We'll induce transient 4829 * write failures and random online/offline activity on leaf 0, 4830 * and we'll write random garbage to the randomly chosen leaf. 4831 */ 4832 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4833 ztest_opts.zo_dir, ztest_opts.zo_pool, 4834 top * leaves + zs->zs_splits); 4835 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4836 ztest_opts.zo_dir, ztest_opts.zo_pool, 4837 top * leaves + leaf); 4838 4839 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4840 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4841 islog = B_TRUE; 4842 4843 /* 4844 * If the top-level vdev needs to be resilvered 4845 * then we only allow faults on the device that is 4846 * resilvering. 4847 */ 4848 if (vd0 != NULL && maxfaults != 1 && 4849 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4850 vd0->vdev_resilver_txg != 0)) { 4851 /* 4852 * Make vd0 explicitly claim to be unreadable, 4853 * or unwriteable, or reach behind its back 4854 * and close the underlying fd. We can do this if 4855 * maxfaults == 0 because we'll fail and reexecute, 4856 * and we can do it if maxfaults >= 2 because we'll 4857 * have enough redundancy. If maxfaults == 1, the 4858 * combination of this with injection of random data 4859 * corruption below exceeds the pool's fault tolerance. 4860 */ 4861 vdev_file_t *vf = vd0->vdev_tsd; 4862 4863 if (vf != NULL && ztest_random(3) == 0) { 4864 (void) close(vf->vf_vnode->v_fd); 4865 vf->vf_vnode->v_fd = -1; 4866 } else if (ztest_random(2) == 0) { 4867 vd0->vdev_cant_read = B_TRUE; 4868 } else { 4869 vd0->vdev_cant_write = B_TRUE; 4870 } 4871 guid0 = vd0->vdev_guid; 4872 } 4873 } else { 4874 /* 4875 * Inject errors on an l2cache device. 4876 */ 4877 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4878 4879 if (sav->sav_count == 0) { 4880 spa_config_exit(spa, SCL_STATE, FTAG); 4881 (void) rw_unlock(&ztest_name_lock); 4882 return; 4883 } 4884 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4885 guid0 = vd0->vdev_guid; 4886 (void) strcpy(path0, vd0->vdev_path); 4887 (void) strcpy(pathrand, vd0->vdev_path); 4888 4889 leaf = 0; 4890 leaves = 1; 4891 maxfaults = INT_MAX; /* no limit on cache devices */ 4892 } 4893 4894 spa_config_exit(spa, SCL_STATE, FTAG); 4895 (void) rw_unlock(&ztest_name_lock); 4896 4897 /* 4898 * If we can tolerate two or more faults, or we're dealing 4899 * with a slog, randomly online/offline vd0. 4900 */ 4901 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4902 if (ztest_random(10) < 6) { 4903 int flags = (ztest_random(2) == 0 ? 4904 ZFS_OFFLINE_TEMPORARY : 0); 4905 4906 /* 4907 * We have to grab the zs_name_lock as writer to 4908 * prevent a race between offlining a slog and 4909 * destroying a dataset. Offlining the slog will 4910 * grab a reference on the dataset which may cause 4911 * dmu_objset_destroy() to fail with EBUSY thus 4912 * leaving the dataset in an inconsistent state. 4913 */ 4914 if (islog) 4915 (void) rw_wrlock(&ztest_name_lock); 4916 4917 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4918 4919 if (islog) 4920 (void) rw_unlock(&ztest_name_lock); 4921 } else { 4922 /* 4923 * Ideally we would like to be able to randomly 4924 * call vdev_[on|off]line without holding locks 4925 * to force unpredictable failures but the side 4926 * effects of vdev_[on|off]line prevent us from 4927 * doing so. We grab the ztest_vdev_lock here to 4928 * prevent a race between injection testing and 4929 * aux_vdev removal. 4930 */ 4931 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4932 (void) vdev_online(spa, guid0, 0, NULL); 4933 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4934 } 4935 } 4936 4937 if (maxfaults == 0) 4938 return; 4939 4940 /* 4941 * We have at least single-fault tolerance, so inject data corruption. 4942 */ 4943 fd = open(pathrand, O_RDWR); 4944 4945 if (fd == -1) /* we hit a gap in the device namespace */ 4946 return; 4947 4948 fsize = lseek(fd, 0, SEEK_END); 4949 4950 while (--iters != 0) { 4951 offset = ztest_random(fsize / (leaves << bshift)) * 4952 (leaves << bshift) + (leaf << bshift) + 4953 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4954 4955 if (offset >= fsize) 4956 continue; 4957 4958 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4959 if (mirror_save != zs->zs_mirrors) { 4960 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4961 (void) close(fd); 4962 return; 4963 } 4964 4965 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4966 fatal(1, "can't inject bad word at 0x%llx in %s", 4967 offset, pathrand); 4968 4969 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4970 4971 if (ztest_opts.zo_verbose >= 7) 4972 (void) printf("injected bad word into %s," 4973 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4974 } 4975 4976 (void) close(fd); 4977 } 4978 4979 /* 4980 * Verify that DDT repair works as expected. 