xref: /titanic_52/usr/src/cmd/sgs/rtld/common/util.c (revision c39996a7c853f35e9cf2fc40b30e0d2eec0e9996)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * Utility routines for run-time linker.  some are duplicated here from libc
33  * (with different names) to avoid name space collisions.
34  */
35 #include	"_synonyms.h"
36 #include	<stdio.h>
37 #include	<sys/types.h>
38 #include	<sys/mman.h>
39 #include	<sys/lwp.h>
40 #include	<sys/debug.h>
41 #include	<stdarg.h>
42 #include	<fcntl.h>
43 #include	<string.h>
44 #include	<ctype.h>
45 #include	<dlfcn.h>
46 #include	<unistd.h>
47 #include	<stdlib.h>
48 #include	<sys/auxv.h>
49 #include	<debug.h>
50 #include	<conv.h>
51 #include	"_rtld.h"
52 #include	"_audit.h"
53 #include	"_elf.h"
54 #include	"msg.h"
55 
56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int);
57 
58 /*
59  * All error messages go through eprintf().  During process initialization these
60  * messages should be directed to the standard error, however once control has
61  * been passed to the applications code these messages should be stored in an
62  * internal buffer for use with dlerror().  Note, fatal error conditions that
63  * may occur while running the application will still cause a standard error
64  * message, see rtldexit() in this file for details.
65  * The `application' flag serves to indicate the transition between process
66  * initialization and when the applications code is running.
67  */
68 
69 /*
70  * Null function used as place where a debugger can set a breakpoint.
71  */
72 void
73 rtld_db_dlactivity(Lm_list *lml)
74 {
75 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
76 	    r_debug.rtd_rdebug.r_state));
77 }
78 
79 /*
80  * Null function used as place where debugger can set a pre .init
81  * processing breakpoint.
82  */
83 void
84 rtld_db_preinit(Lm_list *lml)
85 {
86 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
87 	    r_debug.rtd_rdebug.r_state));
88 }
89 
90 /*
91  * Null function used as place where debugger can set a post .init
92  * processing breakpoint.
93  */
94 void
95 rtld_db_postinit(Lm_list *lml)
96 {
97 	DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
98 	    r_debug.rtd_rdebug.r_state));
99 }
100 
101 /*
102  * Debugger Event Notification
103  *
104  * This function centralizes all debugger event notification (ala rtld_db).
105  *
106  * There's a simple intent, focused on insuring the primary link-map control
107  * list (or each link-map list) is consistent, and the indication that objects
108  * have been added or deleted from this list.  Although an RD_ADD and RD_DELETE
109  * event are posted for each of these, most debuggers don't care, as their
110  * view is that these events simply convey an "inconsistent" state.
111  *
112  * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
113  * enter ld.so.1.
114  *
115  * With auditors, we may be in the process of relocating a collection of
116  * objects, and will leave() ld.so.1 to call the auditor.  At this point we
117  * must indicate an RD_CONSISTENT event, but librtld_db will not report an
118  * object to the debuggers until relocation processing has been completed on it.
119  * To allow for the collection of these objects that are pending relocation, an
120  * RD_ADD event is set after completing a series of relocations on the primary
121  * link-map control list.
122  *
123  * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
124  * required later (LML_FLG_DBNOTIF):
125  *
126  *  i	the first time we add or delete an object to the primary link-map
127  *	control list.
128  *  ii	the first time we move a secondary link-map control list to the primary
129  *	link-map control list (effectively, this is like adding a group of
130  *	objects to the primary link-map control list).
131  *  iii	the first time we relocate a series of objects on the primary link-map
132  *	control list.
133  *
134  * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and
135  *
136  *  i	each time we leave the runtime linker.
137  */
138 void
139 rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
140 {
141 	void	(*fptr)(Lm_list *);
142 
143 	switch (event) {
144 	case RD_PREINIT:
145 		fptr = rtld_db_preinit;
146 		break;
147 	case RD_POSTINIT:
148 		fptr = rtld_db_postinit;
149 		break;
150 	case RD_DLACTIVITY:
151 		switch (state) {
152 		case RT_CONSISTENT:
153 			lml->lm_flags &= ~LML_FLG_DBNOTIF;
154 
155 			/*
156 			 * Do we need to send a notification?
157 			 */
158 			if ((rtld_flags & RT_FL_DBNOTIF) == 0)
159 				return;
160 			rtld_flags &= ~RT_FL_DBNOTIF;
161 			break;
162 		case RT_ADD:
163 		case RT_DELETE:
164 			lml->lm_flags |= LML_FLG_DBNOTIF;
165 
166 			/*
167 			 * If we are already in an inconsistent state, no
168 			 * notification is required.
169 			 */
170 			if (rtld_flags & RT_FL_DBNOTIF)
171 				return;
172 			rtld_flags |= RT_FL_DBNOTIF;
173 			break;
174 		};
175 		fptr = rtld_db_dlactivity;
176 		break;
177 	default:
178 		/*
179 		 * RD_NONE - do nothing
180 		 */
181 		break;
182 	};
183 
184 	/*
185 	 * Set event state and call 'notification' function.
186 	 *
187 	 * The debugging clients have previously been told about these
188 	 * notification functions and have set breakpoints on them if they
189 	 * are interested in the notification.
190 	 */
191 	r_debug.rtd_rdebug.r_state = state;
192 	r_debug.rtd_rdebug.r_rdevent = event;
193 	fptr(lml);
194 	r_debug.rtd_rdebug.r_rdevent = RD_NONE;
195 }
196 
197 #if	defined(sparc) || defined(i386) || defined(__amd64)
198 /*
199  * Stack Cleanup.
200  *
201  * This function is invoked to 'remove' arguments that were passed in on the
202  * stack.  This is most likely if ld.so.1 was invoked directly.  In that case
203  * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
204  * Which means we then need to slide everything above it on the stack down
205  * accordingly.
206  *
207  * While the stack layout is platform specific - it just so happens that x86,
208  * sparc, sparcv9, and amd64 all share the following initial stack layout.
209  *
210  *	!_______________________!  high addresses
211  *	!			!
212  *	!	Information	!
213  *	!	Block		!
214  *	!	(size varies)	!
215  *	!_______________________!
216  *	!	0 word		!
217  *	!_______________________!
218  *	!	Auxiliary	!
219  *	!	vector		!
220  *	!	2 word entries	!
221  *	!			!
222  *	!_______________________!
223  *	!	0 word		!
224  *	!_______________________!
225  *	!	Environment	!
226  *	!	pointers	!
227  *	!	...		!
228  *	!	(one word each)	!
229  *	!_______________________!
230  *	!	0 word		!
231  *	!_______________________!
232  *	!	Argument	! low addresses
233  *	!	pointers	!
234  *	!	Argc words	!
235  *	!_______________________!
236  *	!			!
237  *	!	Argc		!
238  *	!_______________________!
239  *	!	...		!
240  *
241  */
242 static void
243 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
244 {
245 	int		ndx;
246 	long		*argc;
247 	char		**oargv, **nargv;
248 	char		**oenvp, **nenvp;
249 	auxv_t		*oauxv, *nauxv;
250 
251 	/*
252 	 * Slide ARGV[] and update argc.  The argv pointer remains the same,
253 	 * however slide the applications arguments over the arguments to
254 	 * ld.so.1.
255 	 */
256 	nargv = &argv[0];
257 	oargv = &argv[rmcnt];
258 
259 	for (ndx = 0; oargv[ndx]; ndx++)
260 		nargv[ndx] = oargv[ndx];
261 	nargv[ndx] = oargv[ndx];
262 
263 	argc = (long *)((uintptr_t)argv - sizeof (long *));
264 	*argc -= rmcnt;
265 
266 	/*
267 	 * Slide ENVP[], and update the environment array pointer.
268 	 */
269 	ndx++;
270 	nenvp = &nargv[ndx];
271 	oenvp = &oargv[ndx];
272 	*envp = nenvp;
273 
274 	for (ndx = 0; oenvp[ndx]; ndx++)
275 		nenvp[ndx] = oenvp[ndx];
276 	nenvp[ndx] = oenvp[ndx];
277 
278 	/*
279 	 * Slide AUXV[], and update the aux vector pointer.
280 	 */
281 	ndx++;
282 	nauxv = (auxv_t *)&nenvp[ndx];
283 	oauxv = (auxv_t *)&oenvp[ndx];
284 	*auxv = nauxv;
285 
286 	for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
287 		nauxv[ndx] = oauxv[ndx];
288 	nauxv[ndx] = oauxv[ndx];
289 }
290 #else
291 /*
292  * Verify that the above routine is appropriate for any new platforms.
293  */
294 #error	unsupported architecture!
295 #endif
296 
297 /*
298  * The only command line argument recognized is -e, followed by a runtime
299  * linker environment variable.
300  */
301 int
302 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
303     Word *lmtflags, int aout)
304 {
305 	int	ndx;
306 
307 	for (ndx = 1; argv[ndx]; ndx++) {
308 		char	*str;
309 
310 		if (argv[ndx][0] != '-')
311 			break;
312 
313 		if (argv[ndx][1] == '\0') {
314 			ndx++;
315 			break;
316 		}
317 
318 		if (argv[ndx][1] != 'e')
319 			return (1);
320 
321 		if (argv[ndx][2] == '\0') {
322 			ndx++;
323 			if (argv[ndx] == NULL)
324 				return (1);
325 			str = argv[ndx];
326 		} else
327 			str = &argv[ndx][2];
328 
329 		/*
330 		 * If the environment variable starts with LD_, strip the LD_.
331 		 * Otherwise, take things as is.
332 		 */
333 		if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
334 		    (str[3] != '\0'))
335 			str += 3;
336 		if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1)
337 			return (1);
338 	}
339 
340 	/*
341 	 * Make sure an object file has been specified.
342 	 */
343 	if (argv[ndx] == 0)
344 		return (1);
345 
346 	/*
347 	 * Having gotten the arguments, clean ourselves off of the stack.
348 	 */
349 	stack_cleanup(argv, envp, auxv, ndx);
350 	return (0);
351 }
352 
353 /*
354  * Compare function for FullpathNode AVL tree.
355  */
356 static int
357 fpavl_compare(const void * n1, const void * n2)
358 {
359 	uint_t		hash1, hash2;
360 	const char	*st1, *st2;
361 	int		rc;
362 
363 	hash1 = ((FullpathNode *)n1)->fpn_hash;
364 	hash2 = ((FullpathNode *)n2)->fpn_hash;
365 
366 	if (hash1 > hash2)
367 		return (1);
368 	if (hash1 < hash2)
369 		return (-1);
370 
371 	st1 = ((FullpathNode *)n1)->fpn_name;
372 	st2 = ((FullpathNode *)n2)->fpn_name;
373 
374 	rc = strcmp(st1, st2);
375 	if (rc > 0)
376 		return (1);
377 	if (rc < 0)
378 		return (-1);
379 	return (0);
380 }
381 
382 
383 /*
384  * Determine if a given pathname has already been loaded in the AVL tree.
385  * If the pathname does not exist in the AVL tree, the next insertion point
386  * is deposited in "where".  This value can be used by fpavl_insert() to
387  * expedite the insertion.
388  */
389 Rt_map *
390 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where)
391 {
392 	FullpathNode	fpn, *fpnp;
393 	avl_tree_t	*avlt;
394 
395 	/*
396 	 * Create the avl tree if required.
397 	 */
398 	if ((avlt = lml->lm_fpavl) == NULL) {
399 		if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0)
400 			return (0);
401 		avl_create(avlt, fpavl_compare, sizeof (FullpathNode),
402 		    SGSOFFSETOF(FullpathNode, fpn_avl));
403 		lml->lm_fpavl = avlt;
404 	}
405 
406 	fpn.fpn_name = name;
407 	fpn.fpn_hash = sgs_str_hash(name);
408 
409 	if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
410 		return (NULL);
411 
412 	return (fpnp->fpn_lmp);
413 }
414 
415 
416 /*
417  * Insert a name into the FullpathNode AVL tree for the link-map list.  The
418  * objects NAME() is the path that would have originally been searched for, and
419  * is therefore the name to associate with any "where" value.  If the object has
420  * a different PATHNAME(), perhaps because it has resolved to a different file
421  * (see fullpath), then this name is recorded also.  See load_file().
422  */
423 int
424 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
425 {
426 	FullpathNode	*fpnp;
427 
428 	if (where == 0) {
429 		/* LINTED */
430 		Rt_map	*_lmp = fpavl_loaded(lml, name, &where);
431 
432 		/*
433 		 * We better not get a hit now, we do not want duplicates in
434 		 * the tree.
435 		 */
436 		ASSERT(_lmp == 0);
437 	}
438 
439 	/*
440 	 * Insert new node in tree
441 	 */
442 	if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0)
443 		return (0);
444 
445 	fpnp->fpn_name = name;
446 	fpnp->fpn_hash = sgs_str_hash(name);
447 	fpnp->fpn_lmp = lmp;
448 
449 	if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *),
450 	    AL_CNT_FPNODE) == 0) {
451 		free(fpnp);
452 		return (0);
453 	}
454 
455 	ASSERT(lml->lm_fpavl != NULL);
456 	avl_insert(lml->lm_fpavl, fpnp, where);
457 	return (1);
458 }
459 
460 /*
461  * Remove an object from the Fullpath AVL tree.  Note, this is called *before*
462  * the objects link-map is torn down (remove_so), which is where any NAME() and
463  * PATHNAME() strings will be deallocated.
464  */
465 void
466 fpavl_remove(Rt_map *lmp)
467 {
468 	FullpathNode	**fpnpp;
469 	Aliste		off;
470 
471 	for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) {
472 		FullpathNode	*fpnp = *fpnpp;
473 
474 		avl_remove(LIST(lmp)->lm_fpavl, fpnp);
475 		free(fpnp);
476 	}
477 	free(FPNODE(lmp));
478 	FPNODE(lmp) = 0;
479 }
480 
481 
482 /*
483  * Prior to calling an object, either via a .plt or through dlsym(), make sure
484  * its .init has fired.  Through topological sorting, ld.so.1 attempts to fire
485  * init's in the correct order, however, this order is typically based on needed
486  * dependencies and non-lazy relocation bindings.  Lazy relocations (.plts) can
487  * still occur and result in bindings that were not captured during topological
488  * sorting.  This routine compensates for this lack of binding information, and
489  * provides for dynamic .init firing.
