xref: /titanic_52/usr/src/cmd/sgs/rtld/common/elf.c (revision 7e322df5ee63a00c1c57398abec50fc1dc54b67a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1988 AT&T
29  *	  All Rights Reserved
30  */
31 
32 /*
33  * Object file dependent support for ELF objects.
34  */
35 
36 #include	<stdio.h>
37 #include	<sys/procfs.h>
38 #include	<sys/mman.h>
39 #include	<sys/debug.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<dlfcn.h>
43 #include	<debug.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"_inline.h"
49 #include	"msg.h"
50 
51 /*
52  * Default and secure dependency search paths.
53  */
54 static Spath_defn _elf_def_dirs[] = {
55 #if	defined(_ELF64)
56 	{ MSG_ORIG(MSG_PTH_LIB_64),		MSG_PTH_LIB_64_SIZE },
57 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		MSG_PTH_USRLIB_64_SIZE },
58 #else
59 	{ MSG_ORIG(MSG_PTH_LIB),		MSG_PTH_LIB_SIZE },
60 	{ MSG_ORIG(MSG_PTH_USRLIB),		MSG_PTH_USRLIB_SIZE },
61 #endif
62 	{ 0, 0 }
63 };
64 
65 static Spath_defn _elf_sec_dirs[] = {
66 #if	defined(_ELF64)
67 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		MSG_PTH_LIBSE_64_SIZE },
68 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	MSG_PTH_USRLIBSE_64_SIZE },
69 #else
70 	{ MSG_ORIG(MSG_PTH_LIBSE),		MSG_PTH_LIBSE_SIZE },
71 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		MSG_PTH_USRLIBSE_SIZE },
72 #endif
73 	{ 0, 0 }
74 };
75 
76 Alist	*elf_def_dirs = NULL;
77 Alist	*elf_sec_dirs = NULL;
78 
79 /*
80  * Defines for local functions.
81  */
82 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
83 static Addr	elf_entry_point(void);
84 static int	elf_fix_name(const char *, Rt_map *, Alist **, Aliste, uint_t);
85 static Alist	**elf_get_def_dirs(void);
86 static Alist	**elf_get_sec_dirs(void);
87 static char	*elf_get_so(const char *, const char *, size_t, size_t);
88 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
89 
90 /*
91  * Functions and data accessed through indirect pointers.
92  */
93 Fct elf_fct = {
94 	elf_verify,
95 	elf_new_lmp,
96 	elf_entry_point,
97 	elf_needed,
98 	lookup_sym,
99 	elf_reloc,
100 	elf_get_def_dirs,
101 	elf_get_sec_dirs,
102 	elf_fix_name,
103 	elf_get_so,
104 	elf_dladdr,
105 	dlsym_handle
106 };
107 
108 /*
109  * Default and secure dependency search paths.
110  */
111 static Alist **
112 elf_get_def_dirs()
113 {
114 	if (elf_def_dirs == NULL)
115 		set_dirs(&elf_def_dirs, _elf_def_dirs, LA_SER_DEFAULT);
116 	return (&elf_def_dirs);
117 }
118 
119 static Alist **
120 elf_get_sec_dirs()
121 {
122 	if (elf_sec_dirs == NULL)
123 		set_dirs(&elf_sec_dirs, _elf_sec_dirs, LA_SER_SECURE);
124 	return (&elf_sec_dirs);
125 }
126 
127 /*
128  * Redefine NEEDED name if necessary.
129  */
130 static int
131 elf_fix_name(const char *name, Rt_map *clmp, Alist **alpp, Aliste alni,
132     uint_t orig)
133 {
134 	/*
135 	 * For ABI compliance, if we are asked for ld.so.1, then really give
136 	 * them libsys.so.1 (the SONAME of libsys.so.1 is ld.so.1).
137 	 */
138 	if (((*name == '/') &&
139 	/* BEGIN CSTYLED */
140 #if	defined(_ELF64)
141 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD_64)) == 0)) ||
142 #else
143 	    (strcmp(name, MSG_ORIG(MSG_PTH_RTLD)) == 0)) ||
144 #endif
145 	    (strcmp(name, MSG_ORIG(MSG_FIL_RTLD)) == 0)) {
146 		/* END CSTYLED */
147 		Pdesc	*pdp;
148 
149 		DBG_CALL(Dbg_file_fixname(LIST(clmp), name,
150 		    MSG_ORIG(MSG_PTH_LIBSYS)));
151 		if ((pdp = alist_append(alpp, NULL, sizeof (Pdesc),
152 		    alni)) == NULL)
153 			return (0);
154 
155 		pdp->pd_pname = (char *)MSG_ORIG(MSG_PTH_LIBSYS);
156 		pdp->pd_plen = MSG_PTH_LIBSYS_SIZE;
157 		pdp->pd_flags = PD_FLG_PNSLASH;
158 
159 		return (1);
160 	}
161 
162 	return (expand_paths(clmp, name, alpp, alni, orig, 0));
163 }
164 
165 /*
166  * Determine whether this object requires any hardware or software capabilities.
167  */
168 static int
169 elf_cap_check(Fdesc *fdp, Ehdr *ehdr, Rej_desc *rej)
170 {
171 	Phdr	*phdr;
172 	int	cnt;
173 
174 	/* LINTED */
175 	phdr = (Phdr *)((char *)ehdr + ehdr->e_phoff);
176 	for (cnt = 0; cnt < ehdr->e_phnum; cnt++, phdr++) {
177 		Cap	*cptr;
178 
179 		if (phdr->p_type != PT_SUNWCAP)
180 			continue;
181 
182 		/* LINTED */
183 		cptr = (Cap *)((char *)ehdr + phdr->p_offset);
184 		while (cptr->c_tag != CA_SUNW_NULL) {
185 			if (cptr->c_tag == CA_SUNW_HW_1) {
186 				/*
187 				 * Verify the hardware capabilities.
188 				 */
189 				if (hwcap_check(cptr->c_un.c_val, rej) == 0)
190 					return (0);
191 
192 				/*
193 				 * Retain this hardware capabilities value for
194 				 * possible later inspection should this object
195 				 * be processed as a filtee.
196 				 */
197 				fdp->fd_hwcap = cptr->c_un.c_val;
198 			}
199 			if (cptr->c_tag == CA_SUNW_SF_1) {
200 				/*
201 				 * Verify the software capabilities.
202 				 */
203 				if (sfcap_check(cptr->c_un.c_val, rej) == 0)
204 					return (0);
205 			}
206 			cptr++;
207 		}
208 	}
209 	return (1);
210 }
211 
212 /*
213  * Determine if we have been given an ELF file and if so determine if the file
214  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
215  * with associated error information.
216  */
217 Fct *
218 elf_verify(caddr_t addr, size_t size, Fdesc *fdp, const char *name,
219     Rej_desc *rej)
220 {
221 	Ehdr	*ehdr;
222 	char	*caddr = (char *)addr;
223 
224 	/*
225 	 * Determine if we're an elf file.  If not simply return, we don't set
226 	 * any rejection information as this test allows use to scroll through
227 	 * the objects we support (ELF, AOUT).
228 	 */
229 	if (size < sizeof (Ehdr) ||
230 	    caddr[EI_MAG0] != ELFMAG0 ||
231 	    caddr[EI_MAG1] != ELFMAG1 ||
232 	    caddr[EI_MAG2] != ELFMAG2 ||
233 	    caddr[EI_MAG3] != ELFMAG3) {
234 		return (NULL);
235 	}
236 
237 	/*
238 	 * Check class and encoding.
239 	 */
240 	/* LINTED */
241 	ehdr = (Ehdr *)addr;
242 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
243 		rej->rej_type = SGS_REJ_CLASS;
244 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
245 		return (NULL);
246 	}
247 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
248 		rej->rej_type = SGS_REJ_DATA;
249 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
250 		return (NULL);
251 	}
252 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
253 	    (ehdr->e_type != ET_DYN)) {
254 		rej->rej_type = SGS_REJ_TYPE;
255 		rej->rej_info = (uint_t)ehdr->e_type;
256 		return (NULL);
257 	}
258 
259 	/*
260 	 * Verify ELF version.
261 	 */
262 	if (ehdr->e_version > EV_CURRENT) {
263 		rej->rej_type = SGS_REJ_VERSION;
264 		rej->rej_info = (uint_t)ehdr->e_version;
265 		return (NULL);
266 	}
267 
268 	/*
269 	 * Verify machine specific flags.
270 	 */
271 	if (elf_mach_flags_check(rej, ehdr) == 0)
272 		return (NULL);
273 
274 	/*
275 	 * Verify any hardware/software capability requirements.  Note, if this
276 	 * object is an explicitly defined shared object under inspection by
277 	 * ldd(1), and contains an incompatible hardware capabilities
278 	 * requirement, then inform the user, but continue processing.
279 	 */
280 	if (elf_cap_check(fdp, ehdr, rej) == 0) {
281 		Rt_map	*lmp = lml_main.lm_head;
282 
283 		if ((lml_main.lm_flags & LML_FLG_TRC_LDDSTUB) && lmp &&
284 		    (FLAGS1(lmp) & FL1_RT_LDDSTUB) && (NEXT(lmp) == NULL)) {
285 			const char	*fmt;
286 
287 			if (rej->rej_type == SGS_REJ_HWCAP_1)
288 				fmt = MSG_INTL(MSG_LDD_GEN_HWCAP_1);
289 			else
290 				fmt = MSG_INTL(MSG_LDD_GEN_SFCAP_1);
291 			(void) printf(fmt, name, rej->rej_str);
292 			return (&elf_fct);
293 		}
294 		return (NULL);
295 	}
296 	return (&elf_fct);
297 }
298 
299 /*
300  * The runtime linker employs lazy loading to provide the libraries needed for
301  * debugging, preloading .o's and dldump().  As these are seldom used, the
302  * standard startup of ld.so.1 doesn't initialize all the information necessary
303  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
304  * is called we get here to perform these initializations:
305  *
306  *  o	elf_needed() is called to set up the DYNINFO() indexes for each lazy
307  *	dependency.  Typically, for all other objects, this is called during
308  *	analyze_so(), but as ld.so.1 is set-contained we skip this processing.
309  *
310  *  o	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
311  *	are by default skipped thus delaying all relative relocation processing
312  * 	on every invocation of ld.so.1.
313  */
314 int
315 elf_rtld_load()
316 {
317 	Lm_list	*lml = &lml_rtld;
318 	Rt_map	*lmp = lml->lm_head;
319 
320 	if (lml->lm_flags & LML_FLG_PLTREL)
321 		return (1);
322 
323 	/*
324 	 * As we need to refer to the DYNINFO() information, insure that it has
325 	 * been initialized.
326 	 */
327 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
328 		return (0);
329 
330 #if	defined(__i386)
331 	/*
332 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
333 	 * It's based around two factors.
334 	 *
335 	 *  o	JMPSLOT relocations (PLT's) actually need a relative relocation
336 	 *	applied to the GOT entry so that they can find PLT0.
337 	 *
338 	 *  o	ld.so.1 does not exercise *any* PLT's before it has made a call
339 	 *	to elf_lazy_load().  This is because all dynamic dependencies
340 	 * 	are recorded as lazy dependencies.
