xref: /titanic_52/usr/src/cmd/sgs/rtld/common/elf.c (revision 7eea693d6b672899726e75993fddc4e95b52647f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1988 AT&T
29  *	  All Rights Reserved
30  */
31 
32 /*
33  * Object file dependent support for ELF objects.
34  */
35 
36 #include	<stdio.h>
37 #include	<sys/procfs.h>
38 #include	<sys/mman.h>
39 #include	<sys/debug.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<dlfcn.h>
43 #include	<debug.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"msg.h"
49 
50 /*
51  * Default and secure dependency search paths.
52  */
53 static Pnode		elf_dflt_dirs[] = {
54 #if	defined(_ELF64)
55 #ifndef	SGS_PRE_UNIFIED_PROCESS
56 	{ MSG_ORIG(MSG_PTH_LIB_64),		0,	MSG_PTH_LIB_64_SIZE,
57 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
58 #endif
59 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		0,	MSG_PTH_USRLIB_64_SIZE,
60 		LA_SER_DEFAULT,			0, 0 }
61 #else
62 #ifndef	SGS_PRE_UNIFIED_PROCESS
63 	{ MSG_ORIG(MSG_PTH_LIB),		0,	MSG_PTH_LIB_SIZE,
64 		LA_SER_DEFAULT,			0,	&elf_dflt_dirs[1] },
65 #endif
66 	{ MSG_ORIG(MSG_PTH_USRLIB),		0,	MSG_PTH_USRLIB_SIZE,
67 		LA_SER_DEFAULT,			0, 0 }
68 #endif
69 };
70 
71 static Pnode		elf_secure_dirs[] = {
72 #if	defined(_ELF64)
73 #ifndef	SGS_PRE_UNIFIED_PROCESS
74 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		0,	MSG_PTH_LIBSE_64_SIZE,
75 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
76 #endif
77 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	0,
78 		MSG_PTH_USRLIBSE_64_SIZE,
79 		LA_SER_SECURE,			0, 0 }
80 #else
81 #ifndef	SGS_PRE_UNIFIED_PROCESS
82 	{ MSG_ORIG(MSG_PTH_LIBSE),		0,	MSG_PTH_LIBSE_SIZE,
83 		LA_SER_SECURE,			0,	&elf_secure_dirs[1] },
84 #endif
85 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		0,	MSG_PTH_USRLIBSE_SIZE,
86 		LA_SER_SECURE,			0, 0 }
87 #endif
88 };
89 
90 /*
91  * Defines for local functions.
92  */
93 static Pnode	*elf_fix_name(const char *, Rt_map *, uint_t);
94 static int	elf_are_u(Rej_desc *);
95 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
96 static ulong_t	elf_entry_pt(void);
97 static char	*elf_get_so(const char *, const char *);
98 static Rt_map	*elf_map_so(Lm_list *, Aliste, const char *, const char *,
99 		    int, int *);
100 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
101 static void	elf_unmap_so(Rt_map *);
102 static int	elf_verify_vers(const char *, Rt_map *, Rt_map *);
103 
104 /*
105  * Functions and data accessed through indirect pointers.
106  */
107 Fct elf_fct = {
108 	elf_are_u,
109 	elf_entry_pt,
110 	elf_map_so,
111 	elf_unmap_so,
112 	elf_needed,
113 	lookup_sym,
114 	elf_reloc,
115 	elf_dflt_dirs,
116 	elf_secure_dirs,
117 	elf_fix_name,
118 	elf_get_so,
119 	elf_dladdr,
120 	dlsym_handle,
121 	elf_verify_vers,
122 	elf_set_prot
123 };
124 
125 
126 /*
127  * Redefine NEEDED name if necessary.
128  */
129 static Pnode *
130 elf_fix_name(const char *name, Rt_map *clmp, uint_t orig)
131 {
132 	/*
133 	 * For ABI compliance, if we are asked for ld.so.1, then really give
134 	 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1).
135 	 */
136 	if (((*name == '/') &&
137 	/* BEGIN CSTYLED */
138 #if	defined(_ELF64)
139 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) ||
140 #else
141 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) ||
142 #endif
143 	    (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) {
144 		/* END CSTYLED */
145 		Pnode	*pnp;
146 
147 		DBG_CALL(Dbg_file_fixname(LIST(clmp), name,
148 		    MSG_ORIG(MSG_PTH_LIBSYS)));
149 		if (((pnp = calloc(sizeof (Pnode), 1)) == 0) ||
150 		    ((pnp->p_name = strdup(MSG_ORIG(MSG_PTH_LIBSYS))) == 0)) {
151 			if (pnp)
152 				free(pnp);
153 			return (0);
154 		}
155 		pnp->p_len = MSG_PTH_LIBSYS_SIZE;
156 		return (pnp);
157 	}
158 
159 	return (expand_paths(clmp, name, orig, 0));
160 }
161 
162 /*
163  * Determine if we have been given an ELF file and if so determine if the file
164  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
165  * with associated error information.
166  */
167 static int
168 elf_are_u(Rej_desc *rej)
169 {
170 	Ehdr	*ehdr;
171 
172 	/*
173 	 * Determine if we're an elf file.  If not simply return, we don't set
174 	 * any rejection information as this test allows use to scroll through
175 	 * the objects we support (ELF, AOUT).
176 	 */
177 	if (fmap->fm_fsize < sizeof (Ehdr) ||
178 	    fmap->fm_maddr[EI_MAG0] != ELFMAG0 ||
179 	    fmap->fm_maddr[EI_MAG1] != ELFMAG1 ||
180 	    fmap->fm_maddr[EI_MAG2] != ELFMAG2 ||
181 	    fmap->fm_maddr[EI_MAG3] != ELFMAG3) {
182 		return (0);
183 	}
184 
185 	/*
186 	 * Check class and encoding.
187 	 */
188 	/* LINTED */
189 	ehdr = (Ehdr *)fmap->fm_maddr;
190 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
191 		rej->rej_type = SGS_REJ_CLASS;
192 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
193 		return (0);
194 	}
195 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
196 		rej->rej_type = SGS_REJ_DATA;
197 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
198 		return (0);
199 	}
200 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
201 	    (ehdr->e_type != ET_DYN)) {
202 		rej->rej_type = SGS_REJ_TYPE;
203 		rej->rej_info = (uint_t)ehdr->e_type;
204 		return (0);
205 	}
206 
207 	/*
208 	 * Verify machine specific flags, and hardware capability requirements.
209 	 */
210 	if ((elf_mach_flags_check(rej, ehdr) == 0) ||
211 	    ((rtld_flags2 & RT_FL2_HWCAP) && (hwcap_check(rej, ehdr) == 0)))
212 		return (0);
213 
214 	/*
215 	 * Verify ELF version.  ??? is this too restrictive ???
216 	 */
217 	if (ehdr->e_version > EV_CURRENT) {
218 		rej->rej_type = SGS_REJ_VERSION;
219 		rej->rej_info = (uint_t)ehdr->e_version;
220 		return (0);
221 	}
222 	return (1);
223 }
224 
225 /*
226  * The runtime linker employs lazy loading to provide the libraries needed for
227  * debugging, preloading .o's and dldump().  As these are seldom used, the
228  * standard startup of ld.so.1 doesn't initialize all the information necessary
229  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
230  * is called we get here to perform these initializations:
231  *
232  *  o	elf_needed() is called to set up the DYNINFO() indexes for each lazy
233  *	dependency.  Typically, for all other objects, this is called during
234  *	analyze_so(), but as ld.so.1 is set-contained we skip this processing.
235  *
236  *  o	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
237  *	are by default skipped thus delaying all relative relocation processing
238  * 	on every invocation of ld.so.1.
239  */
240 int
241 elf_rtld_load()
242 {
243 	Lm_list	*lml = &lml_rtld;
244 	Rt_map	*lmp = lml->lm_head;
245 
246 	if (lml->lm_flags & LML_FLG_PLTREL)
247 		return (1);
248 
249 	/*
250 	 * As we need to refer to the DYNINFO() information, insure that it has
251 	 * been initialized.
252 	 */
253 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
254 		return (0);
255 
256 #if	defined(__i386)
257 	/*
258 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
259 	 * It's based around two factors.
260 	 *
261 	 *  o	JMPSLOT relocations (PLT's) actually need a relative relocation
262 	 *	applied to the GOT entry so that they can find PLT0.
263 	 *
264 	 *  o	ld.so.1 does not exercise *any* PLT's before it has made a call
265 	 *	to elf_lazy_load().  This is because all dynamic dependencies
266 	 * 	are recorded as lazy dependencies.
267 	 */
268 	(void) elf_reloc_relacount((ulong_t)JMPREL(lmp),
269 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
270 	    (ulong_t)ADDR(lmp));
271 #endif
272 
273 	lml->lm_flags |= LML_FLG_PLTREL;
274 	return (1);
275 }
276 
277 /*
278  * Lazy load an object.
279  */
280 Rt_map *
281 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
282     int *in_nfavl)
283 {
284 	Rt_map		*nlmp, *hlmp;
285 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
286 	uint_t		flags = 0;
287 	Pnode		*pnp;
288 	const char	*name;
289 	Lm_list		*lml = LIST(clmp);
290 	Lm_cntl		*lmc;
291 	Aliste		lmco;
292 
293 	/*
294 	 * If this dependency has already been processed, we're done.
295 	 */
296 	if (((nlmp = (Rt_map *)dip->di_info) != 0) ||
297 	    (dip->di_flags & FLG_DI_LDD_DONE))
298 		return (nlmp);
299 
300 	/*
301 	 * If we're running under ldd(1), indicate that this dependency has been
302 	 * processed (see test above).  It doesn't matter whether the object is
303 	 * successfully loaded or not, this flag simply ensures that we don't
304 	 * repeatedly attempt to load an object that has already failed to load.
305 	 * To do so would create multiple failure diagnostics for the same
306 	 * object under ldd(1).
307 	 */
308 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
309 		dip->di_flags |= FLG_DI_LDD_DONE;
310 
311 	/*
312 	 * Determine the initial dependency name.
313 	 */
314 	name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val;
315 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
316 
317 	/*
318 	 * If this object needs to establish its own group, make sure a handle
319 	 * is created.
320 	 */
321 	if (dip->di_flags & FLG_DI_GROUP)
322 		flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE);
323 
324 	/*
325 	 * Lazy dependencies are identified as DT_NEEDED entries with a
326 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
327 	 * dynamic information element that corresponds to the DT_POSFLAG_1
328 	 * entry is free, and thus used to store the present entrance
329 	 * identifier.  This identifier is used to prevent multiple attempts to
330 	 * load a failed lazy loadable dependency within the same runtime linker
331 	 * operation.  However, future attempts to reload this dependency are
332 	 * still possible.
333 	 */
334 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
335 		pdip->di_info = (void *)slp->sl_id;
336 
337 	/*
338 	 * Expand the requested name if necessary.
339 	 */
340 	if ((pnp = elf_fix_name(name, clmp, 0)) == 0)
341 		return (0);
342 
343 	/*
344 	 * Provided the object on the head of the link-map has completed its
345 	 * relocation, create a new link-map control list for this request.
346 	 */
347 	hlmp = lml->lm_head;
348 	if (FLAGS(hlmp) & FLG_RT_RELOCED) {
349 		if ((lmc = alist_append(&lml->lm_lists, 0, sizeof (Lm_cntl),
350 		    AL_CNT_LMLISTS)) == 0) {
351 			remove_pnode(pnp);
352 			return (0);
353 		}
354 		lmco = (Aliste)((char *)lmc - (char *)lml->lm_lists);
355 	} else {
356 		lmc = 0;
357 		lmco = ALIST_OFF_DATA;
358 	}
359 
360 	/*
361 	 * Load the associated object.
362 	 */
363 	dip->di_info = nlmp =
364 	    load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0, in_nfavl);
365 
366 	/*
367 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
368 	 * dependency count of the caller, together with the link-map lists
369 	 * count of objects that still have lazy dependencies pending.
370 	 */
371 	remove_pnode(pnp);
372 	if (--LAZY(clmp) == 0)
373 		LIST(clmp)->lm_lazy--;
374 
375 	/*
376 	 * Finish processing the objects associated with this request, and
377 	 * create an association between the caller and this dependency.
378 	 */
379 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
380 	    (analyze_lmc(lml, lmco, nlmp, in_nfavl) == 0) ||
381 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
382 		dip->di_info = nlmp = 0;
383 
384 	/*
385 	 * If this lazyload has failed, and we've created a new link-map
386 	 * control list to which this request has added objects, then remove
387 	 * all the objects that have been associated to this request.
388 	 */
389 	if ((nlmp == 0) && lmc && lmc->lc_head)
390 		remove_lmc(lml, clmp, lmc, lmco, name);
391 
392 	/*
393 	 * Finally, remove any link-map control list that was created.
394 	 */
395 	if (lmc)
396 		remove_cntl(lml, lmco);
397 
398 	/*
399 	 * If this lazy loading failed, record the fact, and bump the lazy
400 	 * counts.
401 	 */
402 	if (nlmp == 0) {
403 		dip->di_flags |= FLG_DI_LAZYFAIL;
404 		if (LAZY(clmp)++ == 0)
405 			LIST(clmp)->lm_lazy++;
406 	}
407 
408 	return (nlmp);
409 }
410 
411 /*
412  * Return the entry point of the ELF executable.
413  */
414 static ulong_t
415 elf_entry_pt(void)
416 {
417 	return (ENTRY(lml_main.lm_head));
418 }
419 
420 /*
421  * Unmap a given ELF shared object from the address space.
422  */
423 static void
424 elf_unmap_so(Rt_map *lmp)
425 {
426 	caddr_t	addr;
427 	size_t	size;
428 	Mmap	*mmaps;
429 
430 	/*
431 	 * If this link map represents a relocatable object concatenation, then
432 	 * the image was simply generated in allocated memory.  Free the memory.
433 	 *
434 	 * Note: the memory was originally allocated in the libelf:_elf_outmap
435 	 * routine and would normally have been free'd in elf_outsync(), but
436 	 * because we 'interpose' on that routine the memory  wasn't free'd at
437 	 * that time.
438 	 */
439 	if (FLAGS(lmp) & FLG_RT_IMGALLOC) {
440 		free((void *)ADDR(lmp));
441 		return;
442 	}
443 
444 	/*
445 	 * If padding was enabled via rtld_db, then we have at least one page
446 	 * in front of the image - and possibly a trailing page.
447 	 * Unmap the front page first:
448 	 */
449 	if (PADSTART(lmp) != ADDR(lmp)) {
450 		addr = (caddr_t)M_PTRUNC(PADSTART(lmp));
451 		size = ADDR(lmp) - (ulong_t)addr;
452 		(void) munmap(addr, size);
453 	}
454 
455 	/*
456 	 * Unmap any trailing padding.
457 	 */
458 	if (M_PROUND((PADSTART(lmp) + PADIMLEN(lmp))) >
459 	    M_PROUND(ADDR(lmp) + MSIZE(lmp))) {
460 		addr = (caddr_t)M_PROUND(ADDR(lmp) + MSIZE(lmp));
461 		size = M_PROUND(PADSTART(lmp) + PADIMLEN(lmp)) - (ulong_t)addr;
462 		(void) munmap(addr, size);
463 	}
464 
465 	/*
466 	 * Unmmap all mapped segments.
467 	 */
468 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++)
469 		(void) munmap(mmaps->m_vaddr, mmaps->m_msize);
470 }
471 
472 /*
473  * Determine if a dependency requires a particular version and if so verify
474  * that the version exists in the dependency.
475  */
476 static int
477 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
478 {
479 	Verneed		*vnd = VERNEED(clmp);
480 	int		_num, num = VERNEEDNUM(clmp);
481 	char		*cstrs = (char *)STRTAB(clmp);
482 	Lm_list		*lml = LIST(clmp);
483 
484 	/*
485 	 * Traverse the callers version needed information and determine if any
486 	 * specific versions are required from the dependency.
487 	 */
488 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
489 	for (_num = 1; _num <= num; _num++,
490 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
491 		Half		cnt = vnd->vn_cnt;
492 		Vernaux		*vnap;
493 		char		*nstrs, *need;
494 
495 		/*
496 		 * Determine if a needed entry matches this dependency.