490  */
491 void
492 is_dep_init(Rt_map * dlmp, Rt_map * clmp)
493 {
494 	Rt_map **	tobj;
495 
496 	/*
497 	 * If the caller is an auditor, and the destination isn't, then don't
498 	 * run any .inits (see comments in load_completion()).
499 	 */
500 	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
501 	    (LIST(clmp) != LIST(dlmp)))
502 		return;
503 
504 	if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST)))
505 		return;
506 
507 	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
508 	    (FLG_RT_RELOCED | FLG_RT_INITDONE))
509 		return;
510 
511 	if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) ==
512 	    (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
513 		DBG_CALL(Dbg_util_no_init(dlmp));
514 		return;
515 	}
516 
517 	if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
518 		tobj[0] = dlmp;
519 		call_init(tobj, DBG_INIT_DYN);
520 	}
521 }
522 
523 /*
524  * In a threaded environment insure the thread responsible for loading an object
525  * has completed .init processing for that object before any new thread is
526  * allowed to access the object.  This check is only valid with libthread
527  * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes.
528  *
529  * When a new link-map is created, the thread that causes it to be loaded is
530  * identified by THREADID(dlmp).  Compare this with the current thread to
531  * determine if it must be blocked.
532  *
533  * NOTE, there are a number of instances (typically only for .plt processing)
534  * where we must skip this test:
535  *
536  *   .	any thread id of 0 - threads that call thr_exit() may be in this state
537  *	thus we can't deduce what tid they used to be.  Also some of the
538  *	lib/libthread worker threads have this id and must bind (to themselves
539  *	or libc) for libthread to function.
540  *
541  *   .	libthread itself binds to libc, and as libthread is INITFIRST
542  *	libc's .init can't have fired yet.  Luckly libc's .init is not required
543  *	by libthreads binding.
544  *
545  *   .	if the caller is an auditor, and the destination isn't, then don't
546  *	block (see comments in load_completion()).
547  */
548 void
549 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what)
550 {
551 	thread_t	tid;
552 
553 	if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) &&
554 	    (LIST(clmp) != LIST(dlmp)))
555 		return;
556 
557 	if ((rtld_flags & RT_FL_CONCUR) &&
558 	    ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) &&
559 	    ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) &&
560 	    ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) {
561 		while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) {
562 			FLAGS1(dlmp) |= FL1_RT_INITWAIT;
563 			DBG_CALL(Dbg_util_wait(clmp, dlmp, what));
564 			(void) rt_cond_wait(CONDVAR(dlmp), &rtldlock);
565 		}
566 	}
567 }
568 
569 /*
570  * Execute .{preinit|init|fini}array sections
571  */
572 void
573 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
574 {
575 	int	start, stop, incr, ndx;
576 	uint_t	arraycnt = (uint_t)(arraysz / sizeof (Addr));
577 
578 	if (array == NULL)
579 		return;
580 
581 	/*
582 	 * initarray & preinitarray are walked from beginning to end - while
583 	 * finiarray is walked from end to beginning.
584 	 */
585 	if (shtype == SHT_FINI_ARRAY) {
586 		start = arraycnt - 1;
587 		stop = incr = -1;
588 	} else {
589 		start = 0;
590 		stop = arraycnt;
591 		incr = 1;
592 	}
593 
594 	/*
595 	 * Call the .*array[] entries
596 	 */
597 	for (ndx = start; ndx != stop; ndx += incr) {
598 		void (*fptr)(void) = (void(*)())array[ndx];
599 
600 		DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
601 
602 		leave(LIST(lmp));
603 		(*fptr)();
604 		(void) enter();
605 	}
606 }
607 
608 
609 /*
610  * Execute any .init sections.  These are passed to us in an lmp array which
611  * (by default) will have been sorted.
612  */
613 void
614 call_init(Rt_map ** tobj, int flag)
615 {
616 	Rt_map **	_tobj, ** _nobj;
617 	static List	pending = { NULL, NULL };
618 
619 	/*
620 	 * If we're in the middle of an INITFIRST, this must complete before
621 	 * any new init's are fired.  In this case add the object list to the
622 	 * pending queue and return.  We'll pick up the queue after any
623 	 * INITFIRST objects have their init's fired.
624 	 */
625 	if (rtld_flags & RT_FL_INITFIRST) {
626 		(void) list_append(&pending, tobj);
627 		return;
628 	}
629 
630 	/*
631 	 * Traverse the tobj array firing each objects init.
632 	 */
633 	for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
634 		Rt_map *	lmp = *_tobj;
635 		void (*		iptr)() = INIT(lmp);
636 
637 		if (FLAGS(lmp) & FLG_RT_INITCALL)
638 			continue;
639 
640 		FLAGS(lmp) |= FLG_RT_INITCALL;
641 
642 		/*
643 		 * Establish an initfirst state if necessary - no other inits
644 		 * will be fired (because of additional relocation bindings)
645 		 * when in this state.
646 		 */
647 		if (FLAGS(lmp) & FLG_RT_INITFRST)
648 			rtld_flags |= RT_FL_INITFIRST;
649 
650 		if (INITARRAY(lmp) || iptr) {
651 			Aliste		off;
652 			Bnd_desc **	bdpp;
653 
654 			/*
655 			 * Make sure that all dependencies that have been
656 			 * relocated to are initialized before this objects
657 			 * .init is executed.  This insures that a dependency
658 			 * on an external item that must first be initialized
659 			 * by its associated object is satisfied.
660 			 */
661 			for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) {
662 				Bnd_desc *	bdp = *bdpp;
663 
664 				if ((bdp->b_flags & BND_REFER) == 0)
665 					continue;
666 				is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT);
667 			}
668 			DBG_CALL(Dbg_util_call_init(lmp, flag));
669 		}
670 
671 		if (iptr) {
672 			leave(LIST(lmp));
673 			(*iptr)();
674 			(void) enter();
675 		}
676 
677 		call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
678 		    SHT_INIT_ARRAY);
679 
680 		if (INITARRAY(lmp) || iptr)
681 			DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
682 
683 		/*
684 		 * Set the initdone flag regardless of whether this object
685 		 * actually contains an .init section.  This flag prevents us
686 		 * from processing this section again for an .init and also
687 		 * signifies that a .fini must be called should it exist.
688 		 * Clear the sort field for use in later .fini processing.
689 		 */
690 		FLAGS(lmp) |= FLG_RT_INITDONE;
691 		SORTVAL(lmp) = -1;
692 
693 		/*
694 		 * Wake anyone up who might be waiting on this .init.
695 		 */
696 		if (FLAGS1(lmp) & FL1_RT_INITWAIT) {
697 			DBG_CALL(Dbg_util_broadcast(lmp));
698 			(void) rt_cond_broadcast(CONDVAR(lmp));
699 			FLAGS1(lmp) &= ~FL1_RT_INITWAIT;
700 		}
701 
702 		/*
703 		 * If we're firing an INITFIRST object, and other objects must
704 		 * be fired which are not INITFIRST, make sure we grab any
705 		 * pending objects that might have been delayed as this
706 		 * INITFIRST was processed.
707 		 */
708 		if ((rtld_flags & RT_FL_INITFIRST) &&
709 		    ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
710 			Listnode *	lnp;
711 			Rt_map **	pobj;
712 
713 			rtld_flags &= ~RT_FL_INITFIRST;
714 
715 			while ((lnp = pending.head) != NULL) {
716 				if ((pending.head = lnp->next) == NULL)
717 					pending.tail = NULL;
718 				pobj = lnp->data;
719 				free(lnp);
720 
721 				call_init(pobj, DBG_INIT_PEND);
722 			}
723 		}
724 	}
725 	free(tobj);
726 }
727 
728 /*
729  * Function called by atexit(3C).  Calls all .fini sections related with the
730  * mains dependent shared libraries in the order in which the shared libraries
731  * have been loaded.  Skip any .fini defined in the main executable, as this
732  * will be called by crt0 (main was never marked as initdone).
733  */
734 void
735 call_fini(Lm_list * lml, Rt_map ** tobj)
736 {
737 	Rt_map **_tobj;
738 
739 	for (_tobj = tobj; *_tobj != NULL; _tobj++) {
740 		Rt_map *	clmp, * lmp = *_tobj;
741 		Aliste		off;
742 		Bnd_desc **	bdpp;
743 
744 		/*
745 		 * If concurrency checking isn't enabled only fire .fini if
746 		 * .init has completed.  We collect all .fini sections of
747 		 * objects that had their .init collected, but that doesn't
748 		 * mean at the time that the .init had completed.
749 		 */
750 		if ((rtld_flags & RT_FL_CONCUR) ||
751 		    (FLAGS(lmp) & FLG_RT_INITDONE)) {
752 			void	(*fptr)(void) = FINI(lmp);
753 
754 			if (FINIARRAY(lmp) || fptr) {
755 				/*
756 				 * If concurrency checking is enabled make sure
757 				 * this object's .init is completed before
758 				 * calling any .fini.
759 				 */
760 				is_dep_ready(lmp, lmp, DBG_WAIT_FINI);
761 				DBG_CALL(Dbg_util_call_fini(lmp));
762 			}
763 
764 			call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
765 			    SHT_FINI_ARRAY);
766 
767 			if (fptr) {
768 				leave(LIST(lmp));
769 				(*fptr)();
770 				(void) enter();
771 			}
772 		}
773 
774 		/*
775 		 * Skip main, this is explicitly called last in atexit_fini().
776 		 */
777 		if (FLAGS(lmp) & FLG_RT_ISMAIN)
778 			continue;
779 
780 		/*
781 		 * Audit `close' operations at this point.  The library has
782 		 * exercised its last instructions (regardless of whether it
783 		 * will be unmapped or not).
784 		 *
785 		 * First call any global auditing.
786 		 */
787 		if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE)
788 			_audit_objclose(&(auditors->ad_list), lmp);
789 
790 		/*
791 		 * Finally determine whether this object has local auditing
792 		 * requirements by inspecting itself and then its dependencies.
793 		 */
794 		if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0)
795 			continue;
796 
797 		if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE)
798 			_audit_objclose(&(AUDITORS(lmp)->ad_list), lmp);
799 
800 		for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
801 			Bnd_desc *	bdp = *bdpp;
802 
803 			clmp = bdp->b_caller;
804 
805 			if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) {
806 			    _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp);
807 			    break;
808 			}
809 		}
810 	}
811 	DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
812 	    pltcntu32, pltcntu44, pltcntfull, pltcntfar));
813 
814 	free(tobj);
815 }
816 
817 void
818 atexit_fini()
819 {
820 	Rt_map **	tobj, * lmp;
821 	Lm_list *	lml;
822 	Listnode *	lnp;
823 
824 	(void) enter();
825 
826 	rtld_flags |= RT_FL_ATEXIT;
827 
828 	lml = &lml_main;
829 	lml->lm_flags |= LML_FLG_ATEXIT;
830 	lmp = (Rt_map *)lml->lm_head;
831 
832 	/*
833 	 * Display any objects that haven't been referenced so far.
834 	 */
835 	unused(lml);
836 
837 	/*
838 	 * Reverse topologically sort the main link-map for .fini execution.
839 	 */
840 	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
841 	    (tobj != (Rt_map **)S_ERROR))
842 		call_fini(lml, tobj);
843 
844 	/*
845 	 * Add an explicit close to main and ld.so.1.  Although main's .fini is
846 	 * collected in call_fini() to provide for FINITARRAY processing, its
847 	 * audit_objclose is explicitly skipped.  This provides for it to be
848 	 * called last, here.  This is the reverse of the explicit calls to
849 	 * audit_objopen() made in setup().
850 	 */
851 	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) {
852 		audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head);
853 		audit_objclose(lmp, lmp);
854 	}
855 
856 	/*
857 	 * Now that all .fini code has been run, see what unreferenced objects
858 	 * remain.  Any difference between this and the above unused() would
859 	 * indicate an object is only being used for .fini processing, which
860 	 * might be fine, but might also indicate an overhead whose removal
861 	 * would be worth considering.
862 	 */
863 	unused(lml);
864 
865 	/*
866 	 * Traverse any alternative link-map lists.
867 	 */
868 	for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) {
869 		/*
870 		 * Ignore the base-link-map list, which has already been
871 		 * processed, and the runtime linkers link-map list, which is
872 		 * typically processed last.
873 		 */
874 		if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM))
875 			continue;
876 
877 		if ((lmp = (Rt_map *)lml->lm_head) == 0)
878 			continue;
879 
880 		lml->lm_flags |= LML_FLG_ATEXIT;
881 
882 		/*
883 		 * Reverse topologically sort the link-map for .fini execution.
884 		 */
885 		if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
886 		    (tobj != (Rt_map **)S_ERROR))
887 			call_fini(lml, tobj);
888 
889 		unused(lml);
890 	}
891 
892 	/*
893 	 * Finally reverse topologically sort the runtime linkers link-map for
894 	 * .fini execution.
895 	 */
896 	lml = &lml_rtld;
897 	lml->lm_flags |= LML_FLG_ATEXIT;
898 	lmp = (Rt_map *)lml->lm_head;
899 
900 	if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) &&
901 	    (tobj != (Rt_map **)S_ERROR))
902 		call_fini(lml, tobj);
903 
904 	leave(&lml_main);
905 }
906 
907 
908 /*
909  * This routine is called to complete any runtime linker activity which may have
910  * resulted in objects being loaded.  This is called from all user entry points
911  * and from any internal dl*() requests.
912  */
913 void
914 load_completion(Rt_map *nlmp, Rt_map *clmp)
915 {
916 	Rt_map	**tobj = 0;
917 	Lm_list	*nlml, *clml;
918 
919 	/*
920 	 * Establish any .init processing.  Note, in a world of lazy loading,
921 	 * objects may have been loaded regardless of whether the users request
922 	 * was fulfilled (i.e., a dlsym() request may have failed to find a
923 	 * symbol but objects might have been loaded during its search).  Thus,
924 	 * any tsorting starts from the nlmp (new link-maps) pointer and not
925 	 * necessarily from the link-map that may have satisfied the request.
926 	 *
927 	 * Note, the primary link-map has an initialization phase where dynamic
928 	 * .init firing is suppressed.  This provides for a simple and clean
929 	 * handshake with the primary link-maps libc, which is important for
930 	 * establishing uberdata.  In addition, auditors often obtain handles
931 	 * to primary link-map objects as the objects are loaded, so as to
932 	 * inspect the link-map for symbols.  This inspection is allowed without
933 	 * running any code on the primary link-map, as running this code may
934 	 * reenter the auditor, who may not yet have finished its own
935 	 * initialization.