341 	 */
342 	(void) elf_reloc_relative_count((ulong_t)JMPREL(lmp),
343 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
344 	    (ulong_t)ADDR(lmp), lmp, NULL);
345 #endif
346 
347 	lml->lm_flags |= LML_FLG_PLTREL;
348 	return (1);
349 }
350 
351 /*
352  * Lazy load an object.
353  */
354 Rt_map *
355 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
356     int *in_nfavl)
357 {
358 	Alist		*palp = NULL;
359 	Rt_map		*nlmp;
360 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
361 	uint_t		flags = 0;
362 	const char	*name;
363 	Lm_list		*lml = LIST(clmp);
364 	Aliste		lmco;
365 
366 	/*
367 	 * If this dependency has already been processed, we're done.
368 	 */
369 	if (((nlmp = (Rt_map *)dip->di_info) != NULL) ||
370 	    (dip->di_flags & FLG_DI_LDD_DONE))
371 		return (nlmp);
372 
373 	/*
374 	 * If we're running under ldd(1), indicate that this dependency has been
375 	 * processed (see test above).  It doesn't matter whether the object is
376 	 * successfully loaded or not, this flag simply ensures that we don't
377 	 * repeatedly attempt to load an object that has already failed to load.
378 	 * To do so would create multiple failure diagnostics for the same
379 	 * object under ldd(1).
380 	 */
381 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
382 		dip->di_flags |= FLG_DI_LDD_DONE;
383 
384 	/*
385 	 * Determine the initial dependency name.
386 	 */
387 	name = STRTAB(clmp) + DYN(clmp)[ndx].d_un.d_val;
388 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
389 
390 	/*
391 	 * If this object needs to establish its own group, make sure a handle
392 	 * is created.
393 	 */
394 	if (dip->di_flags & FLG_DI_GROUP)
395 		flags |= (FLG_RT_SETGROUP | FLG_RT_HANDLE);
396 
397 	/*
398 	 * Lazy dependencies are identified as DT_NEEDED entries with a
399 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
400 	 * dynamic information element that corresponds to the DT_POSFLAG_1
401 	 * entry is free, and thus used to store the present entrance
402 	 * identifier.  This identifier is used to prevent multiple attempts to
403 	 * load a failed lazy loadable dependency within the same runtime linker
404 	 * operation.  However, future attempts to reload this dependency are
405 	 * still possible.
406 	 */
407 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
408 		pdip->di_info = (void *)slp->sl_id;
409 
410 	/*
411 	 * Expand the requested name if necessary.
412 	 */
413 	if (elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0)
414 		return (NULL);
415 
416 	/*
417 	 * Establish a link-map control list for this request.
418 	 */
419 	if ((lmco = create_cntl(lml, 0)) == NULL) {
420 		remove_plist(&palp, 1);
421 		return (NULL);
422 	}
423 
424 	/*
425 	 * Load the associated object.
426 	 */
427 	dip->di_info = nlmp =
428 	    load_one(lml, lmco, palp, clmp, MODE(clmp), flags, 0, in_nfavl);
429 
430 	/*
431 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
432 	 * dependency count of the caller, together with the link-map lists
433 	 * count of objects that still have lazy dependencies pending.
434 	 */
435 	remove_plist(&palp, 1);
436 	if (--LAZY(clmp) == 0)
437 		LIST(clmp)->lm_lazy--;
438 
439 	/*
440 	 * Finish processing the objects associated with this request, and
441 	 * create an association between the caller and this dependency.
442 	 */
443 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
444 	    ((nlmp = analyze_lmc(lml, lmco, nlmp, in_nfavl)) == NULL) ||
445 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
446 		dip->di_info = nlmp = NULL;
447 
448 	/*
449 	 * If this lazyload has failed, and we've created a new link-map
450 	 * control list to which this request has added objects, then remove
451 	 * all the objects that have been associated to this request.
452 	 */
453 	if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
454 		remove_lmc(lml, clmp, lmco, name);
455 
456 	/*
457 	 * Remove any temporary link-map control list.
458 	 */
459 	if (lmco != ALIST_OFF_DATA)
460 		remove_cntl(lml, lmco);
461 
462 	/*
463 	 * If this lazy loading failed, record the fact, and bump the lazy
464 	 * counts.
465 	 */
466 	if (nlmp == NULL) {
467 		dip->di_flags |= FLG_DI_LAZYFAIL;
468 		if (LAZY(clmp)++ == 0)
469 			LIST(clmp)->lm_lazy++;
470 	}
471 
472 	return (nlmp);
473 }
474 
475 /*
476  * Return the entry point of the ELF executable.
477  */
478 static Addr
479 elf_entry_point(void)
480 {
481 	Rt_map	*lmp = lml_main.lm_head;
482 	Ehdr	*ehdr = (Ehdr *)ADDR(lmp);
483 	Addr	addr = (Addr)(ehdr->e_entry);
484 
485 	if ((FLAGS(lmp) & FLG_RT_FIXED) == 0)
486 		addr += ADDR(lmp);
487 
488 	return (addr);
489 }
490 
491 /*
492  * Determine if a dependency requires a particular version and if so verify
493  * that the version exists in the dependency.
494  */
495 int
496 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
497 {
498 	Verneed		*vnd = VERNEED(clmp);
499 	int		_num, num = VERNEEDNUM(clmp);
500 	char		*cstrs = (char *)STRTAB(clmp);
501 	Lm_list		*lml = LIST(clmp);
502 
503 	/*
504 	 * Traverse the callers version needed information and determine if any
505 	 * specific versions are required from the dependency.
506 	 */
507 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
508 	for (_num = 1; _num <= num; _num++,
509 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
510 		Half		cnt = vnd->vn_cnt;
511 		Vernaux		*vnap;
512 		char		*nstrs, *need;
513 
514 		/*
515 		 * Determine if a needed entry matches this dependency.
516 		 */
517 		need = (char *)(cstrs + vnd->vn_file);
518 		if (strcmp(name, need) != 0)
519 			continue;
520 
521 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
522 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
523 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
524 
525 		/*
526 		 * Validate that each version required actually exists in the
527 		 * dependency.
528 		 */
529 		nstrs = (char *)STRTAB(nlmp);
530 
531 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
532 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
533 			char		*version, *define;
534 			Verdef		*vdf = VERDEF(nlmp);
535 			ulong_t		_num, num = VERDEFNUM(nlmp);
536 			int		found = 0;
537 
538 			/*
539 			 * Skip validation of versions that are marked
540 			 * INFO. This optimization is used for versions
541 			 * that are inherited by another version. Verification
542 			 * of the inheriting version is sufficient.
543 			 *
544 			 * Such versions are recorded in the object for the
545 			 * benefit of VERSYM entries that refer to them. This
546 			 * provides a purely diagnositic benefit.
547 			 */
548 			if (vnap->vna_flags & VER_FLG_INFO)
549 				continue;
550 
551 			version = (char *)(cstrs + vnap->vna_name);
552 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
553 
554 			for (_num = 1; _num <= num; _num++,
555 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
556 				Verdaux		*vdap;
557 
558 				if (vnap->vna_hash != vdf->vd_hash)
559 					continue;
560 
561 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
562 				define = (char *)(nstrs + vdap->vda_name);
563 				if (strcmp(version, define) != 0)
564 					continue;
565 
566 				found++;
567 				break;
568 			}
569 
570 			/*
571 			 * If we're being traced print out any matched version
572 			 * when the verbose (-v) option is in effect.  Always
573 			 * print any unmatched versions.
574 			 */
575 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
576 				/* BEGIN CSTYLED */
577 				if (found) {
578 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
579 					continue;
580 
581 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
582 					need, version, NAME(nlmp));
583 				} else {
584 				    if (rtld_flags & RT_FL_SILENCERR)
585 					continue;
586 
587 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
588 					need, version);
589 				}
590 				/* END CSTYLED */
591 				continue;
592 			}
593 
594 			/*
595 			 * If the version hasn't been found then this is a
596 			 * candidate for a fatal error condition.  Weak
597 			 * version definition requirements are silently
598 			 * ignored.  Also, if the image inspected for a version
599 			 * definition has no versioning recorded at all then
600 			 * silently ignore this (this provides better backward
601 			 * compatibility to old images created prior to
602 			 * versioning being available).  Both of these skipped
603 			 * diagnostics are available under tracing (see above).
604 			 */
605 			if ((found == 0) && (num != 0) &&
606 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
607 				eprintf(lml, ERR_FATAL,
608 				    MSG_INTL(MSG_VER_NFOUND), need, version,
609 				    NAME(clmp));
610 				return (0);
611 			}
612 		}
613 	}
614 	DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
615 	return (1);
616 }
617 
618 /*
619  * Search through the dynamic section for DT_NEEDED entries and perform one
620  * of two functions.  If only the first argument is specified then load the
621  * defined shared object, otherwise add the link map representing the defined
622  * link map the the dlopen list.
623  */
624 static int
625 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
626 {
627 	Alist		*palp = NULL;
628 	Dyn		*dyn, *pdyn;
629 	ulong_t		ndx = 0;
630 	uint_t		lazy, flags;
631 	Word		lmflags = lml->lm_flags;
632 	Word		lmtflags = lml->lm_tflags;
633 
634 	/*
635 	 * Process each shared object on needed list.
636 	 */
637 	if (DYN(clmp) == NULL)
638 		return (1);
639 
640 	for (dyn = (Dyn *)DYN(clmp), pdyn = NULL; dyn->d_tag != DT_NULL;
641 	    pdyn = dyn++, ndx++) {
642 		Dyninfo	*dip = &DYNINFO(clmp)[ndx];
643 		Rt_map	*nlmp = NULL;
644 		char	*name;
645 		int	silent = 0;
646 
647 		switch (dyn->d_tag) {
648 		case DT_POSFLAG_1:
649 			dip->di_flags |= FLG_DI_POSFLAG1;
650 			continue;
651 		case DT_NEEDED:
652 		case DT_USED:
653 			lazy = flags = 0;
654 			dip->di_flags |= FLG_DI_NEEDED;
655 
656 			if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
657 				if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
658 				    ((lmtflags & LML_TFLG_NOLAZYLD) == 0)) {
659 					dip->di_flags |= FLG_DI_LAZY;
660 					lazy = 1;
661 				}
662 				if (pdyn->d_un.d_val & DF_P1_GROUPPERM) {
663 					dip->di_flags |= FLG_DI_GROUP;
664 					flags =
665 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
666 				}
667 			}
668 
669 			name = (char *)STRTAB(clmp) + dyn->d_un.d_val;
670 
671 			/*
672 			 * NOTE, libc.so.1 can't be lazy loaded.  Although a
673 			 * lazy position flag won't be produced when a RTLDINFO
674 			 * .dynamic entry is found (introduced with the UPM in
675 			 * Solaris 10), it was possible to mark libc for lazy
676 			 * loading on previous releases.  To reduce the overhead
677 			 * of testing for this occurrence, only carry out this
678 			 * check for the first object on the link-map list
679 			 * (there aren't many applications built without libc).
680 			 */
681 			if (lazy && (lml->lm_head == clmp) &&
682 			    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
683 				lazy = 0;
684 
685 			/*
686 			 * Don't bring in lazy loaded objects yet unless we've
687 			 * been asked to attempt to load all available objects
688 			 * (crle(1) sets LD_FLAGS=loadavail).  Even under
689 			 * RTLD_NOW we don't process this - RTLD_NOW will cause
690 			 * relocation processing which in turn might trigger
691 			 * lazy loading, but its possible that the object has a
692 			 * lazy loaded file with no bindings (i.e., it should
693 			 * never have been a dependency in the first place).