497 		 */
498 		need = (char *)(cstrs + vnd->vn_file);
499 		if (strcmp(name, need) != 0)
500 			continue;
501 
502 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
503 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
504 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
505 
506 		/*
507 		 * Validate that each version required actually exists in the
508 		 * dependency.
509 		 */
510 		nstrs = (char *)STRTAB(nlmp);
511 
512 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
513 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
514 			char		*version, *define;
515 			Verdef		*vdf = VERDEF(nlmp);
516 			ulong_t		_num, num = VERDEFNUM(nlmp);
517 			int		found = 0;
518 
519 			/*
520 			 * Skip validation of versions that are marked
521 			 * INFO. This optimization is used for versions
522 			 * that are inherited by another version. Verification
523 			 * of the inheriting version is sufficient.
524 			 *
525 			 * Such versions are recorded in the object for the
526 			 * benefit of VERSYM entries that refer to them. This
527 			 * provides a purely diagnositic benefit.
528 			 */
529 			if (vnap->vna_flags & VER_FLG_INFO)
530 				continue;
531 
532 			version = (char *)(cstrs + vnap->vna_name);
533 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
534 
535 			for (_num = 1; _num <= num; _num++,
536 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
537 				Verdaux		*vdap;
538 
539 				if (vnap->vna_hash != vdf->vd_hash)
540 					continue;
541 
542 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
543 				define = (char *)(nstrs + vdap->vda_name);
544 				if (strcmp(version, define) != 0)
545 					continue;
546 
547 				found++;
548 				break;
549 			}
550 
551 			/*
552 			 * If we're being traced print out any matched version
553 			 * when the verbose (-v) option is in effect.  Always
554 			 * print any unmatched versions.
555 			 */
556 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
557 				/* BEGIN CSTYLED */
558 				if (found) {
559 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
560 					continue;
561 
562 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
563 					need, version, NAME(nlmp));
564 				} else {
565 				    if (rtld_flags & RT_FL_SILENCERR)
566 					continue;
567 
568 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
569 					need, version);
570 				}
571 				/* END CSTYLED */
572 				continue;
573 			}
574 
575 			/*
576 			 * If the version hasn't been found then this is a
577 			 * candidate for a fatal error condition.  Weak
578 			 * version definition requirements are silently
579 			 * ignored.  Also, if the image inspected for a version
580 			 * definition has no versioning recorded at all then
581 			 * silently ignore this (this provides better backward
582 			 * compatibility to old images created prior to
583 			 * versioning being available).  Both of these skipped
584 			 * diagnostics are available under tracing (see above).
585 			 */
586 			if ((found == 0) && (num != 0) &&
587 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
588 				eprintf(lml, ERR_FATAL,
589 				    MSG_INTL(MSG_VER_NFOUND), need, version,
590 				    NAME(clmp));
591 				return (0);
592 			}
593 		}
594 	}
595 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
596 	return (1);
597 }
598 
599 /*
600  * Search through the dynamic section for DT_NEEDED entries and perform one
601  * of two functions.  If only the first argument is specified then load the
602  * defined shared object, otherwise add the link map representing the defined
603  * link map the the dlopen list.
604  */
605 static int
606 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
607 {
608 	Dyn		*dyn, *pdyn;
609 	ulong_t		ndx = 0;
610 	uint_t		lazy, flags;
611 	Word		lmflags = lml->lm_flags;
612 	Word		lmtflags = lml->lm_tflags;
613 
614 	/*
615 	 * Process each shared object on needed list.
616 	 */
617 	if (DYN(clmp) == 0)
618 		return (1);
619 
620 	for (dyn = (Dyn *)DYN(clmp), pdyn = NULL; dyn->d_tag != DT_NULL;
621 	    pdyn = dyn++, ndx++) {
622 		Dyninfo	*dip = &DYNINFO(clmp)[ndx];
623 		Rt_map	*nlmp = 0;
624 		char	*name;
625 		int	silent = 0;
626 		Pnode	*pnp;
627 
628 		switch (dyn->d_tag) {
629 		case DT_POSFLAG_1:
630 			dip->di_flags |= FLG_DI_POSFLAG1;
631 			continue;
632 		case DT_NEEDED:
633 		case DT_USED:
634 			lazy = flags = 0;
635 			dip->di_flags |= FLG_DI_NEEDED;
636 
637 			if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
638 				if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
639 				    ((lmtflags & LML_TFLG_NOLAZYLD) == 0)) {
640 					dip->di_flags |= FLG_DI_LAZY;
641 					lazy = 1;
642 				}
643 				if (pdyn->d_un.d_val & DF_P1_GROUPPERM) {
644 					dip->di_flags |= FLG_DI_GROUP;
645 					flags =
646 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
647 				}
648 			}
649 
650 			name = (char *)STRTAB(clmp) + dyn->d_un.d_val;
651 
652 			/*
653 			 * NOTE, libc.so.1 can't be lazy loaded.  Although a
654 			 * lazy position flag won't be produced when a RTLDINFO
655 			 * .dynamic entry is found (introduced with the UPM in
656 			 * Solaris 10), it was possible to mark libc for lazy
657 			 * loading on previous releases.  To reduce the overhead
658 			 * of testing for this occurrence, only carry out this
659 			 * check for the first object on the link-map list
660 			 * (there aren't many applications built without libc).
661 			 */
662 			if (lazy && (lml->lm_head == clmp) &&
663 			    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
664 				lazy = 0;
665 
666 			/*
667 			 * Don't bring in lazy loaded objects yet unless we've
668 			 * been asked to attempt to load all available objects
669 			 * (crle(1) sets LD_FLAGS=loadavail).  Even under
670 			 * RTLD_NOW we don't process this - RTLD_NOW will cause
671 			 * relocation processing which in turn might trigger
672 			 * lazy loading, but its possible that the object has a
673 			 * lazy loaded file with no bindings (i.e., it should
674 			 * never have been a dependency in the first place).
675 			 */
676 			if (lazy) {
677 				if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
678 					LAZY(clmp)++;
679 					lazy = flags = 0;
680 					continue;
681 				}
682 
683 				/*
684 				 * Silence any error messages - see description
685 				 * under elf_lookup_filtee().
686 				 */
687 				if ((rtld_flags & RT_FL_SILENCERR) == 0) {
688 					rtld_flags |= RT_FL_SILENCERR;
689 					silent = 1;
690 				}
691 			}
692 			break;
693 		case DT_AUXILIARY:
694 			dip->di_flags |= FLG_DI_AUXFLTR;
695 			continue;
696 		case DT_SUNW_AUXILIARY:
697 			dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
698 			continue;
699 		case DT_FILTER:
700 			dip->di_flags |= FLG_DI_STDFLTR;
701 			continue;
702 		case DT_SUNW_FILTER:
703 			dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
704 			continue;
705 		default:
706 			continue;
707 		}
708 
709 		DBG_CALL(Dbg_file_needed(clmp, name));
710 
711 		/*
712 		 * If we're running under ldd(1), indicate that this dependency
713 		 * has been processed.  It doesn't matter whether the object is
714 		 * successfully loaded or not, this flag simply ensures that we
715 		 * don't repeatedly attempt to load an object that has already
716 		 * failed to load.  To do so would create multiple failure
717 		 * diagnostics for the same object under ldd(1).
718 		 */
719 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
720 			dip->di_flags |= FLG_DI_LDD_DONE;
721 
722 		/*
723 		 * Establish the objects name, load it and establish a binding
724 		 * with the caller.
725 		 */
726 		if (((pnp = elf_fix_name(name, clmp, 0)) == 0) || ((nlmp =
727 		    load_one(lml, lmco, pnp, clmp, MODE(clmp), flags, 0,
728 		    in_nfavl)) == 0) || (bind_one(clmp, nlmp, BND_NEEDED) == 0))
729 			nlmp = 0;
730 
731 		/*
732 		 * Clean up any infrastructure, including the removal of the
733 		 * error suppression state, if it had been previously set in
734 		 * this routine.
735 		 */
736 		if (pnp)
737 			remove_pnode(pnp);
738 		if (silent)
739 			rtld_flags &= ~RT_FL_SILENCERR;
740 
741 		if ((dip->di_info = (void *)nlmp) == 0) {
742 			/*
743 			 * If the object could not be mapped, continue if error
744 			 * suppression is established or we're here with ldd(1).
745 			 */
746 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
747 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
748 				continue;
749 			else
750 				return (0);
751 		}
752 	}
753 
754 	if (LAZY(clmp))
755 		lml->lm_lazy++;
756 
757 	return (1);
758 }
759 
760 static int
761 elf_map_check(Lm_list *lml, const char *name, caddr_t vaddr, Off size)
762 {
763 	prmap_t		*maps, *_maps;
764 	int		pfd, num, _num;
765 	caddr_t		eaddr = vaddr + size;
766 	int		err;
767 
768 	/*
769 	 * If memory reservations have been established for alternative objects
770 	 * determine if this object falls within the reservation, if it does no
771 	 * further checking is required.
772 	 */
773 	if (rtld_flags & RT_FL_MEMRESV) {
774 		Rtc_head	*head = (Rtc_head *)config->c_bgn;
775 
776 		if ((vaddr >= (caddr_t)(uintptr_t)head->ch_resbgn) &&
777 		    (eaddr <= (caddr_t)(uintptr_t)head->ch_resend))
778 			return (0);
779 	}
780 
781 	/*
782 	 * Determine the mappings presently in use by this process.
783 	 */
784 	if ((pfd = pr_open(lml)) == FD_UNAVAIL)
785 		return (1);
786 
787 	if (ioctl(pfd, PIOCNMAP, (void *)&num) == -1) {
788 		err = errno;
789 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
790 		    strerror(err));
791 		return (1);
792 	}
793 
794 	if ((maps = malloc((num + 1) * sizeof (prmap_t))) == 0)
795 		return (1);
796 
797 	if (ioctl(pfd, PIOCMAP, (void *)maps) == -1) {
798 		err = errno;
799 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_PROC), name,
800 		    strerror(err));
801 		free(maps);
802 		return (1);
803 	}
804 
805 	/*
806 	 * Determine if the supplied address clashes with any of the present
807 	 * process mappings.
808 	 */
809 	for (_num = 0, _maps = maps; _num < num; _num++, _maps++) {
810 		caddr_t		_eaddr = _maps->pr_vaddr + _maps->pr_size;
811 		Rt_map		*lmp;
812 		const char	*str;
813 
814 		if ((eaddr < _maps->pr_vaddr) || (vaddr >= _eaddr))
815 			continue;
816 
817 		/*
818 		 * We have a memory clash.  See if one of the known dynamic
819 		 * dependency mappings represents this space so as to provide
820 		 * the user a more meaningful message.
821 		 */
822 		if ((lmp = _caller(vaddr, 0)) != 0)
823 			str = NAME(lmp);
824 		else
825 			str = MSG_INTL(MSG_STR_UNKNOWN);
826 
827 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_MAPINUSE), name,
828 		    EC_NATPTR(vaddr), EC_OFF(size), str);
829 		return (1);
830 	}
831 	free(maps);
832 	return (0);
833 }
834 
835 /*
836  * Obtain a memory reservation.  On newer systems, both MAP_ANON and MAP_ALIGN
837  * are used to obtained an aligned reservation from anonymous memory.  If
838  * MAP_ANON isn't available, then MAP_ALIGN isn't either, so obtain a standard
839  * reservation using the file as backing.
840  */
841 static Am_ret
842 elf_map_reserve(Lm_list *lml, const char *name, caddr_t *maddr, Off msize,
843     int mperm, int fd, Xword align)
844 {
845 	Am_ret	amret;
846 	int	mflag = MAP_PRIVATE | MAP_NORESERVE;
847 
848 #if defined(MAP_ALIGN)
849 	if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) {
850 		mflag |= MAP_ALIGN;
851 		*maddr = (caddr_t)align;
852 	}
853 #endif
854 	if ((amret = anon_map(lml, maddr, msize, PROT_NONE, mflag)) == AM_ERROR)
855 		return (amret);
856 
857 	if (amret == AM_OK)
858 		return (AM_OK);
859 
860 	/*
861 	 * If an anonymous memory request failed (which should only be the
862 	 * case if it is unsupported on the system we're running on), establish
863 	 * the initial mapping directly from the file.
864 	 */
865 	*maddr = 0;
866 	if ((*maddr = mmap(*maddr, msize, mperm, MAP_PRIVATE,
867 	    fd, 0)) == MAP_FAILED) {
868 		int	err = errno;
869 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), name,
870 		    strerror(err));
871 		return (AM_ERROR);
872 	}
873 	return (AM_NOSUP);
874 }
875 
876 static void *
877 elf_map_textdata(caddr_t addr, Off flen, int mperm, int phdr_mperm, int mflag,
878     int fd, Off foff)
879 {
880 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
881 	static int	notd = 0;
882 
883 	/*
884 	 * If MAP_TEXT and MAP_INITDATA are available, select the appropriate
885 	 * flag.
886 	 */
887 	if (notd == 0) {
888 		if ((phdr_mperm & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC)
889 			mflag |= MAP_TEXT;
890 		else
891 			mflag |= MAP_INITDATA;
892 	}
893 #endif
894 	if (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff) != MAP_FAILED)
895 		return (0);
896 
897 #if	defined(MAP_TEXT) && defined(MAP_INITDATA)
898 	if ((notd == 0) && (errno == EINVAL)) {
899 		/*
900 		 * MAP_TEXT and MAP_INITDATA may not be supported on this
901 		 * platform, try again without.
902 		 */
903 		notd = 1;
904 		mflag &= ~(MAP_TEXT | MAP_INITDATA);
905 
906 		return (mmap((caddr_t)addr, flen, mperm, mflag, fd, foff));
907 	}
908 #endif
909 	return (MAP_FAILED);
910 }
911 
912 /*
913  * Map in a file.
914  */
915 static caddr_t
916 elf_map_it(
917 	Lm_list		*lml,		/* link-map list */
918 	const char	*name,		/* actual name stored for pathname */
919 	Off		fsize,		/* total mapping claim of the file */
920 	Ehdr		*ehdr,		/* ELF header of file */
921 	Phdr		*fphdr,		/* first loadable Phdr */
922 	Phdr		*lphdr,		/* last loadable Phdr */
923 	Phdr		**rrphdr,	/* return first Phdr in reservation */
924 	caddr_t		*rraddr,	/* return start of reservation */
925 	Off		*rrsize,	/* return total size of reservation */
926 	int		fixed,		/* image is resolved to a fixed addr */
927 	int		fd,		/* images file descriptor */
928 	Xword		align,		/* image segments maximum alignment */
929 	Mmap		*mmaps,		/* mmap information array and */
930 	uint_t		*mmapcnt)	/* 	mapping count */
931 {
932 	caddr_t		raddr;		/* reservation address */
933 	Off		rsize;		/* reservation size */
934 	Phdr		*phdr;		/* working program header poiner */
935 	caddr_t		maddr;		/* working mmap address */
936 	caddr_t		faddr;		/* working file address */
937 	size_t		padsize;	/* object padding requirement */
938 	size_t		padpsize = 0;	/* padding size rounded to next page */
939 	size_t		padmsize = 0;	/* padding size rounded for alignment */
940 	int		skipfseg;	/* skip mapping first segment */
941 	int		mperm;		/* segment permissions */
942 	Am_ret		amret = AM_NOSUP;
943 
944 	/*
945 	 * If padding is required extend both the front and rear of the image.
946 	 * To insure the image itself is mapped at the correct alignment the
947 	 * initial padding is rounded up to the nearest page.  Once the image is
948 	 * mapped the excess can be pruned to the nearest page required for the
949 	 * actual padding itself.
950 	 */
951 	if ((padsize = r_debug.rtd_objpad) != 0) {
952 		padpsize = M_PROUND(padsize);
953 		if (fixed)
954 			padmsize = padpsize;
955 		else
956 			padmsize = S_ROUND(padsize, align);
957 	}
958 
959 	/*
960 	 * Determine the initial permissions used to map in the first segment.
961 	 * If this segments memsz is greater that its filesz then the difference
962 	 * must be zeroed.  Make sure this segment is writable.