936 	 */
937 	if (nlmp)
938 		nlml = LIST(nlmp);
939 	if (clmp)
940 		clml = LIST(clmp);
941 
942 	if (nlmp && nlml->lm_init &&
943 	    ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) {
944 		if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init,
945 		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
946 			tobj = 0;
947 	}
948 
949 	/*
950 	 * Make sure any alternative link-map retrieves any external interfaces
951 	 * and initializes threads.
952 	 */
953 	if (nlmp && (nlml != &lml_main)) {
954 		(void) rt_get_extern(nlml, nlmp);
955 		rt_thr_init(nlml);
956 	}
957 
958 	/*
959 	 * Traverse the list of new link-maps and register any dynamic TLS.
960 	 * This storage is established for any objects not on the primary
961 	 * link-map, and for any objects added to the primary link-map after
962 	 * static TLS has been registered.
963 	 */
964 	if (nlmp && nlml->lm_tls &&
965 	    ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) {
966 		Rt_map	*lmp;
967 
968 		for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) {
969 			if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
970 				tls_modaddrem(lmp, TM_FLG_MODADD);
971 		}
972 		nlml->lm_tls = 0;
973 	}
974 
975 	/*
976 	 * Indicate the link-map list is consistent.
977 	 */
978 	if (clmp && ((clml->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY))
979 		audit_activity(clmp, LA_ACT_CONSISTENT);
980 
981 	/*
982 	 * Fire any .init's.
983 	 */
984 	if (tobj)
985 		call_init(tobj, DBG_INIT_SORT);
986 }
987 
988 /*
989  * Append an item to the specified list, and return a pointer to the list
990  * node created.
991  */
992 Listnode *
993 list_append(List *lst, const void *item)
994 {
995 	Listnode *	_lnp;
996 
997 	if ((_lnp = malloc(sizeof (Listnode))) == 0)
998 		return (0);
999 
1000 	_lnp->data = (void *)item;
1001 	_lnp->next = NULL;
1002 
1003 	if (lst->head == NULL)
1004 		lst->tail = lst->head = _lnp;
1005 	else {
1006 		lst->tail->next = _lnp;
1007 		lst->tail = lst->tail->next;
1008 	}
1009 	return (_lnp);
1010 }
1011 
1012 
1013 /*
1014  * Add an item after specified listnode, and return a pointer to the list
1015  * node created.
1016  */
1017 Listnode *
1018 list_insert(List *lst, const void *item, Listnode *lnp)
1019 {
1020 	Listnode *	_lnp;
1021 
1022 	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1023 		return (0);
1024 
1025 	_lnp->data = (void *)item;
1026 	_lnp->next = lnp->next;
1027 	if (_lnp->next == NULL)
1028 		lst->tail = _lnp;
1029 	lnp->next = _lnp;
1030 	return (_lnp);
1031 }
1032 
1033 /*
1034  * Prepend an item to the specified list, and return a pointer to the
1035  * list node created.
1036  */
1037 Listnode *
1038 list_prepend(List * lst, const void * item)
1039 {
1040 	Listnode *	_lnp;
1041 
1042 	if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0)
1043 		return (0);
1044 
1045 	_lnp->data = (void *)item;
1046 
1047 	if (lst->head == NULL) {
1048 		_lnp->next = NULL;
1049 		lst->tail = lst->head = _lnp;
1050 	} else {
1051 		_lnp->next = lst->head;
1052 		lst->head = _lnp;
1053 	}
1054 	return (_lnp);
1055 }
1056 
1057 
1058 /*
1059  * Delete a 'listnode' from a list.
1060  */
1061 void
1062 list_delete(List * lst, void * item)
1063 {
1064 	Listnode *	clnp, * plnp;
1065 
1066 	for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) {
1067 		if (item == clnp->data)
1068 			break;
1069 		plnp = clnp;
1070 	}
1071 
1072 	if (clnp == 0)
1073 		return;
1074 
1075 	if (lst->head == clnp)
1076 		lst->head = clnp->next;
1077 	if (lst->tail == clnp)
1078 		lst->tail = plnp;
1079 
1080 	if (plnp)
1081 		plnp->next = clnp->next;
1082 
1083 	free(clnp);
1084 }
1085 
1086 /*
1087  * Append an item to the specified link map control list.
1088  */
1089 void
1090 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1091 {
1092 	Lm_cntl	*lmc;
1093 	int	add = 1;
1094 
1095 	/*
1096 	 * Indicate that this link-map list has a new object.
1097 	 */
1098 	(lml->lm_obj)++;
1099 
1100 	/*
1101 	 * Alert the debuggers that we are about to mess with the main link-map
1102 	 * control list.
1103 	 */
1104 	if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1105 		rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1106 
1107 	/* LINTED */
1108 	lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco);
1109 
1110 	/*
1111 	 * A link-map list header points to one of more link-map control lists
1112 	 * (see include/rtld.h).  The initial list, pointed to by lm_cntl, is
1113 	 * the list of relocated objects.  Other lists maintain objects that
1114 	 * are still being analyzed or relocated.  This list provides the core
1115 	 * link-map list information used by all ld.so.1 routines.
1116 	 */
1117 	if (lmc->lc_head == NULL) {
1118 		/*
1119 		 * If this is the first link-map for the given control list,
1120 		 * initialize the list.
1121 		 */
1122 		lmc->lc_head = lmc->lc_tail = lmp;
1123 		add = 0;
1124 
1125 	} else if (FLAGS(lmp) & FLG_RT_INTRPOSE) {
1126 		Rt_map	*tlmp;
1127 
1128 		/*
1129 		 * If this is an interposer then append the link-map following
1130 		 * any other interposers (these are objects that have been
1131 		 * previously preloaded, or were identified with -z interpose).
1132 		 * Interposers can only be inserted on the first link-map
1133 		 * control list, as once relocation has started, interposition
1134 		 * from new interposers can't be guaranteed.
1135 		 *
1136 		 * NOTE: We do not interpose on the head of a list.  This model
1137 		 * evolved because dynamic executables have already been fully
1138 		 * relocated within themselves and thus can't be interposed on.
1139 		 * Nowadays it's possible to have shared objects at the head of
1140 		 * a list, which conceptually means they could be interposed on.
1141 		 * But, shared objects can be created via dldump() and may only
1142 		 * be partially relocated (just relatives), in which case they
1143 		 * are interposable, but are marked as fixed (ET_EXEC).
1144 		 *
1145 		 * Thus we really don't have a clear method of deciding when the
1146 		 * head of a link-map is interposable.  So, to be consistent,
1147 		 * for now only add interposers after the link-map lists head
1148 		 * object.
1149 		 */
1150 		for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp;
1151 		    tlmp = (Rt_map *)NEXT(tlmp)) {
1152 
1153 			if (FLAGS(tlmp) & FLG_RT_INTRPOSE)
1154 				continue;
1155 
1156 			/*
1157 			 * Insert the new link-map before this non-interposer,
1158 			 * and indicate an interposer is found.
1159 			 */
1160 			NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp;
1161 			PREV(lmp) = PREV(tlmp);
1162 
1163 			NEXT(lmp) = (Link_map *)tlmp;
1164 			PREV(tlmp) = (Link_map *)lmp;
1165 
1166 			lmc->lc_flags |= LMC_FLG_REANALYZE;
1167 			add = 0;
1168 			break;
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * Fall through to appending the new link map to the tail of the list.
1174 	 * If we're processing the initial objects of this link-map list, add
1175 	 * them to the backward compatibility list.
1176 	 */
1177 	if (add) {
1178 		NEXT(lmc->lc_tail) = (Link_map *)lmp;
1179 		PREV(lmp) = (Link_map *)lmc->lc_tail;
1180 		lmc->lc_tail = lmp;
1181 	}
1182 
1183 	/*
1184 	 * Having added this link-map to a control list, indicate which control
1185 	 * list the link-map belongs to.  Note, control list information is
1186 	 * always maintained as an offset, as the Alist can be reallocated.
1187 	 */
1188 	CNTL(lmp) = lmco;
1189 
1190 	/*
1191 	 * Indicate if an interposer is found.  Note that the first object on a
1192 	 * link-map can be explicitly defined as an interposer so that it can
1193 	 * provide interposition over direct binding requests.
1194 	 */
1195 	if (FLAGS(lmp) & FLG_RT_INTRPOSE)
1196 		lml->lm_flags |= LML_FLG_INTRPOSE;
1197 
1198 	/*
1199 	 * For backward compatibility with debuggers, the link-map list contains
1200 	 * pointers to the main control list.
1201 	 */
1202 	if (lmco == ALO_DATA) {
1203 		lml->lm_head = lmc->lc_head;
1204 		lml->lm_tail = lmc->lc_tail;
1205 	}
1206 }
1207 
1208 /*
1209  * Delete an item from the specified link map control list.
1210  */
1211 void
1212 lm_delete(Lm_list *lml, Rt_map *lmp)
1213 {
1214 	Lm_cntl	*lmc;
1215 
1216 	/*
1217 	 * If the control list pointer hasn't been initialized, this object
1218 	 * never got added to a link-map list.
1219 	 */
1220 	if (CNTL(lmp) == 0)
1221 		return;
1222 
1223 	/*
1224 	 * Alert the debuggers that we are about to mess with the main link-map
1225 	 * control list.
1226 	 */
1227 	if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1228 		rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1229 
1230 	/* LINTED */
1231 	lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp));
1232 
1233 	if (lmc->lc_head == lmp)
1234 		lmc->lc_head = (Rt_map *)NEXT(lmp);
1235 	else
1236 		NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp);
1237 
1238 	if (lmc->lc_tail == lmp)
1239 		lmc->lc_tail = (Rt_map *)PREV(lmp);
1240 	else
1241 		PREV((Rt_map *)NEXT(lmp)) = PREV(lmp);
1242 
1243 	/*
1244 	 * For backward compatibility with debuggers, the link-map list contains
1245 	 * pointers to the main control list.
1246 	 */
1247 	if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) {
1248 		lml->lm_head = lmc->lc_head;
1249 		lml->lm_tail = lmc->lc_tail;
1250 	}
1251 
1252 	/*
1253 	 * Indicate we have one less object on this control list.
1254 	 */
1255 	(lml->lm_obj)--;
1256 }
1257 
1258 /*
1259  * Move a link-map control list to another.  Objects that are being relocated
1260  * are maintained on secondary control lists.  Once their relocation is
1261  * complete, the entire list is appended to the previous control list, as this
1262  * list must have been the trigger for generating the new control list.
1263  */
1264 void
1265 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1266 {
1267 	Rt_map	*lmp;
1268 
1269 	DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1270 
1271 	/*
1272 	 * Alert the debuggers that we are about to mess with the main link-map
1273 	 * control list.
1274 	 */
1275 	if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0))
1276 		rd_event(lml, RD_DLACTIVITY, RT_ADD);
1277 
1278 	/*
1279 	 * Indicate each new link-map has been moved to the previous link-map
1280 	 * control list.
1281 	 */
1282 	for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp))
1283 		CNTL(lmp) = plmco;
1284 
1285 	/*
1286 	 * Move the new link-map control list, to the callers link-map control
1287 	 * list.
1288 	 */
1289 	if (plmc->lc_head == 0) {
1290 		plmc->lc_head = nlmc->lc_head;
1291 		PREV(nlmc->lc_head) = 0;
1292 	} else {
1293 		NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1294 		PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1295 	}
1296 
1297 	plmc->lc_tail = nlmc->lc_tail;
1298 	nlmc->lc_head = nlmc->lc_tail = 0;
1299 
1300 	/*
1301 	 * For backward compatibility with debuggers, the link-map list contains
1302 	 * pointers to the main control list.
1303 	 */
1304 	if (plmco == ALO_DATA) {
1305 		lml->lm_head = plmc->lc_head;
1306 		lml->lm_tail = plmc->lc_tail;
1307 	}
1308 }
1309 
1310 /*
1311  * Dlopening a family of objects occurs on a new link-map control list.  If the
1312  * dlopen fails, then its handle is used to tear down the family (dlclose).
1313  * However, the relocation of this family may have triggered other objects to
1314  * be loaded, and after their relocation they will have been moved to the
1315  * dlopen families control list.  After a dlopen() failure, see if there are
1316  * any objects that can be savaged before tearing down this control list.
1317  */
1318 int
1319 lm_salvage(Lm_list *lml, int test, Aliste nlmco)
1320 {
1321 	Lm_cntl	*nlmc;
1322 
1323 	/*
1324 	 * If a dlopen occurred on a new link-map list, then its dlclose may
1325 	 * have completely torn down the link-map list.  Check that the link-map
1326 	 * list still exists before proceeding.
1327 	 */
1328 	if (test) {
1329 		Listnode	*lnp;
1330 		Lm_list		*tlml;
1331 		int		found = 0;
1332 
1333 		for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) {
1334 			if (tlml == lml) {
1335 				found++;
1336 				break;
1337 			}
1338 		}
1339 		if (found == 0)
1340 			return (0);
1341 	}
1342 
1343 	/* LINTED */
1344 	nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco);
1345 
1346 	/*
1347 	 * If this link-map control list still contains objects, determine the
1348 	 * previous control list and move the objects.
1349 	 */
1350 	if (nlmc->lc_head) {
1351 		Lm_cntl *plmc;
1352 		Aliste  plmco;
1353 
1354 		plmco = nlmco - lml->lm_lists->al_size;
1355 		/* LINTED */
1356 		plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco);
1357 
1358 		lm_move(lml, nlmco, plmco, nlmc, plmc);
1359 	}
1360 	return (1);
1361 }
1362 
1363 /*
1364  * Environment variables can have a variety of defined permutations, and thus
1365  * the following infrastructure exists to allow this variety and to select the
1366  * required definition.
1367  *
1368  * Environment variables can be defined as 32- or 64-bit specific, and if so
1369  * they will take precedence over any instruction set neutral form.  Typically
1370  * this is only useful when the environment value is an informational string.
1371  *
1372  * Environment variables may be obtained from the standard user environment or
1373  * from a configuration file.  The latter provides a fallback if no user
1374  * environment setting is found, and can take two forms:
1375  *
1376  *  .	a replaceable definition - this will be used if no user environment
1377  *	setting has been seen, or
1378  *
1379  *  .	an permanent definition - this will be used no matter what user
1380  *	environment setting is seen.  In the case of list variables it will be
1381  *	appended to any process environment setting seen.