694 			 */
695 			if (lazy) {
696 				if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
697 					LAZY(clmp)++;
698 					lazy = flags = 0;
699 					continue;
700 				}
701 
702 				/*
703 				 * Silence any error messages - see description
704 				 * under elf_lookup_filtee().
705 				 */
706 				if ((rtld_flags & RT_FL_SILENCERR) == 0) {
707 					rtld_flags |= RT_FL_SILENCERR;
708 					silent = 1;
709 				}
710 			}
711 			break;
712 		case DT_AUXILIARY:
713 			dip->di_flags |= FLG_DI_AUXFLTR;
714 			continue;
715 		case DT_SUNW_AUXILIARY:
716 			dip->di_flags |= (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
717 			continue;
718 		case DT_FILTER:
719 			dip->di_flags |= FLG_DI_STDFLTR;
720 			continue;
721 		case DT_SUNW_FILTER:
722 			dip->di_flags |= (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
723 			continue;
724 		default:
725 			continue;
726 		}
727 
728 		DBG_CALL(Dbg_file_needed(clmp, name));
729 
730 		/*
731 		 * If we're running under ldd(1), indicate that this dependency
732 		 * has been processed.  It doesn't matter whether the object is
733 		 * successfully loaded or not, this flag simply ensures that we
734 		 * don't repeatedly attempt to load an object that has already
735 		 * failed to load.  To do so would create multiple failure
736 		 * diagnostics for the same object under ldd(1).
737 		 */
738 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
739 			dip->di_flags |= FLG_DI_LDD_DONE;
740 
741 		/*
742 		 * Establish the objects name, load it and establish a binding
743 		 * with the caller.
744 		 */
745 		if ((elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0) ||
746 		    ((nlmp = load_one(lml, lmco, palp, clmp, MODE(clmp),
747 		    flags, 0, in_nfavl)) == NULL) ||
748 		    (bind_one(clmp, nlmp, BND_NEEDED) == 0))
749 			nlmp = NULL;
750 
751 		/*
752 		 * Clean up any infrastructure, including the removal of the
753 		 * error suppression state, if it had been previously set in
754 		 * this routine.
755 		 */
756 		remove_plist(&palp, 0);
757 
758 		if (silent)
759 			rtld_flags &= ~RT_FL_SILENCERR;
760 
761 		if ((dip->di_info = (void *)nlmp) == NULL) {
762 			/*
763 			 * If the object could not be mapped, continue if error
764 			 * suppression is established or we're here with ldd(1).
765 			 */
766 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
767 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
768 				continue;
769 			else {
770 				remove_plist(&palp, 1);
771 				return (0);
772 			}
773 		}
774 	}
775 
776 	if (LAZY(clmp))
777 		lml->lm_lazy++;
778 
779 	remove_plist(&palp, 1);
780 	return (1);
781 }
782 
783 /*
784  * A null symbol interpretor.  Used if a filter has no associated filtees.
785  */
786 /* ARGSUSED0 */
787 static Sym *
788 elf_null_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
789 {
790 	return (NULL);
791 }
792 
793 /*
794  * Disable filtee use.
795  */
796 static void
797 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
798 {
799 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
800 		/*
801 		 * If this is an object filter, null out the reference name.
802 		 */
803 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
804 			REFNAME(lmp) = NULL;
805 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
806 
807 			/*
808 			 * Indicate that this filtee is no longer available.
809 			 */
810 			if (dip->di_flags & FLG_DI_STDFLTR)
811 				SYMINTP(lmp) = elf_null_find_sym;
812 
813 		}
814 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
815 		/*
816 		 * Indicate that this standard filtee is no longer available.
817 		 */
818 		if (SYMSFLTRCNT(lmp))
819 			SYMSFLTRCNT(lmp)--;
820 	} else {
821 		/*
822 		 * Indicate that this auxiliary filtee is no longer available.
823 		 */
824 		if (SYMAFLTRCNT(lmp))
825 			SYMAFLTRCNT(lmp)--;
826 	}
827 	dip->di_flags &= ~MSK_DI_FILTER;
828 }
829 
830 /*
831  * Find symbol interpreter - filters.
832  * This function is called when the symbols from a shared object should
833  * be resolved from the shared objects filtees instead of from within itself.
834  *
835  * A symbol name of 0 is used to trigger filtee loading.
836  */
837 static Sym *
838 _elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
839     int *in_nfavl)
840 {
841 	const char	*name = slp->sl_name, *filtees;
842 	Rt_map		*clmp = slp->sl_cmap;
843 	Rt_map		*ilmp = slp->sl_imap;
844 	Pdesc		*pdp;
845 	int		any;
846 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
847 	Lm_list		*lml = LIST(ilmp);
848 	Aliste		idx;
849 
850 	/*
851 	 * Indicate that the filter has been used.  If a binding already exists
852 	 * to the caller, indicate that this object is referenced.  This insures
853 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
854 	 * debugging.  Don't create a binding regardless, as this filter may
855 	 * have been dlopen()'ed.
856 	 */
857 	if (name && (ilmp != clmp)) {
858 		Word	tracing = (LIST(clmp)->lm_flags &
859 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
860 
861 		if (tracing || DBG_ENABLED) {
862 			Bnd_desc 	*bdp;
863 			Aliste		idx;
864 
865 			FLAGS1(ilmp) |= FL1_RT_USED;
866 
867 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
868 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
869 					if (bdp->b_caller == clmp) {
870 						bdp->b_flags |= BND_REFER;
871 						break;
872 					}
873 				}
874 			}
875 		}
876 	}
877 
878 	/*
879 	 * If this is the first call to process this filter, establish the
880 	 * filtee list.  If a configuration file exists, determine if any
881 	 * filtee associations for this filter, and its filtee reference, are
882 	 * defined.  Otherwise, process the filtee reference.  Any token
883 	 * expansion is also completed at this point (i.e., $PLATFORM).
884 	 */
885 	filtees = (char *)STRTAB(ilmp) + DYN(ilmp)[ndx].d_un.d_val;
886 	if (dip->di_info == NULL) {
887 		if (rtld_flags2 & RT_FL2_FLTCFG)
888 			elf_config_flt(lml, PATHNAME(ilmp), filtees,
889 			    (Alist **)&dip->di_info, AL_CNT_FILTEES);
890 
891 		if (dip->di_info == NULL) {
892 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
893 			if ((lml->lm_flags &
894 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
895 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
896 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
897 				    NAME(ilmp), filtees);
898 
899 			if (expand_paths(ilmp, filtees, (Alist **)&dip->di_info,
900 			    AL_CNT_FILTEES, 0, 0) == 0) {
901 				elf_disable_filtee(ilmp, dip);
902 				return (NULL);
903 			}
904 		}
905 	}
906 
907 	/*
908 	 * Traverse the filtee list, dlopen()'ing any objects specified and
909 	 * using their group handle to lookup the symbol.
910 	 */
911 	any = 0;
912 	for (ALIST_TRAVERSE((Alist *)dip->di_info, idx, pdp)) {
913 		int	mode;
914 		Grp_hdl	*ghp;
915 		Rt_map	*nlmp = NULL;
916 
917 		if (pdp->pd_plen == 0)
918 			continue;
919 
920 		/*
921 		 * Establish the mode of the filtee from the filter.  As filtees
922 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
923 		 * and the filtees aren't global.  It would be nice to have
924 		 * RTLD_FIRST used here also, but as filters got out long before
925 		 * RTLD_FIRST was introduced it's a little too late now.
926 		 */
927 		mode = MODE(ilmp) | RTLD_GROUP;
928 		mode &= ~RTLD_GLOBAL;
929 
930 		/*
931 		 * Insure that any auxiliary filter can locate symbols from its
932 		 * caller.
933 		 */
934 		if (dip->di_flags & FLG_DI_AUXFLTR)
935 			mode |= RTLD_PARENT;
936 
937 		/*
938 		 * Process any hardware capability directory.  Establish a new
939 		 * link-map control list from which to analyze any newly added
940 		 * objects.
941 		 */
942 		if ((pdp->pd_info == NULL) && (pdp->pd_flags & PD_TKN_HWCAP)) {
943 			const char	*dir = pdp->pd_pname;
944 			Aliste		lmco;
945 
946 			/*
947 			 * Establish a link-map control list for this request.
948 			 */
949 			if ((lmco = create_cntl(lml, 0)) == NULL)
950 				return (NULL);
951 
952 			/*
953 			 * Determine the hardware capability filtees.  If none
954 			 * can be found, provide suitable diagnostics.
955 			 */
956 			DBG_CALL(Dbg_cap_hw_filter(lml, dir, ilmp));
957 			if (hwcap_filtees((Alist **)&dip->di_info, idx, dir,
958 			    lmco, ilmp, filtees, mode,
959 			    (FLG_RT_HANDLE | FLG_RT_HWCAP), in_nfavl) == 0) {
960 				if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
961 				    (dip->di_flags & FLG_DI_AUXFLTR) &&
962 				    (rtld_flags & RT_FL_WARNFLTR)) {
963 					(void) printf(
964 					    MSG_INTL(MSG_LDD_HWCAP_NFOUND),
965 					    dir);
966 				}
967 				DBG_CALL(Dbg_cap_hw_filter(lml, dir, 0));
968 			}
969 
970 			/*
971 			 * Re-establish the originating path name descriptor, as
972 			 * the expansion of hardware capabilities filtees may
973 			 * have re-allocated the controlling Alist.  Mark this
974 			 * original pathname descriptor as unused so that the
975 			 * descriptor isn't revisited for processing.  Any real
976 			 * hardware capabilities filtees have been added as new
977 			 * pathname descriptors following this descriptor.
978 			 */
979 			pdp = alist_item((Alist *)dip->di_info, idx);
980 			pdp->pd_flags &= ~PD_TKN_HWCAP;
981 			pdp->pd_plen = 0;
982 
983 			/*
984 			 * Now that any hardware capability objects have been
985 			 * processed, remove any temporary link-map control
986 			 * list.
987 			 */
988 			if (lmco != ALIST_OFF_DATA)
989 				remove_cntl(lml, lmco);
990 		}
991 
992 		if (pdp->pd_plen == 0)
993 			continue;
994 
995 		/*
996 		 * Process an individual filtee.
997 		 */
998 		if (pdp->pd_info == NULL) {
999 			const char	*filtee = pdp->pd_pname;
1000 			int		audit = 0;
1001 
1002 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
1003 
1004 			ghp = NULL;
1005 
1006 			/*
1007 			 * Determine if the reference link map is already
1008 			 * loaded.  As an optimization compare the filtee with
1009 			 * our interpretor.  The most common filter is
1010 			 * libdl.so.1, which is a filter on ld.so.1.
1011 			 */
1012 #if	defined(_ELF64)
1013 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
1014 #else
1015 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
1016 #endif
1017 				/*
1018 				 * Create an association between ld.so.1 and the
1019 				 * filter.  As an optimization, a handle for
1020 				 * ld.so.1 itself (required for the dlopen()
1021 				 * family filtering mechanism) shouldn't search
1022 				 * any dependencies of ld.so.1.  Omitting
1023 				 * GPD_ADDEPS prevents the addition of any
1024 				 * ld.so.1 dependencies to this handle.