963 	 */
964 	mperm = 0;
965 	if (fphdr->p_flags & PF_R)
966 		mperm |= PROT_READ;
967 	if (fphdr->p_flags & PF_X)
968 		mperm |= PROT_EXEC;
969 	if ((fphdr->p_flags & PF_W) || (fphdr->p_memsz > fphdr->p_filesz))
970 		mperm |= PROT_WRITE;
971 
972 	/*
973 	 * Determine whether or not to let system reserve address space based on
974 	 * whether this is a dynamic executable (addresses in object are fixed)
975 	 * or a shared object (addresses in object are relative to the objects'
976 	 * base).
977 	 */
978 	if (fixed) {
979 		/*
980 		 * Determine the reservation address and size, and insure that
981 		 * this reservation isn't already in use.
982 		 */
983 		faddr = maddr = (caddr_t)M_PTRUNC((ulong_t)fphdr->p_vaddr);
984 		raddr = maddr - padpsize;
985 		rsize = fsize + padpsize + padsize;
986 
987 		if (lml_main.lm_head) {
988 			if (elf_map_check(lml, name, raddr, rsize) != 0)
989 				return (0);
990 		}
991 
992 		/*
993 		 * As this is a fixed image, all segments must be individually
994 		 * mapped.
995 		 */
996 		skipfseg = 0;
997 
998 	} else {
999 		size_t	esize;
1000 
1001 		/*
1002 		 * If this isn't a fixed image, reserve enough address space for
1003 		 * the entire image to be mapped.  The amount of reservation is
1004 		 * the range between the beginning of the first, and end of the
1005 		 * last loadable segment, together with any padding, plus the
1006 		 * alignment of the first segment.
1007 		 *
1008 		 * The optimal reservation is made as a no-reserve mapping from
1009 		 * anonymous memory.  Each segment is then mapped into this
1010 		 * reservation.  If the anonymous mapping capability isn't
1011 		 * available, the reservation is obtained from the file itself.
1012 		 * In this case the first segment of the image is mapped as part
1013 		 * of the reservation, thus only the following segments need to
1014 		 * be remapped.
1015 		 */
1016 		rsize = fsize + padmsize + padsize;
1017 		if ((amret = elf_map_reserve(lml, name, &raddr, rsize, mperm,
1018 		    fd, align)) == AM_ERROR)
1019 			return (0);
1020 		maddr = raddr + padmsize;
1021 		faddr = (caddr_t)S_ROUND((Off)maddr, align);
1022 
1023 		/*
1024 		 * If this reservation has been obtained from anonymous memory,
1025 		 * then all segments must be individually mapped.  Otherwise,
1026 		 * the first segment heads the reservation.
1027 		 */
1028 		if (amret == AM_OK)
1029 			skipfseg = 0;
1030 		else
1031 			skipfseg = 1;
1032 
1033 		/*
1034 		 * For backward compatibility (where MAP_ALIGN isn't available),
1035 		 * insure the alignment of the reservation is adequate for this
1036 		 * object, and if not remap the object to obtain the correct
1037 		 * alignment.
1038 		 */
1039 		if (faddr != maddr) {
1040 			(void) munmap(raddr, rsize);
1041 
1042 			rsize += align;
1043 			if ((amret = elf_map_reserve(lml, name, &raddr, rsize,
1044 			    mperm, fd, align)) == AM_ERROR)
1045 				return (0);
1046 
1047 			maddr = faddr = (caddr_t)S_ROUND((Off)(raddr +
1048 			    padpsize), align);
1049 
1050 			esize = maddr - raddr + padpsize;
1051 
1052 			/*
1053 			 * As ths image has been realigned, the first segment
1054 			 * of the file needs to be remapped to its correct
1055 			 * location.
1056 			 */
1057 			skipfseg = 0;
1058 		} else
1059 			esize = padmsize - padpsize;
1060 
1061 		/*
1062 		 * If this reservation included padding, remove any excess for
1063 		 * the start of the image (the padding was adjusted to insure
1064 		 * the image was aligned appropriately).
1065 		 */
1066 		if (esize) {
1067 			(void) munmap(raddr, esize);
1068 			raddr += esize;
1069 			rsize -= esize;
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * At this point we know the initial location of the image, and its
1075 	 * size.  Pass these back to the caller for inclusion in the link-map
1076 	 * that will eventually be created.
1077 	 */
1078 	*rraddr = raddr;
1079 	*rrsize = rsize;
1080 
1081 	/*
1082 	 * The first loadable segment is now pointed to by maddr.  This segment
1083 	 * will eventually contain the elf header and program headers, so reset
1084 	 * the program header.  Pass this  back to the caller for inclusion in
1085 	 * the link-map so it can be used for later unmapping operations.
1086 	 */
1087 	/* LINTED */
1088 	*rrphdr = (Phdr *)((char *)maddr + ehdr->e_phoff);
1089 
1090 	/*
1091 	 * If padding is required at the front of the image, obtain that now.
1092 	 * Note, if we've already obtained a reservation from anonymous memory
1093 	 * then this reservation will already include suitable padding.
1094 	 * Otherwise this reservation is backed by the file, or in the case of
1095 	 * a fixed image, doesn't yet exist.  Map the padding so that it is
1096 	 * suitably protected (PROT_NONE), and insure the first segment of the
1097 	 * file is mapped to its correct location.
1098 	 */
1099 	if (padsize) {
1100 		if (amret == AM_NOSUP) {
1101 			if (dz_map(lml, raddr, padpsize, PROT_NONE,
1102 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1103 			    MAP_FAILED)
1104 				return (0);
1105 
1106 			skipfseg = 0;
1107 		}
1108 		rsize -= padpsize;
1109 	}
1110 
1111 	/*
1112 	 * Map individual segments.  For a fixed image, these will each be
1113 	 * unique mappings.  For a reservation these will fill in the
1114 	 * reservation.
1115 	 */
1116 	for (phdr = fphdr; phdr <= lphdr;
1117 	    phdr = (Phdr *)((Off)phdr + ehdr->e_phentsize)) {
1118 		caddr_t	addr;
1119 		Off	mlen, flen;
1120 		size_t	size;
1121 
1122 		/*
1123 		 * Skip non-loadable segments or segments that don't occupy
1124 		 * any memory.
1125 		 */
1126 		if (((phdr->p_type != PT_LOAD) &&
1127 		    (phdr->p_type != PT_SUNWBSS)) || (phdr->p_memsz == 0))
1128 			continue;
1129 
1130 		/*
1131 		 * Establish this segments address relative to our base.
1132 		 */
1133 		addr = (caddr_t)M_PTRUNC((ulong_t)(phdr->p_vaddr +
1134 		    (fixed ? 0 : faddr)));
1135 
1136 		/*
1137 		 * Determine the mapping protection from the segment attributes.
1138 		 * Also determine the etext address from the last loadable
1139 		 * segment which has permissions but no write access.
1140 		 */
1141 		mperm = 0;
1142 		if (phdr->p_flags) {
1143 			if (phdr->p_flags & PF_R)
1144 				mperm |= PROT_READ;
1145 			if (phdr->p_flags & PF_X)
1146 				mperm |= PROT_EXEC;
1147 			if (phdr->p_flags & PF_W)
1148 				mperm |= PROT_WRITE;
1149 			else
1150 				fmap->fm_etext = phdr->p_vaddr + phdr->p_memsz +
1151 				    (ulong_t)(fixed ? 0 : faddr);
1152 		}
1153 
1154 		/*
1155 		 * Determine the type of mapping required.
1156 		 */
1157 		if (phdr->p_type == PT_SUNWBSS) {
1158 			/*
1159 			 * Potentially, we can defer the loading of any SUNWBSS
1160 			 * segment, depending on whether the symbols it provides
1161 			 * have been bound to.  In this manner, large segments
1162 			 * that are interposed upon between shared libraries
1163 			 * may not require mapping.  Note, that the mapping
1164 			 * information is recorded in our mapping descriptor at
1165 			 * this time.
1166 			 */
1167 			mlen = phdr->p_memsz;
1168 			flen = 0;
1169 
1170 		} else if ((phdr->p_filesz == 0) && (phdr->p_flags == 0)) {
1171 			/*
1172 			 * If this segment has no backing file and no flags
1173 			 * specified, then it defines a reservation.  At this
1174 			 * point all standard loadable segments will have been
1175 			 * processed.  The segment reservation is mapped
1176 			 * directly from /dev/null.
1177 			 */
1178 			if (nu_map(lml, (caddr_t)addr, phdr->p_memsz, PROT_NONE,
1179 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1180 				return (0);
1181 
1182 			mlen = phdr->p_memsz;
1183 			flen = 0;
1184 
1185 		} else if (phdr->p_filesz == 0) {
1186 			/*
1187 			 * If this segment has no backing file then it defines a
1188 			 * nobits segment and is mapped directly from /dev/zero.
1189 			 */
1190 			if (dz_map(lml, (caddr_t)addr, phdr->p_memsz, mperm,
1191 			    MAP_FIXED | MAP_PRIVATE) == MAP_FAILED)
1192 				return (0);
1193 
1194 			mlen = phdr->p_memsz;
1195 			flen = 0;
1196 
1197 		} else {
1198 			Off	foff;
1199 
1200 			/*
1201 			 * This mapping originates from the file.  Determine the
1202 			 * file offset to which the mapping will be directed
1203 			 * (must be aligned) and how much to map (might be more
1204 			 * than the file in the case of .bss).
1205 			 */
1206 			foff = M_PTRUNC((ulong_t)phdr->p_offset);
1207 			mlen = phdr->p_memsz + (phdr->p_offset - foff);
1208 			flen = phdr->p_filesz + (phdr->p_offset - foff);
1209 
1210 			/*
1211 			 * If this is a non-fixed, non-anonymous mapping, and no
1212 			 * padding is involved, then the first loadable segment
1213 			 * is already part of the initial reservation.  In this
1214 			 * case there is no need to remap this segment.
1215 			 */
1216 			if ((skipfseg == 0) || (phdr != fphdr)) {
1217 				int phdr_mperm = mperm;
1218 				/*
1219 				 * If this segments memsz is greater that its
1220 				 * filesz then the difference must be zeroed.
1221 				 * Make sure this segment is writable.
1222 				 */
1223 				if (phdr->p_memsz > phdr->p_filesz)
1224 					mperm |= PROT_WRITE;
1225 
1226 				if (elf_map_textdata((caddr_t)addr, flen,
1227 				    mperm, phdr_mperm,
1228 				    (MAP_FIXED | MAP_PRIVATE), fd, foff) ==
1229 				    MAP_FAILED) {
1230 					int	err = errno;
1231 					eprintf(lml, ERR_FATAL,
1232 					    MSG_INTL(MSG_SYS_MMAP), name,
1233 					    strerror(err));
1234 					return (0);
1235 				}
1236 			}
1237 
1238 			/*
1239 			 * If the memory occupancy of the segment overflows the
1240 			 * definition in the file, we need to "zero out" the end
1241 			 * of the mapping we've established, and if necessary,
1242 			 * map some more space from /dev/zero.  Note, zero'ed
1243 			 * memory must end on a double word boundary to satisfy
1244 			 * zero().
1245 			 */
1246 			if (phdr->p_memsz > phdr->p_filesz) {
1247 				caddr_t	zaddr;
1248 				size_t	zlen, zplen;
1249 				Off	fend;
1250 
1251 				foff = (Off)(phdr->p_vaddr + phdr->p_filesz +
1252 				    (fixed ? 0 : faddr));
1253 				zaddr = (caddr_t)M_PROUND(foff);
1254 				zplen = (size_t)(zaddr - foff);
1255 
1256 				fend = (Off)S_DROUND((size_t)(phdr->p_vaddr +
1257 				    phdr->p_memsz + (fixed ? 0 : faddr)));
1258 				zlen = (size_t)(fend - foff);
1259 
1260 				/*
1261 				 * Determine whether the number of bytes that
1262 				 * must be zero'ed overflow to the next page.
1263 				 * If not, simply clear the exact bytes
1264 				 * (filesz to memsz) from this page.  Otherwise,
1265 				 * clear the remaining bytes of this page, and
1266 				 * map an following pages from /dev/zero.
1267 				 */
1268 				if (zlen < zplen)
1269 					zero((caddr_t)foff, (long)zlen);
1270 				else {
1271 					zero((caddr_t)foff, (long)zplen);
1272 
1273 					if ((zlen = (fend - (Off)zaddr)) > 0) {
1274 						if (dz_map(lml, zaddr, zlen,
1275 						    mperm,
1276 						    MAP_FIXED | MAP_PRIVATE) ==
1277 						    MAP_FAILED)
1278 							return (0);
1279 					}
1280 				}
1281 			}
1282 		}
1283 
1284 		/*
1285 		 * Unmap anything from the last mapping address to this one and
1286 		 * update the mapping claim pointer.
1287 		 */
1288 		if ((fixed == 0) && ((size = addr - maddr) != 0)) {
1289 			(void) munmap(maddr, size);
1290 			rsize -= size;
1291 		}
1292 
1293 		/*
1294 		 * Retain this segments mapping information.
1295 		 */
1296 		mmaps[*mmapcnt].m_vaddr = addr;
1297 		mmaps[*mmapcnt].m_msize = mlen;
1298 		mmaps[*mmapcnt].m_fsize = flen;
1299 		mmaps[*mmapcnt].m_perm = mperm;
1300 		(*mmapcnt)++;
1301 
1302 		maddr = addr + M_PROUND(mlen);
1303 		rsize -= M_PROUND(mlen);
1304 	}
1305 
1306 	/*
1307 	 * If padding is required at the end of the image, obtain that now.
1308 	 * Note, if we've already obtained a reservation from anonymous memory
1309 	 * then this reservation will already include suitable padding.
1310 	 */
1311 	if (padsize) {
1312 		if (amret == AM_NOSUP) {
1313 			/*
1314 			 * maddr is currently page aligned from the last segment
1315 			 * mapping.
1316 			 */
1317 			if (dz_map(lml, maddr, padsize, PROT_NONE,
1318 			    (MAP_PRIVATE | MAP_FIXED | MAP_NORESERVE)) ==
1319 			    MAP_FAILED)
1320 				return (0);
1321 		}
1322 		maddr += padsize;
1323 		rsize -= padsize;
1324 	}
1325 
1326 	/*
1327 	 * Unmap any final reservation.
1328 	 */
1329 	if ((fixed == 0) && (rsize != 0))
1330 		(void) munmap(maddr, rsize);
1331 
1332 	return (faddr);
1333 }
1334 
1335 /*
1336  * A null symbol interpretor.  Used if a filter has no associated filtees.
1337  */
1338 /* ARGSUSED0 */
1339 static Sym *
1340 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
1341 {
1342 	return ((Sym *)0);
1343 }
1344 
1345 /*
1346  * Disable filtee use.
1347  */
1348 static void
1349 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
1350 {
1351 	dip->di_info = 0;
1352 
1353 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
1354 		/*
1355 		 * If this is an object filter, free the filtee's duplication.
1356 		 */
1357 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
1358 			free(REFNAME(lmp));
1359 			REFNAME(lmp) = (char *)0;
1360 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
1361 
1362 			/*
1363 			 * Indicate that this filtee is no longer available.
1364 			 */
1365 			if (dip->di_flags & FLG_DI_STDFLTR)
1366 				SYMINTP(lmp) = elf_null_find_sym;
1367 
1368 		}
1369 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
1370 		/*
1371 		 * Indicate that this standard filtee is no longer available.
1372 		 */
1373 		if (SYMSFLTRCNT(lmp))
1374 			SYMSFLTRCNT(lmp)--;
1375 	} else {
1376 		/*
1377 		 * Indicate that this auxiliary filtee is no longer available.
1378 		 */
1379 		if (SYMAFLTRCNT(lmp))
1380 			SYMAFLTRCNT(lmp)--;
1381 	}
1382 	dip->di_flags &= ~MSK_DI_FILTER;
1383 }
1384 
1385 /*
1386  * Find symbol interpreter - filters.
1387  * This function is called when the symbols from a shared object should
1388  * be resolved from the shared objects filtees instead of from within itself.
1389  *
1390  * A symbol name of 0 is used to trigger filtee loading.