4981 */ 4982 void 4983 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4984 { 4985 ztest_shared_t *zs = ztest_shared; 4986 spa_t *spa = ztest_spa; 4987 objset_t *os = zd->zd_os; 4988 ztest_od_t od[1]; 4989 uint64_t object, blocksize, txg, pattern, psize; 4990 enum zio_checksum checksum = spa_dedup_checksum(spa); 4991 dmu_buf_t *db; 4992 dmu_tx_t *tx; 4993 void *buf; 4994 blkptr_t blk; 4995 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4996 4997 blocksize = ztest_random_blocksize(); 4998 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4999 5000 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5001 5002 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5003 return; 5004 5005 /* 5006 * Take the name lock as writer to prevent anyone else from changing 5007 * the pool and dataset properies we need to maintain during this test. 5008 */ 5009 (void) rw_wrlock(&ztest_name_lock); 5010 5011 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5012 B_FALSE) != 0 || 5013 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5014 B_FALSE) != 0) { 5015 (void) rw_unlock(&ztest_name_lock); 5016 return; 5017 } 5018 5019 object = od[0].od_object; 5020 blocksize = od[0].od_blocksize; 5021 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5022 5023 ASSERT(object != 0); 5024 5025 tx = dmu_tx_create(os); 5026 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5027 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5028 if (txg == 0) { 5029 (void) rw_unlock(&ztest_name_lock); 5030 return; 5031 } 5032 5033 /* 5034 * Write all the copies of our block. 5035 */ 5036 for (int i = 0; i < copies; i++) { 5037 uint64_t offset = i * blocksize; 5038 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5039 DMU_READ_NO_PREFETCH); 5040 if (error != 0) { 5041 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5042 os, (long long)object, (long long) offset, error); 5043 } 5044 ASSERT(db->db_offset == offset); 5045 ASSERT(db->db_size == blocksize); 5046 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5047 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5048 dmu_buf_will_fill(db, tx); 5049 ztest_pattern_set(db->db_data, db->db_size, pattern); 5050 dmu_buf_rele(db, FTAG); 5051 } 5052 5053 dmu_tx_commit(tx); 5054 txg_wait_synced(spa_get_dsl(spa), txg); 5055 5056 /* 5057 * Find out what block we got. 5058 */ 5059 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5060 DMU_READ_NO_PREFETCH)); 5061 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5062 dmu_buf_rele(db, FTAG); 5063 5064 /* 5065 * Damage the block. Dedup-ditto will save us when we read it later. 5066 */ 5067 psize = BP_GET_PSIZE(&blk); 5068 buf = zio_buf_alloc(psize); 5069 ztest_pattern_set(buf, psize, ~pattern); 5070 5071 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5072 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5073 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5074 5075 zio_buf_free(buf, psize); 5076 5077 (void) rw_unlock(&ztest_name_lock); 5078 } 5079 5080 /* 5081 * Scrub the pool. 5082 */ 5083 /* ARGSUSED */ 5084 void 5085 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5086 { 5087 spa_t *spa = ztest_spa; 5088 5089 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5090 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5091 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5092 } 5093 5094 /* 5095 * Change the guid for the pool. 5096 */ 5097 /* ARGSUSED */ 5098 void 5099 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5100 { 5101 spa_t *spa = ztest_spa; 5102 uint64_t orig, load; 5103 int error; 5104 5105 orig = spa_guid(spa); 5106 load = spa_load_guid(spa); 5107 5108 (void) rw_wrlock(&ztest_name_lock); 5109 error = spa_change_guid(spa); 5110 (void) rw_unlock(&ztest_name_lock); 5111 5112 if (error != 0) 5113 return; 5114 5115 if (ztest_opts.zo_verbose >= 4) { 5116 (void) printf("Changed guid old %llu -> %llu\n", 5117 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5118 } 5119 5120 VERIFY3U(orig, !=, spa_guid(spa)); 5121 VERIFY3U(load, ==, spa_load_guid(spa)); 5122 } 5123 5124 /* 5125 * Rename the pool to a different name and then rename it back. 5126 */ 5127 /* ARGSUSED */ 5128 void 5129 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5130 { 5131 char *oldname, *newname; 5132 spa_t *spa; 5133 5134 (void) rw_wrlock(&ztest_name_lock); 5135 5136 oldname = ztest_opts.zo_pool; 5137 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5138 (void) strcpy(newname, oldname); 5139 (void) strcat(newname, "_tmp"); 5140 5141 /* 5142 * Do the rename 5143 */ 5144 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5145 5146 /* 5147 * Try to open it under the old name, which shouldn't exist 5148 */ 5149 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5150 5151 /* 5152 * Open it under the new name and make sure it's still the same spa_t. 5153 */ 5154 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5155 5156 ASSERT(spa == ztest_spa); 5157 spa_close(spa, FTAG); 5158 5159 /* 5160 * Rename it back to the original 5161 */ 5162 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5163 5164 /* 5165 * Make sure it can still be opened 5166 */ 5167 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5168 5169 ASSERT(spa == ztest_spa); 5170 spa_close(spa, FTAG); 5171 5172 umem_free(newname, strlen(newname) + 1); 5173 5174 (void) rw_unlock(&ztest_name_lock); 5175 } 5176 5177 /* 5178 * Verify pool integrity by running zdb. 5179 */ 5180 static void 5181 ztest_run_zdb(char *pool) 5182 { 5183 int status; 5184 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5185 char zbuf[1024]; 5186 char *bin; 5187 char *ztest; 5188 char *isa; 5189 int isalen; 5190 FILE *fp; 5191 5192 (void) realpath(getexecname(), zdb); 5193 5194 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5195 bin = strstr(zdb, "/usr/bin/"); 5196 ztest = strstr(bin, "/ztest"); 5197 isa = bin + 8; 5198 isalen = ztest - isa; 5199 isa = strdup(isa); 5200 /* LINTED */ 5201 (void) sprintf(bin, 5202 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5203 isalen, 5204 isa, 5205 ztest_opts.zo_verbose >= 3 ? "s" : "", 5206 ztest_opts.zo_verbose >= 4 ? "v" : "", 5207 spa_config_path, 5208 pool); 5209 free(isa); 5210 5211 if (ztest_opts.zo_verbose >= 5) 5212 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5213 5214 fp = popen(zdb, "r"); 5215 5216 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5217 if (ztest_opts.zo_verbose >= 3) 5218 (void) printf("%s", zbuf); 5219 5220 status = pclose(fp); 5221 5222 if (status == 0) 5223 return; 5224 5225 ztest_dump_core = 0; 5226 if (WIFEXITED(status)) 5227 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5228 else 5229 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5230 } 5231 5232 static void 5233 ztest_walk_pool_directory(char *header) 5234 { 5235 spa_t *spa = NULL; 5236 5237 if (ztest_opts.zo_verbose >= 6) 5238 (void) printf("%s\n", header); 5239 5240 mutex_enter(&spa_namespace_lock); 5241 while ((spa = spa_next(spa)) != NULL) 5242 if (ztest_opts.zo_verbose >= 6) 5243 (void) printf("\t%s\n", spa_name(spa)); 5244 mutex_exit(&spa_namespace_lock); 5245 } 5246 5247 static void 5248 ztest_spa_import_export(char *oldname, char *newname) 5249 { 5250 nvlist_t *config, *newconfig; 5251 uint64_t pool_guid; 5252 spa_t *spa; 5253 int error; 5254 5255 if (ztest_opts.zo_verbose >= 4) { 5256 (void) printf("import/export: old = %s, new = %s\n", 5257 oldname, newname); 5258 } 5259 5260 /* 5261 * Clean up from previous runs. 5262 */ 5263 (void) spa_destroy(newname); 5264 5265 /* 5266 * Get the pool's configuration and guid. 5267 */ 5268 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5269 5270 /* 5271 * Kick off a scrub to tickle scrub/export races. 5272 */ 5273 if (ztest_random(2) == 0) 5274 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5275 5276 pool_guid = spa_guid(spa); 5277 spa_close(spa, FTAG); 5278 5279 ztest_walk_pool_directory("pools before export"); 5280 5281 /* 5282 * Export it. 5283 */ 5284 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5285 5286 ztest_walk_pool_directory("pools after export"); 5287 5288 /* 5289 * Try to import it. 5290 */ 5291 newconfig = spa_tryimport(config); 5292 ASSERT(newconfig != NULL); 5293 nvlist_free(newconfig); 5294 5295 /* 5296 * Import it under the new name. 5297 */ 5298 error = spa_import(newname, config, NULL, 0); 5299 if (error != 0) { 5300 dump_nvlist(config, 0); 5301 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5302 oldname, newname, error); 5303 } 5304 5305 ztest_walk_pool_directory("pools after import"); 5306 5307 /* 5308 * Try to import it again -- should fail with EEXIST. 5309 */ 5310 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5311 5312 /* 5313 * Try to import it under a different name -- should fail with EEXIST. 5314 */ 5315 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5316 5317 /* 5318 * Verify that the pool is no longer visible under the old name. 5319 */ 5320 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5321 5322 /* 5323 * Verify that we can open and close the pool using the new name. 5324 */ 5325 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5326 ASSERT(pool_guid == spa_guid(spa)); 5327 spa_close(spa, FTAG); 5328 5329 nvlist_free(config); 5330 } 5331 5332 static void 5333 ztest_resume(spa_t *spa) 5334 { 5335 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5336 (void) printf("resuming from suspended state\n"); 5337 spa_vdev_state_enter(spa, SCL_NONE); 5338 vdev_clear(spa, NULL); 5339 (void) spa_vdev_state_exit(spa, NULL, 0); 5340 (void) zio_resume(spa); 5341 } 5342 5343 static void * 5344 ztest_resume_thread(void *arg) 5345 { 5346 spa_t *spa = arg; 5347 5348 while (!ztest_exiting) { 5349 if (spa_suspended(spa)) 5350 ztest_resume(spa); 5351 (void) poll(NULL, 0, 100); 5352 } 5353 return (NULL); 5354 } 5355 5356 static void * 5357 ztest_deadman_thread(void *arg) 5358 { 5359 ztest_shared_t *zs = arg; 5360 spa_t *spa = ztest_spa; 5361 hrtime_t delta, total = 0; 5362 5363 for (;;) { 5364 delta = zs->zs_thread_stop - zs->zs_thread_start + 5365 MSEC2NSEC(zfs_deadman_synctime_ms); 5366 5367 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5368 5369 /* 5370 * If the pool is suspended then fail immediately. Otherwise, 5371 * check to see if the pool is making any progress. If 5372 * vdev_deadman() discovers that there hasn't been any recent 5373 * I/Os then it will end up aborting the tests. 