1025 				 */
1026 				nlmp = lml_rtld.lm_head;
1027 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1028 				    (GPH_LDSO | GPH_FIRST | GPH_FILTEE),
1029 				    (GPD_DLSYM | GPD_RELOC), GPD_PARENT)) ==
1030 				    NULL)
1031 					nlmp = NULL;
1032 
1033 				/*
1034 				 * Establish the filter handle to prevent any
1035 				 * recursion.
1036 				 */
1037 				if (nlmp && ghp)
1038 					pdp->pd_info = (void *)ghp;
1039 
1040 				/*
1041 				 * Audit the filter/filtee established.  Ignore
1042 				 * any return from the auditor, as we can't
1043 				 * allow ignore filtering to ld.so.1, otherwise
1044 				 * nothing is going to work.
1045 				 */
1046 				if (nlmp && ((lml->lm_tflags | AFLAGS(ilmp)) &
1047 				    LML_TFLG_AUD_OBJFILTER))
1048 					(void) audit_objfilter(ilmp, filtees,
1049 					    nlmp, 0);
1050 
1051 			} else {
1052 				Rej_desc	rej = { 0 };
1053 				Fdesc		fd = { 0 };
1054 				Aliste		lmco;
1055 
1056 				/*
1057 				 * Trace the inspection of this file, determine
1058 				 * any auditor substitution, and seed the file
1059 				 * descriptor with the originating name.
1060 				 */
1061 				if (load_trace(lml, pdp, clmp, &fd) == NULL)
1062 					continue;
1063 
1064 				/*
1065 				 * Establish a link-map control list for this
1066 				 * request.
1067 				 */
1068 				if ((lmco = create_cntl(lml, 0)) == NULL)
1069 					return (NULL);
1070 
1071 				/*
1072 				 * Locate and load the filtee.
1073 				 */
1074 				if ((nlmp = load_path(lml, lmco, ilmp, mode,
1075 				    FLG_RT_HANDLE, &ghp, &fd, &rej,
1076 				    in_nfavl)) == NULL)
1077 					file_notfound(LIST(ilmp), filtee, ilmp,
1078 					    FLG_RT_HANDLE, &rej);
1079 
1080 				filtee = pdp->pd_pname;
1081 
1082 				/*
1083 				 * Establish the filter handle to prevent any
1084 				 * recursion.
1085 				 */
1086 				if (nlmp && ghp) {
1087 					ghp->gh_flags |= GPH_FILTEE;
1088 					pdp->pd_info = (void *)ghp;
1089 
1090 					FLAGS1(nlmp) |= FL1_RT_USED;
1091 				}
1092 
1093 				/*
1094 				 * Audit the filter/filtee established.  A
1095 				 * return of 0 indicates the auditor wishes to
1096 				 * ignore this filtee.
1097 				 */
1098 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1099 				    LML_TFLG_AUD_OBJFILTER)) {
1100 					if (audit_objfilter(ilmp, filtees,
1101 					    nlmp, 0) == 0) {
1102 						audit = 1;
1103 						nlmp = NULL;
1104 					}
1105 				}
1106 
1107 				/*
1108 				 * Finish processing the objects associated with
1109 				 * this request.  Create an association between
1110 				 * this object and the originating filter to
1111 				 * provide sufficient information to tear down
1112 				 * this filtee if necessary.
1113 				 */
1114 				if (nlmp && ghp && (((nlmp = analyze_lmc(lml,
1115 				    lmco, nlmp, in_nfavl)) == NULL) ||
1116 				    (relocate_lmc(lml, lmco, ilmp, nlmp,
1117 				    in_nfavl) == 0)))
1118 					nlmp = NULL;
1119 
1120 				/*
1121 				 * If the filtee has been successfully
1122 				 * processed, then create an association
1123 				 * between the filter and filtee.  This
1124 				 * association provides sufficient information
1125 				 * to tear down the filter and filtee if
1126 				 * necessary.
1127 				 */
1128 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1129 				if (nlmp && ghp &&
1130 				    (hdl_add(ghp, ilmp, GPD_FILTER) == 0))
1131 					nlmp = NULL;
1132 
1133 				/*
1134 				 * Generate a diagnostic if the filtee couldn't
1135 				 * be loaded.
1136 				 */
1137 				if (nlmp == NULL)
1138 					DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1139 					    audit));
1140 
1141 				/*
1142 				 * If this filtee loading has failed, and we've
1143 				 * created a new link-map control list to which
1144 				 * this request has added objects, then remove
1145 				 * all the objects that have been associated to
1146 				 * this request.
1147 				 */
1148 				if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
1149 					remove_lmc(lml, clmp, lmco, name);
1150 
1151 				/*
1152 				 * Remove any temporary link-map control list.
1153 				 */
1154 				if (lmco != ALIST_OFF_DATA)
1155 					remove_cntl(lml, lmco);
1156 			}
1157 
1158 			/*
1159 			 * If the filtee couldn't be loaded, null out the
1160 			 * path name descriptor entry, and continue the search.
1161 			 * Otherwise, the group handle is retained for future
1162 			 * symbol searches.
1163 			 */
1164 			if (nlmp == NULL) {
1165 				pdp->pd_info = NULL;
1166 				pdp->pd_plen = 0;
1167 				continue;
1168 			}
1169 		}
1170 
1171 		ghp = (Grp_hdl *)pdp->pd_info;
1172 
1173 		/*
1174 		 * If we're just here to trigger filtee loading skip the symbol
1175 		 * lookup so we'll continue looking for additional filtees.
1176 		 */
1177 		if (name) {
1178 			Grp_desc	*gdp;
1179 			Sym		*sym = NULL;
1180 			Aliste		idx;
1181 			Slookup		sl = *slp;
1182 
1183 			sl.sl_flags |= LKUP_FIRST;
1184 			any++;
1185 
1186 			/*
1187 			 * Look for the symbol in the handles dependencies.
1188 			 */
1189 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1190 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1191 					continue;
1192 
1193 				/*
1194 				 * If our parent is a dependency don't look at
1195 				 * it (otherwise we are in a recursive loop).
1196 				 * This situation can occur with auxiliary
1197 				 * filters if the filtee has a dependency on the
1198 				 * filter.  This dependency isn't necessary as
1199 				 * auxiliary filters are opened RTLD_PARENT, but
1200 				 * users may still unknowingly add an explicit
1201 				 * dependency to the parent.
1202 				 */
1203 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1204 					continue;
1205 
1206 				if (((sym = SYMINTP(sl.sl_imap)(&sl, dlmp,
1207 				    binfo, in_nfavl)) != NULL) ||
1208 				    (ghp->gh_flags & GPH_FIRST))
1209 					break;
1210 			}
1211 
1212 			/*
1213 			 * If a symbol has been found, indicate the binding
1214 			 * and return the symbol.
1215 			 */
1216 			if (sym) {
1217 				*binfo |= DBG_BINFO_FILTEE;
1218 				return (sym);
1219 			}
1220 		}
1221 
1222 		/*
1223 		 * If this object is tagged to terminate filtee processing we're
1224 		 * done.
1225 		 */
1226 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1227 			break;
1228 	}
1229 
1230 	/*
1231 	 * If we're just here to trigger filtee loading then we're done.
1232 	 */
1233 	if (name == NULL)
1234 		return (NULL);
1235 
1236 	/*
1237 	 * If no filtees have been found for a filter, clean up any path name
1238 	 * descriptors and disable their search completely.  For auxiliary
1239 	 * filters we can reselect the symbol search function so that we never
1240 	 * enter this routine again for this object.  For standard filters we
1241 	 * use the null symbol routine.
1242 	 */
1243 	if (any == 0) {
1244 		remove_plist((Alist **)&(dip->di_info), 1);
1245 		elf_disable_filtee(ilmp, dip);
1246 		return (NULL);
1247 	}
1248 
1249 	return (NULL);
1250 }
1251 
1252 /*
1253  * Focal point for disabling error messages for auxiliary filters.  As an
1254  * auxiliary filter allows for filtee use, but provides a fallback should a
1255  * filtee not exist (or fail to load), any errors generated as a consequence of
1256  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1257  * suppresses errors generated by eprint(), but insures a debug diagnostic is
1258  * produced.  ldd(1) employs printf(), and here, the selection of whether to
1259  * print a diagnostic in regards to auxiliary filters is a little more complex.
1260  *
1261  *   .	The determination of whether to produce an ldd message, or a fatal
1262  *	error message is driven by LML_FLG_TRC_ENABLE.
1263  *   .	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1264  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1265  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1266  *
1267  *   .	If the calling object is lddstub, then several classes of message are
1268  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1269  *	a stub executable employed to preload a user specified library against.
1270  *
1271  *   .	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1272  *	be suppressed.  All detailed ldd messages should still be produced.
1273  */
1274 Sym *
1275 elf_lookup_filtee(Slookup *slp, Rt_map **dlmp, uint_t *binfo, uint_t ndx,
1276     int *in_nfavl)
1277 {
1278 	Sym	*sym;
1279 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1280 	int	silent = 0;
1281 
1282 	/*
1283 	 * Make sure this entry is still acting as a filter.  We may have tried
1284 	 * to process this previously, and disabled it if the filtee couldn't
1285 	 * be processed.  However, other entries may provide different filtees
1286 	 * that are yet to be completed.
1287 	 */
1288 	if (dip->di_flags == 0)
1289 		return (NULL);
1290 
1291 	/*
1292 	 * Indicate whether an error message is required should this filtee not
1293 	 * be found, based on the type of filter.
1294 	 */
1295 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1296 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1297 		rtld_flags |= RT_FL_SILENCERR;
1298 		silent = 1;
1299 	}
1300 
1301 	sym = _elf_lookup_filtee(slp, dlmp, binfo, ndx, in_nfavl);
1302 
1303 	if (silent)
1304 		rtld_flags &= ~RT_FL_SILENCERR;
1305 
1306 	return (sym);
1307 }
1308 
1309 /*
1310  * Compute the elf hash value (as defined in the ELF access library).
1311  * The form of the hash table is:
1312  *
1313  *	|--------------|
1314  *	| # of buckets |
1315  *	|--------------|
1316  *	| # of chains  |
1317  *	|--------------|
1318  *	|   bucket[]   |
1319  *	|--------------|
1320  *	|   chain[]    |
1321  *	|--------------|
1322  */
1323 ulong_t
1324 elf_hash(const char *name)
1325 {
1326 	uint_t	hval = 0;
1327 
1328 	while (*name) {
1329 		uint_t	g;
1330 		hval = (hval << 4) + *name++;
1331 		if ((g = (hval & 0xf0000000)) != 0)
1332 			hval ^= g >> 24;
1333 		hval &= ~g;
1334 	}
1335 	return ((ulong_t)hval);
1336 }
1337 
1338 /*
1339  * If flag argument has LKUP_SPEC set, we treat undefined symbols of type
1340  * function specially in the executable - if they have a value, even though
1341  * undefined, we use that value.  This allows us to associate all references
1342  * to a function's address to a single place in the process: the plt entry
1343  * for that function in the executable.  Calls to lookup from plt binding
1344  * routines do NOT set LKUP_SPEC in the flag.