1391  */
1392 static Sym *
1393 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
1394     int *in_nfavl)
1395 {
1396 	const char	*name = slp->sl_name, *filtees;
1397 	Rt_map		*clmp = slp->sl_cmap;
1398 	Rt_map		*ilmp = slp->sl_imap;
1399 	Pnode		*pnp, **pnpp;
1400 	int		any;
1401 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
1402 	Lm_list		*lml = LIST(ilmp);
1403 
1404 	/*
1405 	 * Indicate that the filter has been used.  If a binding already exists
1406 	 * to the caller, indicate that this object is referenced.  This insures
1407 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
1408 	 * debugging.  Don't create a binding regardless, as this filter may
1409 	 * have been dlopen()'ed.
1410 	 */
1411 	if (name && (ilmp != clmp)) {
1412 		Word	tracing = (LIST(clmp)->lm_flags &
1413 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
1414 
1415 		if (tracing || DBG_ENABLED) {
1416 			Bnd_desc 	*bdp;
1417 			Aliste		idx;
1418 
1419 			FLAGS1(ilmp) |= FL1_RT_USED;
1420 
1421 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
1422 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
1423 					if (bdp->b_caller == clmp) {
1424 						bdp->b_flags |= BND_REFER;
1425 						break;
1426 					}
1427 				}
1428 			}
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * If this is the first call to process this filter, establish the
1434 	 * filtee list.  If a configuration file exists, determine if any
1435 	 * filtee associations for this filter, and its filtee reference, are
1436 	 * defined.  Otherwise, process the filtee reference.  Any token
1437 	 * expansion is also completed at this point (i.e., $PLATFORM).
1438 	 */
1439 	filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val;
1440 	if (dip->di_info == 0) {
1441 		if (rtld_flags2 & RT_FL2_FLTCFG)
1442 			dip->di_info = elf_config_flt(lml, PATHNAME(ilmp),
1443 			    filtees);
1444 
1445 		if (dip->di_info == 0) {
1446 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
1447 			if ((lml->lm_flags &
1448 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
1449 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
1450 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
1451 				    NAME(ilmp), filtees);
1452 
1453 			if ((dip->di_info = (void *)expand_paths(ilmp,
1454 			    filtees, 0, 0)) == 0) {
1455 				elf_disable_filtee(ilmp, dip);
1456 				return ((Sym *)0);
1457 			}
1458 		}
1459 	}
1460 
1461 	/*
1462 	 * Traverse the filtee list, dlopen()'ing any objects specified and
1463 	 * using their group handle to lookup the symbol.
1464 	 */
1465 	for (any = 0, pnpp = (Pnode **)&(dip->di_info), pnp = *pnpp; pnp;
1466 	    pnpp = &pnp->p_next, pnp = *pnpp) {
1467 		int	mode;
1468 		Grp_hdl	*ghp;
1469 		Rt_map	*nlmp = 0;
1470 
1471 		if (pnp->p_len == 0)
1472 			continue;
1473 
1474 		/*
1475 		 * Establish the mode of the filtee from the filter.  As filtees
1476 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
1477 		 * and the filtees aren't global.  It would be nice to have
1478 		 * RTLD_FIRST used here also, but as filters got out long before
1479 		 * RTLD_FIRST was introduced it's a little too late now.
1480 		 */
1481 		mode = MODE(ilmp) | RTLD_GROUP;
1482 		mode &= ~RTLD_GLOBAL;
1483 
1484 		/*
1485 		 * Insure that any auxiliary filter can locate symbols from its
1486 		 * caller.
1487 		 */
1488 		if (dip->di_flags & FLG_DI_AUXFLTR)
1489 			mode |= RTLD_PARENT;
1490 
1491 		/*
1492 		 * Process any hardware capability directory.  Establish a new
1493 		 * link-map control list from which to analyze any newly added
1494 		 * objects.
1495 		 */
1496 		if ((pnp->p_info == 0) && (pnp->p_orig & PN_TKN_HWCAP)) {
1497 			Lm_cntl	*lmc;
1498 			Aliste	lmco;
1499 
1500 			if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1501 				if ((lmc = alist_append(&lml->lm_lists, 0,
1502 				    sizeof (Lm_cntl), AL_CNT_LMLISTS)) == 0)
1503 					return ((Sym *)0);
1504 				lmco = (Aliste)((char *)lmc -
1505 				    (char *)lml->lm_lists);
1506 			} else {
1507 				lmc = 0;
1508 				lmco = ALIST_OFF_DATA;
1509 			}
1510 
1511 			pnp = hwcap_filtees(pnpp, lmco, lmc, dip, ilmp, filtees,
1512 			    mode, (FLG_RT_HANDLE | FLG_RT_HWCAP), in_nfavl);
1513 
1514 			/*
1515 			 * Now that any hardware capability objects have been
1516 			 * processed, remove any link-map control list.
1517 			 */
1518 			if (lmc)
1519 				remove_cntl(lml, lmco);
1520 		}
1521 
1522 		if (pnp->p_len == 0)
1523 			continue;
1524 
1525 		/*
1526 		 * Process an individual filtee.
1527 		 */
1528 		if (pnp->p_info == 0) {
1529 			const char	*filtee = pnp->p_name;
1530 			int		audit = 0;
1531 
1532 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
1533 
1534 			ghp = 0;
1535 
1536 			/*
1537 			 * Determine if the reference link map is already
1538 			 * loaded.  As an optimization compare the filtee with
1539 			 * our interpretor.  The most common filter is
1540 			 * libdl.so.1, which is a filter on ld.so.1.
1541 			 */
1542 #if	defined(_ELF64)
1543 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
1544 #else
1545 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
1546 #endif
1547 				/*
1548 				 * Create an association between ld.so.1 and the
1549 				 * filter.  As an optimization, a handle for
1550 				 * ld.so.1 itself (required for the dlopen()
1551 				 * family filtering mechanism) shouldn't search
1552 				 * any dependencies of ld.so.1.  Omitting
1553 				 * GPD_ADDEPS prevents the addition of any
1554 				 * ld.so.1 dependencies to this handle.
1555 				 */
1556 				nlmp = lml_rtld.lm_head;
1557 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1558 				    (GPH_LDSO | GPH_FIRST | GPH_FILTEE),
1559 				    (GPD_DLSYM | GPD_RELOC), GPD_PARENT)) == 0)
1560 					nlmp = 0;
1561 
1562 				/*
1563 				 * Establish the filter handle to prevent any
1564 				 * recursion.
1565 				 */
1566 				if (nlmp && ghp)
1567 					pnp->p_info = (void *)ghp;
1568 
1569 				/*
1570 				 * Audit the filter/filtee established.  Ignore
1571 				 * any return from the auditor, as we can't
1572 				 * allow ignore filtering to ld.so.1, otherwise
1573 				 * nothing is going to work.
1574 				 */
1575 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1576 				    LML_TFLG_AUD_OBJFILTER))
1577 					(void) audit_objfilter(ilmp, filtees,
1578 					    nlmp, 0);
1579 
1580 			} else {
1581 				Rej_desc	rej = { 0 };
1582 				Lm_cntl		*lmc;
1583 				Aliste		lmco;
1584 
1585 				/*
1586 				 * Establish a new link-map control list from
1587 				 * which to analyze any newly added objects.
1588 				 */
1589 				if (FLAGS(lml->lm_head) & FLG_RT_RELOCED) {
1590 					if ((lmc =
1591 					    alist_append(&lml->lm_lists, 0,
1592 					    sizeof (Lm_cntl),
1593 					    AL_CNT_LMLISTS)) == 0)
1594 						return ((Sym *)0);
1595 					lmco = (Aliste)((char *)lmc -
1596 					    (char *)lml->lm_lists);
1597 				} else {
1598 					lmc = 0;
1599 					lmco = ALIST_OFF_DATA;
1600 				}
1601 
1602 				/*
1603 				 * Load the filtee.  Note, an auditor can
1604 				 * provide an alternative name.
1605 				 */
1606 				if ((nlmp = load_path(lml, lmco, &(pnp->p_name),
1607 				    ilmp, mode, FLG_RT_HANDLE, &ghp, 0,
1608 				    &rej, in_nfavl)) == 0) {
1609 					file_notfound(LIST(ilmp), filtee, ilmp,
1610 					    FLG_RT_HANDLE, &rej);
1611 					remove_rej(&rej);
1612 				}
1613 				filtee = pnp->p_name;
1614 
1615 				/*
1616 				 * Establish the filter handle to prevent any
1617 				 * recursion.
1618 				 */
1619 				if (nlmp && ghp) {
1620 					ghp->gh_flags |= GPH_FILTEE;
1621 					pnp->p_info = (void *)ghp;
1622 
1623 					FLAGS1(nlmp) |= FL1_RT_USED;
1624 				}
1625 
1626 				/*
1627 				 * Audit the filter/filtee established.  A
1628 				 * return of 0 indicates the auditor wishes to
1629 				 * ignore this filtee.
1630 				 */
1631 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1632 				    LML_TFLG_AUD_OBJFILTER)) {
1633 					if (audit_objfilter(ilmp, filtees,
1634 					    nlmp, 0) == 0) {
1635 						audit = 1;
1636 						nlmp = 0;
1637 					}
1638 				}
1639 
1640 				/*
1641 				 * Finish processing the objects associated with
1642 				 * this request.  Create an association between
1643 				 * this object and the originating filter to
1644 				 * provide sufficient information to tear down
1645 				 * this filtee if necessary.
1646 				 */
1647 				if (nlmp && ghp && ((analyze_lmc(lml, lmco,
1648 				    nlmp, in_nfavl) == 0) || (relocate_lmc(lml,
1649 				    lmco, ilmp, nlmp, in_nfavl) == 0)))
1650 					nlmp = 0;
1651 
1652 				/*
1653 				 * If the filtee has been successfully
1654 				 * processed, then create an association
1655 				 * between the filter and filtee.  This
1656 				 * association provides sufficient information
1657 				 * to tear down the filter and filtee if
1658 				 * necessary.
1659 				 */
1660 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1661 				if (nlmp && ghp &&
1662 				    (hdl_add(ghp, ilmp, GPD_FILTER) == 0))
1663 					nlmp = 0;
1664 
1665 				/*
1666 				 * If this filtee loading has failed, and we've
1667 				 * created a new link-map control list to which
1668 				 * this request has added objects, then remove
1669 				 * all the objects that have been associated to
1670 				 * this request.
1671 				 */
1672 				if ((nlmp == 0) && lmc && lmc->lc_head)
1673 					remove_lmc(lml, clmp, lmc, lmco, name);
1674 
1675 				/*
1676 				 * Remove any link-map control list that was
1677 				 * created.
1678 				 */
1679 				if (lmc)
1680 					remove_cntl(lml, lmco);
1681 			}
1682 
1683 			/*
1684 			 * Generate a diagnostic if the filtee couldn't be
1685 			 * loaded, null out the pnode entry, and continue
1686 			 * the search.  Otherwise, retain this group handle
1687 			 * for future symbol searches.
1688 			 */
1689 			if (nlmp == 0) {
1690 				DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1691 				    audit));
1692 
1693 				pnp->p_info = 0;
1694 				pnp->p_len = 0;
1695 				continue;
1696 			}
1697 		}
1698 
1699 		ghp = (Grp_hdl *)pnp->p_info;
1700 
1701 		/*
1702 		 * If we're just here to trigger filtee loading skip the symbol
1703 		 * lookup so we'll continue looking for additional filtees.
1704 		 */
1705 		if (name) {
1706 			Grp_desc	*gdp;
1707 			Sym		*sym = 0;
1708 			Aliste		idx;
1709 			Slookup		sl = *slp;
1710 
1711 			sl.sl_flags |= LKUP_FIRST;
1712 			any++;
1713 
1714 			/*
1715 			 * Look for the symbol in the handles dependencies.
1716 			 */
1717 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1718 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1719 					continue;
1720 
1721 				/*
1722 				 * If our parent is a dependency don't look at
1723 				 * it (otherwise we are in a recursive loop).
1724 				 * This situation can occur with auxiliary
1725 				 * filters if the filtee has a dependency on the
1726 				 * filter.  This dependency isn't necessary as
1727 				 * auxiliary filters are opened RTLD_PARENT, but
1728 				 * users may still unknowingly add an explicit
1729 				 * dependency to the parent.
1730 				 */
1731 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1732 					continue;
1733 
1734 				if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp,
1735 				    binfo, in_nfavl)) != 0) ||
1736 				    (ghp->gh_flags & GPH_FIRST))
1737 					break;
1738 			}
1739 
1740 			/*
1741 			 * If a symbol has been found, indicate the binding
1742 			 * and return the symbol.
1743 			 */
1744 			if (sym) {
1745 				*binfo |= DBG_BINFO_FILTEE;
1746 				return (sym);
1747 			}
1748 		}
1749 
1750 		/*
1751 		 * If this object is tagged to terminate filtee processing we're
1752 		 * done.
1753 		 */
1754 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1755 			break;
1756 	}
1757 
1758 	/*
1759 	 * If we're just here to trigger filtee loading then we're done.
1760 	 */
1761 	if (name == 0)
1762 		return ((Sym *)0);
1763 
1764 	/*
1765 	 * If no filtees have been found for a filter, clean up any Pnode
1766 	 * structures and disable their search completely.  For auxiliary
1767 	 * filters we can reselect the symbol search function so that we never
1768 	 * enter this routine again for this object.  For standard filters we
1769 	 * use the null symbol routine.
1770 	 */
1771 	if (any == 0) {
1772 		remove_pnode((Pnode *)dip->di_info);
1773 		elf_disable_filtee(ilmp, dip);
1774 		return ((Sym *)0);
1775 	}
1776 
1777 	return ((Sym *)0);
1778 }
1779 
1780 /*
1781  * Focal point for disabling error messages for auxiliary filters.  As an
1782  * auxiliary filter allows for filtee use, but provides a fallback should a
1783  * filtee not exist (or fail to load), any errors generated as a consequence of
1784  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1785  * suppresses errors generated by eprint(), but insures a debug diagnostic is
1786  * produced.  ldd(1) employs printf(), and here, the selection of whether to
1787  * print a diagnostic in regards to auxiliary filters is a little more complex.
1788  *
1789  *   .	The determination of whether to produce an ldd message, or a fatal
1790  *	error message is driven by LML_FLG_TRC_ENABLE.
1791  *   .	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1792  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1793  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1794  *
1795  *   .	If the calling object is lddstub, then several classes of message are
1796  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1797  *	a stub executable employed to preload a user specified library against.
1798  *
1799  *   .	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1800  *	be suppressed.  All detailed ldd messages should still be produced.
1801  */
1802 Sym *
1803 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
1804     int *in_nfavl)
1805 {
1806 	Sym	*sym;
1807 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1808 	int	silent = 0;
1809 
1810 	/*
1811 	 * Make sure this entry is still acting as a filter.  We may have tried
1812 	 * to process this previously, and disabled it if the filtee couldn't
1813 	 * be processed.  However, other entries may provide different filtees
1814 	 * that are yet to be completed.
1815 	 */
1816 	if (dip->di_flags == 0)
1817 		return ((Sym *)0);
1818 
1819 	/*
1820 	 * Indicate whether an error message is required should this filtee not
1821 	 * be found, based on the type of filter.
1822 	 */
1823 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1824 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1825 		rtld_flags |= RT_FL_SILENCERR;
1826 		silent = 1;
1827 	}
1828 
1829 	sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx, in_nfavl);
1830 
1831 	if (silent)
1832 		rtld_flags &= ~RT_FL_SILENCERR;
1833 
1834 	return (sym);
1835 }
1836 
1837 /*
1838  * Compute the elf hash value (as defined in the ELF access library).
1839  * The form of the hash table is:
1840  *
1841  *	|--------------|
1842  *	| # of buckets |
1843  *	|--------------|
1844  *	| # of chains  |
1845  *	|--------------|
1846  *	|   bucket[]   |
1847  *	|--------------|
1848  *	|   chain[]    |
1849  *	|--------------|
1850  */
1851 ulong_t
1852 elf_hash(const char *name)
1853 {
1854 	uint_t	hval = 0;
1855 
1856 	while (*name) {
1857 		uint_t	g;
1858 		hval = (hval << 4) + *name++;
1859 		if ((g = (hval & 0xf0000000)) != 0)
1860 			hval ^= g >> 24;
1861 		hval &= ~g;
1862 	}
1863 	return ((ulong_t)hval);
1864 }
1865 
1866 /*
1867  * If flag argument has LKUP_SPEC set, we treat undefined symbols of type
1868  * function specially in the executable - if they have a value, even though
1869  * undefined, we use that value.  This allows us to associate all references
1870  * to a function's address to a single place in the process: the plt entry
1871  * for that function in the executable.  Calls to lookup from plt binding
1872  * routines do NOT set LKUP_SPEC in the flag.