1382  *
1383  * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1384  * override any replaceable environment variables from a configuration file.
1385  */
1386 static	u_longlong_t		rplgen;		/* replaceable generic */
1387 						/*	variables */
1388 static	u_longlong_t		rplisa;		/* replaceable ISA specific */
1389 						/*	variables */
1390 static	u_longlong_t		prmgen;		/* permanent generic */
1391 						/*	variables */
1392 static	u_longlong_t		prmisa;		/* permanent ISA specific */
1393 						/*	variables */
1394 
1395 /*
1396  * Classify an environment variables type.
1397  */
1398 #define	ENV_TYP_IGNORE		0x1		/* ignore - variable is for */
1399 						/*	the wrong ISA */
1400 #define	ENV_TYP_ISA		0x2		/* variable is ISA specific */
1401 #define	ENV_TYP_CONFIG		0x4		/* variable obtained from a */
1402 						/*	config file */
1403 #define	ENV_TYP_PERMANT		0x8		/* variable is permanent */
1404 
1405 /*
1406  * Identify all environment variables.
1407  */
1408 #define	ENV_FLG_AUDIT		0x0000000001ULL
1409 #define	ENV_FLG_AUDIT_ARGS	0x0000000002ULL
1410 #define	ENV_FLG_BIND_NOW	0x0000000004ULL
1411 #define	ENV_FLG_BIND_NOT	0x0000000008ULL
1412 #define	ENV_FLG_BINDINGS	0x0000000010ULL
1413 #define	ENV_FLG_CONCURRENCY	0x0000000020ULL
1414 #define	ENV_FLG_CONFGEN		0x0000000040ULL
1415 #define	ENV_FLG_CONFIG		0x0000000080ULL
1416 #define	ENV_FLG_DEBUG		0x0000000100ULL
1417 #define	ENV_FLG_DEBUG_OUTPUT	0x0000000200ULL
1418 #define	ENV_FLG_DEMANGLE	0x0000000400ULL
1419 #define	ENV_FLG_FLAGS		0x0000000800ULL
1420 #define	ENV_FLG_INIT		0x0000001000ULL
1421 #define	ENV_FLG_LIBPATH		0x0000002000ULL
1422 #define	ENV_FLG_LOADAVAIL	0x0000004000ULL
1423 #define	ENV_FLG_LOADFLTR	0x0000008000ULL
1424 #define	ENV_FLG_NOAUDIT		0x0000010000ULL
1425 #define	ENV_FLG_NOAUXFLTR	0x0000020000ULL
1426 #define	ENV_FLG_NOBAPLT		0x0000040000ULL
1427 #define	ENV_FLG_NOCONFIG	0x0000080000ULL
1428 #define	ENV_FLG_NODIRCONFIG	0x0000100000ULL
1429 #define	ENV_FLG_NODIRECT	0x0000200000ULL
1430 #define	ENV_FLG_NOENVCONFIG	0x0000400000ULL
1431 #define	ENV_FLG_NOLAZY		0x0000800000ULL
1432 #define	ENV_FLG_NOOBJALTER	0x0001000000ULL
1433 #define	ENV_FLG_NOVERSION	0x0002000000ULL
1434 #define	ENV_FLG_PRELOAD		0x0004000000ULL
1435 #define	ENV_FLG_PROFILE		0x0008000000ULL
1436 #define	ENV_FLG_PROFILE_OUTPUT	0x0010000000ULL
1437 #define	ENV_FLG_SIGNAL		0x0020000000ULL
1438 #define	ENV_FLG_TRACE_OBJS	0x0040000000ULL
1439 #define	ENV_FLG_TRACE_PTHS	0x0080000000ULL
1440 #define	ENV_FLG_UNREF		0x0100000000ULL
1441 #define	ENV_FLG_UNUSED		0x0200000000ULL
1442 #define	ENV_FLG_VERBOSE		0x0400000000ULL
1443 #define	ENV_FLG_WARN		0x0800000000ULL
1444 #define	ENV_FLG_NOFLTCONFIG	0x1000000000ULL
1445 #define	ENV_FLG_BIND_LAZY	0x2000000000ULL
1446 
1447 #ifdef	SIEBEL_DISABLE
1448 #define	ENV_FLG_FIX_1		0x8000000000ULL
1449 #endif
1450 
1451 #define	SEL_REPLACE		0x0001
1452 #define	SEL_PERMANT		0x0002
1453 #define	SEL_ACT_RT		0x0100	/* setting rtld_flags */
1454 #define	SEL_ACT_RT2		0x0200	/* setting rtld_flags2 */
1455 #define	SEL_ACT_STR		0x0400	/* setting string value */
1456 #define	SEL_ACT_LML		0x0800	/* setting lml_flags */
1457 #define	SEL_ACT_LMLT		0x1000	/* setting lml_tflags */
1458 #define	SEL_ACT_SPEC_1		0x2000	/* For FLG_{FLAGS, LIBPATH} */
1459 #define	SEL_ACT_SPEC_2		0x4000	/* need special handling */
1460 
1461 /*
1462  * Pattern match an LD_XXXX environment variable.  s1 points to the XXXX part
1463  * and len specifies its length (comparing a strings length before the string
1464  * itself speed things up).  s2 points to the token itself which has already
1465  * had any leading white-space removed.
1466  */
1467 static void
1468 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1469     Word *lmtflags, uint_t env_flags, int aout)
1470 {
1471 	u_longlong_t	variable = 0;
1472 	ushort_t	select = 0;
1473 	const char	**str;
1474 	Word		val = 0;
1475 
1476 	/*
1477 	 * Determine whether we're dealing with a replaceable or permanent
1478 	 * string.
1479 	 */
1480 	if (env_flags & ENV_TYP_PERMANT) {
1481 		/*
1482 		 * If the string is from a configuration file and defined as
1483 		 * permanent, assign it as permanent.
1484 		 */
1485 		select |= SEL_PERMANT;
1486 	} else
1487 		select |= SEL_REPLACE;
1488 
1489 	/*
1490 	 * Parse the variable given.
1491 	 *
1492 	 * The LD_AUDIT family.
1493 	 */
1494 	if (*s1 == 'A') {
1495 		if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1496 		    MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1497 			/*
1498 			 * Replaceable and permanent audit objects can exist.
1499 			 */
1500 			select |= SEL_ACT_STR;
1501 			if (select & SEL_REPLACE)
1502 				str = &rpl_audit;
1503 			else {
1504 				str = &prm_audit;
1505 				rpl_audit = 0;
1506 			}
1507 			variable = ENV_FLG_AUDIT;
1508 		} else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1509 		    (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1510 		    MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1511 			/*
1512 			 * A specialized variable for plt_exit() use, not
1513 			 * documented for general use.
1514 			 */
1515 			select |= SEL_ACT_SPEC_2;
1516 			variable = ENV_FLG_AUDIT_ARGS;
1517 		}
1518 	}
1519 	/*
1520 	 * The LD_BIND family and LD_BREADTH (historic).
1521 	 */
1522 	else if (*s1 == 'B') {
1523 		if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1524 		    MSG_ORIG(MSG_LD_BIND_LAZY),
1525 		    MSG_LD_BIND_LAZY_SIZE) == 0)) {
1526 			select |= SEL_ACT_RT2;
1527 			val = RT_FL2_BINDLAZY;
1528 			variable = ENV_FLG_BIND_LAZY;
1529 		} else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1530 		    MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1531 			select |= SEL_ACT_RT2;
1532 			val = RT_FL2_BINDNOW;
1533 			variable = ENV_FLG_BIND_NOW;
1534 		} else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1535 		    MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1536 			/*
1537 			 * Another trick, enabled to help debug AOUT
1538 			 * applications under BCP, but not documented for
1539 			 * general use.
1540 			 */
1541 			select |= SEL_ACT_RT;
1542 			val = RT_FL_NOBIND;
1543 			variable = ENV_FLG_BIND_NOT;
1544 		} else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1545 		    MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1546 			/*
1547 			 * This variable is simply for backward compatibility.
1548 			 * If this and LD_DEBUG are both specified, only one of
1549 			 * the strings is going to get processed.
1550 			 */
1551 			select |= SEL_ACT_SPEC_2;
1552 			variable = ENV_FLG_BINDINGS;
1553 #ifndef LD_BREADTH_DISABLED
1554 		} else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1,
1555 		    MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) {
1556 			/*
1557 			 * Besides some old patches this is no longer available.
1558 			 */
1559 			rtld_flags |= RT_FL_BREADTH;
1560 			return;
1561 #endif
1562 		}
1563 	}
1564 	/*
1565 	 * LD_CONCURRENCY and LD_CONFIG family.
1566 	 */
1567 	else if (*s1 == 'C') {
1568 		if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1,
1569 		    MSG_ORIG(MSG_LD_CONCURRENCY),
1570 		    MSG_LD_CONCURRENCY_SIZE) == 0)) {
1571 			/*
1572 			 * Waiting in the wings, as concurrency checking isn't
1573 			 * yet enabled.
1574 			 */
1575 			select |= SEL_ACT_SPEC_2;
1576 			variable = ENV_FLG_CONCURRENCY;
1577 		} else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1578 		    MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1579 			/*
1580 			 * Set by crle(1) to indicate it's building a
1581 			 * configuration file, not documented for general use.
1582 			 */
1583 			select |= SEL_ACT_SPEC_2;
1584 			variable = ENV_FLG_CONFGEN;
1585 		} else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1586 		    MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1587 			/*
1588 			 * Secure applications must use a default configuration
1589 			 * file.  A setting from a configuration file doesn't
1590 			 * make sense (given we must be reading a configuration
1591 			 * file to have gotten this).
1592 			 */
1593 			if ((rtld_flags & RT_FL_SECURE) ||
1594 			    (env_flags & ENV_TYP_CONFIG))
1595 				return;
1596 			select |= SEL_ACT_STR;
1597 			str = &config->c_name;
1598 			variable = ENV_FLG_CONFIG;
1599 		}
1600 	}
1601 	/*
1602 	 * The LD_DEBUG family and LD_DEMANGLE.
1603 	 */
1604 	else if (*s1 == 'D') {
1605 		if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1606 		    MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1607 			select |= SEL_ACT_STR;
1608 			if (select & SEL_REPLACE)
1609 				str = &rpl_debug;
1610 			else {
1611 				str = &prm_debug;
1612 				rpl_debug = 0;
1613 			}
1614 			variable = ENV_FLG_DEBUG;
1615 		} else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1616 		    MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1617 		    MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1618 			select |= SEL_ACT_STR;
1619 			str = &dbg_file;
1620 			variable = ENV_FLG_DEBUG_OUTPUT;
1621 		} else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1622 		    MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1623 			select |= SEL_ACT_RT;
1624 			val = RT_FL_DEMANGLE;
1625 			variable = ENV_FLG_DEMANGLE;
1626 		}
1627 	}
1628 	/*
1629 	 * LD_FLAGS - collect the best variable definition.  On completion of
1630 	 * environment variable processing pass the result to ld_flags_env()
1631 	 * where they'll be decomposed and passed back to this routine.
1632 	 */
1633 	else if (*s1 == 'F') {
1634 		if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1635 		    MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1636 			select |= SEL_ACT_SPEC_1;
1637 			if (select & SEL_REPLACE)
1638 				str = &rpl_ldflags;
1639 			else {
1640 				str = &prm_ldflags;
1641 				rpl_ldflags = 0;
1642 			}
1643 			variable = ENV_FLG_FLAGS;
1644 		}
1645 	}
1646 	/*
1647 	 * LD_INIT (internal, used by ldd(1)).
1648 	 */
1649 	else if (*s1 == 'I') {
1650 		if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1651 		    MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1652 			select |= SEL_ACT_LML;
1653 			val = LML_FLG_TRC_INIT;
1654 			variable = ENV_FLG_INIT;
1655 		}
1656 	}
1657 	/*
1658 	 * The LD_LIBRARY_PATH and LD_LOAD families.
1659 	 */
1660 	else if (*s1 == 'L') {
1661 		if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1662 		    MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1663 			select |= SEL_ACT_SPEC_1;
1664 			if (select & SEL_REPLACE)
1665 				str = &rpl_libpath;
1666 			else {
1667 				str = &prm_libpath;
1668 				rpl_libpath = 0;
1669 			}
1670 			variable = ENV_FLG_LIBPATH;
1671 		} else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1672 		    MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1673 			/*
1674 			 * Internal use by crle(1), not documented for general
1675 			 * use.
1676 			 */
1677 			select |= SEL_ACT_LML;
1678 			val = LML_FLG_LOADAVAIL;
1679 			variable = ENV_FLG_LOADAVAIL;
1680 		} else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1681 		    MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1682 			select |= SEL_ACT_SPEC_2;
1683 			variable = ENV_FLG_LOADFLTR;
1684 		}
1685 	}
1686 	/*
1687 	 * The LD_NO family.
1688 	 */
1689 	else if (*s1 == 'N') {
1690 		if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1691 		    MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1692 			select |= SEL_ACT_RT;
1693 			val = RT_FL_NOAUDIT;
1694 			variable = ENV_FLG_NOAUDIT;
1695 		} else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1696 		    MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1697 			select |= SEL_ACT_RT;
1698 			val = RT_FL_NOAUXFLTR;
1699 			variable = ENV_FLG_NOAUXFLTR;
1700 		} else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1701 		    MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1702 			select |= SEL_ACT_RT;
1703 			val = RT_FL_NOBAPLT;
1704 			variable = ENV_FLG_NOBAPLT;
1705 		} else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1706 		    MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1707 			select |= SEL_ACT_RT;
1708 			val = RT_FL_NOCFG;
1709 			variable = ENV_FLG_NOCONFIG;
1710 		} else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1711 		    MSG_ORIG(MSG_LD_NODIRCONFIG),
1712 		    MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1713 			select |= SEL_ACT_RT;
1714 			val = RT_FL_NODIRCFG;
1715 			variable = ENV_FLG_NODIRCONFIG;
1716 		} else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1717 		    MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1718 			select |= SEL_ACT_LMLT;
1719 			val = LML_TFLG_NODIRECT;
1720 			variable = ENV_FLG_NODIRECT;
1721 		} else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1722 		    MSG_ORIG(MSG_LD_NOENVCONFIG),
1723 		    MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1724 			select |= SEL_ACT_RT;
1725 			val = RT_FL_NOENVCFG;
1726 			variable = ENV_FLG_NOENVCONFIG;
1727 		} else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1728 		    MSG_ORIG(MSG_LD_NOFLTCONFIG),
1729 		    MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1730 			select |= SEL_ACT_RT2;
1731 			val = RT_FL2_NOFLTCFG;
1732 			variable = ENV_FLG_NOFLTCONFIG;
1733 		} else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1734 		    MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1735 			select |= SEL_ACT_LMLT;
1736 			val = LML_TFLG_NOLAZYLD;
1737 			variable = ENV_FLG_NOLAZY;
1738 		} else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1739 		    MSG_ORIG(MSG_LD_NOOBJALTER),
1740 		    MSG_LD_NOOBJALTER_SIZE) == 0)) {
1741 			select |= SEL_ACT_RT;
1742 			val = RT_FL_NOOBJALT;
1743 			variable = ENV_FLG_NOOBJALTER;
1744 		} else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1745 		    MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1746 			select |= SEL_ACT_RT;
1747 			val = RT_FL_NOVERSION;
1748 			variable = ENV_FLG_NOVERSION;
1749 		}
1750 	}
1751 	/*
1752 	 * LD_ORIGIN.