1345  */
1346 Sym *
1347 elf_find_sym(Slookup *slp, Rt_map **dlmp, uint_t *binfo, int *in_nfavl)
1348 {
1349 	const char	*name = slp->sl_name;
1350 	Rt_map		*ilmp = slp->sl_imap;
1351 	ulong_t		hash = slp->sl_hash;
1352 	uint_t		ndx, htmp, buckets, *chainptr;
1353 	Sym		*sym, *symtabptr;
1354 	char		*strtabptr, *strtabname;
1355 	uint_t		flags1;
1356 	Syminfo		*sip;
1357 
1358 	/*
1359 	 * If we're only here to establish a symbols index, skip the diagnostic
1360 	 * used to trace a symbol search.
1361 	 */
1362 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1363 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1364 
1365 	if (HASH(ilmp) == NULL)
1366 		return (NULL);
1367 
1368 	buckets = HASH(ilmp)[0];
1369 	/* LINTED */
1370 	htmp = (uint_t)hash % buckets;
1371 
1372 	/*
1373 	 * Get the first symbol on hash chain and initialize the string
1374 	 * and symbol table pointers.
1375 	 */
1376 	if ((ndx = HASH(ilmp)[htmp + 2]) == 0)
1377 		return (NULL);
1378 
1379 	chainptr = HASH(ilmp) + 2 + buckets;
1380 	strtabptr = STRTAB(ilmp);
1381 	symtabptr = SYMTAB(ilmp);
1382 
1383 	while (ndx) {
1384 		sym = symtabptr + ndx;
1385 		strtabname = strtabptr + sym->st_name;
1386 
1387 		/*
1388 		 * Compare the symbol found with the name required.  If the
1389 		 * names don't match continue with the next hash entry.
1390 		 */
1391 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1392 			if ((ndx = chainptr[ndx]) != 0)
1393 				continue;
1394 			return (NULL);
1395 		}
1396 
1397 		/*
1398 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1399 		 * section, but the GNU ld does. The GNU runtime linker
1400 		 * interprets the top bit of the 16-bit Versym value
1401 		 * (0x8000) as the "hidden" bit. If this bit is set,
1402 		 * the linker is supposed to act as if that symbol does
1403 		 * not exist. The hidden bit supports their versioning
1404 		 * scheme, which allows multiple incompatible functions
1405 		 * with the same name to exist at different versions
1406 		 * within an object. The Solaris linker does not support this
1407 		 * mechanism, or the model of interface evolution that
1408 		 * it allows, but we honor the hidden bit in GNU ld
1409 		 * produced objects in order to interoperate with them.
1410 		 */
1411 		if ((VERSYM(ilmp) != NULL) &&
1412 		    ((VERSYM(ilmp)[ndx] & 0x8000) != 0)) {
1413 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1414 			    ndx, VERSYM(ilmp)[ndx]));
1415 			if ((ndx = chainptr[ndx]) != 0)
1416 				continue;
1417 			return (NULL);
1418 		}
1419 
1420 		/*
1421 		 * If we're only here to establish a symbols index, we're done.
1422 		 */
1423 		if (slp->sl_flags & LKUP_SYMNDX)
1424 			return (sym);
1425 
1426 		/*
1427 		 * If we find a match and the symbol is defined, return the
1428 		 * symbol pointer and the link map in which it was found.
1429 		 */
1430 		if (sym->st_shndx != SHN_UNDEF) {
1431 			*dlmp = ilmp;
1432 			*binfo |= DBG_BINFO_FOUND;
1433 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1434 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1435 			    is_sym_interposer(ilmp, sym)))
1436 				*binfo |= DBG_BINFO_INTERPOSE;
1437 			break;
1438 
1439 		/*
1440 		 * If we find a match and the symbol is undefined, the
1441 		 * symbol type is a function, and the value of the symbol
1442 		 * is non zero, then this is a special case.  This allows
1443 		 * the resolution of a function address to the plt[] entry.
1444 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1445 		 * more details.
1446 		 */
1447 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1448 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1449 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1450 			*dlmp = ilmp;
1451 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1452 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1453 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1454 			    is_sym_interposer(ilmp, sym)))
1455 				*binfo |= DBG_BINFO_INTERPOSE;
1456 			return (sym);
1457 		}
1458 
1459 		/*
1460 		 * Undefined symbol.
1461 		 */
1462 		return (NULL);
1463 	}
1464 
1465 	/*
1466 	 * We've found a match.  Determine if the defining object contains
1467 	 * symbol binding information.
1468 	 */
1469 	if ((sip = SYMINFO(ilmp)) != NULL)
1470 		sip += ndx;
1471 
1472 	/*
1473 	 * If this definition is a singleton, and we haven't followed a default
1474 	 * symbol search knowing that we're looking for a singleton (presumably
1475 	 * because the symbol definition has been changed since the referring
1476 	 * object was built), then reject this binding so that the caller can
1477 	 * fall back to a standard symbol search.
1478 	 */
1479 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1480 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1481 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1482 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
1483 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1484 		    DBG_BNDREJ_SINGLE));
1485 		*binfo |= BINFO_REJSINGLE;
1486 		*binfo &= ~DBG_BINFO_MSK;
1487 		return (NULL);
1488 	}
1489 
1490 	/*
1491 	 * If this is a direct binding request, but the symbol definition has
1492 	 * disabled directly binding to it (presumably because the symbol
1493 	 * definition has been changed since the referring object was built),
1494 	 * reject this binding so that the caller can fall back to a standard
1495 	 * symbol search.
1496 	 */
1497 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
1498 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
1499 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1500 		    DBG_BNDREJ_DIRECT));
1501 		*binfo |= BINFO_REJDIRECT;
1502 		*binfo &= ~DBG_BINFO_MSK;
1503 		return (NULL);
1504 	}
1505 
1506 	/*
1507 	 * If this is a binding request within an RTLD_GROUP family, and the
1508 	 * symbol has disabled directly binding to it, reject this binding so
1509 	 * that the caller can fall back to a standard symbol search.
1510 	 *
1511 	 * Effectively, an RTLD_GROUP family achieves what can now be
1512 	 * established with direct bindings.  However, various symbols have
1513 	 * been tagged as inappropriate for direct binding to (ie. libc:malloc).
1514 	 *
1515 	 * A symbol marked as no-direct cannot be used within a group without
1516 	 * first ensuring that the symbol has not been interposed upon outside
1517 	 * of the group.  A common example occurs when users implement their own
1518 	 * version of malloc() in the executable.  Such a malloc() interposes on
1519 	 * the libc:malloc, and this interposition must be honored within the
1520 	 * group as well.
1521 	 *
1522 	 * Following any rejection, LKUP_WORLD is established as a means of
1523 	 * overriding this test as we return to a standard search.
1524 	 */
1525 	if (sip && (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT) &&
1526 	    ((MODE(slp->sl_cmap) & (RTLD_GROUP | RTLD_WORLD)) == RTLD_GROUP) &&
1527 	    ((slp->sl_flags & LKUP_WORLD) == 0)) {
1528 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1529 		    DBG_BNDREJ_GROUP));
1530 		*binfo |= BINFO_REJGROUP;
1531 		*binfo &= ~DBG_BINFO_MSK;
1532 		return (NULL);
1533 	}
1534 
1535 	/*
1536 	 * Determine whether this object is acting as a filter.
1537 	 */
1538 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
1539 		return (sym);
1540 
1541 	/*
1542 	 * Determine if this object offers per-symbol filtering, and if so,
1543 	 * whether this symbol references a filtee.
1544 	 */
1545 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
1546 		/*
1547 		 * If this is a standard filter reference, and no standard
1548 		 * filtees remain to be inspected, we're done.  If this is an
1549 		 * auxiliary filter reference, and no auxiliary filtees remain,
1550 		 * we'll fall through in case any object filtering is available.
1551 		 */
1552 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
1553 		    (SYMSFLTRCNT(ilmp) == 0))
1554 			return (NULL);
1555 
1556 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
1557 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
1558 		    SYMAFLTRCNT(ilmp))) {
1559 			Sym	*fsym;
1560 
1561 			/*
1562 			 * This symbol has an associated filtee.  Lookup the
1563 			 * symbol in the filtee, and if it is found return it.
1564 			 * If the symbol doesn't exist, and this is a standard
1565 			 * filter, return an error, otherwise fall through to
1566 			 * catch any object filtering that may be available.
1567 			 */
1568 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
1569 			    sip->si_boundto, in_nfavl)) != NULL)
1570 				return (fsym);
1571 			if (sip->si_flags & SYMINFO_FLG_FILTER)
1572 				return (NULL);
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * Determine if this object provides global filtering.
1578 	 */
1579 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
1580 		Sym	*fsym;
1581 
1582 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
1583 			/*
1584 			 * This object has an associated filtee.  Lookup the
1585 			 * symbol in the filtee, and if it is found return it.
1586 			 * If the symbol doesn't exist, and this is a standard
1587 			 * filter, return and error, otherwise return the symbol
1588 			 * within the filter itself.
1589 			 */
1590 			if ((fsym = elf_lookup_filtee(slp, dlmp, binfo,
1591 			    OBJFLTRNDX(ilmp), in_nfavl)) != NULL)
1592 				return (fsym);
1593 		}
1594 
1595 		if (flags1 & FL1_RT_OBJSFLTR)
1596 			return (NULL);
1597 	}
1598 	return (sym);
1599 }
1600 
1601 /*
1602  * Create a new Rt_map structure for an ELF object and initialize
1603  * all values.
1604  */
1605 Rt_map *
1606 elf_new_lmp(Lm_list *lml, Aliste lmco, Fdesc *fdp, Addr addr, size_t msize,
1607     void *odyn, int *in_nfavl)
1608 {
1609 	const char	*name = fdp->fd_nname;
1610 	Rt_map		*lmp;
1611 	Ehdr		*ehdr = (Ehdr *)addr;
1612 	Phdr		*phdr, *tphdr = NULL, *dphdr = NULL, *uphdr = NULL;
1613 	Dyn		*dyn = (Dyn *)odyn;
1614 	Cap		*cap = NULL;
1615 	int		ndx;
1616 	Addr		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
1617 	Xword		rpath = 0;
1618 	size_t		lmsz, rtsz, epsz, dynsz = 0;
1619 	uint_t		dyncnt = 0;
1620 
1621 	DBG_CALL(Dbg_file_elf(lml, name, addr, msize, lml->lm_lmidstr, lmco));
1622 
1623 	/*
1624 	 * If this is a shared object, the base address of the shared object is
1625 	 * added to all address values defined within the object.  Otherwise, if
1626 	 * this is an executable, all object addresses are used as is.
1627 	 */
1628 	if (ehdr->e_type == ET_EXEC)
1629 		base = 0;
1630 	else
1631 		base = addr;
1632 
1633 	/*
1634 	 * Traverse the program header table, picking off required items.  This
1635 	 * traversal also provides for the sizing of the PT_DYNAMIC section.
1636 	 */
1637 	phdr = (Phdr *)((uintptr_t)ehdr + ehdr->e_phoff);
1638 	for (ndx = 0; ndx < (int)ehdr->e_phnum; ndx++,
1639 	    phdr = (Phdr *)((uintptr_t)phdr + ehdr->e_phentsize)) {
1640 		switch (phdr->p_type) {
1641 		case PT_DYNAMIC:
1642 			dphdr = phdr;
1643 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
1644 			break;
1645 		case PT_TLS:
1646 			tphdr = phdr;
1647 			break;
1648 		case PT_SUNWCAP:
1649 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
1650 			break;
1651 		case PT_SUNW_UNWIND:
1652 		case PT_SUNW_EH_FRAME:
1653 			uphdr = phdr;
1654 			break;
1655 		default:
1656 			break;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Determine the number of PT_DYNAMIC entries for the DYNINFO()
1662 	 * allocation.  Sadly, this is a little larger than we really need,
1663 	 * as there are typically padding DT_NULL entries.  However, adding
1664 	 * this data to the initial link-map allocation is a win.