1873  */
1874 Sym *
1875 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
1876 {
1877 	const char	*name = slp->sl_name;
1878 	Rt_map		*ilmp = slp->sl_imap;
1879 	ulong_t		hash = slp->sl_hash;
1880 	uint_t		ndx, htmp, buckets, *chainptr;
1881 	Sym		*sym, *symtabptr;
1882 	char		*strtabptr, *strtabname;
1883 	uint_t		flags1;
1884 	Syminfo		*sip;
1885 
1886 	/*
1887 	 * If we're only here to establish a symbols index, skip the diagnostic
1888 	 * used to trace a symbol search.
1889 	 */
1890 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1891 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1892 
1893 	if (HASH(ilmp) == 0)
1894 		return ((Sym *)0);
1895 
1896 	buckets = HASH(ilmp)[0];
1897 	/* LINTED */
1898 	htmp = (uint_t)hash % buckets;
1899 
1900 	/*
1901 	 * Get the first symbol on hash chain and initialize the string
1902 	 * and symbol table pointers.
1903 	 */
1904 	if ((ndx = HASH(ilmp)[htmp + 2]) == 0)
1905 		return ((Sym *)0);
1906 
1907 	chainptr = HASH(ilmp) + 2 + buckets;
1908 	strtabptr = STRTAB(ilmp);
1909 	symtabptr = SYMTAB(ilmp);
1910 
1911 	while (ndx) {
1912 		sym = symtabptr + ndx;
1913 		strtabname = strtabptr + sym->st_name;
1914 
1915 		/*
1916 		 * Compare the symbol found with the name required.  If the
1917 		 * names don't match continue with the next hash entry.
1918 		 */
1919 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1920 			if ((ndx = chainptr[ndx]) != 0)
1921 				continue;
1922 			return ((Sym *)0);
1923 		}
1924 
1925 		/*
1926 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1927 		 * section, but the GNU ld does. The GNU runtime linker
1928 		 * interprets the top bit of the 16-bit Versym value
1929 		 * (0x8000) as the "hidden" bit. If this bit is set,
1930 		 * the linker is supposed to act as if that symbol does
1931 		 * not exist. The hidden bit supports their versioning
1932 		 * scheme, which allows multiple incompatible functions
1933 		 * with the same name to exist at different versions
1934 		 * within an object. The Solaris linker does not support this
1935 		 * mechanism, or the model of interface evolution that
1936 		 * it allows, but we honor the hidden bit in GNU ld
1937 		 * produced objects in order to interoperate with them.
1938 		 */
1939 		if ((VERSYM(ilmp) != NULL) &&
1940 		    ((VERSYM(ilmp)[ndx] & 0x8000) != 0)) {
1941 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1942 			    ndx, VERSYM(ilmp)[ndx]));
1943 			if ((ndx = chainptr[ndx]) != 0)
1944 				continue;
1945 			return ((Sym *)0);
1946 		}
1947 
1948 		/*
1949 		 * If we're only here to establish a symbols index, we're done.
1950 		 */
1951 		if (slp->sl_flags & LKUP_SYMNDX)
1952 			return (sym);
1953 
1954 		/*
1955 		 * If we find a match and the symbol is defined, return the
1956 		 * symbol pointer and the link map in which it was found.
1957 		 */
1958 		if (sym->st_shndx != SHN_UNDEF) {
1959 			*dlmp = ilmp;
1960 			*binfo |= DBG_BINFO_FOUND;
1961 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1962 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1963 			    is_sym_interposer(ilmp, sym)))
1964 				*binfo |= DBG_BINFO_INTERPOSE;
1965 			break;
1966 
1967 		/*
1968 		 * If we find a match and the symbol is undefined, the
1969 		 * symbol type is a function, and the value of the symbol
1970 		 * is non zero, then this is a special case.  This allows
1971 		 * the resolution of a function address to the plt[] entry.
1972 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1973 		 * more details.
1974 		 */
1975 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1976 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1977 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1978 			*dlmp = ilmp;
1979 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1980 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1981 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1982 			    is_sym_interposer(ilmp, sym)))
1983 				*binfo |= DBG_BINFO_INTERPOSE;
1984 			return (sym);
1985 		}
1986 
1987 		/*
1988 		 * Undefined symbol.
1989 		 */
1990 		return ((Sym *)0);
1991 	}
1992 
1993 	/*
1994 	 * We've found a match.  Determine if the defining object contains
1995 	 * symbol binding information.
1996 	 */
1997 	if ((sip = SYMINFO(ilmp)) != 0)
1998 		sip += ndx;
1999 
2000 	/*
2001 	 * If this definition is a singleton, and we haven't followed a default
2002 	 * symbol search knowing that we're looking for a singleton (presumably
2003 	 * because the symbol definition has been changed since the referring
2004 	 * object was built), then reject this binding so that the caller can
2005 	 * fall back to a standard symbol search.
2006 	 */
2007 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
2008 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
2009 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
2010 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
2011 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
2012 		    DBG_BNDREJ_SINGLE));
2013 		*binfo |= BINFO_REJSINGLE;
2014 		*binfo &= ~DBG_BINFO_MSK;
2015 		return ((Sym *)0);
2016 	}
2017 
2018 	/*
2019 	 * If this is a direct binding request, but the symbol definition has
2020 	 * disabled directly binding to it (presumably because the symbol
2021 	 * definition has been changed since the referring object was built),
2022 	 * indicate this failure so that the caller can fall back to a standard
2023 	 * symbol search.
2024 	 */
2025 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
2026 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
2027 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
2028 		    DBG_BNDREJ_NODIR));
2029 		*binfo |= BINFO_REJDIRECT;
2030 		*binfo &= ~DBG_BINFO_MSK;
2031 		return ((Sym *)0);
2032 	}
2033 
2034 	/*
2035 	 * Determine whether this object is acting as a filter.
2036 	 */
2037 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
2038 		return (sym);
2039 
2040 	/*
2041 	 * Determine if this object offers per-symbol filtering, and if so,
2042 	 * whether this symbol references a filtee.
2043 	 */
2044 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
2045 		/*
2046 		 * If this is a standard filter reference, and no standard
2047 		 * filtees remain to be inspected, we're done.  If this is an
2048 		 * auxiliary filter reference, and no auxiliary filtees remain,
2049 		 * we'll fall through in case any object filtering is available.
2050 		 */
2051 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
2052 		    (SYMSFLTRCNT(ilmp) == 0))
2053 			return ((Sym *)0);
2054 
2055 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
2056 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
2057 		    SYMAFLTRCNT(ilmp))) {
2058 			Sym	*fsym;
2059 
2060 			/*
2061 			 * This symbol has an associated filtee.  Lookup the
2062 			 * symbol in the filtee, and if it is found return it.
2063 			 * If the symbol doesn't exist, and this is a standard
2064 			 * filter, return an error, otherwise fall through to
2065 			 * catch any object filtering that may be available.
2066 			 */
2067 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2068 			    sip->si_boundto, in_nfavl)) != 0)
2069 				return (fsym);
2070 			if (sip->si_flags & SYMINFO_FLG_FILTER)
2071 				return ((Sym *)0);
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * Determine if this object provides global filtering.
2077 	 */
2078 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
2079 		Sym	*fsym;
2080 
2081 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
2082 			/*
2083 			 * This object has an associated filtee.  Lookup the
2084 			 * symbol in the filtee, and if it is found return it.
2085 			 * If the symbol doesn't exist, and this is a standard
2086 			 * filter, return and error, otherwise return the symbol
2087 			 * within the filter itself.
2088 			 */
2089 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
2090 			    OBJFLTRNDX(ilmp), in_nfavl)) != 0)
2091 				return (fsym);
2092 		}
2093 
2094 		if (flags1 & FL1_RT_OBJSFLTR)
2095 			return ((Sym *)0);
2096 	}
2097 	return (sym);
2098 }
2099 
2100 /*
2101  * Create a new Rt_map structure for an ELF object and initialize
2102  * all values.
2103  */
2104 Rt_map *
2105 elf_new_lm(Lm_list *lml, const char *pname, const char *oname, Dyn *ld,
2106     ulong_t addr, ulong_t etext, Aliste lmco, ulong_t msize, ulong_t entry,
2107     ulong_t paddr, ulong_t padimsize, Mmap *mmaps, uint_t mmapcnt,
2108     int *in_nfavl)
2109 {
2110 	Rt_map		*lmp;
2111 	ulong_t		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
2112 	Xword		rpath = 0;
2113 	Ehdr		*ehdr = (Ehdr *)addr;
2114 
2115 	DBG_CALL(Dbg_file_elf(lml, pname, (ulong_t)ld, addr, msize, entry,
2116 	    lml->lm_lmidstr, lmco));
2117 
2118 	/*
2119 	 * Allocate space for the link-map and private elf information.  Once
2120 	 * these are allocated and initialized, we can use remove_so(0, lmp) to
2121 	 * tear down the link-map should any failures occur.
2122 	 */
2123 	if ((lmp = calloc(sizeof (Rt_map), 1)) == 0)
2124 		return (0);
2125 	if ((ELFPRV(lmp) = calloc(sizeof (Rt_elfp), 1)) == 0) {
2126 		free(lmp);
2127 		return (0);
2128 	}
2129 
2130 	/*
2131 	 * All fields not filled in were set to 0 by calloc.
2132 	 */
2133 	ORIGNAME(lmp) = PATHNAME(lmp) = NAME(lmp) = (char *)pname;
2134 	DYN(lmp) = ld;
2135 	ADDR(lmp) = addr;
2136 	MSIZE(lmp) = msize;
2137 	ENTRY(lmp) = (Addr)entry;
2138 	SYMINTP(lmp) = elf_find_sym;
2139 	ETEXT(lmp) = etext;
2140 	FCT(lmp) = &elf_fct;
2141 	LIST(lmp) = lml;
2142 	PADSTART(lmp) = paddr;
2143 	PADIMLEN(lmp) = padimsize;
2144 	THREADID(lmp) = rt_thr_self();
2145 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
2146 	SORTVAL(lmp) = -1;
2147 
2148 	MMAPS(lmp) = mmaps;
2149 	MMAPCNT(lmp) = mmapcnt;
2150 	ASSERT(mmapcnt != 0);
2151 
2152 	/*
2153 	 * If this is a shared object, add the base address to each address.
2154 	 * if this is an executable, use address as is.
2155 	 */
2156 	if (ehdr->e_type == ET_EXEC) {
2157 		base = 0;
2158 		FLAGS(lmp) |= FLG_RT_FIXED;
2159 	} else
2160 		base = addr;
2161 
2162 	/*
2163 	 * Fill in rest of the link map entries with information from the file's
2164 	 * dynamic structure.
2165 	 */
2166 	if (ld) {
2167 		uint_t		dynndx = 0;
2168 		Xword		pltpadsz = 0;
2169 		Rti_desc	*rti;
2170 
2171 		/* CSTYLED */
2172 		for ( ; ld->d_tag != DT_NULL; ++ld, dynndx++) {
2173 			switch ((Xword)ld->d_tag) {
2174 			case DT_SYMTAB:
2175 				SYMTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2176 				break;
2177 			case DT_SUNW_SYMTAB:
2178 				SUNWSYMTAB(lmp) =
2179 				    (void *)(ld->d_un.d_ptr + base);
2180 				break;
2181 			case DT_SUNW_SYMSZ:
2182 				SUNWSYMSZ(lmp) = ld->d_un.d_val;
2183 				break;
2184 			case DT_STRTAB:
2185 				STRTAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2186 				break;
2187 			case DT_SYMENT:
2188 				SYMENT(lmp) = ld->d_un.d_val;
2189 				break;
2190 			case DT_FEATURE_1:
2191 				ld->d_un.d_val |= DTF_1_PARINIT;
2192 				if (ld->d_un.d_val & DTF_1_CONFEXP)
2193 					crle = 1;
2194 				break;
2195 			case DT_MOVESZ:
2196 				MOVESZ(lmp) = ld->d_un.d_val;
2197 				FLAGS(lmp) |= FLG_RT_MOVE;
2198 				break;
2199 			case DT_MOVEENT:
2200 				MOVEENT(lmp) = ld->d_un.d_val;
2201 				break;
2202 			case DT_MOVETAB:
2203 				MOVETAB(lmp) = (void *)(ld->d_un.d_ptr + base);
2204 				break;
2205 			case DT_REL:
2206 			case DT_RELA:
2207 				/*
2208 				 * At this time, ld.so. can only handle one
2209 				 * type of relocation per object.
2210 				 */
2211 				REL(lmp) = (void *)(ld->d_un.d_ptr + base);
2212 				break;
2213 			case DT_RELSZ:
2214 			case DT_RELASZ:
2215 				RELSZ(lmp) = ld->d_un.d_val;
2216 				break;
2217 			case DT_RELENT:
2218 			case DT_RELAENT:
2219 				RELENT(lmp) = ld->d_un.d_val;
2220 				break;
2221 			case DT_RELCOUNT:
2222 			case DT_RELACOUNT:
2223 				RELACOUNT(lmp) = (uint_t)ld->d_un.d_val;
2224 				break;
2225 			case DT_TEXTREL:
2226 				FLAGS1(lmp) |= FL1_RT_TEXTREL;
2227 				break;
2228 			case DT_HASH:
2229 				HASH(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2230 				break;
2231 			case DT_PLTGOT:
2232 				PLTGOT(lmp) = (uint_t *)(ld->d_un.d_ptr + base);
2233 				break;
2234 			case DT_PLTRELSZ:
2235 				PLTRELSZ(lmp) = ld->d_un.d_val;
2236 				break;
2237 			case DT_JMPREL:
2238 				JMPREL(lmp) = (void *)(ld->d_un.d_ptr + base);
2239 				break;
2240 			case DT_INIT:
2241 				if (ld->d_un.d_ptr != NULL)
2242 					INIT(lmp) =
2243 					    (void (*)())(ld->d_un.d_ptr + base);
2244 				break;
2245 			case DT_FINI:
2246 				if (ld->d_un.d_ptr != NULL)
2247 					FINI(lmp) =
2248 					    (void (*)())(ld->d_un.d_ptr + base);
2249 				break;
2250 			case DT_INIT_ARRAY:
2251 				INITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2252 				    base);
2253 				break;
2254 			case DT_INIT_ARRAYSZ:
2255 				INITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2256 				break;
2257 			case DT_FINI_ARRAY:
2258 				FINIARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2259 				    base);
2260 				break;
2261 			case DT_FINI_ARRAYSZ:
2262 				FINIARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2263 				break;
2264 			case DT_PREINIT_ARRAY:
2265 				PREINITARRAY(lmp) = (Addr *)(ld->d_un.d_ptr +
2266 				    base);
2267 				break;
2268 			case DT_PREINIT_ARRAYSZ:
2269 				PREINITARRAYSZ(lmp) = (uint_t)ld->d_un.d_val;
2270 				break;
2271 			case DT_RPATH:
2272 			case DT_RUNPATH:
2273 				rpath = ld->d_un.d_val;
2274 				break;
2275 			case DT_FILTER:
2276 				fltr = ld->d_un.d_val;
2277 				OBJFLTRNDX(lmp) = dynndx;
2278 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
2279 				break;
2280 			case DT_AUXILIARY:
2281 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2282 					fltr = ld->d_un.d_val;
2283 					OBJFLTRNDX(lmp) = dynndx;
2284 				}
2285 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
2286 				break;
2287 			case DT_SUNW_FILTER:
2288 				SYMSFLTRCNT(lmp)++;
2289 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
2290 				break;
2291 			case DT_SUNW_AUXILIARY:
2292 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
2293 					SYMAFLTRCNT(lmp)++;
2294 				}
2295 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
2296 				break;
2297 			case DT_DEPAUDIT:
2298 				if (!(rtld_flags & RT_FL_NOAUDIT))
2299 					audit = ld->d_un.d_val;
2300 				break;
2301 			case DT_CONFIG:
2302 				cfile = ld->d_un.d_val;
2303 				break;
2304 			case DT_DEBUG:
2305 				/*
2306 				 * DT_DEBUG entries are only created in
2307 				 * dynamic objects that require an interpretor
2308 				 * (ie. all dynamic executables and some shared
2309 				 * objects), and provide for a hand-shake with
2310 				 * debuggers.  This entry is initialized to
2311 				 * zero by the link-editor.  If a debugger has
2312 				 * us and updated this entry set the debugger
2313 				 * flag, and finish initializing the debugging
2314 				 * structure (see setup() also).  Switch off any
2315 				 * configuration object use as most debuggers
2316 				 * can't handle fixed dynamic executables as
2317 				 * dependencies, and we can't handle requests
2318 				 * like object padding for alternative objects.