1753 	 */
1754 	else if (*s1 == 'O') {
1755 #ifndef	EXPAND_RELATIVE
1756 		if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1,
1757 		    MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) {
1758 			/*
1759 			 * Besides some old patches this is no longer required.
1760 			 */
1761 			rtld_flags |= RT_FL_RELATIVE;
1762 		}
1763 #endif
1764 		return;
1765 	}
1766 	/*
1767 	 * LD_PRELOAD and LD_PROFILE family.
1768 	 */
1769 	else if (*s1 == 'P') {
1770 		if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1771 		    MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1772 			select |= SEL_ACT_STR;
1773 			if (select & SEL_REPLACE)
1774 				str = &rpl_preload;
1775 			else  {
1776 				str = &prm_preload;
1777 				rpl_preload = 0;
1778 			}
1779 			variable = ENV_FLG_PRELOAD;
1780 		} else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1781 		    MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1782 			/*
1783 			 * Only one user library can be profiled at a time.
1784 			 */
1785 			select |= SEL_ACT_SPEC_2;
1786 			variable = ENV_FLG_PROFILE;
1787 		} else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1788 		    MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1789 		    MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1790 			/*
1791 			 * Only one user library can be profiled at a time.
1792 			 */
1793 			select |= SEL_ACT_STR;
1794 			str = &profile_out;
1795 			variable = ENV_FLG_PROFILE_OUTPUT;
1796 		}
1797 	}
1798 	/*
1799 	 * LD_SIGNAL.
1800 	 */
1801 	else if (*s1 == 'S') {
1802 		if (rtld_flags & RT_FL_SECURE)
1803 			return;
1804 		if ((len == MSG_LD_SIGNAL_SIZE) &&
1805 		    (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1806 		    MSG_LD_SIGNAL_SIZE) == 0)) {
1807 			select |= SEL_ACT_SPEC_2;
1808 			variable = ENV_FLG_SIGNAL;
1809 		}
1810 	}
1811 	/*
1812 	 * The LD_TRACE family (internal, used by ldd(1)).
1813 	 */
1814 	else if (*s1 == 'T') {
1815 		if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1816 		    (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1817 		    MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1818 		    ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1819 		    (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1820 		    MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) ||
1821 		    ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A),
1822 		    MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) {
1823 			select |= SEL_ACT_SPEC_2;
1824 			variable = ENV_FLG_TRACE_OBJS;
1825 		} else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1826 		    MSG_ORIG(MSG_LD_TRACE_PTHS),
1827 		    MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1828 			select |= SEL_ACT_LML;
1829 			val = LML_FLG_TRC_SEARCH;
1830 			variable = ENV_FLG_TRACE_PTHS;
1831 		}
1832 	}
1833 	/*
1834 	 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1835 	 */
1836 	else if (*s1 == 'U') {
1837 		if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1838 		    MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1839 			select |= SEL_ACT_LML;
1840 			val = LML_FLG_TRC_UNREF;
1841 			variable = ENV_FLG_UNREF;
1842 		} else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1843 		    MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1844 			select |= SEL_ACT_LML;
1845 			val = LML_FLG_TRC_UNUSED;
1846 			variable = ENV_FLG_UNUSED;
1847 		}
1848 	}
1849 	/*
1850 	 * LD_VERBOSE (internal, used by ldd(1)).
1851 	 */
1852 	else if (*s1 == 'V') {
1853 		if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1854 		    MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1855 			select |= SEL_ACT_LML;
1856 			val = LML_FLG_TRC_VERBOSE;
1857 			variable = ENV_FLG_VERBOSE;
1858 		}
1859 	}
1860 	/*
1861 	 * LD_WARN (internal, used by ldd(1)).
1862 	 */
1863 	else if (*s1 == 'W') {
1864 		if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1865 		    MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1866 			select |= SEL_ACT_LML;
1867 			val = LML_FLG_TRC_WARN;
1868 			variable = ENV_FLG_WARN;
1869 		}
1870 #ifdef	SIEBEL_DISABLE
1871 	}
1872 	/*
1873 	 * LD__FIX__ (undocumented, enable future technology that can't be
1874 	 * delivered in a patch release).
1875 	 */
1876 	else if (*s1 == '_') {
1877 		if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1,
1878 		    MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) {
1879 			select |= SEL_ACT_RT;
1880 			val = RT_FL_DISFIX_1;
1881 			variable = ENV_FLG_FIX_1;
1882 		}
1883 #endif
1884 	}
1885 	if (variable == 0)
1886 		return;
1887 
1888 	/*
1889 	 * If the variable is already processed with ISA specific variable,
1890 	 * no further processing needed.
1891 	 */
1892 	if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1893 	    ((select & SEL_PERMANT) && (prmisa & variable)))
1894 		return;
1895 
1896 	/*
1897 	 * Now mark the appropriate variables.
1898 	 * If the replaceable variable is already set, then the
1899 	 * process environment variable must be set. Any replaceable
1900 	 * variable specified in a configuration file can be ignored.
1901 	 */
1902 	if (env_flags & ENV_TYP_ISA) {
1903 		/*
1904 		 * This is ISA setting. We do the setting
1905 		 * even if s2 is NULL.
1906 		 * If s2 is NULL, we might need to undo
1907 		 * the setting.
1908 		 */
1909 		if (select & SEL_REPLACE) {
1910 			if (rplisa & variable)
1911 				return;
1912 			rplisa |= variable;
1913 		} else {
1914 			prmisa |= variable;
1915 		}
1916 	} else if (s2) {
1917 		/*
1918 		 * This is non0-ISA setting
1919 		 */
1920 		if (select & SEL_REPLACE) {
1921 			if (rplgen & variable)
1922 				return;
1923 			rplgen |= variable;
1924 		} else
1925 			prmgen |= variable;
1926 	} else
1927 		/*
1928 		 * This is non-ISA setting which
1929 		 * can be ignored.
1930 		 */
1931 		return;
1932 
1933 	/*
1934 	 * Now perform the setting.
1935 	 */
1936 	if (select & SEL_ACT_RT) {
1937 		if (s2)
1938 			rtld_flags |= val;
1939 		else
1940 			rtld_flags &= ~val;
1941 	} else if (select & SEL_ACT_RT2) {
1942 		if (s2)
1943 			rtld_flags2 |= val;
1944 		else
1945 			rtld_flags2 &= ~val;
1946 	} else if (select & SEL_ACT_STR)
1947 		*str = s2;
1948 	else if (select & SEL_ACT_LML) {
1949 		if (s2)
1950 			*lmflags |= val;
1951 		else
1952 			*lmflags &= ~val;
1953 	} else if (select & SEL_ACT_LMLT) {
1954 		if (s2)
1955 			*lmtflags |= val;
1956 		else
1957 			*lmtflags &= ~val;
1958 	} else if (select & SEL_ACT_SPEC_1) {
1959 		/*
1960 		 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1961 		 */
1962 		*str = s2;
1963 		if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1964 			if (s2) {
1965 				if (variable == ENV_FLG_FLAGS)
1966 					env_info |= ENV_INF_FLAGCFG;
1967 				else
1968 					env_info |= ENV_INF_PATHCFG;
1969 			} else {
1970 				if (variable == ENV_FLG_FLAGS)
1971 					env_info &= ~ENV_INF_FLAGCFG;
1972 				else
1973 					env_info &= ~ENV_INF_PATHCFG;
1974 			}
1975 		}
1976 	} else if (select & SEL_ACT_SPEC_2) {
1977 		/*
1978 		 * variables can be: ENV_FLG_
1979 		 * 	AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN,
1980 		 *	LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS
1981 		 */
1982 		if (variable == ENV_FLG_AUDIT_ARGS) {
1983 			if (s2) {
1984 				audit_argcnt = atoi(s2);
1985 				audit_argcnt += audit_argcnt % 2;
1986 			} else
1987 				audit_argcnt = 0;
1988 		} else if (variable == ENV_FLG_BINDINGS) {
1989 			if (s2)
1990 				rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
1991 			else
1992 				rpl_debug = 0;
1993 		} else if (variable == ENV_FLG_CONCURRENCY) {
1994 			if (s2)
1995 				rtld_flags &= ~RT_FL_NOCONCUR;
1996 			else
1997 				rtld_flags |= RT_FL_NOCONCUR;
1998 		} else if (variable == ENV_FLG_CONFGEN) {
1999 			if (s2) {
2000 				rtld_flags |= RT_FL_CONFGEN;
2001 				*lmflags |= LML_FLG_IGNRELERR;
2002 			} else {
2003 				rtld_flags &= ~RT_FL_CONFGEN;
2004 				*lmflags &= ~LML_FLG_IGNRELERR;
2005 			}
2006 		} else if (variable == ENV_FLG_LOADFLTR) {
2007 			if (s2) {
2008 				*lmtflags |= LML_TFLG_LOADFLTR;
2009 				if (*s2 == '2')
2010 					rtld_flags |= RT_FL_WARNFLTR;
2011 			} else {
2012 				*lmtflags &= ~LML_TFLG_LOADFLTR;
2013 				rtld_flags &= ~RT_FL_WARNFLTR;
2014 			}
2015 		} else if (variable == ENV_FLG_PROFILE) {
2016 			profile_name = s2;
2017 			if (s2) {
2018 				if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2019 					return;
2020 				}
2021 				if (rtld_flags & RT_FL_SECURE) {
2022 					profile_lib =
2023 #if	defined(_ELF64)
2024 					    MSG_ORIG(MSG_PTH_LDPROFSE_64);
2025 #else
2026 					    MSG_ORIG(MSG_PTH_LDPROFSE);
2027 #endif
2028 				} else {
2029 					profile_lib =
2030 #if	defined(_ELF64)
2031 					    MSG_ORIG(MSG_PTH_LDPROF_64);
2032 #else
2033 					    MSG_ORIG(MSG_PTH_LDPROF);
2034 #endif
2035 				}
2036 			} else
2037 				profile_lib = 0;
2038 		} else if (variable == ENV_FLG_SIGNAL) {
2039 			killsig = s2 ? atoi(s2) : SIGKILL;
2040 		} else if (variable == ENV_FLG_TRACE_OBJS) {
2041 			if (s2) {
2042 				*lmflags |= LML_FLG_TRC_ENABLE;
2043 				if (*s2 == '2')
2044 					*lmflags |= LML_FLG_TRC_LDDSTUB;
2045 			} else
2046 				*lmflags &=
2047 				~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB);
2048 		}
2049 	}
2050 }
2051 
2052 /*
2053  * Determine whether we have an architecture specific environment variable.
2054  * If we do, and we're the wrong architecture, it'll just get ignored.
2055  * Otherwise the variable is processed in it's architecture neutral form.
2056  */
2057 static int
2058 ld_arch_env(const char *s1, size_t *len)
2059 {
2060 	size_t	_len = *len - 3;
2061 
2062 	if (s1[_len++] == '_') {
2063 		if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2064 #if	defined(_ELF64)
2065 			return (ENV_TYP_IGNORE);
2066 #else
2067 			*len = *len - 3;
2068 			return (ENV_TYP_ISA);
2069 #endif
2070 		}
2071 		if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2072 #if	defined(_ELF64)
2073 			*len = *len - 3;
2074 			return (ENV_TYP_ISA);
2075 #else
2076 			return (ENV_TYP_IGNORE);
2077 #endif
2078 		}
2079 	}
2080 	return (0);
2081 }
2082 
2083 
2084 /*
2085  * Process an LD_FLAGS environment variable.  The value can be a comma
2086  * separated set of tokens, which are sent (in upper case) into the generic
2087  * LD_XXXX environment variable engine.  For example:
2088  *
2089  *	LD_FLAGS=bind_now		->	LD_BIND_NOW=1
2090  *	LD_FLAGS=library_path=/foo:.	->	LD_LIBRARY_PATH=/foo:.
2091  *	LD_FLAGS=debug=files:detail	->	LD_DEBUG=files:detail
2092  * or
2093  *	LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2094  */
2095 static int
2096 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2097     uint_t env_flags, int aout)
2098 {
2099 	char	*nstr, *sstr, *estr = 0;
2100 	size_t	nlen, len;
2101 
2102 	if (str == 0)
2103 		return (0);
2104 
2105 	/*
2106 	 * Create a new string as we're going to transform the token(s) into
2107 	 * uppercase and separate tokens with nulls.
2108 	 */
2109 	len = strlen(str);
2110 	if ((nstr = malloc(len + 1)) == 0)
2111 		return (1);
2112 	(void) strcpy(nstr, str);
2113 
2114 	for (sstr = nstr; sstr; sstr++, len--) {
2115 		int	flags;
2116 
2117 		if ((*sstr != '\0') && (*sstr != ',')) {
2118 			if (estr == 0) {
2119 				if (*sstr == '=')
2120 					estr = sstr;
2121 				else {
2122 					/*
2123 					 * Translate token to uppercase.  Don't
2124 					 * use toupper(3C) as including this
2125 					 * code doubles the size of ld.so.1.
2126 					 */
2127 					if ((*sstr >= 'a') && (*sstr <= 'z'))
2128 						*sstr = *sstr - ('a' - 'A');
2129 				}
2130 			}
2131 			continue;
2132 		}
2133 
2134 		*sstr = '\0';
2135 		if (estr) {
2136 			nlen = estr - nstr;
2137 			if ((*++estr == '\0') || (*estr == ','))
2138 				estr = 0;
2139 		} else
2140 			nlen = sstr - nstr;
2141 
2142 		/*
2143 		 * Fabricate a boolean definition for any unqualified variable.