1665 	 */
1666 	if (dyn) {
1667 		dyncnt = dphdr->p_filesz / sizeof (Dyn);
1668 		dynsz = dyncnt * sizeof (Dyninfo);
1669 	}
1670 
1671 	/*
1672 	 * Allocate space for the link-map, private elf information, and
1673 	 * DYNINFO() data.  Once these are allocated and initialized,
1674 	 * remove_so(0, lmp) can be used to tear down the link-map allocation
1675 	 * should any failures occur.
1676 	 */
1677 	rtsz = S_DROUND(sizeof (Rt_map));
1678 	epsz = S_DROUND(sizeof (Rt_elfp));
1679 	lmsz = rtsz + epsz + dynsz;
1680 	if ((lmp = calloc(lmsz, 1)) == NULL)
1681 		return (NULL);
1682 	ELFPRV(lmp) = (void *)((uintptr_t)lmp + rtsz);
1683 	DYNINFO(lmp) = (Dyninfo *)((uintptr_t)lmp + rtsz + epsz);
1684 	LMSIZE(lmp) = lmsz;
1685 
1686 	/*
1687 	 * All fields not filled in were set to 0 by calloc.
1688 	 */
1689 	NAME(lmp) = (char *)name;
1690 	ADDR(lmp) = addr;
1691 	MSIZE(lmp) = msize;
1692 	SYMINTP(lmp) = elf_find_sym;
1693 	FCT(lmp) = &elf_fct;
1694 	LIST(lmp) = lml;
1695 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
1696 	SORTVAL(lmp) = -1;
1697 	DYN(lmp) = dyn;
1698 	DYNINFOCNT(lmp) = dyncnt;
1699 	PTUNWIND(lmp) = uphdr;
1700 
1701 	if (ehdr->e_type == ET_EXEC)
1702 		FLAGS(lmp) |= FLG_RT_FIXED;
1703 
1704 	/*
1705 	 * Fill in rest of the link map entries with information from the file's
1706 	 * dynamic structure.
1707 	 */
1708 	if (dyn) {
1709 		uint_t		dynndx = 0;
1710 		Xword		pltpadsz = 0;
1711 		Rti_desc	*rti;
1712 
1713 		/* CSTYLED */
1714 		for ( ; dyn->d_tag != DT_NULL; ++dyn, dynndx++) {
1715 			switch ((Xword)dyn->d_tag) {
1716 			case DT_SYMTAB:
1717 				SYMTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1718 				break;
1719 			case DT_SUNW_SYMTAB:
1720 				SUNWSYMTAB(lmp) =
1721 				    (void *)(dyn->d_un.d_ptr + base);
1722 				break;
1723 			case DT_SUNW_SYMSZ:
1724 				SUNWSYMSZ(lmp) = dyn->d_un.d_val;
1725 				break;
1726 			case DT_STRTAB:
1727 				STRTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1728 				break;
1729 			case DT_SYMENT:
1730 				SYMENT(lmp) = dyn->d_un.d_val;
1731 				break;
1732 			case DT_FEATURE_1:
1733 				dyn->d_un.d_val |= DTF_1_PARINIT;
1734 				if (dyn->d_un.d_val & DTF_1_CONFEXP)
1735 					crle = 1;
1736 				break;
1737 			case DT_MOVESZ:
1738 				MOVESZ(lmp) = dyn->d_un.d_val;
1739 				FLAGS(lmp) |= FLG_RT_MOVE;
1740 				break;
1741 			case DT_MOVEENT:
1742 				MOVEENT(lmp) = dyn->d_un.d_val;
1743 				break;
1744 			case DT_MOVETAB:
1745 				MOVETAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1746 				break;
1747 			case DT_REL:
1748 			case DT_RELA:
1749 				/*
1750 				 * At this time, ld.so. can only handle one
1751 				 * type of relocation per object.
1752 				 */
1753 				REL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1754 				break;
1755 			case DT_RELSZ:
1756 			case DT_RELASZ:
1757 				RELSZ(lmp) = dyn->d_un.d_val;
1758 				break;
1759 			case DT_RELENT:
1760 			case DT_RELAENT:
1761 				RELENT(lmp) = dyn->d_un.d_val;
1762 				break;
1763 			case DT_RELCOUNT:
1764 			case DT_RELACOUNT:
1765 				RELACOUNT(lmp) = (uint_t)dyn->d_un.d_val;
1766 				break;
1767 			case DT_HASH:
1768 				HASH(lmp) = (uint_t *)(dyn->d_un.d_ptr + base);
1769 				break;
1770 			case DT_PLTGOT:
1771 				PLTGOT(lmp) =
1772 				    (uint_t *)(dyn->d_un.d_ptr + base);
1773 				break;
1774 			case DT_PLTRELSZ:
1775 				PLTRELSZ(lmp) = dyn->d_un.d_val;
1776 				break;
1777 			case DT_JMPREL:
1778 				JMPREL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1779 				break;
1780 			case DT_INIT:
1781 				if (dyn->d_un.d_ptr != NULL)
1782 					INIT(lmp) =
1783 					    (void (*)())(dyn->d_un.d_ptr +
1784 					    base);
1785 				break;
1786 			case DT_FINI:
1787 				if (dyn->d_un.d_ptr != NULL)
1788 					FINI(lmp) =
1789 					    (void (*)())(dyn->d_un.d_ptr +
1790 					    base);
1791 				break;
1792 			case DT_INIT_ARRAY:
1793 				INITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1794 				    base);
1795 				break;
1796 			case DT_INIT_ARRAYSZ:
1797 				INITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1798 				break;
1799 			case DT_FINI_ARRAY:
1800 				FINIARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1801 				    base);
1802 				break;
1803 			case DT_FINI_ARRAYSZ:
1804 				FINIARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1805 				break;
1806 			case DT_PREINIT_ARRAY:
1807 				PREINITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1808 				    base);
1809 				break;
1810 			case DT_PREINIT_ARRAYSZ:
1811 				PREINITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1812 				break;
1813 			case DT_RPATH:
1814 			case DT_RUNPATH:
1815 				rpath = dyn->d_un.d_val;
1816 				break;
1817 			case DT_FILTER:
1818 				fltr = dyn->d_un.d_val;
1819 				OBJFLTRNDX(lmp) = dynndx;
1820 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
1821 				break;
1822 			case DT_AUXILIARY:
1823 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1824 					fltr = dyn->d_un.d_val;
1825 					OBJFLTRNDX(lmp) = dynndx;
1826 				}
1827 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
1828 				break;
1829 			case DT_SUNW_FILTER:
1830 				SYMSFLTRCNT(lmp)++;
1831 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
1832 				break;
1833 			case DT_SUNW_AUXILIARY:
1834 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1835 					SYMAFLTRCNT(lmp)++;
1836 				}
1837 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
1838 				break;
1839 			case DT_DEPAUDIT:
1840 				if (!(rtld_flags & RT_FL_NOAUDIT))
1841 					audit = dyn->d_un.d_val;
1842 				break;
1843 			case DT_CONFIG:
1844 				cfile = dyn->d_un.d_val;
1845 				break;
1846 			case DT_DEBUG:
1847 				/*
1848 				 * DT_DEBUG entries are only created in
1849 				 * dynamic objects that require an interpretor
1850 				 * (ie. all dynamic executables and some shared
1851 				 * objects), and provide for a hand-shake with
1852 				 * old debuggers.  This entry is initialized to
1853 				 * zero by the link-editor.  If a debugger is
1854 				 * monitoring us, and has updated this entry,
1855 				 * set the debugger monitor flag, and finish
1856 				 * initializing the debugging structure.  See
1857 				 * setup().  Also, switch off any configuration
1858 				 * object use as most debuggers can't handle
1859 				 * fixed dynamic executables as dependencies.
1860 				 */
1861 				if (dyn->d_un.d_ptr)
1862 					rtld_flags |=
1863 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
1864 				dyn->d_un.d_ptr = (Addr)&r_debug;
1865 				break;
1866 			case DT_VERNEED:
1867 				VERNEED(lmp) = (Verneed *)(dyn->d_un.d_ptr +
1868 				    base);
1869 				break;
1870 			case DT_VERNEEDNUM:
1871 				/* LINTED */
1872 				VERNEEDNUM(lmp) = (int)dyn->d_un.d_val;
1873 				break;
1874 			case DT_VERDEF:
1875 				VERDEF(lmp) = (Verdef *)(dyn->d_un.d_ptr +
1876 				    base);
1877 				break;
1878 			case DT_VERDEFNUM:
1879 				/* LINTED */
1880 				VERDEFNUM(lmp) = (int)dyn->d_un.d_val;
1881 				break;
1882 			case DT_VERSYM:
1883 				/*
1884 				 * The Solaris ld does not produce DT_VERSYM,
1885 				 * but the GNU ld does, in order to support
1886 				 * their style of versioning, which differs
1887 				 * from ours in some ways, while using the
1888 				 * same data structures. The presence of
1889 				 * DT_VERSYM therefore means that GNU
1890 				 * versioning rules apply to the given file.
1891 				 * If DT_VERSYM is not present, then Solaris
1892 				 * versioning rules apply.
1893 				 */
1894 				VERSYM(lmp) = (Versym *)(dyn->d_un.d_ptr +
1895 				    base);
1896 				break;
1897 			case DT_BIND_NOW:
1898 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1899 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1900 					MODE(lmp) |= RTLD_NOW;
1901 					MODE(lmp) &= ~RTLD_LAZY;
1902 				}
1903 				break;
1904 			case DT_FLAGS:
1905 				FLAGS1(lmp) |= FL1_RT_DTFLAGS;
1906 				if (dyn->d_un.d_val & DF_SYMBOLIC)
1907 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
1908 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1909 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1910 					MODE(lmp) |= RTLD_NOW;
1911 					MODE(lmp) &= ~RTLD_LAZY;
1912 				}
1913 				/*
1914 				 * Capture any static TLS use, and enforce that
1915 				 * this object be non-deletable.
1916 				 */
1917 				if (dyn->d_un.d_val & DF_STATIC_TLS) {
1918 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
1919 					MODE(lmp) |= RTLD_NODELETE;
1920 				}
1921 				break;
1922 			case DT_FLAGS_1:
1923 				if (dyn->d_un.d_val & DF_1_DISPRELPND)
1924 					FLAGS1(lmp) |= FL1_RT_DISPREL;
1925 				if (dyn->d_un.d_val & DF_1_GROUP)
1926 					FLAGS(lmp) |=
1927 					    (FLG_RT_SETGROUP | FLG_RT_HANDLE);
1928 				if ((dyn->d_un.d_val & DF_1_NOW) &&
1929 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1930 					MODE(lmp) |= RTLD_NOW;
1931 					MODE(lmp) &= ~RTLD_LAZY;
1932 				}
1933 				if (dyn->d_un.d_val & DF_1_NODELETE)
1934 					MODE(lmp) |= RTLD_NODELETE;
1935 				if (dyn->d_un.d_val & DF_1_INITFIRST)
1936 					FLAGS(lmp) |= FLG_RT_INITFRST;
1937 				if (dyn->d_un.d_val & DF_1_NOOPEN)
1938 					FLAGS(lmp) |= FLG_RT_NOOPEN;
1939 				if (dyn->d_un.d_val & DF_1_LOADFLTR)
1940 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
1941 				if (dyn->d_un.d_val & DF_1_NODUMP)
1942 					FLAGS(lmp) |= FLG_RT_NODUMP;
1943 				if (dyn->d_un.d_val & DF_1_CONFALT)
1944 					crle = 1;
1945 				if (dyn->d_un.d_val & DF_1_DIRECT)
1946 					FLAGS1(lmp) |= FL1_RT_DIRECT;
1947 				if (dyn->d_un.d_val & DF_1_NODEFLIB)
1948 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
1949 				if (dyn->d_un.d_val & DF_1_ENDFILTEE)
1950 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
1951 				if (dyn->d_un.d_val & DF_1_TRANS)
1952 					FLAGS(lmp) |= FLG_RT_TRANS;
1953 
1954 				/*
1955 				 * Global auditing is only meaningful when
1956 				 * specified by the initiating object of the
1957 				 * process - typically the dynamic executable.