5374 */ 5375 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5376 fatal(0, "aborting test after %llu seconds because " 5377 "pool has transitioned to a suspended state.", 5378 zfs_deadman_synctime_ms / 1000); 5379 return (NULL); 5380 } 5381 vdev_deadman(spa->spa_root_vdev); 5382 5383 total += zfs_deadman_synctime_ms/1000; 5384 (void) printf("ztest has been running for %lld seconds\n", 5385 total); 5386 } 5387 } 5388 5389 static void 5390 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5391 { 5392 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5393 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5394 hrtime_t functime = gethrtime(); 5395 5396 for (int i = 0; i < zi->zi_iters; i++) 5397 zi->zi_func(zd, id); 5398 5399 functime = gethrtime() - functime; 5400 5401 atomic_add_64(&zc->zc_count, 1); 5402 atomic_add_64(&zc->zc_time, functime); 5403 5404 if (ztest_opts.zo_verbose >= 4) { 5405 Dl_info dli; 5406 (void) dladdr((void *)zi->zi_func, &dli); 5407 (void) printf("%6.2f sec in %s\n", 5408 (double)functime / NANOSEC, dli.dli_sname); 5409 } 5410 } 5411 5412 static void * 5413 ztest_thread(void *arg) 5414 { 5415 int rand; 5416 uint64_t id = (uintptr_t)arg; 5417 ztest_shared_t *zs = ztest_shared; 5418 uint64_t call_next; 5419 hrtime_t now; 5420 ztest_info_t *zi; 5421 ztest_shared_callstate_t *zc; 5422 5423 while ((now = gethrtime()) < zs->zs_thread_stop) { 5424 /* 5425 * See if it's time to force a crash. 5426 */ 5427 if (now > zs->zs_thread_kill) 5428 ztest_kill(zs); 5429 5430 /* 5431 * If we're getting ENOSPC with some regularity, stop. 5432 */ 5433 if (zs->zs_enospc_count > 10) 5434 break; 5435 5436 /* 5437 * Pick a random function to execute. 5438 */ 5439 rand = ztest_random(ZTEST_FUNCS); 5440 zi = &ztest_info[rand]; 5441 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5442 call_next = zc->zc_next; 5443 5444 if (now >= call_next && 5445 atomic_cas_64(&zc->zc_next, call_next, call_next + 5446 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5447 ztest_execute(rand, zi, id); 5448 } 5449 } 5450 5451 return (NULL); 5452 } 5453 5454 static void 5455 ztest_dataset_name(char *dsname, char *pool, int d) 5456 { 5457 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5458 } 5459 5460 static void 5461 ztest_dataset_destroy(int d) 5462 { 5463 char name[MAXNAMELEN]; 5464 5465 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5466 5467 if (ztest_opts.zo_verbose >= 3) 5468 (void) printf("Destroying %s to free up space\n", name); 5469 5470 /* 5471 * Cleanup any non-standard clones and snapshots. In general, 5472 * ztest thread t operates on dataset (t % zopt_datasets), 5473 * so there may be more than one thing to clean up. 5474 */ 5475 for (int t = d; t < ztest_opts.zo_threads; 5476 t += ztest_opts.zo_datasets) { 5477 ztest_dsl_dataset_cleanup(name, t); 5478 } 5479 5480 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5481 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5482 } 5483 5484 static void 5485 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5486 { 5487 uint64_t usedobjs, dirobjs, scratch; 5488 5489 /* 5490 * ZTEST_DIROBJ is the object directory for the entire dataset. 5491 * Therefore, the number of objects in use should equal the 5492 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5493 * If not, we have an object leak. 5494 * 5495 * Note that we can only check this in ztest_dataset_open(), 5496 * when the open-context and syncing-context values agree. 5497 * That's because zap_count() returns the open-context value, 5498 * while dmu_objset_space() returns the rootbp fill count. 5499 */ 5500 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5501 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5502 ASSERT3U(dirobjs + 1, ==, usedobjs); 5503 } 5504 5505 static int 5506 ztest_dataset_open(int d) 5507 { 5508 ztest_ds_t *zd = &ztest_ds[d]; 5509 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5510 objset_t *os; 5511 zilog_t *zilog; 5512 char name[MAXNAMELEN]; 5513 int error; 5514 5515 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5516 5517 (void) rw_rdlock(&ztest_name_lock); 5518 5519 error = ztest_dataset_create(name); 5520 if (error == ENOSPC) { 5521 (void) rw_unlock(&ztest_name_lock); 5522 ztest_record_enospc(FTAG); 5523 return (error); 5524 } 5525 ASSERT(error == 0 || error == EEXIST); 5526 5527 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5528 (void) rw_unlock(&ztest_name_lock); 5529 5530 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5531 5532 zilog = zd->zd_zilog; 5533 5534 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5535 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5536 fatal(0, "missing log records: claimed %llu < committed %llu", 5537 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5538 5539 ztest_dataset_dirobj_verify(zd); 5540 5541 zil_replay(os, zd, ztest_replay_vector); 5542 5543 ztest_dataset_dirobj_verify(zd); 5544 5545 if (ztest_opts.zo_verbose >= 6) 5546 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5547 zd->zd_name, 5548 (u_longlong_t)zilog->zl_parse_blk_count, 5549 (u_longlong_t)zilog->zl_parse_lr_count, 5550 (u_longlong_t)zilog->zl_replaying_seq); 5551 5552 zilog = zil_open(os, ztest_get_data); 5553 5554 if (zilog->zl_replaying_seq != 0 && 5555 zilog->zl_replaying_seq < committed_seq) 5556 fatal(0, "missing log records: replayed %llu < committed %llu", 5557 zilog->zl_replaying_seq, committed_seq); 5558 5559 return (0); 5560 } 5561 5562 static void 5563 ztest_dataset_close(int d) 5564 { 5565 ztest_ds_t *zd = &ztest_ds[d]; 5566 5567 zil_close(zd->zd_zilog); 5568 dmu_objset_disown(zd->zd_os, zd); 5569 5570 ztest_zd_fini(zd); 5571 } 5572 5573 /* 5574 * Kick off threads to run tests on all datasets in parallel. 5575 */ 5576 static void 5577 ztest_run(ztest_shared_t *zs) 5578 { 5579 thread_t *tid; 5580 spa_t *spa; 5581 objset_t *os; 5582 thread_t resume_tid; 5583 int error; 5584 5585 ztest_exiting = B_FALSE; 5586 5587 /* 5588 * Initialize parent/child shared state. 