2144 		 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null).
2145 		 * The value is sufficient to assert any boolean variables, plus
2146 		 * the term "(null)" is specifically chosen in case someone
2147 		 * mistakenly supplies something like LD_FLAGS=library_path.
2148 		 */
2149 		if (estr == 0)
2150 			estr = (char *)MSG_INTL(MSG_STR_NULL);
2151 
2152 		/*
2153 		 * Determine whether the environment variable is 32- or 64-bit
2154 		 * specific.  The length, len, will reflect the architecture
2155 		 * neutral portion of the string.
2156 		 */
2157 		if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2158 			ld_generic_env(nstr, nlen, estr, lmflags,
2159 			    lmtflags, (env_flags | flags), aout);
2160 		}
2161 		if (len == 0)
2162 			return (0);
2163 
2164 		nstr = sstr + 1;
2165 		estr = 0;
2166 	}
2167 	return (0);
2168 }
2169 
2170 
2171 /*
2172  * Process a single environment string.  Only strings starting with `LD_' are
2173  * reserved for our use.  By convention, all strings should be of the form
2174  * `LD_XXXX=', if the string is followed by a non-null value the appropriate
2175  * functionality is enabled.  Also pick off applicable locale variables.
2176  */
2177 #define	LOC_LANG	1
2178 #define	LOC_MESG	2
2179 #define	LOC_ALL		3
2180 
2181 static void
2182 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags,
2183     int aout)
2184 {
2185 	const char	*s2;
2186 	static		size_t	loc = 0;
2187 
2188 	if (*s1++ != 'L')
2189 		return;
2190 
2191 	/*
2192 	 * See if we have any locale environment settings.  These environment
2193 	 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which
2194 	 * is higher than LANG.
2195 	 */
2196 	s2 = s1;
2197 	if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2198 		if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) {
2199 			s2 += MSG_LC_ALL_SIZE;
2200 			if ((*s2 != '\0') && (loc < LOC_ALL)) {
2201 				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2202 				loc = LOC_ALL;
2203 			}
2204 		} else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2205 		    MSG_LC_MESSAGES_SIZE) == 0) {
2206 			s2 += MSG_LC_MESSAGES_SIZE;
2207 			if ((*s2 != '\0') && (loc < LOC_MESG)) {
2208 				glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2209 				loc = LOC_MESG;
2210 			}
2211 		}
2212 		return;
2213 	}
2214 
2215 	s2 = s1;
2216 	if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2217 	    (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2218 		glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2219 		loc = LOC_LANG;
2220 		return;
2221 	}
2222 
2223 	/*
2224 	 * Pick off any LD_XXXX environment variables.
2225 	 */
2226 	if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2227 		size_t	len;
2228 		int	flags;
2229 
2230 		/*
2231 		 * Environment variables with no value (ie. LD_XXXX=) typically
2232 		 * have no impact, however if environment variables are defined
2233 		 * within a configuration file, these null user settings can be
2234 		 * used to disable any configuration replaceable definitions.
2235 		 */
2236 		if ((s2 = strchr(s1, '=')) == 0) {
2237 			len = strlen(s1);
2238 			s2 = 0;
2239 		} else if (*++s2 == '\0') {
2240 			len = strlen(s1) - 1;
2241 			s2 = 0;
2242 		} else {
2243 			len = s2 - s1 - 1;
2244 			while (isspace(*s2))
2245 				s2++;
2246 		}
2247 
2248 		/*
2249 		 * Determine whether the environment variable is 32- or 64-bit
2250 		 * specific.  The length, len, will reflect the architecture
2251 		 * neutral portion of the string.
2252 		 */
2253 		if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2254 			return;
2255 		env_flags |= flags;
2256 
2257 		ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout);
2258 	}
2259 }
2260 
2261 /*
2262  * Internal getenv routine.  Called immediately after ld.so.1 initializes
2263  * itself.
2264  */
2265 int
2266 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout)
2267 {
2268 	char	*locale;
2269 
2270 	if (envp == (const char **)0)
2271 		return (0);
2272 
2273 	while (*envp != (const char *)0)
2274 		ld_str_env(*envp++, lmflags, lmtflags, 0, aout);
2275 
2276 	/*
2277 	 * Having collected the best representation of any LD_FLAGS, process
2278 	 * these strings.
2279 	 */
2280 	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2281 		return (1);
2282 
2283 	/*
2284 	 * Don't allow environment controlled auditing when tracing or if
2285 	 * explicitly disabled.  Trigger all tracing modes from
2286 	 * LML_FLG_TRC_ENABLE.
2287 	 */
2288 	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2289 		rpl_audit = profile_lib = profile_name = 0;
2290 	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2291 		*lmflags &= ~LML_MSK_TRC;
2292 
2293 	/*
2294 	 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2295 	 */
2296 	if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2297 	    (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2298 		rtld_flags2 &= ~RT_FL2_BINDLAZY;
2299 
2300 	/*
2301 	 * If we have a locale setting make sure its worth processing further.
2302 	 * Duplicate the string so that new locale setting can generically
2303 	 * cleanup any previous locales.
2304 	 */
2305 	if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) {
2306 		if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2307 		    (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0))
2308 			glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0;
2309 		else
2310 			glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2311 	}
2312 	return (0);
2313 }
2314 
2315 /*
2316  * Configuration environment processing.  Called after the a.out has been
2317  * processed (as the a.out can specify its own configuration file).
2318  */
2319 int
2320 readenv_config(Rtc_env * envtbl, Addr addr, int aout)
2321 {
2322 	Word *	lmflags = &(lml_main.lm_flags);
2323 	Word *	lmtflags = &(lml_main.lm_tflags);
2324 
2325 	if (envtbl == (Rtc_env *)0)
2326 		return (0);
2327 
2328 	while (envtbl->env_str) {
2329 		uint_t	env_flags = ENV_TYP_CONFIG;
2330 
2331 		if (envtbl->env_flags & RTC_ENV_PERMANT)
2332 			env_flags |= ENV_TYP_PERMANT;
2333 
2334 		ld_str_env((const char *)(envtbl->env_str + addr),
2335 		    lmflags, lmtflags, env_flags, 0);
2336 		envtbl++;
2337 	}
2338 
2339 	/*
2340 	 * Having collected the best representation of any LD_FLAGS, process
2341 	 * these strings.
2342 	 */
2343 	if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1)
2344 		return (1);
2345 	if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG,
2346 	    aout) == 1)
2347 		return (1);
2348 
2349 	/*
2350 	 * Don't allow environment controlled auditing when tracing or if
2351 	 * explicitly disabled.  Trigger all tracing modes from
2352 	 * LML_FLG_TRC_ENABLE.
2353 	 */
2354 	if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2355 		prm_audit = profile_lib = profile_name = 0;
2356 	if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2357 		*lmflags &= ~LML_MSK_TRC;
2358 
2359 	return (0);
2360 }
2361 
2362 int
2363 dowrite(Prfbuf * prf)
2364 {
2365 	/*
2366 	 * We do not have a valid file descriptor, so we are unable
2367 	 * to flush the buffer.
2368 	 */
2369 	if (prf->pr_fd == -1)
2370 		return (0);
2371 	(void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2372 	prf->pr_cur = prf->pr_buf;
2373 	return (1);
2374 }
2375 
2376 /*
2377  * Simplified printing.  The following conversion specifications are supported:
2378  *
2379  *	% [#] [-] [min field width] [. precision] s|d|x|c
2380  *
2381  *
2382  * dorprf takes the output buffer in the form of Prfbuf which permits
2383  * the verification of the output buffer size and the concatenation
2384  * of data to an already existing output buffer.  The Prfbuf
2385  * structure contains the following:
2386  *
2387  *  pr_buf	pointer to the beginning of the output buffer.
2388  *  pr_cur	pointer to the next available byte in the output buffer.  By
2389  *		setting pr_cur ahead of pr_buf you can append to an already
2390  *		existing buffer.
2391  *  pr_len	the size of the output buffer.  By setting pr_len to '0' you
2392  *		disable protection from overflows in the output buffer.
2393  *  pr_fd	a pointer to the file-descriptor the buffer will eventually be
2394  *		output to.  If pr_fd is set to '-1' then it's assumed there is
2395  *		no output buffer and doprf() will return with an error if the
2396  *		output buffer is overflowed.  If pr_fd is > -1 then when the
2397  *		output buffer is filled it will be flushed to pr_fd and then
2398  *		the available for additional data.
2399  */
2400 #define	FLG_UT_MINUS	0x0001	/* - */
2401 #define	FLG_UT_SHARP	0x0002	/* # */
2402 #define	FLG_UT_DOTSEEN	0x0008	/* dot appeared in format spec */
2403 
2404 /*
2405  * This macro is for use from within doprf only.  It is to be used for checking
2406  * the output buffer size and placing characters into the buffer.
2407  */
2408 #define	PUTC(c) \
2409 	{ \
2410 		char tmpc; \
2411 		\
2412 		tmpc = (c); \
2413 		if (bufsiz && (bp >= bufend)) { \
2414 			prf->pr_cur = bp; \
2415 			if (dowrite(prf) == 0) \
2416 				return (0); \
2417 			bp = prf->pr_cur; \
2418 		} \
2419 		*bp++ = tmpc; \
2420 	}
2421 
2422 size_t
2423 doprf(const char *format, va_list args, Prfbuf *prf)
2424 {
2425 	char	c;
2426 	char	*bp = prf->pr_cur;
2427 	char	*bufend = prf->pr_buf + prf->pr_len;
2428 	size_t	bufsiz = prf->pr_len;
2429 
2430 	while ((c = *format++) != '\0') {
2431 		if (c != '%') {
2432 			PUTC(c);
2433 		} else {
2434 			int	base = 0, flag = 0, width = 0, prec = 0;
2435 			size_t	_i;
2436 			int	_c, _n;
2437 			char	*_s;
2438 			int	ls = 0;
2439 again:
2440 			c = *format++;
2441 			switch (c) {
2442 			case '-':
2443 				flag |= FLG_UT_MINUS;
2444 				goto again;
2445 			case '#':
2446 				flag |= FLG_UT_SHARP;
2447 				goto again;
2448 			case '.':
2449 				flag |= FLG_UT_DOTSEEN;
2450 				goto again;
2451 			case '0':
2452 			case '1':
2453 			case '2':
2454 			case '3':
2455 			case '4':
2456 			case '5':
2457 			case '6':
2458 			case '7':
2459 			case '8':
2460 			case '9':
2461 				if (flag & FLG_UT_DOTSEEN)
2462 					prec = (prec * 10) + c - '0';
2463 				else
2464 					width = (width * 10) + c - '0';
2465 				goto again;
2466 			case 'x':
2467 			case 'X':
2468 				base = 16;
2469 				break;
2470 			case 'd':
2471 			case 'D':
2472 			case 'u':
2473 				base = 10;
2474 				flag &= ~FLG_UT_SHARP;
2475 				break;
2476 			case 'l':
2477 				base = 10;
2478 				ls++; /* number of l's (long or long long) */
2479 				if ((*format == 'l') ||
2480 				    (*format == 'd') || (*format == 'D') ||
2481 				    (*format == 'x') || (*format == 'X') ||
2482 				    (*format == 'o') || (*format == 'O'))
2483 					goto again;
2484 				break;
2485 			case 'o':
2486 			case 'O':
2487 				base = 8;
2488 				break;
2489 			case 'c':
2490 				_c = va_arg(args, int);
2491 
2492 				for (_i = 24; _i > 0; _i -= 8) {
2493 					if ((c = ((_c >> _i) & 0x7f)) != 0) {
2494 						PUTC(c);
2495 					}
2496 				}
2497 				if ((c = ((_c >> _i) & 0x7f)) != 0) {
2498 					PUTC(c);
2499 				}
2500 				break;
2501 			case 's':
2502 				_s = va_arg(args, char *);
2503 				_i = strlen(_s);
2504 				/* LINTED */
2505 				_n = (int)(width - _i);
2506 				if (!prec)
2507 					/* LINTED */
2508 					prec = (int)_i;
2509 
2510 				if (width && !(flag & FLG_UT_MINUS)) {
2511 					while (_n-- > 0)
2512 						PUTC(' ');
2513 				}
2514 				while (((c = *_s++) != 0) && prec--) {
2515 					PUTC(c);
2516 				}
2517 				if (width && (flag & FLG_UT_MINUS)) {
2518 					while (_n-- > 0)
2519 						PUTC(' ');
2520 				}
2521 				break;
2522 			case '%':
2523 				PUTC('%');
2524 				break;
2525 			default:
2526 				break;
2527 			}
2528 
2529 			/*
2530 			 * Numeric processing
2531 			 */
2532 			if (base) {
2533 				char		local[20];
2534 				const char	*string =
2535 						    MSG_ORIG(MSG_STR_HEXNUM);
2536 				size_t		ssize = 0, psize = 0;
2537 				const char	*prefix =
2538 						    MSG_ORIG(MSG_STR_EMPTY);
2539 				u_longlong_t	num;
2540 
2541 				switch (ls) {
2542 				case 0:	/* int */
2543 					num = (u_longlong_t)
2544 					    va_arg(args, uint_t);
2545 					break;
2546 				case 1:	/* long */
2547 					num = (u_longlong_t)
2548 					    va_arg(args, ulong_t);
2549 					break;
2550 				case 2:	/* long long */
2551 					num = va_arg(args, u_longlong_t);
2552 					break;
2553 				}
2554 
2555 				if (flag & FLG_UT_SHARP) {
2556 					if (base == 16) {
2557 						prefix = MSG_ORIG(MSG_STR_HEX);
2558 						psize = 2;
2559 					} else {
2560 						prefix = MSG_ORIG(MSG_STR_ZERO);
2561 						psize = 1;
2562 					}
2563 				}
2564 				if ((base == 10) && (long)num < 0) {
2565 					prefix = MSG_ORIG(MSG_STR_NEGATE);
2566 					psize = MSG_STR_NEGATE_SIZE;
2567 					num = (u_longlong_t)(-(longlong_t)num);
2568 				}
2569 
2570 				/*
2571 				 * Convert the numeric value into a local
2572 				 * string (stored in reverse order).