2319 				 */
2320 				if (ld->d_un.d_ptr)
2321 					rtld_flags |=
2322 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
2323 				ld->d_un.d_ptr = (Addr)&r_debug;
2324 				break;
2325 			case DT_VERNEED:
2326 				VERNEED(lmp) = (Verneed *)(ld->d_un.d_ptr +
2327 				    base);
2328 				break;
2329 			case DT_VERNEEDNUM:
2330 				/* LINTED */
2331 				VERNEEDNUM(lmp) = (int)ld->d_un.d_val;
2332 				break;
2333 			case DT_VERDEF:
2334 				VERDEF(lmp) = (Verdef *)(ld->d_un.d_ptr + base);
2335 				break;
2336 			case DT_VERDEFNUM:
2337 				/* LINTED */
2338 				VERDEFNUM(lmp) = (int)ld->d_un.d_val;
2339 				break;
2340 			case DT_VERSYM:
2341 				/*
2342 				 * The Solaris ld does not produce DT_VERSYM,
2343 				 * but the GNU ld does, in order to support
2344 				 * their style of versioning, which differs
2345 				 * from ours in some ways, while using the
2346 				 * same data structures. The presence of
2347 				 * DT_VERSYM therefore means that GNU
2348 				 * versioning rules apply to the given file.
2349 				 * If DT_VERSYM is not present, then Solaris
2350 				 * versioning rules apply.
2351 				 */
2352 				VERSYM(lmp) = (Versym *)(ld->d_un.d_ptr + base);
2353 				break;
2354 			case DT_BIND_NOW:
2355 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2356 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2357 					MODE(lmp) |= RTLD_NOW;
2358 					MODE(lmp) &= ~RTLD_LAZY;
2359 				}
2360 				break;
2361 			case DT_FLAGS:
2362 				FLAGS2(lmp) |= FL2_RT_DTFLAGS;
2363 				if (ld->d_un.d_val & DF_SYMBOLIC)
2364 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
2365 				if (ld->d_un.d_val & DF_TEXTREL)
2366 					FLAGS1(lmp) |= FL1_RT_TEXTREL;
2367 				if ((ld->d_un.d_val & DF_BIND_NOW) &&
2368 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2369 					MODE(lmp) |= RTLD_NOW;
2370 					MODE(lmp) &= ~RTLD_LAZY;
2371 				}
2372 				/*
2373 				 * Capture any static TLS use, and enforce that
2374 				 * this object be non-deletable.
2375 				 */
2376 				if (ld->d_un.d_val & DF_STATIC_TLS) {
2377 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2378 					MODE(lmp) |= RTLD_NODELETE;
2379 				}
2380 				break;
2381 			case DT_FLAGS_1:
2382 				if (ld->d_un.d_val & DF_1_DISPRELPND)
2383 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2384 				if (ld->d_un.d_val & DF_1_GROUP)
2385 					FLAGS(lmp) |=
2386 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
2387 				if ((ld->d_un.d_val & DF_1_NOW) &&
2388 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2389 					MODE(lmp) |= RTLD_NOW;
2390 					MODE(lmp) &= ~RTLD_LAZY;
2391 				}
2392 				if (ld->d_un.d_val & DF_1_NODELETE)
2393 					MODE(lmp) |= RTLD_NODELETE;
2394 				if (ld->d_un.d_val & DF_1_INITFIRST)
2395 					FLAGS(lmp) |= FLG_RT_INITFRST;
2396 				if (ld->d_un.d_val & DF_1_NOOPEN)
2397 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2398 				if (ld->d_un.d_val & DF_1_LOADFLTR)
2399 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2400 				if (ld->d_un.d_val & DF_1_NODUMP)
2401 					FLAGS(lmp) |= FLG_RT_NODUMP;
2402 				if (ld->d_un.d_val & DF_1_CONFALT)
2403 					crle = 1;
2404 				if (ld->d_un.d_val & DF_1_DIRECT)
2405 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2406 				if (ld->d_un.d_val & DF_1_NODEFLIB)
2407 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2408 				if (ld->d_un.d_val & DF_1_ENDFILTEE)
2409 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2410 				if (ld->d_un.d_val & DF_1_TRANS)
2411 					FLAGS(lmp) |= FLG_RT_TRANS;
2412 #ifndef	EXPAND_RELATIVE
2413 				if (ld->d_un.d_val & DF_1_ORIGIN)
2414 					FLAGS1(lmp) |= FL1_RT_RELATIVE;
2415 #endif
2416 				/*
2417 				 * Global auditing is only meaningful when
2418 				 * specified by the initiating object of the
2419 				 * process - typically the dynamic executable.
2420 				 * If this is the initiaiting object, its link-
2421 				 * map will not yet have been added to the
2422 				 * link-map list, and consequently the link-map
2423 				 * list is empty.  (see setup()).
2424 				 */
2425 				if (ld->d_un.d_val & DF_1_GLOBAUDIT) {
2426 					if (lml_main.lm_head == 0)
2427 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2428 					else
2429 						DBG_CALL(Dbg_audit_ignore(lmp));
2430 				}
2431 
2432 				/*
2433 				 * If this object identifies itself as an
2434 				 * interposer, but relocation processing has
2435 				 * already started, then demote it.  It's too
2436 				 * late to guarantee complete interposition.
2437 				 */
2438 				/* BEGIN CSTYLED */
2439 				if (ld->d_un.d_val &
2440 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2441 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2442 					DBG_CALL(Dbg_util_intoolate(lmp));
2443 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2444 					    (void) printf(
2445 						MSG_INTL(MSG_LDD_REL_ERR2),
2446 						NAME(lmp));
2447 				    } else if (ld->d_un.d_val & DF_1_INTERPOSE)
2448 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2449 				    else
2450 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2451 				}
2452 				/* END CSTYLED */
2453 				break;
2454 			case DT_SYMINFO:
2455 				SYMINFO(lmp) = (Syminfo *)(ld->d_un.d_ptr +
2456 				    base);
2457 				break;
2458 			case DT_SYMINENT:
2459 				SYMINENT(lmp) = ld->d_un.d_val;
2460 				break;
2461 			case DT_PLTPAD:
2462 				PLTPAD(lmp) = (void *)(ld->d_un.d_ptr + base);
2463 				break;
2464 			case DT_PLTPADSZ:
2465 				pltpadsz = ld->d_un.d_val;
2466 				break;
2467 			case DT_SUNW_RTLDINF:
2468 				/*
2469 				 * Maintain a list of RTLDINFO structures.
2470 				 * Typically, libc is the only supplier, and
2471 				 * only one structure is provided.  However,
2472 				 * multiple suppliers and multiple structures
2473 				 * are supported.  For example, one structure
2474 				 * may provide thread_init, and another
2475 				 * structure may provide atexit reservations.
2476 				 */
2477 				if ((rti = alist_append(&lml->lm_rti, 0,
2478 				    sizeof (Rti_desc), AL_CNT_RTLDINFO)) == 0) {
2479 					remove_so(0, lmp);
2480 					return (0);
2481 				}
2482 				rti->rti_lmp = lmp;
2483 				rti->rti_info = (void *)(ld->d_un.d_ptr + base);
2484 				break;
2485 			case DT_SUNW_SORTENT:
2486 				SUNWSORTENT(lmp) = ld->d_un.d_val;
2487 				break;
2488 			case DT_SUNW_SYMSORT:
2489 				SUNWSYMSORT(lmp) =
2490 				    (void *)(ld->d_un.d_ptr + base);
2491 				break;
2492 			case DT_SUNW_SYMSORTSZ:
2493 				SUNWSYMSORTSZ(lmp) = ld->d_un.d_val;
2494 				break;
2495 			case DT_DEPRECATED_SPARC_REGISTER:
2496 			case M_DT_REGISTER:
2497 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2498 				break;
2499 			case M_DT_PLTRESERVE:
2500 				PLTRESERVE(lmp) = (void *)(ld->d_un.d_ptr +
2501 				    base);
2502 				break;
2503 			}
2504 		}
2505 
2506 		if (PLTPAD(lmp)) {
2507 			if (pltpadsz == (Xword)0)
2508 				PLTPAD(lmp) = 0;
2509 			else
2510 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2511 				    pltpadsz);
2512 		}
2513 
2514 		/*
2515 		 * Allocate a Dynamic Info structure.
2516 		 */
2517 		if ((DYNINFO(lmp) = calloc((size_t)dynndx,
2518 		    sizeof (Dyninfo))) == 0) {
2519 			remove_so(0, lmp);
2520 			return (0);
2521 		}
2522 		DYNINFOCNT(lmp) = dynndx;
2523 	}
2524 
2525 	/*
2526 	 * A dynsym contains only global functions. We want to have
2527 	 * a version of it that also includes local functions, so that
2528 	 * dladdr() will be able to report names for local functions
2529 	 * when used to generate a stack trace for a stripped file.
2530 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2531 	 *
2532 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2533 	 * in order to avoid having to have two copies of the global
2534 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2535 	 * a separate section than the globals in the dynsym, but the
2536 	 * linker conspires to put the data for these two sections adjacent
2537 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2538 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2539 	 *
2540 	 * If the two sections are not adjacent, then something went wrong
2541 	 * at link time. We use ASSERT to kill the process if this is
2542 	 * a debug build. In a production build, we will silently ignore
2543 	 * the presence of the .ldynsym and proceed. We can detect this
2544 	 * situation by checking to see that DT_SYMTAB lies in
2545 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2546 	 */
2547 	if ((SUNWSYMTAB(lmp) != NULL) &&
2548 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2549 	    (((char *)SYMTAB(lmp) >=
2550 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2551 		ASSERT(0);
2552 		SUNWSYMTAB(lmp) = NULL;
2553 		SUNWSYMSZ(lmp) = 0;
2554 	}
2555 
2556 	/*
2557 	 * If configuration file use hasn't been disabled, and a configuration
2558 	 * file hasn't already been set via an environment variable, see if any
2559 	 * application specific configuration file is specified.  An LD_CONFIG
2560 	 * setting is used first, but if this image was generated via crle(1)
2561 	 * then a default configuration file is a fall-back.
2562 	 */
2563 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == 0)) {
2564 		if (cfile)
2565 			config->c_name = (const char *)(cfile +
2566 			    (char *)STRTAB(lmp));
2567 		else if (crle) {
2568 			rtld_flags |= RT_FL_CONFAPP;
2569 #ifndef	EXPAND_RELATIVE
2570 			FLAGS1(lmp) |= FL1_RT_RELATIVE;
2571 #endif
2572 		}
2573 	}
2574 
2575 	if (rpath)
2576 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2577 	if (fltr) {
2578 		/*
2579 		 * If this object is a global filter, duplicate the filtee
2580 		 * string name(s) so that REFNAME() is available in core files.
2581 		 * This cludge was useful for debuggers at one point, but only
2582 		 * when the filtee name was an individual full path.
2583 		 */
2584 		if ((REFNAME(lmp) = strdup(fltr + (char *)STRTAB(lmp))) == 0) {
2585 			remove_so(0, lmp);
2586 			return (0);
2587 		}
2588 	}
2589 
2590 	if (rtld_flags & RT_FL_RELATIVE)
2591 		FLAGS1(lmp) |= FL1_RT_RELATIVE;
2592 
2593 	/*
2594 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2595 	 * specified without any other relocations (e.g. a dynamic executable
2596 	 * normally only contains .plt relocations).  If this is the case then
2597 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2598 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2599 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2600 	 * details.
2601 	 */
2602 	if (!RELENT(lmp) && JMPREL(lmp))
2603 		RELENT(lmp) = sizeof (Rel);
2604 
2605 	/*
2606 	 * Establish any per-object auditing.  If we're establishing `main's
2607 	 * link-map its too early to go searching for audit objects so just
2608 	 * hold the object name for later (see setup()).
2609 	 */
2610 	if (audit) {
2611 		char	*cp = audit + (char *)STRTAB(lmp);
2612 
2613 		if (*cp) {
2614 			if (((AUDITORS(lmp) =
2615 			    calloc(1, sizeof (Audit_desc))) == 0) ||
2616 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == 0)) {
2617 				remove_so(0, lmp);
2618 				return (0);
2619 			}
2620 			if (lml_main.lm_head) {
2621 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2622 				    in_nfavl) == 0) {
2623 					remove_so(0, lmp);
2624 					return (0);
2625 				}
2626 				FLAGS1(lmp) |= AUDITORS(lmp)->ad_flags;
2627 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2628 			}
2629 		}
2630 	}
2631 
2632 	if ((CONDVAR(lmp) = rt_cond_create()) == 0) {
2633 		remove_so(0, lmp);
2634 		return (0);
2635 	}
2636 	if (oname && ((append_alias(lmp, oname, 0)) == 0)) {
2637 		remove_so(0, lmp);
2638 		return (0);
2639 	}
2640 
2641 	/*
2642 	 * Add the mapped object to the end of the link map list.
2643 	 */
2644 	lm_append(lml, lmco, lmp);
2645 	return (lmp);
2646 }
2647 
2648 /*
2649  * Assign hardware/software capabilities.
2650  */
2651 void
2652 cap_assign(Cap *cap, Rt_map *lmp)
2653 {
2654 	while (cap->c_tag != CA_SUNW_NULL) {
2655 		switch (cap->c_tag) {
2656 		case CA_SUNW_HW_1:
2657 			HWCAP(lmp) = cap->c_un.c_val;
2658 			break;
2659 		case CA_SUNW_SF_1:
2660 			SFCAP(lmp) = cap->c_un.c_val;
2661 		}
2662 		cap++;
2663 	}
2664 }
2665 
2666 /*
2667  * Map in an ELF object.
2668  * Takes an open file descriptor for the object to map and its pathname; returns
2669  * a pointer to a Rt_map structure for this object, or 0 on error.
2670  */
2671 static Rt_map *
2672 elf_map_so(Lm_list *lml, Aliste lmco, const char *pname, const char *oname,
2673     int fd, int *in_nfavl)
2674 {
2675 	int		i; 		/* general temporary */
2676 	Off		memsize = 0;	/* total memory size of pathname */
2677 	Off		mentry;		/* entry point */
2678 	Ehdr		*ehdr;		/* ELF header of ld.so */
2679 	Phdr		*phdr;		/* first Phdr in file */
2680 	Phdr		*phdr0;		/* Saved first Phdr in file */
2681 	Phdr		*pptr;		/* working Phdr */
2682 	Phdr		*fph = 0;	/* first loadable Phdr */
2683 	Phdr		*lph;		/* last loadable Phdr */
2684 	Phdr		*lfph = 0;	/* last loadable (filesz != 0) Phdr */
2685 	Phdr		*lmph = 0;	/* last loadable (memsz != 0) Phdr */
2686 	Phdr		*swph = 0;	/* program header for SUNWBSS */
2687 	Phdr		*tlph = 0;	/* program header for PT_TLS */
2688 	Phdr		*unwindph = 0;	/* program header for PT_SUNW_UNWIND */
2689 	Cap		*cap = 0;	/* program header for SUNWCAP */
2690 	Dyn		*mld = 0;	/* DYNAMIC structure for pathname */
2691 	size_t		size;		/* size of elf and program headers */
2692 	caddr_t		faddr = 0;	/* mapping address of pathname */
2693 	Rt_map		*lmp;		/* link map created */
2694 	caddr_t		paddr;		/* start of padded image */
2695 	Off		plen;		/* size of image including padding */
2696 	Half		etype;
2697 	int		fixed;
2698 	Mmap		*mmaps;
2699 	uint_t		mmapcnt = 0;
2700 	Xword		align = 0;
2701 
2702 	/* LINTED */
2703 	ehdr = (Ehdr *)fmap->fm_maddr;
2704 
2705 	/*
2706 	 * If this a relocatable object then special processing is required.