5589 */ 5590 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5591 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5592 5593 zs->zs_thread_start = gethrtime(); 5594 zs->zs_thread_stop = 5595 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5596 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5597 zs->zs_thread_kill = zs->zs_thread_stop; 5598 if (ztest_random(100) < ztest_opts.zo_killrate) { 5599 zs->zs_thread_kill -= 5600 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5601 } 5602 5603 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5604 5605 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5606 offsetof(ztest_cb_data_t, zcd_node)); 5607 5608 /* 5609 * Open our pool. 5610 */ 5611 kernel_init(FREAD | FWRITE); 5612 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5613 spa->spa_debug = B_TRUE; 5614 metaslab_preload_limit = ztest_random(20) + 1; 5615 ztest_spa = spa; 5616 5617 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5618 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5619 zs->zs_guid = dmu_objset_fsid_guid(os); 5620 dmu_objset_disown(os, FTAG); 5621 5622 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5623 5624 /* 5625 * We don't expect the pool to suspend unless maxfaults == 0, 5626 * in which case ztest_fault_inject() temporarily takes away 5627 * the only valid replica. 5628 */ 5629 if (MAXFAULTS() == 0) 5630 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5631 else 5632 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5633 5634 /* 5635 * Create a thread to periodically resume suspended I/O. 5636 */ 5637 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5638 &resume_tid) == 0); 5639 5640 /* 5641 * Create a deadman thread to abort() if we hang. 5642 */ 5643 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5644 NULL) == 0); 5645 5646 /* 5647 * Verify that we can safely inquire about about any object, 5648 * whether it's allocated or not. To make it interesting, 5649 * we probe a 5-wide window around each power of two. 5650 * This hits all edge cases, including zero and the max. 5651 */ 5652 for (int t = 0; t < 64; t++) { 5653 for (int d = -5; d <= 5; d++) { 5654 error = dmu_object_info(spa->spa_meta_objset, 5655 (1ULL << t) + d, NULL); 5656 ASSERT(error == 0 || error == ENOENT || 5657 error == EINVAL); 5658 } 5659 } 5660 5661 /* 5662 * If we got any ENOSPC errors on the previous run, destroy something. 5663 */ 5664 if (zs->zs_enospc_count != 0) { 5665 int d = ztest_random(ztest_opts.zo_datasets); 5666 ztest_dataset_destroy(d); 5667 } 5668 zs->zs_enospc_count = 0; 5669 5670 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5671 UMEM_NOFAIL); 5672 5673 if (ztest_opts.zo_verbose >= 4) 5674 (void) printf("starting main threads...\n"); 5675 5676 /* 5677 * Kick off all the tests that run in parallel. 5678 */ 5679 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5680 if (t < ztest_opts.zo_datasets && 5681 ztest_dataset_open(t) != 0) 5682 return; 5683 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5684 THR_BOUND, &tid[t]) == 0); 5685 } 5686 5687 /* 5688 * Wait for all of the tests to complete. We go in reverse order 5689 * so we don't close datasets while threads are still using them. 5690 */ 5691 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5692 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5693 if (t < ztest_opts.zo_datasets) 5694 ztest_dataset_close(t); 5695 } 5696 5697 txg_wait_synced(spa_get_dsl(spa), 0); 5698 5699 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5700 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5701 zfs_dbgmsg_print(FTAG); 5702 5703 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5704 5705 /* Kill the resume thread */ 5706 ztest_exiting = B_TRUE; 5707 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5708 ztest_resume(spa); 5709 5710 /* 5711 * Right before closing the pool, kick off a bunch of async I/O; 5712 * spa_close() should wait for it to complete. 5713 */ 5714 for (uint64_t object = 1; object < 50; object++) 5715 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5716 5717 spa_close(spa, FTAG); 5718 5719 /* 5720 * Verify that we can loop over all pools. 5721 */ 5722 mutex_enter(&spa_namespace_lock); 5723 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5724 if (ztest_opts.zo_verbose > 3) 5725 (void) printf("spa_next: found %s\n", spa_name(spa)); 5726 mutex_exit(&spa_namespace_lock); 5727 5728 /* 5729 * Verify that we can export the pool and reimport it under a 5730 * different name. 5731 */ 5732 if (ztest_random(2) == 0) { 5733 char name[MAXNAMELEN]; 5734 (void) snprintf(name, MAXNAMELEN, "%s_import", 5735 ztest_opts.zo_pool); 5736 ztest_spa_import_export(ztest_opts.zo_pool, name); 5737 ztest_spa_import_export(name, ztest_opts.zo_pool); 5738 } 5739 5740 kernel_fini(); 5741 5742 list_destroy(&zcl.zcl_callbacks); 5743 5744 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5745 5746 (void) rwlock_destroy(&ztest_name_lock); 5747 (void) _mutex_destroy(&ztest_vdev_lock); 5748 } 5749 5750 static void 5751 ztest_freeze(void) 5752 { 5753 ztest_ds_t *zd = &ztest_ds[0]; 5754 spa_t *spa; 5755 int numloops = 0; 5756 5757 if (ztest_opts.zo_verbose >= 3) 5758 (void) printf("testing spa_freeze()...