2573 				 */
2574 				_s = local;
2575 				do {
2576 					*_s++ = string[num % base];
2577 					num /= base;
2578 					ssize++;
2579 				} while (num);
2580 
2581 				/*
2582 				 * Provide any precision or width padding.
2583 				 */
2584 				if (prec) {
2585 					/* LINTED */
2586 					_n = (int)(prec - ssize);
2587 					while (_n-- > 0) {
2588 						*_s++ = '0';
2589 						ssize++;
2590 					}
2591 				}
2592 				if (width && !(flag & FLG_UT_MINUS)) {
2593 					/* LINTED */
2594 					_n = (int)(width - ssize - psize);
2595 					while (_n-- > 0) {
2596 						PUTC(' ');
2597 					}
2598 				}
2599 
2600 				/*
2601 				 * Print any prefix and the numeric string
2602 				 */
2603 				while (*prefix)
2604 					PUTC(*prefix++);
2605 				do {
2606 					PUTC(*--_s);
2607 				} while (_s > local);
2608 
2609 				/*
2610 				 * Provide any width padding.
2611 				 */
2612 				if (width && (flag & FLG_UT_MINUS)) {
2613 					/* LINTED */
2614 					_n = (int)(width - ssize - psize);
2615 					while (_n-- > 0)
2616 						PUTC(' ');
2617 				}
2618 			}
2619 		}
2620 	}
2621 
2622 	PUTC('\0');
2623 	prf->pr_cur = bp;
2624 	return (1);
2625 }
2626 
2627 static int
2628 doprintf(const char *format, va_list args, Prfbuf *prf)
2629 {
2630 	char	*ocur = prf->pr_cur;
2631 
2632 	if (doprf(format, args, prf) == 0)
2633 		return (0);
2634 	/* LINTED */
2635 	return ((int)(prf->pr_cur - ocur));
2636 }
2637 
2638 /* VARARGS2 */
2639 int
2640 sprintf(char *buf, const char *format, ...)
2641 {
2642 	va_list	args;
2643 	int	len;
2644 	Prfbuf	prf;
2645 
2646 	va_start(args, format);
2647 	prf.pr_buf = prf.pr_cur = buf;
2648 	prf.pr_len = 0;
2649 	prf.pr_fd = -1;
2650 	len = doprintf(format, args, &prf);
2651 	va_end(args);
2652 
2653 	/*
2654 	 * sprintf() return value excludes the terminating null byte.
2655 	 */
2656 	return (len - 1);
2657 }
2658 
2659 /* VARARGS3 */
2660 int
2661 snprintf(char *buf, size_t n, const char *format, ...)
2662 {
2663 	va_list	args;
2664 	int	len;
2665 	Prfbuf	prf;
2666 
2667 	va_start(args, format);
2668 	prf.pr_buf = prf.pr_cur = buf;
2669 	prf.pr_len = n;
2670 	prf.pr_fd = -1;
2671 	len = doprintf(format, args, &prf);
2672 	va_end(args);
2673 
2674 	return (len);
2675 }
2676 
2677 /* VARARGS2 */
2678 int
2679 bufprint(Prfbuf *prf, const char *format, ...)
2680 {
2681 	va_list	args;
2682 	int	len;
2683 
2684 	va_start(args, format);
2685 	len = doprintf(format, args, prf);
2686 	va_end(args);
2687 
2688 	return (len);
2689 }
2690 
2691 /*PRINTFLIKE1*/
2692 int
2693 printf(const char *format, ...)
2694 {
2695 	va_list	args;
2696 	char 	buffer[ERRSIZE];
2697 	Prfbuf	prf;
2698 
2699 	va_start(args, format);
2700 	prf.pr_buf = prf.pr_cur = buffer;
2701 	prf.pr_len = ERRSIZE;
2702 	prf.pr_fd = 1;
2703 	(void) doprf(format, args, &prf);
2704 	va_end(args);
2705 	/*
2706 	 * Trim trailing '\0' form buffer
2707 	 */
2708 	prf.pr_cur--;
2709 	return (dowrite(&prf));
2710 }
2711 
2712 static char	errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0;
2713 
2714 /*PRINTFLIKE3*/
2715 void
2716 eprintf(Lm_list *lml, Error error, const char *format, ...)
2717 {
2718 	va_list		args;
2719 	int		overflow = 0;
2720 	static int	lock = 0;
2721 	Prfbuf		prf;
2722 
2723 	if (lock || (nextptr == (errbuf + ERRSIZE)))
2724 		return;
2725 
2726 	/*
2727 	 * Note: this lock is here to prevent the same thread from recursively
2728 	 * entering itself during a eprintf.  ie: during eprintf malloc() fails
2729 	 * and we try and call eprintf ... and then malloc() fails ....
2730 	 */
2731 	lock = 1;
2732 
2733 	/*
2734 	 * If we have completed startup initialization, all error messages
2735 	 * must be saved.  These are reported through dlerror().  If we're
2736 	 * still in the initialization stage, output the error directly and
2737 	 * add a newline.
2738 	 */
2739 	va_start(args, format);
2740 
2741 	prf.pr_buf = prf.pr_cur = nextptr;
2742 	prf.pr_len = ERRSIZE - (nextptr - errbuf);
2743 
2744 	if (!(rtld_flags & RT_FL_APPLIC))
2745 		prf.pr_fd = 2;
2746 	else
2747 		prf.pr_fd = -1;
2748 
2749 	if (error > ERR_NONE) {
2750 		if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2751 			error = ERR_WARNING;
2752 		if (error == ERR_WARNING) {
2753 			if (err_strs[ERR_WARNING] == 0)
2754 			    err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING);
2755 		} else if (error == ERR_FATAL) {
2756 			if (err_strs[ERR_FATAL] == 0)
2757 			    err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2758 		} else if (error == ERR_ELF) {
2759 			if (err_strs[ERR_ELF] == 0)
2760 			    err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2761 		}
2762 		if (procname) {
2763 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2764 			    rtldname, procname, err_strs[error]) == 0)
2765 				overflow = 1;
2766 		} else {
2767 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2768 			    rtldname, err_strs[error]) == 0)
2769 				overflow = 1;
2770 		}
2771 		if (overflow == 0) {
2772 			/*
2773 			 * Remove the terminating '\0'.
2774 			 */
2775 			prf.pr_cur--;
2776 		}
2777 	}
2778 
2779 	if ((overflow == 0) && doprf(format, args, &prf) == 0)
2780 		overflow = 1;
2781 
2782 	/*
2783 	 * If this is an ELF error, it will have been generated by a support
2784 	 * object that has a dependency on libelf.  ld.so.1 doesn't generate any
2785 	 * ELF error messages as it doesn't interact with libelf.  Determine the
2786 	 * ELF error string.
2787 	 */
2788 	if ((overflow == 0) && (error == ERR_ELF)) {
2789 		static int		(*elfeno)() = 0;
2790 		static const char	*(*elfemg)();
2791 		const char		*emsg;
2792 		Rt_map			*dlmp, *lmp = lml_rtld.lm_head;
2793 
2794 		if (NEXT(lmp) && (elfeno == 0)) {
2795 			if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2796 			    MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) ||
2797 			    ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2798 			    MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0))
2799 				elfeno = 0;
2800 		}
2801 
2802 		/*
2803 		 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2804 		 */
2805 		if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) {
2806 			prf.pr_cur--;
2807 			if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2808 			    emsg) == 0)
2809 				overflow = 1;
2810 		}
2811 	}
2812 
2813 	/*
2814 	 * Push out any message that's been built.  Note, in the case of an
2815 	 * overflow condition, this message may be incomplete, in which case
2816 	 * make sure any partial string is null terminated.
2817 	 */
2818 	if (overflow)
2819 		*(prf.pr_cur) = '\0';
2820 	if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
2821 		*(prf.pr_cur - 1) = '\n';
2822 		(void) dowrite(&prf);
2823 	}
2824 
2825 	DBG_CALL(Dbg_util_str(lml, nextptr));
2826 	va_end(args);
2827 
2828 	/*
2829 	 * Determine if there was insufficient space left in the buffer to
2830 	 * complete the message.  If so, we'll have printed out as much as had
2831 	 * been processed if we're not yet executing the application.
2832 	 * Otherwise, there will be some debugging diagnostic indicating
2833 	 * as much of the error message as possible.  Write out a final buffer
2834 	 * overflow diagnostic - unlocalized, so we don't chance more errors.
2835 	 */
2836 	if (overflow) {
2837 		char	*str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
2838 
2839 		if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2840 			lasterr = str;
2841 
2842 			if ((rtld_flags & RT_FL_APPLIC) == 0) {
2843 				(void) write(2, str, strlen(str));
2844 				(void) write(2, MSG_ORIG(MSG_STR_NL),
2845 				    MSG_STR_NL_SIZE);
2846 			}
2847 		}
2848 		DBG_CALL(Dbg_util_str(lml, str));
2849 
2850 		lock = 0;
2851 		nextptr = errbuf + ERRSIZE;
2852 		return;
2853 	}
2854 
2855 	/*
2856 	 * If the application has started, then error messages are being saved
2857 	 * for retrieval by dlerror(), or possible flushing from rtldexit() in
2858 	 * the case of a fatal error.  In this case, establish the next error
2859 	 * pointer.  If we haven't started the application, the whole message
2860 	 * buffer can be reused.
2861 	 */
2862 	if ((rtld_flags & RT_FL_SILENCERR) == 0) {
2863 		lasterr = nextptr;
2864 
2865 		/*
2866 		 * Note, should we encounter an error such as ENOMEM, there may
2867 		 * be a number of the same error messages (ie. an operation
2868 		 * fails with ENOMEM, and then the attempts to construct the
2869 		 * error message itself, which incurs additional ENOMEM errors).
2870 		 * Compare any previous error message with the one we've just
2871 		 * created to prevent any duplication clutter.
2872 		 */
2873 		if ((rtld_flags & RT_FL_APPLIC) &&
2874 		    ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) {
2875 			prevptr = nextptr;
2876 			nextptr = prf.pr_cur;
2877 			*nextptr = '\0';
2878 		}
2879 	}
2880 	lock = 0;
2881 }
2882 
2883 
2884 #if	DEBUG
2885 /*
2886  * Provide assfail() for ASSERT() statements,
2887  * see <sys/debug.h> for further details.
2888  */
2889 int
2890 assfail(const char *a, const char *f, int l)
2891 {
2892 	(void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
2893 	(void) _lwp_kill(_lwp_self(), SIGABRT);
2894 	return (0);
2895 }
2896 #endif
2897 
2898 /*
2899  * Exit.  If we arrive here with a non zero status it's because of a fatal
2900  * error condition (most commonly a relocation error).  If the application has
2901  * already had control, then the actual fatal error message will have been
2902  * recorded in the dlerror() message buffer.  Print the message before really
2903  * exiting.
2904  */
2905 void
2906 rtldexit(Lm_list * lml, int status)
2907 {
2908 	if (status) {
2909 		if (rtld_flags & RT_FL_APPLIC) {
2910 			/*
2911 			 * If the error buffer has been used, write out all
2912 			 * pending messages - lasterr is simply a pointer to
2913 			 * the last message in this buffer.  However, if the
2914 			 * buffer couldn't be created at all, lasterr points
2915 			 * to a constant error message string.
2916 			 */
2917 			if (*errbuf) {
2918 				char	*errptr = errbuf;
2919 				char	*errend = errbuf + ERRSIZE;
2920 
2921 				while ((errptr < errend) && *errptr) {
2922 					size_t	size = strlen(errptr);
2923 					(void) write(2, errptr, size);
2924 					(void) write(2, MSG_ORIG(MSG_STR_NL),
2925 					    MSG_STR_NL_SIZE);
2926 					errptr += (size + 1);
2927 				}
2928 			}
2929 			if (lasterr && ((lasterr < errbuf) ||
2930 			    (lasterr > (errbuf + ERRSIZE)))) {
2931 				(void) write(2, lasterr, strlen(lasterr));
2932 				(void) write(2, MSG_ORIG(MSG_STR_NL),
2933 				    MSG_STR_NL_SIZE);
2934 			}
2935 		}
2936 		leave(lml);
2937 		(void) _lwp_kill(_lwp_self(), killsig);
2938 	}
2939 	_exit(status);
2940 }
2941 
2942 /*
2943  * Routines to co-ordinate the opening of /dev/zero and /proc.
2944  * dz_fd is exported for possible use by libld.so, and to insure it gets
2945  * closed on leaving ld.so.1.
2946  */
2947 int	dz_fd = FD_UNAVAIL;
2948 
2949 void
2950 dz_init(int fd)
2951 {
2952 	dz_fd = fd;
2953 }
2954 
2955 
2956 /*
2957  * mmap() a page from MAP_ANON
2958  *
2959  * Note: MAP_ANON is only on Solaris8++, we use this routine to
2960  *       not only mmap(MAP_ANON) but to also probe if it is available
2961  *	 on the current OS.
2962  */
2963 Am_ret
2964 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags)
2965 {
2966 #if defined(MAP_ANON)
2967 	static int	noanon = 0;
2968 	caddr_t		va;
2969 
2970 	if (noanon == 0) {
2971 		if ((va = (caddr_t)mmap(*addr, len, prot,
2972 		    (flags | MAP_ANON), -1, 0)) != MAP_FAILED) {
2973 			*addr = va;
2974 			return (AM_OK);
2975 		}
2976 
2977 		if ((errno != EBADF) && (errno != EINVAL)) {
2978 			int	err = errno;
2979 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
2980 			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
2981 			return (AM_ERROR);
2982 		} else
2983 			noanon = 1;
2984 	}
2985 #endif
2986 	return (AM_NOSUP);
2987 }
2988 
2989 /*
2990  * Map anonymous memory from /dev/zero, or via MAP_ANON.
2991  *
2992  * (MAP_ANON only appears on Solaris 8, so we need fall-back
2993  * behavior for older systems.)