2707 	 */
2708 	if ((etype = ehdr->e_type) == ET_REL)
2709 		return (elf_obj_file(lml, lmco, pname, fd));
2710 
2711 	/*
2712 	 * If this isn't a dynamic executable or shared object we can't process
2713 	 * it.  If this is a dynamic executable then all addresses are fixed.
2714 	 */
2715 	if (etype == ET_EXEC) {
2716 		fixed = 1;
2717 	} else if (etype == ET_DYN) {
2718 		fixed = 0;
2719 	} else {
2720 		Conv_inv_buf_t inv_buf;
2721 
2722 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_BADTYPE), pname,
2723 		    conv_ehdr_type(etype, 0, &inv_buf));
2724 		return (0);
2725 	}
2726 
2727 	/*
2728 	 * If our original mapped page was not large enough to hold all the
2729 	 * program headers remap them.
2730 	 */
2731 	size = (size_t)((char *)ehdr->e_phoff +
2732 	    (ehdr->e_phnum * ehdr->e_phentsize));
2733 	if (size > fmap->fm_fsize) {
2734 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2735 		return (0);
2736 	}
2737 	if (size > fmap->fm_msize) {
2738 		fmap_setup();
2739 		if ((fmap->fm_maddr = mmap(fmap->fm_maddr, size, PROT_READ,
2740 		    fmap->fm_mflags, fd, 0)) == MAP_FAILED) {
2741 			int	err = errno;
2742 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), pname,
2743 			    strerror(err));
2744 			return (0);
2745 		}
2746 		fmap->fm_msize = size;
2747 		/* LINTED */
2748 		ehdr = (Ehdr *)fmap->fm_maddr;
2749 	}
2750 	/* LINTED */
2751 	phdr0 = phdr = (Phdr *)((char *)ehdr + ehdr->e_ehsize);
2752 
2753 	/*
2754 	 * Get entry point.
2755 	 */
2756 	mentry = ehdr->e_entry;
2757 
2758 	/*
2759 	 * Point at program headers and perform some basic validation.
2760 	 */
2761 	for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2762 	    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2763 		if ((pptr->p_type == PT_LOAD) ||
2764 		    (pptr->p_type == PT_SUNWBSS)) {
2765 
2766 			if (fph == 0) {
2767 				fph = pptr;
2768 			/* LINTED argument lph is initialized in first pass */
2769 			} else if (pptr->p_vaddr <= lph->p_vaddr) {
2770 				eprintf(lml, ERR_ELF,
2771 				    MSG_INTL(MSG_GEN_INVPRGHDR), pname);
2772 				return (0);
2773 			}
2774 
2775 			lph = pptr;
2776 
2777 			if (pptr->p_memsz)
2778 				lmph = pptr;
2779 			if (pptr->p_filesz)
2780 				lfph = pptr;
2781 			if (pptr->p_type == PT_SUNWBSS)
2782 				swph = pptr;
2783 			if (pptr->p_align > align)
2784 				align = pptr->p_align;
2785 
2786 		} else if (pptr->p_type == PT_DYNAMIC) {
2787 			mld = (Dyn *)(pptr->p_vaddr);
2788 		} else if ((pptr->p_type == PT_TLS) && pptr->p_memsz) {
2789 			tlph = pptr;
2790 		} else if (pptr->p_type == PT_SUNWCAP) {
2791 			cap = (Cap *)(pptr->p_vaddr);
2792 		} else if (pptr->p_type == PT_SUNW_UNWIND) {
2793 			unwindph = pptr;
2794 		}
2795 	}
2796 
2797 #if defined(MAP_ALIGN)
2798 	/*
2799 	 * Make sure the maximum page alignment is a power of 2 >= the default
2800 	 * segment alignment, for use with MAP_ALIGN.
2801 	 */
2802 	align = S_ROUND(align, M_SEGM_ALIGN);
2803 #endif
2804 
2805 	/*
2806 	 * We'd better have at least one loadable segment, together with some
2807 	 * specified file and memory size.
2808 	 */
2809 	if ((fph == 0) || (lmph == 0) || (lfph == 0)) {
2810 		eprintf(lml, ERR_ELF, MSG_INTL(MSG_GEN_NOLOADSEG), pname);
2811 		return (0);
2812 	}
2813 
2814 	/*
2815 	 * Check that the files size accounts for the loadable sections
2816 	 * we're going to map in (failure to do this may cause spurious
2817 	 * bus errors if we're given a truncated file).
2818 	 */
2819 	if (fmap->fm_fsize < ((size_t)lfph->p_offset + lfph->p_filesz)) {
2820 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_CORTRUNC), pname);
2821 		return (0);
2822 	}
2823 
2824 	/*
2825 	 * Memsize must be page rounded so that if we add object padding
2826 	 * at the end it will start at the beginning of a page.
2827 	 */
2828 	plen = memsize = M_PROUND((lmph->p_vaddr + lmph->p_memsz) -
2829 	    M_PTRUNC((ulong_t)fph->p_vaddr));
2830 
2831 	/*
2832 	 * Determine if an existing mapping is acceptable.
2833 	 */
2834 	if (interp && (lml->lm_flags & LML_FLG_BASELM) &&
2835 	    (strcmp(pname, interp->i_name) == 0)) {
2836 		/*
2837 		 * If this is the interpreter then it has already been mapped
2838 		 * and we have the address so don't map it again.  Note that
2839 		 * the common occurrence of a reference to the interpretor
2840 		 * (libdl -> ld.so.1) will have been caught during filter
2841 		 * initialization (see elf_lookup_filtee()).  However, some
2842 		 * ELF implementations are known to record libc.so.1 as the
2843 		 * interpretor, and thus this test catches this behavior.
2844 		 */
2845 		paddr = faddr = interp->i_faddr;
2846 
2847 	} else if ((fixed == 0) && (r_debug.rtd_objpad == 0) &&
2848 	    (memsize <= fmap->fm_msize) && ((fph->p_flags & PF_W) == 0) &&
2849 	    (fph == lph) && (fph->p_filesz == fph->p_memsz) &&
2850 	    (((Xword)fmap->fm_maddr % align) == 0)) {
2851 		size_t	rsize;
2852 
2853 		/*
2854 		 * If the file contains a single segment, and the mapping
2855 		 * required has already been established from the initial fmap
2856 		 * mapping, then we don't need to do anything more.  Reset the
2857 		 * fmap address so that any later files start a new fmap.  This
2858 		 * is really an optimization for filters, such as libdl.so,
2859 		 * libthread, etc. that are constructed to be a single text
2860 		 * segment.
2861 		 */
2862 		paddr = faddr = fmap->fm_maddr;
2863 
2864 		/*
2865 		 * Free any unused mapping by assigning the fmap buffer to the
2866 		 * unused region.  fmap_setup() will unmap this area and
2867 		 * establish defaults for future mappings.
2868 		 */
2869 		rsize = M_PROUND(fph->p_filesz);
2870 		fmap->fm_maddr += rsize;
2871 		fmap->fm_msize -= rsize;
2872 		fmap_setup();
2873 	}
2874 
2875 	/*
2876 	 * Allocate a mapping array to retain mapped segment information.
2877 	 */
2878 	if ((mmaps = calloc(ehdr->e_phnum, sizeof (Mmap))) == 0)
2879 		return (0);
2880 
2881 	/*
2882 	 * If we're reusing an existing mapping determine the objects etext
2883 	 * address.  Otherwise map the file (which will calculate the etext
2884 	 * address as part of the mapping process).
2885 	 */
2886 	if (faddr) {
2887 		caddr_t	base;
2888 
2889 		if (fixed)
2890 			base = 0;
2891 		else
2892 			base = faddr;
2893 
2894 		/* LINTED */
2895 		phdr0 = phdr = (Phdr *)((char *)faddr + ehdr->e_ehsize);
2896 
2897 		for (i = 0, pptr = phdr; i < (int)ehdr->e_phnum; i++,
2898 		    pptr = (Phdr *)((Off)pptr + ehdr->e_phentsize)) {
2899 			if (pptr->p_type != PT_LOAD)
2900 				continue;
2901 
2902 			mmaps[mmapcnt].m_vaddr = (pptr->p_vaddr + base);
2903 			mmaps[mmapcnt].m_msize = pptr->p_memsz;
2904 			mmaps[mmapcnt].m_fsize = pptr->p_filesz;
2905 			mmaps[mmapcnt].m_perm = (PROT_READ | PROT_EXEC);
2906 			mmapcnt++;
2907 
2908 			if (!(pptr->p_flags & PF_W)) {
2909 				fmap->fm_etext = (ulong_t)pptr->p_vaddr +
2910 				    (ulong_t)pptr->p_memsz +
2911 				    (ulong_t)(fixed ? 0 : faddr);
2912 			}
2913 		}
2914 	} else {
2915 		/*
2916 		 * Map the file.
2917 		 */
2918 		if (!(faddr = elf_map_it(lml, pname, memsize, ehdr, fph, lph,
2919 		    &phdr, &paddr, &plen, fixed, fd, align, mmaps, &mmapcnt)))
2920 			return (0);
2921 	}
2922 
2923 	/*
2924 	 * Calculate absolute base addresses and entry points.
2925 	 */
2926 	if (!fixed) {
2927 		if (mld)
2928 			/* LINTED */
2929 			mld = (Dyn *)((Off)mld + faddr);
2930 		if (cap)
2931 			/* LINTED */
2932 			cap = (Cap *)((Off)cap + faddr);
2933 		mentry += (Off)faddr;
2934 	}
2935 
2936 	/*
2937 	 * Create new link map structure for newly mapped shared object.
2938 	 */
2939 	if (!(lmp = elf_new_lm(lml, pname, oname, mld, (ulong_t)faddr,
2940 	    fmap->fm_etext, lmco, memsize, mentry, (ulong_t)paddr, plen, mmaps,
2941 	    mmapcnt, in_nfavl))) {
2942 		(void) munmap((caddr_t)faddr, memsize);
2943 		return (0);
2944 	}
2945 
2946 	/*
2947 	 * Start the system loading in the ELF information we'll be processing.
2948 	 */
2949 	if (REL(lmp)) {
2950 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2951 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2952 		    MADV_WILLNEED);
2953 	}
2954 
2955 	/*
2956 	 * If this shared object contains any special segments, record them.
2957 	 */
2958 	if (swph) {
2959 		FLAGS(lmp) |= FLG_RT_SUNWBSS;
2960 		SUNWBSS(lmp) = phdr + (swph - phdr0);
2961 	}
2962 	if (tlph && (tls_assign(lml, lmp, (phdr + (tlph - phdr0))) == 0)) {
2963 		remove_so(lml, lmp);
2964 		return (0);
2965 	}
2966 
2967 	if (unwindph)
2968 		PTUNWIND(lmp) = phdr + (unwindph - phdr0);
2969 
2970 	if (cap)
2971 		cap_assign(cap, lmp);
2972 
2973 	return (lmp);
2974 }
2975 
2976 /*
2977  * Function to correct protection settings.  Segments are all mapped initially
2978  * with permissions as given in the segment header.  We need to turn on write
2979  * permissions on a text segment if there are any relocations against that
2980  * segment, and them turn write permission back off again before returning
2981  * control to the user.  This function turns the permission on or off depending
2982  * on the value of the argument.
2983  */
2984 int
2985 elf_set_prot(Rt_map *lmp, int permission)
2986 {
2987 	Mmap	*mmaps;
2988 
2989 	/*
2990 	 * If this is an allocated image (ie. a relocatable object) we can't
2991 	 * mprotect() anything.
2992 	 */
2993 	if (FLAGS(lmp) & FLG_RT_IMGALLOC)
2994 		return (1);
2995 
2996 	DBG_CALL(Dbg_file_prot(lmp, permission));
2997 
2998 	for (mmaps = MMAPS(lmp); mmaps->m_vaddr; mmaps++) {
2999 		if (mmaps->m_perm & PROT_WRITE)
3000 			continue;
3001 
3002 		if (mprotect(mmaps->m_vaddr, mmaps->m_msize,
3003 		    (mmaps->m_perm | permission)) == -1) {
3004 			int	err = errno;
3005 			eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_SYS_MPROT),
3006 			    NAME(lmp), strerror(err));
3007 			return (0);
3008 		}
3009 	}
3010 	return (1);
3011 }
3012 
3013 /*
3014  * Build full pathname of shared object from given directory name and filename.
3015  */
3016 static char *
3017 elf_get_so(const char *dir, const char *file)
3018 {
3019 	static char	pname[PATH_MAX];
3020 
3021 	(void) snprintf(pname, PATH_MAX, MSG_ORIG(MSG_FMT_PATH), dir, file);
3022 	return (pname);
3023 }
3024 
3025 /*
3026  * The copy relocation is recorded in a copy structure which will be applied
3027  * after all other relocations are carried out.  This provides for copying data
3028  * that must be relocated itself (ie. pointers in shared objects).  This
3029  * structure also provides a means of binding RTLD_GROUP dependencies to any
3030  * copy relocations that have been taken from any group members.
3031  *
3032  * If the size of the .bss area available for the copy information is not the
3033  * same as the source of the data inform the user if we're under ldd(1) control
3034  * (this checking was only established in 5.3, so by only issuing an error via
3035  * ldd(1) we maintain the standard set by previous releases).
3036  */
3037 int
3038 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
3039     Rt_map *dlmp, const void *dadd)
3040 {
3041 	Rel_copy	rc;
3042 	Lm_list		*lml = LIST(rlmp);
3043 
3044 	rc.r_name = name;
3045 	rc.r_rsym = rsym;		/* the new reference symbol and its */
3046 	rc.r_rlmp = rlmp;		/*	associated link-map */
3047 	rc.r_dlmp = dlmp;		/* the defining link-map */
3048 	rc.r_dsym = dsym;		/* the original definition */
3049 	rc.r_radd = radd;
3050 	rc.r_dadd = dadd;
3051 
3052 	if (rsym->st_size > dsym->st_size)
3053 		rc.r_size = (size_t)dsym->st_size;
3054 	else
3055 		rc.r_size = (size_t)rsym->st_size;
3056 
3057 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
3058 	    AL_CNT_COPYREL) == 0) {
3059 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3060 			return (0);
3061 		else
3062 			return (1);
3063 	}
3064 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
3065 		if (aplist_append(&COPY_S(rlmp), dlmp,
3066 		    AL_CNT_COPYREL) == NULL) {
3067 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
3068 				return (0);
3069 			else
3070 				return (1);
3071 		}
3072 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
3073 	}
3074 
3075 	/*
3076 	 * If we are tracing (ldd), warn the user if
3077 	 *	1) the size from the reference symbol differs from the
3078 	 *	   copy definition. We can only copy as much data as the
3079 	 *	   reference (dynamic executables) entry allows.
3080 	 *	2) the copy definition has STV_PROTECTED visibility.
3081 	 */
3082 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3083 		if (rsym->st_size != dsym->st_size) {
3084 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
3085 			    _conv_reloc_type(M_R_COPY), demangle(name),
3086 			    NAME(rlmp), EC_XWORD(rsym->st_size),
3087 			    NAME(dlmp), EC_XWORD(dsym->st_size));
3088 			if (rsym->st_size > dsym->st_size)
3089 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
3090 				    NAME(dlmp));
3091 			else
3092 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
3093 				    NAME(rlmp));
3094 		}
3095 
3096 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
3097 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
3098 			    _conv_reloc_type(M_R_COPY), demangle(name),
3099 			    NAME(dlmp));
3100 		}
3101 	}
3102 
3103 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
3104 	    (Xword)rc.r_size));
3105 	return (1);
3106 }
3107 
3108 /*
3109  * Determine the symbol location of an address within a link-map.  Look for
3110  * the nearest symbol (whose value is less than or equal to the required
3111  * address).  This is the object specific part of dladdr().