\n"); 5759 5760 kernel_init(FREAD | FWRITE); 5761 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5762 VERIFY3U(0, ==, ztest_dataset_open(0)); 5763 spa->spa_debug = B_TRUE; 5764 ztest_spa = spa; 5765 5766 /* 5767 * Force the first log block to be transactionally allocated. 5768 * We have to do this before we freeze the pool -- otherwise 5769 * the log chain won't be anchored. 5770 */ 5771 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5772 ztest_dmu_object_alloc_free(zd, 0); 5773 zil_commit(zd->zd_zilog, 0); 5774 } 5775 5776 txg_wait_synced(spa_get_dsl(spa), 0); 5777 5778 /* 5779 * Freeze the pool. This stops spa_sync() from doing anything, 5780 * so that the only way to record changes from now on is the ZIL. 5781 */ 5782 spa_freeze(spa); 5783 5784 /* 5785 * Because it is hard to predict how much space a write will actually 5786 * require beforehand, we leave ourselves some fudge space to write over 5787 * capacity. 5788 */ 5789 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5790 5791 /* 5792 * Run tests that generate log records but don't alter the pool config 5793 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5794 * We do a txg_wait_synced() after each iteration to force the txg 5795 * to increase well beyond the last synced value in the uberblock. 5796 * The ZIL should be OK with that. 5797 * 5798 * Run a random number of times less than zo_maxloops and ensure we do 5799 * not run out of space on the pool. 5800 */ 5801 while (ztest_random(10) != 0 && 5802 numloops++ < ztest_opts.zo_maxloops && 5803 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5804 ztest_od_t od; 5805 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5806 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5807 ztest_io(zd, od.od_object, 5808 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5809 txg_wait_synced(spa_get_dsl(spa), 0); 5810 } 5811 5812 /* 5813 * Commit all of the changes we just generated. 5814 */ 5815 zil_commit(zd->zd_zilog, 0); 5816 txg_wait_synced(spa_get_dsl(spa), 0); 5817 5818 /* 5819 * Close our dataset and close the pool. 5820 */ 5821 ztest_dataset_close(0); 5822 spa_close(spa, FTAG); 5823 kernel_fini(); 5824 5825 /* 5826 * Open and close the pool and dataset to induce log replay. 5827 */ 5828 kernel_init(FREAD | FWRITE); 5829 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5830 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5831 VERIFY3U(0, ==, ztest_dataset_open(0)); 5832 ztest_dataset_close(0); 5833 5834 spa->spa_debug = B_TRUE; 5835 ztest_spa = spa; 5836 txg_wait_synced(spa_get_dsl(spa), 0); 5837 ztest_reguid(NULL, 0); 5838 5839 spa_close(spa, FTAG); 5840 kernel_fini(); 5841 } 5842 5843 void 5844 print_time(hrtime_t t, char *timebuf) 5845 { 5846 hrtime_t s = t / NANOSEC; 5847 hrtime_t m = s / 60; 5848 hrtime_t h = m / 60; 5849 hrtime_t d = h / 24; 5850 5851 s -= m * 60; 5852 m -= h * 60; 5853 h -= d * 24; 5854 5855 timebuf[0] = '\0'; 5856 5857 if (d) 5858 (void) sprintf(timebuf, 5859 "%llud%02lluh%02llum%02llus", d, h, m, s); 5860 else if (h) 5861 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5862 else if (m) 5863 (void) sprintf(timebuf, "%llum%02llus", m, s); 5864 else 5865 (void) sprintf(timebuf, "%llus", s); 5866 } 5867 5868 static nvlist_t * 5869 make_random_props() 5870 { 5871 nvlist_t *props; 5872 5873 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5874 if (ztest_random(2) == 0) 5875 return (props); 5876 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5877 5878 return (props); 5879 } 5880 5881 /* 5882 * Create a storage pool with the given name and initial vdev size. 5883 * Then test spa_freeze() functionality. 5884 */ 5885 static void 5886 ztest_init(ztest_shared_t *zs) 5887 { 5888 spa_t *spa; 5889 nvlist_t *nvroot, *props; 5890 5891 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5892 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5893 5894 kernel_init(FREAD | FWRITE); 5895 5896 /* 5897 * Create the storage pool. 5898 */ 5899 (void) spa_destroy(ztest_opts.zo_pool); 5900 ztest_shared->zs_vdev_next_leaf = 0; 5901 zs->zs_splits = 0; 5902 zs->zs_mirrors = ztest_opts.zo_mirrors; 5903 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5904 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5905 props = make_random_props(); 5906 for (int i = 0; i < SPA_FEATURES; i++) { 5907 char buf[1024]; 5908 (void) snprintf(buf, sizeof (buf), "feature@%s", 5909 spa_feature_table[i].fi_uname); 5910 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5911 } 5912 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5913 nvlist_free(nvroot); 5914 5915 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5916 zs->zs_metaslab_sz = 5917 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5918 5919 spa_close(spa, FTAG); 5920 5921 kernel_fini(); 5922 5923 ztest_run_zdb(ztest_opts.zo_pool); 5924 5925 ztest_freeze(); 5926 5927 ztest_run_zdb(ztest_opts.zo_pool); 5928 5929 (void) rwlock_destroy(&ztest_name_lock); 5930 (void) _mutex_destroy(&ztest_vdev_lock); 5931 } 5932 5933 static void 5934 setup_data_fd(void) 5935 { 5936 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5937 5938 ztest_fd_data = mkstemp(ztest_name_data); 5939 ASSERT3S(ztest_fd_data, >=, 0); 5940 (void) unlink(ztest_name_data); 5941 } 5942 5943 5944 static int 5945 shared_data_size(ztest_shared_hdr_t *hdr) 5946 { 5947 int size; 5948 5949 size = hdr->zh_hdr_size; 5950 size += hdr->zh_opts_size; 5951 size += hdr->zh_size; 5952 size += hdr->zh_stats_size * hdr->zh_stats_count; 5953 size += hdr->zh_ds_size * hdr->zh_ds_count; 5954 5955 return (size); 5956 } 5957 5958 static void 5959 setup_hdr(void) 5960 { 5961 int size; 5962 ztest_shared_hdr_t *hdr; 5963 5964 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5965 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5966 ASSERT(hdr != MAP_FAILED); 5967 5968 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5969 5970 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5971 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5972 hdr->zh_size = sizeof (ztest_shared_t); 5973 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5974 hdr->zh_stats_count = ZTEST_FUNCS; 5975 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5976 hdr->zh_ds_count = ztest_opts.zo_datasets; 5977 5978 size = shared_data_size(hdr); 5979 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5980 5981 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5982 } 5983 5984 static void 5985 setup_data(void) 5986 { 5987 int size, offset; 5988 ztest_shared_hdr_t *hdr; 5989 uint8_t *buf; 5990 5991 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5992 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5993 ASSERT(hdr != MAP_FAILED); 5994 5995 size = shared_data_size(hdr); 5996 5997 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5998 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5999 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6000 ASSERT(hdr != MAP_FAILED); 6001 buf = (uint8_t *)hdr; 6002 6003 offset = hdr->zh_hdr_size; 6004 ztest_shared_opts = (void *)&buf[offset]; 6005 offset += hdr->zh_opts_size; 6006 ztest_shared = (void *)&buf[offset]; 6007 offset += hdr->zh_size; 6008 ztest_shared_callstate = (void *)&buf[offset]; 6009 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6010 ztest_shared_ds = (void *)&buf[offset]; 6011 } 6012 6013 static boolean_t 6014 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6015 { 6016 pid_t pid; 6017 int status; 6018 char *cmdbuf = NULL; 6019 6020 pid = fork(); 6021 6022 if (cmd == NULL) { 6023 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6024 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6025 cmd = cmdbuf; 6026 } 6027 6028 if (pid == -1) 6029 fatal(1, "fork failed"); 6030 6031 if (pid == 0) { /* child */ 6032 char *emptyargv[2] = { cmd, NULL }; 6033 char fd_data_str[12]; 6034 6035 struct rlimit rl = { 1024, 1024 }; 6036 (void) setrlimit(RLIMIT_NOFILE, &rl); 6037 6038 (void) close(ztest_fd_rand); 6039 VERIFY3U(11, >=, 6040 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6041 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6042 6043 (void) enable_extended_FILE_stdio(-1, -1); 6044 if (libpath != NULL) 6045 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6046 (void) execv(cmd, emptyargv); 6047 ztest_dump_core = B_FALSE; 6048 fatal(B_TRUE, "exec failed: %s", cmd); 6049 } 6050 6051 if (cmdbuf != NULL) { 6052 umem_free(cmdbuf, MAXPATHLEN); 6053 cmd = NULL; 6054 } 6055 6056 while (waitpid(pid, &status, 0) != pid) 6057 continue; 6058 if (statusp != NULL) 6059 *statusp = status; 6060 6061 if (WIFEXITED(status)) { 6062 if (WEXITSTATUS(status) != 0) { 6063 (void) fprintf(stderr, "child exited with code %d\n", 6064 WEXITSTATUS(status)); 6065 exit(2); 6066 } 6067 return (B_FALSE); 6068 } else if (WIFSIGNALED(status)) { 6069 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6070 (void) fprintf(stderr, "child died with signal %d\n", 6071 WTERMSIG(status)); 6072 exit(3); 6073 } 6074 return (B_TRUE); 6075 } else { 6076 (void) fprintf(stderr, "something strange happened to child\n"); 6077 exit(4); 6078 /* NOTREACHED */ 6079 } 6080 } 6081 6082 static void 6083 ztest_run_init(void) 6084 { 6085 ztest_shared_t *zs = ztest_shared; 6086 6087 ASSERT(ztest_opts.zo_init != 0); 6088 6089 /* 6090 * Blow away any existing copy of zpool.cache 6091 */ 6092 (void) remove(spa_config_path); 6093 6094 /* 6095 * Create and initialize our storage pool. 6096 */ 6097 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6098 bzero(zs, sizeof (ztest_shared_t)); 6099 if (ztest_opts.zo_verbose >= 3 && 6100 ztest_opts.zo_init != 1) { 6101 (void) printf("ztest_init(), pass %d\n", i); 6102 } 6103 ztest_init(zs); 6104 } 6105 } 6106 6107 int 6108 main(int argc, char **argv) 6109 { 6110 int kills = 0; 6111 int iters = 0; 6112 int older = 0; 6113 int newer = 0; 6114 ztest_shared_t *zs; 6115 ztest_info_t *zi; 6116 ztest_shared_callstate_t *zc; 6117 char timebuf[100]; 6118 char numbuf[6]; 6119 spa_t *spa; 6120 char *cmd; 6121 boolean_t hasalt; 6122 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6123 6124 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6125 6126 dprintf_setup(&argc, argv); 6127 zfs_deadman_synctime_ms = 300000; 6128 6129 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6130 ASSERT3S(ztest_fd_rand, >=, 0); 6131 6132 if (!fd_data_str) { 6133 process_options(argc, argv); 6134 6135 setup_data_fd(); 6136 setup_hdr(); 6137 setup_data(); 6138 bcopy(&ztest_opts, ztest_shared_opts, 6139 sizeof (*ztest_shared_opts)); 6140 } else { 6141 ztest_fd_data = atoi(fd_data_str); 6142 setup_data(); 6143 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6144 } 6145 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6146 6147 /* Override location of zpool.cache */ 6148 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6149 ztest_opts.zo_dir), !