2994  */
2995 caddr_t
2996 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
2997 {
2998 	caddr_t	va;
2999 	int	err;
3000 	Am_ret	amret;
3001 
3002 	amret = anon_map(lml, &addr, len, prot, flags);
3003 
3004 	if (amret == AM_OK)
3005 		return (addr);
3006 	if (amret == AM_ERROR)
3007 		return (MAP_FAILED);
3008 
3009 	/* amret == AM_NOSUP -> fallback to a devzero mmaping */
3010 
3011 	if (dz_fd == FD_UNAVAIL) {
3012 		if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO),
3013 		    O_RDONLY)) == FD_UNAVAIL) {
3014 			err = errno;
3015 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3016 			    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3017 			return (MAP_FAILED);
3018 		}
3019 	}
3020 
3021 	if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) {
3022 		err = errno;
3023 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3024 		    MSG_ORIG(MSG_PTH_DEVZERO), strerror(err));
3025 	}
3026 	return (va);
3027 }
3028 
3029 static int	pr_fd = FD_UNAVAIL;
3030 
3031 int
3032 pr_open(Lm_list *lml)
3033 {
3034 	char	proc[16];
3035 
3036 	if (pr_fd == FD_UNAVAIL) {
3037 		(void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC),
3038 			(int)getpid());
3039 		if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) {
3040 			int	err = errno;
3041 
3042 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc,
3043 			    strerror(err));
3044 		}
3045 	}
3046 	return (pr_fd);
3047 }
3048 
3049 static int	nu_fd = FD_UNAVAIL;
3050 
3051 caddr_t
3052 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3053 {
3054 	caddr_t	va;
3055 	int	err;
3056 
3057 	if (nu_fd == FD_UNAVAIL) {
3058 		if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3059 		    O_RDONLY)) == FD_UNAVAIL) {
3060 			err = errno;
3061 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3062 			    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3063 			return (MAP_FAILED);
3064 		}
3065 	}
3066 
3067 	if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3068 	    MAP_FAILED) {
3069 		err = errno;
3070 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3071 		    MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3072 	}
3073 	return (va);
3074 }
3075 
3076 /*
3077  * Generic entry point from user code - simply grabs a lock.
3078  */
3079 int
3080 enter(void)
3081 {
3082 	if (rt_bind_guard(THR_FLG_RTLD)) {
3083 		(void) rt_mutex_lock(&rtldlock);
3084 		return (1);
3085 	}
3086 	return (0);
3087 }
3088 
3089 /*
3090  * Generate diagnostics as to whether an object has been used.  A symbolic
3091  * reference that gets bound to an object marks it as used.  Dependencies that
3092  * are unused when RTLD_NOW is in effect should be removed from future builds
3093  * of an object.  Dependencies that are unused without RTLD_NOW in effect are
3094  * candidates for lazy-loading.
3095  * Unreferenced objects identify objects that are defined as dependencies but
3096  * are unreferenced by the caller (they may however be referenced by other
3097  * objects within the process, and therefore don't qualify as completely unused.
3098  */
3099 void
3100 unused(Lm_list *lml)
3101 {
3102 	Rt_map		*lmp;
3103 	int		nl = 0;
3104 	Word		tracing;
3105 
3106 	/*
3107 	 * If we're not tracing unused references or dependencies, or debugging
3108 	 * there's nothing to do.
3109 	 */
3110 	tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED);
3111 
3112 	if ((tracing == 0) && (DBG_ENABLED == 0))
3113 		return;
3114 
3115 	/*
3116 	 * Traverse the link-maps looking for unreferenced or unused
3117 	 * dependencies.  Ignore the first object on a link-map list, as this
3118 	 * is effectively always used.
3119 	 */
3120 	for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp;
3121 	    lmp = (Rt_map *)NEXT(lmp)) {
3122 		/*
3123 		 * If tracing unreferenced objects, or under debugging,
3124 		 * determine whether any of this objects callers haven't
3125 		 * referenced it.
3126 		 */
3127 		if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
3128 			Bnd_desc **	bdpp;
3129 			Aliste		off;
3130 
3131 			for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) {
3132 				Bnd_desc *	bdp = *bdpp;
3133 				Rt_map *	clmp;
3134 
3135 				if (bdp->b_flags & BND_REFER)
3136 					continue;
3137 
3138 				clmp = bdp->b_caller;
3139 				if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3140 					continue;
3141 
3142 				if (nl++ == 0) {
3143 					if (tracing & LML_FLG_TRC_UNREF)
3144 					    (void) printf(MSG_ORIG(MSG_STR_NL));
3145 					else
3146 					    DBG_CALL(Dbg_util_nl(lml,
3147 						DBG_NL_STD));
3148 				}
3149 
3150 				if (tracing & LML_FLG_TRC_UNREF)
3151 				    (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3152 					NAME(lmp), NAME(clmp));
3153 				else
3154 				    DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3155 			}
3156 		}
3157 
3158 		/*
3159 		 * If tracing unused objects simply display those objects that
3160 		 * haven't been referenced by anyone.
3161 		 */
3162 		if (FLAGS1(lmp) & FL1_RT_USED)
3163 			continue;
3164 
3165 		if (nl++ == 0) {
3166 			if (tracing)
3167 				(void) printf(MSG_ORIG(MSG_STR_NL));
3168 			else
3169 				DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3170 		}
3171 		if (CYCGROUP(lmp)) {
3172 			if (tracing)
3173 				(void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3174 				    NAME(lmp), CYCGROUP(lmp));
3175 			else
3176 				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3177 				    CYCGROUP(lmp)));
3178 		} else {
3179 			if (tracing)
3180 				(void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3181 				    NAME(lmp));
3182 			else
3183 				DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3184 		}
3185 	}
3186 
3187 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3188 }
3189 
3190 /*
3191  * Initialization routine for the Fmap structure.  If the fmap structure is
3192  * already in use, any mapping is released.  The structure is then initialized
3193  * in preparation for further use.
3194  */
3195 void
3196 fmap_setup()
3197 {
3198 #if defined(MAP_ALIGN)
3199 	/*
3200 	 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment
3201 	 * value.  Otherwise, if fm_addr is non-null it indicates a mapping that
3202 	 * should now be freed.
3203 	 */
3204 	if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0))
3205 		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3206 
3207 	/*
3208 	 * Providing we haven't determined that this system doesn't support
3209 	 * MAP_ALIGN, initialize the mapping address with the default segment
3210 	 * alignment.
3211 	 */
3212 	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
3213 		fmap->fm_maddr = (char *)M_SEGM_ALIGN;
3214 		fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN;
3215 	} else {
3216 		fmap->fm_maddr = 0;
3217 		fmap->fm_mflags = MAP_PRIVATE;
3218 	}
3219 #else
3220 	if (fmap->fm_maddr)
3221 		(void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize);
3222 
3223 	fmap->fm_maddr = 0;
3224 	fmap->fm_mflags = MAP_PRIVATE;
3225 #endif
3226 
3227 	fmap->fm_msize = syspagsz;
3228 	fmap->fm_hwptr = 0;
3229 }
3230 
3231 /*
3232  * Generic cleanup routine called prior to returning control to the user.
3233  * Insures that any ld.so.1 specific file descriptors or temporary mapping are
3234  * released, and any locks dropped.
3235  */
3236 void
3237 leave(Lm_list * lml)
3238 {
3239 	/*
3240 	 * Alert the debuggers that the link-maps are consistent.
3241 	 */
3242 	if (lml)
3243 		rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
3244 
3245 	if (dz_fd != FD_UNAVAIL) {
3246 		(void) close(dz_fd);
3247 		dz_fd = FD_UNAVAIL;
3248 	}
3249 
3250 	if (pr_fd != FD_UNAVAIL) {
3251 		(void) close(pr_fd);
3252 		pr_fd = FD_UNAVAIL;
3253 	}
3254 
3255 	if (nu_fd != FD_UNAVAIL) {
3256 		(void) close(nu_fd);
3257 		nu_fd = FD_UNAVAIL;
3258 	}
3259 
3260 	fmap_setup();
3261 
3262 	/*
3263 	 * Reinitialize error message pointer, and any overflow indication.
3264 	 */
3265 	nextptr = errbuf;
3266 	prevptr = 0;
3267 
3268 	/*
3269 	 * Don't drop our lock if we are running on our link-map list as
3270 	 * there's little point in doing so since we are single-threaded.
3271 	 *
3272 	 * LML_FLG_HOLDLOCK is set for:
3273 	 *	*) The ld.so.1's link-map list.
3274 	 *	*) The auditor's link-map if the environment is
3275 	 *	   libc/libthread un-unified.
3276 	 */
3277 	if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK))
3278 		return;
3279 
3280 	if (rt_bind_clear(0) & THR_FLG_RTLD) {
3281 		(void) rt_mutex_unlock(&rtldlock);
3282 		(void) rt_bind_clear(THR_FLG_RTLD);
3283 	}
3284 }
3285 
3286 int
3287 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp)
3288 {
3289 	Alist *		calp, * dalp;
3290 	Aliste		cnt1, cnt2;
3291 	Grp_hdl **	ghpp1, ** ghpp2;
3292 
3293 	/*
3294 	 * An object can always find symbols within itself.
3295 	 */
3296 	if (clmp == dlmp)
3297 		return (1);
3298 
3299 	/*
3300 	 * Don't allow an object to bind to an object that is being deleted
3301 	 * unless the binder is also being deleted.
3302 	 */
3303 	if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3304 	    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3305 		return (0);
3306 
3307 	/*
3308 	 * An object with world access can always bind to an object with global
3309 	 * visibility.
3310 	 */
3311 	if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL))
3312 		return (1);
3313 
3314 	/*
3315 	 * An object with local access can only bind to an object that is a
3316 	 * member of the same group.
3317 	 */
3318 	if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3319 	    ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0))
3320 		return (0);
3321 
3322 	/*
3323 	 * Traverse the list of groups the caller is a part of.
3324 	 */
3325 	for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) {
3326 		/*
3327 		 * If we're testing for the ability of two objects to bind to
3328 		 * each other regardless of a specific group, ignore that group.
3329 		 */
3330 		if (ghp && (*ghpp1 == ghp))
3331 			continue;
3332 
3333 		/*
3334 		 * Traverse the list of groups the destination is a part of.
3335 		 */
3336 		for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) {
3337 			if (*ghpp1 == *ghpp2)
3338 				return (1);
3339 		}
3340 	}
3341 	return (0);
3342 }
3343 
3344 /*
3345  * Initialize the environ symbol.  Traditionally this is carried out by the crt
3346  * code prior to jumping to main.  However, init sections get fired before this
3347  * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3348  * information.  In addition, a process may have multiple link-maps (ld.so.1's
3349  * debugging and preloading objects), and link auditing, and each may need an
3350  * environ variable set.
3351  *
3352  * This routine is called after a relocation() pass, and thus provides for:
3353  *
3354  *  o	setting environ on the main link-map after the initial application and
3355  *	its dependencies have been established.  Typically environ lives in the
3356  *	application (provided by its crt), but in older applications it might
3357  *	be in libc.  Who knows what's expected of applications not built on
3358  *	Solaris.
3359  *
3360  *  o	after loading a new shared object.  We can add shared objects to various
3361  *	link-maps, and any link-map dependencies requiring getopt() require
3362  *	their own environ.  In addition, lazy loading might bring in the
3363  *	supplier of environ (libc used to be a lazy loading candidate) after
3364  *	the link-map has been established and other objects are present.
3365  *
3366  * This routine handles all these scenarios, without adding unnecessary overhead
3367  * to ld.so.1.
3368  */
3369 void
3370 set_environ(Lm_list *lml)
3371 {
3372 	Rt_map *	dlmp;
3373 	Sym *		sym;
3374 	Slookup		sl;
3375 	uint_t		binfo;
3376 
3377 	sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON);
3378 	sl.sl_cmap = lml->lm_head;
3379 	sl.sl_imap = lml->lm_head;
3380 	sl.sl_hash = 0;
3381 	sl.sl_rsymndx = 0;
3382 	sl.sl_flags = LKUP_WEAK;
3383 
3384 	if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) {
3385 		lml->lm_environ = (char ***)sym->st_value;
3386 
3387 		if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3388 			lml->lm_environ =
3389 			    (char ***)((uintptr_t)lml->lm_environ +
3390 			    (uintptr_t)ADDR(dlmp));
3391 		*(lml->lm_environ) = (char **)environ;
3392 		lml->lm_flags |= LML_FLG_ENVIRON;
3393 	}
3394 }
3395 
3396 /*
3397  * Determine whether we have a secure executable.  Uid and gid information
3398  * can be passed to us via the aux vector, however if these values are -1
3399  * then use the appropriate system call to obtain them.
3400  *
3401  *  o	If the user is the root they can do anything
3402  *
3403  *  o	If the real and effective uid's don't match, or the real and
3404  *	effective gid's don't match then this is determined to be a `secure'
3405  *	application.
3406  *
3407  * This function is called prior to any dependency processing (see _setup.c).
3408  * Any secure setting will remain in effect for the life of the process.
3409  */
3410 void
3411 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3412 {
3413 #ifdef AT_SUN_AUXFLAGS
3414 	if (auxflags != -1) {
3415 		if ((auxflags & AF_SUN_SETUGID) != 0)
3416 			rtld_flags |= RT_FL_SECURE;
3417 		return;
3418 	}
3419 #endif
3420 	if (uid == -1)
3421 		uid = getuid();
3422 	if (uid) {
3423 		if (euid == -1)
3424 			euid = geteuid();
3425 		if (uid != euid)
3426 			rtld_flags |= RT_FL_SECURE;
3427 		else {
3428 			if (gid == -1)
3429 				gid = getgid();
3430 			if (egid == -1)
3431 				egid = getegid();
3432 			if (gid != egid)
3433 				rtld_flags |= RT_FL_SECURE;
3434 		}
3435 	}
3436 }
3437 
3438 /*
3439  * _REENTRANT code gets errno redefined to a function so provide for return
3440  * of the thread errno if applicable.  This has no meaning in ld.so.1 which
3441  * is basically singled threaded.  Provide the interface for our dependencies.
3442  */
3443 #undef errno
3444 #pragma weak _private___errno = ___errno
3445 int *
3446 ___errno()
3447 {
3448 	extern	int	errno;
3449 
3450 	return (&errno);
3451 }
3452 
3453 /*
3454  * The interface with the c library which is supplied through libdl.so.1.
3455  * A non-null argument allows a function pointer array to be passed to us which
3456  * is used to re-initialize the linker libc table.
3457  */
3458 void
3459 _ld_libc(void * ptr)
3460 {
3461 	get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr);
3462 }
3463 
3464 /*
3465  * Determine whether a symbol name should be demangled.
3466  */
3467 const char *
3468 demangle(const char *name)
3469 {
3470 	if (rtld_flags & RT_FL_DEMANGLE)
3471 		return (conv_demangle_name(name));
3472 	else
3473 		return (name);
3474 }
3475