3112  */
3113 static void
3114 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
3115 {
3116 	ulong_t		ndx, cnt, base, _value;
3117 	Sym		*sym, *_sym = NULL;
3118 	const char	*str;
3119 	int		_flags;
3120 	uint_t		*dynaddr_ndx;
3121 	uint_t		dynaddr_n = 0;
3122 	ulong_t		value;
3123 
3124 	/*
3125 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
3126 	 * the dynsym that starts with any local function symbols that exist in
3127 	 * the library and then moves to the data held in SYMTAB(). In this
3128 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
3129 	 * availability of local function symbols will enhance the results
3130 	 * we can provide.
3131 	 *
3132 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
3133 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
3134 	 * an array of indices into SUNWSYMTAB, sorted by increasing
3135 	 * address. We can use this to do an O(log N) search instead of a
3136 	 * brute force search.
3137 	 *
3138 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
3139 	 * contains only global symbols. In that case, the length of
3140 	 * the symbol table comes from the nchain field of the related
3141 	 * symbol lookup hash table.
3142 	 */
3143 	str = STRTAB(lmp);
3144 	if (SUNWSYMSZ(lmp) == NULL) {
3145 		sym = SYMTAB(lmp);
3146 		/*
3147 		 * If we don't have a .hash table there are no symbols
3148 		 * to look at.
3149 		 */
3150 		if (HASH(lmp) == 0)
3151 			return;
3152 		cnt = HASH(lmp)[1];
3153 	} else {
3154 		sym = SUNWSYMTAB(lmp);
3155 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
3156 		dynaddr_ndx = SUNWSYMSORT(lmp);
3157 		if (dynaddr_ndx != NULL)
3158 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
3159 	}
3160 
3161 	if (FLAGS(lmp) & FLG_RT_FIXED)
3162 		base = 0;
3163 	else
3164 		base = ADDR(lmp);
3165 
3166 	if (dynaddr_n > 0) {		/* Binary search */
3167 		long	low = 0, low_bnd;
3168 		long	high = dynaddr_n - 1, high_bnd;
3169 		long	mid;
3170 		Sym	*mid_sym;
3171 
3172 		/*
3173 		 * Note that SUNWSYMSORT only contains symbols types that
3174 		 * supply memory addresses, so there's no need to check and
3175 		 * filter out any other types.
3176 		 */
3177 		low_bnd = low;
3178 		high_bnd = high;
3179 		while (low <= high) {
3180 			mid = (low + high) / 2;
3181 			mid_sym = &sym[dynaddr_ndx[mid]];
3182 			value = mid_sym->st_value + base;
3183 			if (addr < value) {
3184 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
3185 				    addr)
3186 					high_bnd = high;
3187 				high = mid - 1;
3188 			} else if (addr > value) {
3189 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
3190 				    addr)
3191 					low_bnd = low;
3192 				low = mid + 1;
3193 			} else {
3194 				_sym = mid_sym;
3195 				_value = value;
3196 				break;
3197 			}
3198 		}
3199 		/*
3200 		 * If the above didn't find it exactly, then we must
3201 		 * return the closest symbol with a value that doesn't
3202 		 * exceed the one we are looking for. If that symbol exists,
3203 		 * it will lie in the range bounded by low_bnd and
3204 		 * high_bnd. This is a linear search, but a short one.
3205 		 */
3206 		if (_sym == NULL) {
3207 			for (mid = low_bnd; mid <= high_bnd; mid++) {
3208 				mid_sym = &sym[dynaddr_ndx[mid]];
3209 				value = mid_sym->st_value + base;
3210 				if (addr >= value) {
3211 					_sym = mid_sym;
3212 					_value = value;
3213 				} else {
3214 					break;
3215 				}
3216 			}
3217 		}
3218 	} else {			/* Linear search */
3219 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
3220 			/*
3221 			 * Skip expected symbol types that are not functions
3222 			 * or data:
3223 			 *	- A symbol table starts with an undefined symbol
3224 			 *		in slot 0. If we are using SUNWSYMTAB(),
3225 			 *		there will be a second undefined symbol
3226 			 *		right before the globals.
3227 			 *	- The local part of SUNWSYMTAB() contains a
3228 			 *		series of function symbols. Each section
3229 			 *		starts with an initial STT_FILE symbol.
3230 			 */
3231 			if ((sym->st_shndx == SHN_UNDEF) ||
3232 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
3233 				continue;
3234 
3235 			value = sym->st_value + base;
3236 			if (value > addr)
3237 				continue;
3238 			if (value < _value)
3239 				continue;
3240 
3241 			_sym = sym;
3242 			_value = value;
3243 
3244 			/*
3245 			 * Note, because we accept local and global symbols
3246 			 * we could find a section symbol that matches the
3247 			 * associated address, which means that the symbol
3248 			 * name will be null.  In this case continue the
3249 			 * search in case we can find a global symbol of
3250 			 * the same value.
3251 			 */
3252 			if ((value == addr) &&
3253 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
3254 				break;
3255 		}
3256 	}
3257 
3258 	_flags = flags & RTLD_DL_MASK;
3259 	if (_sym) {
3260 		if (_flags == RTLD_DL_SYMENT)
3261 			*info = (void *)_sym;
3262 		else if (_flags == RTLD_DL_LINKMAP)
3263 			*info = (void *)lmp;
3264 
3265 		dlip->dli_sname = str + _sym->st_name;
3266 		dlip->dli_saddr = (void *)_value;
3267 	} else {
3268 		/*
3269 		 * addr lies between the beginning of the mapped segment and
3270 		 * the first global symbol. We have no symbol to return
3271 		 * and the caller requires one. We use _START_, the base
3272 		 * address of the mapping.
3273 		 */
3274 
3275 		if (_flags == RTLD_DL_SYMENT) {
3276 			/*
3277 			 * An actual symbol struct is needed, so we
3278 			 * construct one for _START_. To do this in a
3279 			 * fully accurate way requires a different symbol
3280 			 * for each mapped segment. This requires the
3281 			 * use of dynamic memory and a mutex. That's too much
3282 			 * plumbing for a fringe case of limited importance.
3283 			 *
3284 			 * Fortunately, we can simplify:
3285 			 *    - Only the st_size and st_info fields are useful
3286 			 *	outside of the linker internals. The others
3287 			 *	reference things that outside code cannot see,
3288 			 *	and can be set to 0.
3289 			 *    - It's just a label and there is no size
3290 			 *	to report. So, the size should be 0.
3291 			 * This means that only st_info needs a non-zero
3292 			 * (constant) value. A static struct will suffice.
3293 			 * It must be const (readonly) so the caller can't
3294 			 * change its meaning for subsequent callers.
3295 			 */
3296 			static const Sym fsym = { 0, 0, 0,
3297 				ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
3298 			*info = (void *) &fsym;
3299 		}
3300 
3301 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
3302 		dlip->dli_saddr = (void *) ADDR(lmp);
3303 	}
3304 }
3305 
3306 static void
3307 elf_lazy_cleanup(APlist *alp)
3308 {
3309 	Rt_map	*lmp;
3310 	Aliste	idx;
3311 
3312 	/*
3313 	 * Cleanup any link-maps added to this dynamic list and free it.
3314 	 */
3315 	for (APLIST_TRAVERSE(alp, idx, lmp))
3316 		FLAGS(lmp) &= ~FLG_RT_TMPLIST;
3317 	free(alp);
3318 }
3319 
3320 /*
3321  * This routine is called as a last fall-back to search for a symbol from a
3322  * standard relocation.  To maintain lazy loadings goal of reducing the number
3323  * of objects mapped, any symbol search is first carried out using the objects
3324  * that already exist in the process (either on a link-map list or handle).
3325  * If a symbol can't be found, and lazy dependencies are still pending, this
3326  * routine loads the dependencies in an attempt to locate the symbol.
3327  *
3328  * Only new objects are inspected as we will have already inspected presently
3329  * loaded objects before calling this routine.  However, a new object may not
3330  * be new - although the di_lmp might be zero, the object may have been mapped
3331  * as someone elses dependency.  Thus there's a possibility of some symbol
3332  * search duplication.
3333  */
3334 Sym *
3335 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo, int *in_nfavl)
3336 {
3337 	Sym		*sym = 0;
3338 	APlist		*alist = NULL;
3339 	Aliste		idx;
3340 	Rt_map		*lmp1, *lmp = slp->sl_imap;
3341 	const char	*name = slp->sl_name;
3342 
3343 	/*
3344 	 * Generate a local list of new objects to process.  This list can grow
3345 	 * as each object supplies its own lazy dependencies.
3346 	 */
3347 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
3348 		return (NULL);
3349 	FLAGS(lmp) |= FLG_RT_TMPLIST;
3350 
3351 	for (APLIST_TRAVERSE(alist, idx, lmp1)) {
3352 		uint_t	cnt = 0;
3353 		Slookup	sl = *slp;
3354 		Dyninfo	*dip, *pdip;
3355 
3356 		/*
3357 		 * Discard any relocation index from further symbol searches.
3358 		 * This index will have already been used to trigger any
3359 		 * necessary lazy-loads, and it might be because one of these
3360 		 * lazy loads have failed that we're here performing this
3361 		 * fallback.  By removing the relocation index we don't try
3362 		 * and perform the same failed lazy loading activity again.
3363 		 */
3364 		sl.sl_rsymndx = 0;
3365 
3366 		/*
3367 		 * Loop through the lazy DT_NEEDED entries examining each object
3368 		 * for the required symbol.  If the symbol is not found, the
3369 		 * object is in turn added to the local alist, so that the
3370 		 * objects lazy DT_NEEDED entries can be examined.
3371 		 */
3372 		lmp = lmp1;
3373 		for (dip = DYNINFO(lmp), pdip = NULL; cnt < DYNINFOCNT(lmp);
3374 		    cnt++, pdip = dip++) {
3375 			Rt_map *nlmp;
3376 
3377 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
3378 			    dip->di_info)
3379 				continue;
3380 
3381 			/*
3382 			 * If this object has already failed to lazy load, and
3383 			 * we're still processing the same runtime linker
3384 			 * operation that produced the failure, don't bother
3385 			 * to try and load the object again.
3386 			 */
3387 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
3388 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
3389 				if (pdip->di_info == (void *)ld_entry_cnt)
3390 					continue;
3391 
3392 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
3393 				pdip->di_info = NULL;
3394 			}
3395 
3396 			/*
3397 			 * Try loading this lazy dependency.  If the object
3398 			 * can't be loaded, consider this non-fatal and continue
3399 			 * the search.  Lazy loaded dependencies need not exist
3400 			 * and their loading should only turn out to be fatal
3401 			 * if they are required to satisfy a relocation.
3402 			 *
3403 			 * If the file is already loaded and relocated we must
3404 			 * still inspect it for symbols, even though it might
3405 			 * have already been searched.  This lazy load operation
3406 			 * might have promoted the permissions of the object,
3407 			 * and thus made the object applicable for this symbol
3408 			 * search, whereas before the object might have been
3409 			 * skipped.
3410 			 */
3411 			if ((nlmp = elf_lazy_load(lmp, &sl, cnt,
3412 			    name, in_nfavl)) == 0)
3413 				continue;
3414 
3415 			/*
3416 			 * If this object isn't yet a part of the dynamic list
3417 			 * then inspect it for the symbol.  If the symbol isn't
3418 			 * found add the object to the dynamic list so that we
3419 			 * can inspect its dependencies.
3420 			 */
3421 			if (FLAGS(nlmp) & FLG_RT_TMPLIST)
3422 				continue;
3423 
3424 			sl.sl_imap = nlmp;
3425 			if (sym = LM_LOOKUP_SYM(sl.sl_cmap)(&sl, _lmp,
3426 			    binfo, in_nfavl))
3427 				break;
3428 
3429 			/*
3430 			 * Some dlsym() operations are already traversing a
3431 			 * link-map (dlopen(0)), and thus there's no need to
3432 			 * build our own dynamic dependency list.
3433 			 */
3434 			if ((sl.sl_flags & LKUP_NODESCENT) == 0) {
3435 				if (aplist_append(&alist, nlmp,
3436 				    AL_CNT_LAZYFIND) == 0) {
3437 					elf_lazy_cleanup(alist);
3438 					return (0);
3439 				}
3440 				FLAGS(nlmp) |= FLG_RT_TMPLIST;
3441 			}
3442 		}
3443 		if (sym)
3444 			break;
3445 	}
3446 
3447 	elf_lazy_cleanup(alist);
3448 	return (sym);
3449 }
3450 
3451 /*
3452  * Warning message for bad r_offset.
3453  */
3454 void
3455 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
3456     ulong_t rsymndx)
3457 {
3458 	const char	*name = (char *)0;
3459 	Lm_list		*lml = LIST(lmp);
3460 	int		trace;
3461 
3462 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
3463 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
3464 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
3465 		trace = 1;
3466 	else
3467 		trace = 0;
3468 
3469 	if ((trace == 0) && (DBG_ENABLED == 0))
3470 		return;
3471 
3472 	if (rsymndx) {
3473 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
3474 		    (rsymndx * SYMENT(lmp)));
3475 
3476 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
3477 			name = (char *)(STRTAB(lmp) + symref->st_name);
3478 	}
3479 
3480 	if (name == 0)
3481 		name = MSG_ORIG(MSG_STR_EMPTY);
3482 
3483 	if (trace) {
3484 		const char *rstr;
3485 
3486 		rstr = _conv_reloc_type((uint_t)rtype);
3487 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
3488 		    EC_ADDR(roffset));
3489 		return;
3490 	}
3491 
3492 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
3493 }
3494 
3495 /*
3496  * Resolve a static TLS relocation.
3497  */
3498 long
3499 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
3500     ulong_t roffset, long value)
3501 {
3502 	Lm_list	*lml = LIST(lmp);
3503 
3504 	/*
3505 	 * Relocations against a static TLS block have limited support once
3506 	 * process initialization has completed.  Any error condition should be
3507 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
3508 	 * however individual relocations are tested in case the dynamic flag
3509 	 * had not been set when this object was built.
3510 	 */
3511 	if (PTTLS(lmp) == 0) {
3512 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3513 		    M_REL_SHT_TYPE, rel, NULL, name));
3514 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3515 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3516 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3517 		return (0);
3518 	}
3519 
3520 	/*
3521 	 * If no static TLS has been set aside for this object, determine if
3522 	 * any can be obtained.  Enforce that any object using static TLS is
3523 	 * non-deletable.
3524 	 */
3525 	if (TLSSTATOFF(lmp) == 0) {
3526 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
3527 		MODE(lmp) |= RTLD_NODELETE;
3528 
3529 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
3530 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
3531 			    M_REL_SHT_TYPE, rel, NULL, name));
3532 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
3533 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
3534 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
3535 			return (0);
3536 		}
3537 	}
3538 
3539 	/*
3540 	 * Typically, a static TLS offset is maintained as a symbols value.
3541 	 * For local symbols that are not apart of the dynamic symbol table,
3542 	 * the TLS relocation points to a section symbol, and the static TLS
3543 	 * offset was deposited in the associated GOT table.  Make sure the GOT
3544 	 * is cleared, so that the value isn't reused in do_reloc().
3545 	 */
3546 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
3547 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
3548 			value = *(long *)roffset;
3549 			*(long *)roffset = 0;
3550 		} else {
3551 			value = sym->st_value;
3552 		}
3553 	}
3554 	return (-(TLSSTATOFF(lmp) - value));
3555 }
3556 
3557 /*
3558  * If the symbol is not found and the reference was not to a weak symbol, report
3559  * an error.  Weak references may be unresolved.
3560  */
3561 int
3562 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
3563 {
3564 	Lm_list	*lml = LIST(lmp);
3565 
3566 	/*
3567 	 * Under crle(1), relocation failures are ignored.
3568 	 */
3569 	if (lml->lm_flags & LML_FLG_IGNRELERR)
3570 		return (1);
3571 
3572 	/*
3573 	 * Under ldd(1), unresolved references are reported.  However, if the
3574 	 * original reference is EXTERN or PARENT these references are ignored
3575 	 * unless ldd's -p option is in effect.
3576 	 */
3577 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
3578 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
3579 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
3580 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
3581 			    demangle(name), NAME(lmp));
3582 		}
3583 		return (1);
3584 	}
3585 
3586 	/*
3587 	 * Otherwise, the unresolved references is fatal.
3588 	 */
3589 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
3590 	    NULL, name));
3591 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
3592 	    demangle(name));
3593 
3594 	return (0);
3595 }
3596