=, -1); 6150 6151 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6152 UMEM_NOFAIL); 6153 zs = ztest_shared; 6154 6155 if (fd_data_str) { 6156 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6157 metaslab_df_alloc_threshold = 6158 zs->zs_metaslab_df_alloc_threshold; 6159 6160 if (zs->zs_do_init) 6161 ztest_run_init(); 6162 else 6163 ztest_run(zs); 6164 exit(0); 6165 } 6166 6167 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6168 6169 if (ztest_opts.zo_verbose >= 1) { 6170 (void) printf("%llu vdevs, %d datasets, %d threads," 6171 " %llu seconds...\n", 6172 (u_longlong_t)ztest_opts.zo_vdevs, 6173 ztest_opts.zo_datasets, 6174 ztest_opts.zo_threads, 6175 (u_longlong_t)ztest_opts.zo_time); 6176 } 6177 6178 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6179 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6180 6181 zs->zs_do_init = B_TRUE; 6182 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6183 if (ztest_opts.zo_verbose >= 1) { 6184 (void) printf("Executing older ztest for " 6185 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6186 } 6187 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6188 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6189 } else { 6190 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6191 } 6192 zs->zs_do_init = B_FALSE; 6193 6194 zs->zs_proc_start = gethrtime(); 6195 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6196 6197 for (int f = 0; f < ZTEST_FUNCS; f++) { 6198 zi = &ztest_info[f]; 6199 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6200 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6201 zc->zc_next = UINT64_MAX; 6202 else 6203 zc->zc_next = zs->zs_proc_start + 6204 ztest_random(2 * zi->zi_interval[0] + 1); 6205 } 6206 6207 /* 6208 * Run the tests in a loop. These tests include fault injection 6209 * to verify that self-healing data works, and forced crashes 6210 * to verify that we never lose on-disk consistency. 6211 */ 6212 while (gethrtime() < zs->zs_proc_stop) { 6213 int status; 6214 boolean_t killed; 6215 6216 /* 6217 * Initialize the workload counters for each function. 6218 */ 6219 for (int f = 0; f < ZTEST_FUNCS; f++) { 6220 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6221 zc->zc_count = 0; 6222 zc->zc_time = 0; 6223 } 6224 6225 /* Set the allocation switch size */ 6226 zs->zs_metaslab_df_alloc_threshold = 6227 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6228 6229 if (!hasalt || ztest_random(2) == 0) { 6230 if (hasalt && ztest_opts.zo_verbose >= 1) { 6231 (void) printf("Executing newer ztest: %s\n", 6232 cmd); 6233 } 6234 newer++; 6235 killed = exec_child(cmd, NULL, B_TRUE, &status); 6236 } else { 6237 if (hasalt && ztest_opts.zo_verbose >= 1) { 6238 (void) printf("Executing older ztest: %s\n", 6239 ztest_opts.zo_alt_ztest); 6240 } 6241 older++; 6242 killed = exec_child(ztest_opts.zo_alt_ztest, 6243 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6244 } 6245 6246 if (killed) 6247 kills++; 6248 iters++; 6249 6250 if (ztest_opts.zo_verbose >= 1) { 6251 hrtime_t now = gethrtime(); 6252 6253 now = MIN(now, zs->zs_proc_stop); 6254 print_time(zs->zs_proc_stop - now, timebuf); 6255 nicenum(zs->zs_space, numbuf); 6256 6257 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6258 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6259 iters, 6260 WIFEXITED(status) ? "Complete" : "SIGKILL", 6261 (u_longlong_t)zs->zs_enospc_count, 6262 100.0 * zs->zs_alloc / zs->zs_space, 6263 numbuf, 6264 100.0 * (now - zs->zs_proc_start) / 6265 (ztest_opts.zo_time * NANOSEC), timebuf); 6266 } 6267 6268 if (ztest_opts.zo_verbose >= 2) { 6269 (void) printf("\nWorkload summary:\n\n"); 6270 (void) printf("%7s %9s %s\n", 6271 "Calls", "Time", "Function"); 6272 (void) printf("%7s %9s %s\n", 6273 "-----", "----", "--------"); 6274 for (int f = 0; f < ZTEST_FUNCS; f++) { 6275 Dl_info dli; 6276 6277 zi = &ztest_info[f]; 6278 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6279 print_time(zc->zc_time, timebuf); 6280 (void) dladdr((void *)zi->zi_func, &dli); 6281 (void) printf("%7llu %9s %s\n", 6282 (u_longlong_t)zc->zc_count, timebuf, 6283 dli.dli_sname); 6284 } 6285 (void) printf("\n"); 6286 } 6287 6288 /* 6289 * It's possible that we killed a child during a rename test, 6290 * in which case we'll have a 'ztest_tmp' pool lying around 6291 * instead of 'ztest'. Do a blind rename in case this happened. 6292 */ 6293 kernel_init(FREAD); 6294 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6295 spa_close(spa, FTAG); 6296 } else { 6297 char tmpname[MAXNAMELEN]; 6298 kernel_fini(); 6299 kernel_init(FREAD | FWRITE); 6300 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6301 ztest_opts.zo_pool); 6302 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6303 } 6304 kernel_fini(); 6305 6306 ztest_run_zdb(ztest_opts.zo_pool); 6307 } 6308 6309 if (ztest_opts.zo_verbose >= 1) { 6310 if (hasalt) { 6311 (void) printf("%d runs of older ztest: %s\n", older, 6312 ztest_opts.zo_alt_ztest); 6313 (void) printf("%d runs of newer ztest: %s\n", newer, 6314 cmd); 6315 } 6316 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6317 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6318 } 6319 6320 umem_free(cmd, MAXNAMELEN); 6321 6322 return (0); 6323 } 6324