1958 				 * If this is the initiaiting object, its link-
1959 				 * map will not yet have been added to the
1960 				 * link-map list, and consequently the link-map
1961 				 * list is empty.  (see setup()).
1962 				 */
1963 				if (dyn->d_un.d_val & DF_1_GLOBAUDIT) {
1964 					if (lml_main.lm_head == NULL)
1965 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
1966 					else
1967 						DBG_CALL(Dbg_audit_ignore(lmp));
1968 				}
1969 
1970 				/*
1971 				 * If this object identifies itself as an
1972 				 * interposer, but relocation processing has
1973 				 * already started, then demote it.  It's too
1974 				 * late to guarantee complete interposition.
1975 				 */
1976 				/* BEGIN CSTYLED */
1977 				if (dyn->d_un.d_val &
1978 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
1979 				    if (lml->lm_flags & LML_FLG_STARTREL) {
1980 					DBG_CALL(Dbg_util_intoolate(lmp));
1981 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
1982 					    (void) printf(
1983 						MSG_INTL(MSG_LDD_REL_ERR2),
1984 						NAME(lmp));
1985 				    } else if (dyn->d_un.d_val & DF_1_INTERPOSE)
1986 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
1987 				    else
1988 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
1989 				}
1990 				/* END CSTYLED */
1991 				break;
1992 			case DT_SYMINFO:
1993 				SYMINFO(lmp) = (Syminfo *)(dyn->d_un.d_ptr +
1994 				    base);
1995 				break;
1996 			case DT_SYMINENT:
1997 				SYMINENT(lmp) = dyn->d_un.d_val;
1998 				break;
1999 			case DT_PLTPAD:
2000 				PLTPAD(lmp) = (void *)(dyn->d_un.d_ptr + base);
2001 				break;
2002 			case DT_PLTPADSZ:
2003 				pltpadsz = dyn->d_un.d_val;
2004 				break;
2005 			case DT_SUNW_RTLDINF:
2006 				/*
2007 				 * Maintain a list of RTLDINFO structures.
2008 				 * Typically, libc is the only supplier, and
2009 				 * only one structure is provided.  However,
2010 				 * multiple suppliers and multiple structures
2011 				 * are supported.  For example, one structure
2012 				 * may provide thread_init, and another
2013 				 * structure may provide atexit reservations.
2014 				 */
2015 				if ((rti = alist_append(&lml->lm_rti, NULL,
2016 				    sizeof (Rti_desc),
2017 				    AL_CNT_RTLDINFO)) == NULL) {
2018 					remove_so(0, lmp);
2019 					return (NULL);
2020 				}
2021 				rti->rti_lmp = lmp;
2022 				rti->rti_info = (void *)(dyn->d_un.d_ptr +
2023 				    base);
2024 				break;
2025 			case DT_SUNW_SORTENT:
2026 				SUNWSORTENT(lmp) = dyn->d_un.d_val;
2027 				break;
2028 			case DT_SUNW_SYMSORT:
2029 				SUNWSYMSORT(lmp) =
2030 				    (void *)(dyn->d_un.d_ptr + base);
2031 				break;
2032 			case DT_SUNW_SYMSORTSZ:
2033 				SUNWSYMSORTSZ(lmp) = dyn->d_un.d_val;
2034 				break;
2035 			case DT_DEPRECATED_SPARC_REGISTER:
2036 			case M_DT_REGISTER:
2037 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2038 				break;
2039 			}
2040 		}
2041 
2042 		if (PLTPAD(lmp)) {
2043 			if (pltpadsz == (Xword)0)
2044 				PLTPAD(lmp) = NULL;
2045 			else
2046 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2047 				    pltpadsz);
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * A dynsym contains only global functions. We want to have
2053 	 * a version of it that also includes local functions, so that
2054 	 * dladdr() will be able to report names for local functions
2055 	 * when used to generate a stack trace for a stripped file.
2056 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2057 	 *
2058 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2059 	 * in order to avoid having to have two copies of the global
2060 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2061 	 * a separate section than the globals in the dynsym, but the
2062 	 * linker conspires to put the data for these two sections adjacent
2063 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2064 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2065 	 *
2066 	 * If the two sections are not adjacent, then something went wrong
2067 	 * at link time. We use ASSERT to kill the process if this is
2068 	 * a debug build. In a production build, we will silently ignore
2069 	 * the presence of the .ldynsym and proceed. We can detect this
2070 	 * situation by checking to see that DT_SYMTAB lies in
2071 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2072 	 */
2073 	if ((SUNWSYMTAB(lmp) != NULL) &&
2074 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2075 	    (((char *)SYMTAB(lmp) >=
2076 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2077 		ASSERT(0);
2078 		SUNWSYMTAB(lmp) = NULL;
2079 		SUNWSYMSZ(lmp) = 0;
2080 	}
2081 
2082 	/*
2083 	 * If configuration file use hasn't been disabled, and a configuration
2084 	 * file hasn't already been set via an environment variable, see if any
2085 	 * application specific configuration file is specified.  An LD_CONFIG
2086 	 * setting is used first, but if this image was generated via crle(1)
2087 	 * then a default configuration file is a fall-back.
2088 	 */
2089 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == NULL)) {
2090 		if (cfile)
2091 			config->c_name = (const char *)(cfile +
2092 			    (char *)STRTAB(lmp));
2093 		else if (crle)
2094 			rtld_flags |= RT_FL_CONFAPP;
2095 	}
2096 
2097 	if (rpath)
2098 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2099 	if (fltr)
2100 		REFNAME(lmp) = (char *)(fltr + (char *)STRTAB(lmp));
2101 
2102 	/*
2103 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2104 	 * specified without any other relocations (e.g. a dynamic executable
2105 	 * normally only contains .plt relocations).  If this is the case then
2106 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2107 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2108 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2109 	 * details.
2110 	 */
2111 	if (!RELENT(lmp) && JMPREL(lmp))
2112 		RELENT(lmp) = sizeof (M_RELOC);
2113 
2114 	/*
2115 	 * Establish any per-object auditing.  If we're establishing `main's
2116 	 * link-map its too early to go searching for audit objects so just
2117 	 * hold the object name for later (see setup()).
2118 	 */
2119 	if (audit) {
2120 		char	*cp = audit + (char *)STRTAB(lmp);
2121 
2122 		if (*cp) {
2123 			if (((AUDITORS(lmp) =
2124 			    calloc(1, sizeof (Audit_desc))) == NULL) ||
2125 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == NULL)) {
2126 				remove_so(0, lmp);
2127 				return (NULL);
2128 			}
2129 			if (lml_main.lm_head) {
2130 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2131 				    in_nfavl) == 0) {
2132 					remove_so(0, lmp);
2133 					return (NULL);
2134 				}
2135 				AFLAGS(lmp) |= AUDITORS(lmp)->ad_flags;
2136 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2137 			}
2138 		}
2139 	}
2140 
2141 	if (tphdr && (tls_assign(lml, lmp, tphdr) == 0)) {
2142 		remove_so(0, lmp);
2143 		return (NULL);
2144 	}
2145 
2146 	if (cap)
2147 		cap_assign(cap, lmp);
2148 
2149 	/*
2150 	 * Add the mapped object to the end of the link map list.
2151 	 */
2152 	lm_append(lml, lmco, lmp);
2153 
2154 	/*
2155 	 * Start the system loading in the ELF information we'll be processing.
2156 	 */
2157 	if (REL(lmp)) {
2158 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2159 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2160 		    MADV_WILLNEED);
2161 	}
2162 	return (lmp);
2163 }
2164 
2165 /*
2166  * Assign hardware/software capabilities.
2167  */
2168 void
2169 cap_assign(Cap *cap, Rt_map *lmp)
2170 {
2171 	while (cap->c_tag != CA_SUNW_NULL) {
2172 		switch (cap->c_tag) {
2173 		case CA_SUNW_HW_1:
2174 			HWCAP(lmp) = cap->c_un.c_val;
2175 			break;
2176 		case CA_SUNW_SF_1:
2177 			SFCAP(lmp) = cap->c_un.c_val;
2178 		}
2179 		cap++;
2180 	}
2181 }
2182 
2183 /*
2184  * Build full pathname of shared object from given directory name and filename.
2185  */
2186 static char *
2187 elf_get_so(const char *dir, const char *file, size_t dlen, size_t flen)
2188 {
2189 	static char	pname[PATH_MAX];
2190 
2191 	(void) strncpy(pname, dir, dlen);
2192 	pname[dlen++] = '/';
2193 	(void) strncpy(&pname[dlen], file, flen + 1);
2194 	return (pname);
2195 }
2196 
2197 /*
2198  * The copy relocation is recorded in a copy structure which will be applied
2199  * after all other relocations are carried out.  This provides for copying data
2200  * that must be relocated itself (ie. pointers in shared objects).  This
2201  * structure also provides a means of binding RTLD_GROUP dependencies to any
2202  * copy relocations that have been taken from any group members.
2203  *
2204  * If the size of the .bss area available for the copy information is not the
2205  * same as the source of the data inform the user if we're under ldd(1) control
2206  * (this checking was only established in 5.3, so by only issuing an error via
2207  * ldd(1) we maintain the standard set by previous releases).
2208  */
2209 int
2210 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
2211     Rt_map *dlmp, const void *dadd)
2212 {
2213 	Rel_copy	rc;
2214 	Lm_list		*lml = LIST(rlmp);
2215 
2216 	rc.r_name = name;
2217 	rc.r_rsym = rsym;		/* the new reference symbol and its */
2218 	rc.r_rlmp = rlmp;		/*	associated link-map */
2219 	rc.r_dlmp = dlmp;		/* the defining link-map */
2220 	rc.r_dsym = dsym;		/* the original definition */
2221 	rc.r_radd = radd;
2222 	rc.r_dadd = dadd;
2223 
2224 	if (rsym->st_size > dsym->st_size)
2225 		rc.r_size = (size_t)dsym->st_size;
2226 	else
2227 		rc.r_size = (size_t)rsym->st_size;
2228 
2229 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
2230 	    AL_CNT_COPYREL) == NULL) {
2231 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2232 			return (0);
2233 		else
2234 			return (1);
2235 	}
2236 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
2237 		if (aplist_append(&COPY_S(rlmp), dlmp,
2238 		    AL_CNT_COPYREL) == NULL) {
2239 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2240 				return (0);
2241 			else
2242 				return (1);
2243 		}
2244 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
2245 	}
2246 
2247 	/*
2248 	 * If we are tracing (ldd), warn the user if
2249 	 *	1) the size from the reference symbol differs from the
2250 	 *	   copy definition. We can only copy as much data as the
2251 	 *	   reference (dynamic executables) entry allows.
2252 	 *	2) the copy definition has STV_PROTECTED visibility.
2253 	 */
2254 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2255 		if (rsym->st_size != dsym->st_size) {
2256 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
2257 			    _conv_reloc_type(M_R_COPY), demangle(name),
2258 			    NAME(rlmp), EC_XWORD(rsym->st_size),
2259 			    NAME(dlmp), EC_XWORD(dsym->st_size));
2260 			if (rsym->st_size > dsym->st_size)
2261 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
2262 				    NAME(dlmp));
2263 			else
2264 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
2265 				    NAME(rlmp));
2266 		}
2267 
2268 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
2269 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
2270 			    _conv_reloc_type(M_R_COPY), demangle(name),
2271 			    NAME(dlmp));
2272 		}
2273 	}
2274 
2275 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
2276 	    (Xword)rc.r_size));
2277 	return (1);
2278 }
2279 
2280 /*
2281  * Determine the symbol location of an address within a link-map.  Look for
2282  * the nearest symbol (whose value is less than or equal to the required
2283  * address).  This is the object specific part of dladdr().
2284  */
2285 static void
2286 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
2287 {
2288 	ulong_t		ndx, cnt, base, _value;
2289 	Sym		*sym, *_sym = NULL;
2290 	const char	*str;
2291 	int		_flags;
2292 	uint_t		*dynaddr_ndx;
2293 	uint_t		dynaddr_n = 0;
2294 	ulong_t		value;
2295 
2296 	/*
2297 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
2298 	 * the dynsym that starts with any local function symbols that exist in
2299 	 * the library and then moves to the data held in SYMTAB(). In this
2300 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
2301 	 * availability of local function symbols will enhance the results
2302 	 * we can provide.
2303 	 *
2304 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
2305 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
2306 	 * an array of indices into SUNWSYMTAB, sorted by increasing
2307 	 * address. We can use this to do an O(log N) search instead of a
2308 	 * brute force search.
2309 	 *
2310 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
2311 	 * contains only global symbols. In that case, the length of
2312 	 * the symbol table comes from the nchain field of the related
2313 	 * symbol lookup hash table.
2314 	 */
2315 	str = STRTAB(lmp);
2316 	if (SUNWSYMSZ(lmp) == NULL) {
2317 		sym = SYMTAB(lmp);
2318 		/*
2319 		 * If we don't have a .hash table there are no symbols
2320 		 * to look at.
2321 		 */
2322 		if (HASH(lmp) == NULL)
2323 			return;
2324 		cnt = HASH(lmp)[1];
2325 	} else {
2326 		sym = SUNWSYMTAB(lmp);
2327 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
2328 		dynaddr_ndx = SUNWSYMSORT(lmp);
2329 		if (dynaddr_ndx != NULL)
2330 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
2331 	}
2332 
2333 	if (FLAGS(lmp) & FLG_RT_FIXED)
2334 		base = 0;
2335 	else
2336 		base = ADDR(lmp);
2337 
2338 	if (dynaddr_n > 0) {		/* Binary search */
2339 		long	low = 0, low_bnd;
2340 		long	high = dynaddr_n - 1, high_bnd;
2341 		long	mid;
2342 		Sym	*mid_sym;
2343 
2344 		/*
2345 		 * Note that SUNWSYMSORT only contains symbols types that
2346 		 * supply memory addresses, so there's no need to check and
2347 		 * filter out any other types.
2348 		 */
2349 		low_bnd = low;
2350 		high_bnd = high;
2351 		while (low <= high) {
2352 			mid = (low + high) / 2;
2353 			mid_sym = &sym[dynaddr_ndx[mid]];
2354 			value = mid_sym->st_value + base;
2355 			if (addr < value) {
2356 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
2357 				    addr)
2358 					high_bnd = high;
2359 				high = mid - 1;
2360 			} else if (addr > value) {
2361 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
2362 				    addr)
2363 					low_bnd = low;
2364 				low = mid + 1;
2365 			} else {
2366 				_sym = mid_sym;
2367 				_value = value;
2368 				break;
2369 			}
2370 		}
2371 		/*
2372 		 * If the above didn't find it exactly, then we must
2373 		 * return the closest symbol with a value that doesn't
2374 		 * exceed the one we are looking for. If that symbol exists,
2375 		 * it will lie in the range bounded by low_bnd and
2376 		 * high_bnd. This is a linear search, but a short one.
2377 		 */
2378 		if (_sym == NULL) {
2379 			for (mid = low_bnd; mid <= high_bnd; mid++) {
2380 				mid_sym = &sym[dynaddr_ndx[mid]];
2381 				value = mid_sym->st_value + base;
2382 				if (addr >= value) {
2383 					_sym = mid_sym;
2384 					_value = value;
2385 				} else {
2386 					break;
2387 				}
2388 			}
2389 		}
2390 	} else {			/* Linear search */
2391 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
2392 			/*
2393 			 * Skip expected symbol types that are not functions
2394 			 * or data:
2395 			 *	- A symbol table starts with an undefined symbol
2396 			 *		in slot 0. If we are using SUNWSYMTAB(),
2397 			 *		there will be a second undefined symbol
2398 			 *		right before the globals.
2399 			 *	- The local part of SUNWSYMTAB() contains a
2400 			 *		series of function symbols. Each section
2401 			 *		starts with an initial STT_FILE symbol.
2402 			 */
2403 			if ((sym->st_shndx == SHN_UNDEF) ||
2404 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
2405 				continue;
2406 
2407 			value = sym->st_value + base;
2408 			if (value > addr)
2409 				continue;
2410 			if (value < _value)
2411 				continue;
2412 
2413 			_sym = sym;
2414 			_value = value;
2415 
2416 			/*
2417 			 * Note, because we accept local and global symbols
2418 			 * we could find a section symbol that matches the
2419 			 * associated address, which means that the symbol
2420 			 * name will be null.  In this case continue the
2421 			 * search in case we can find a global symbol of
2422 			 * the same value.
2423 			 */
2424 			if ((value == addr) &&
2425 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
2426 				break;
2427 		}
2428 	}
2429 
2430 	_flags = flags & RTLD_DL_MASK;
2431 	if (_sym) {
2432 		if (_flags == RTLD_DL_SYMENT)
2433 			*info = (void *)_sym;
2434 		else if (_flags == RTLD_DL_LINKMAP)
2435 			*info = (void *)lmp;
2436 
2437 		dlip->dli_sname = str + _sym->st_name;
2438 		dlip->dli_saddr = (void *)_value;
2439 	} else {
2440 		/*
2441 		 * addr lies between the beginning of the mapped segment and
2442 		 * the first global symbol. We have no symbol to return
2443 		 * and the caller requires one. We use _START_, the base
2444 		 * address of the mapping.
2445 		 */
2446 
2447 		if (_flags == RTLD_DL_SYMENT) {
2448 			/*
2449 			 * An actual symbol struct is needed, so we
2450 			 * construct one for _START_. To do this in a
2451 			 * fully accurate way requires a different symbol
2452 			 * for each mapped segment. This requires the
2453 			 * use of dynamic memory and a mutex. That's too much
2454 			 * plumbing for a fringe case of limited importance.
2455 			 *
2456 			 * Fortunately, we can simplify:
2457 			 *    - Only the st_size and st_info fields are useful
2458 			 *	outside of the linker internals. The others
2459 			 *	reference things that outside code cannot see,
2460 			 *	and can be set to 0.
2461 			 *    - It's just a label and there is no size
2462 			 *	to report. So, the size should be 0.
2463 			 * This means that only st_info needs a non-zero
2464 			 * (constant) value. A static struct will suffice.
2465 			 * It must be const (readonly) so the caller can't
2466 			 * change its meaning for subsequent callers.
2467 			 */
2468 			static const Sym fsym = { 0, 0, 0,
2469 			    ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
2470 			*info = (void *) &fsym;
2471 		}
2472 
2473 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
2474 		dlip->dli_saddr = (void *) ADDR(lmp);
2475 	}
2476 }
2477 
2478 static void
2479 elf_lazy_cleanup(APlist *alp)
2480 {
2481 	Rt_map	*lmp;
2482 	Aliste	idx;
2483 
2484 	/*
2485 	 * Cleanup any link-maps added to this dynamic list and free it.
2486 	 */
2487 	for (APLIST_TRAVERSE(alp, idx, lmp))
2488 		FLAGS(lmp) &= ~FLG_RT_TMPLIST;
2489 	free(alp);
2490 }
2491 
2492 /*
2493  * This routine is called as a last fall-back to search for a symbol from a
2494  * standard relocation.  To maintain lazy loadings goal of reducing the number
2495  * of objects mapped, any symbol search is first carried out using the objects
2496  * that already exist in the process (either on a link-map list or handle).
2497  * If a symbol can't be found, and lazy dependencies are still pending, this
2498  * routine loads the dependencies in an attempt to locate the symbol.
2499  *
2500  * Only new objects are inspected as we will have already inspected presently
2501  * loaded objects before calling this routine.  However, a new object may not
2502  * be new - although the di_lmp might be zero, the object may have been mapped
2503  * as someone elses dependency.  Thus there's a possibility of some symbol
2504  * search duplication.
2505  */
2506 Sym *
2507 elf_lazy_find_sym(Slookup *slp, Rt_map **_lmp, uint_t *binfo, int *in_nfavl)
2508 {
2509 	Sym		*sym = NULL;
2510 	APlist		*alist = NULL;
2511 	Aliste		idx;
2512 	Rt_map		*lmp1, *lmp = slp->sl_imap;
2513 	const char	*name = slp->sl_name;
2514 
2515 	/*
2516 	 * Generate a local list of new objects to process.  This list can grow
2517 	 * as each object supplies its own lazy dependencies.
2518 	 */
2519 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
2520 		return (NULL);
2521 	FLAGS(lmp) |= FLG_RT_TMPLIST;
2522 
2523 	for (APLIST_TRAVERSE(alist, idx, lmp1)) {
2524 		uint_t	cnt = 0;
2525 		Slookup	sl = *slp;
2526 		Dyninfo	*dip, *pdip;
2527 
2528 		/*
2529 		 * Discard any relocation index from further symbol searches.
2530 		 * This index will have already been used to trigger any
2531 		 * necessary lazy-loads, and it might be because one of these
2532 		 * lazy loads have failed that we're here performing this
2533 		 * fallback.  By removing the relocation index we don't try
2534 		 * and perform the same failed lazy loading activity again.
2535 		 */
2536 		sl.sl_rsymndx = 0;
2537 
2538 		/*
2539 		 * Loop through the lazy DT_NEEDED entries examining each object
2540 		 * for the required symbol.  If the symbol is not found, the
2541 		 * object is in turn added to the local alist, so that the
2542 		 * objects lazy DT_NEEDED entries can be examined.
2543 		 */
2544 		lmp = lmp1;
2545 		for (dip = DYNINFO(lmp), pdip = NULL; cnt < DYNINFOCNT(lmp);
2546 		    cnt++, pdip = dip++) {
2547 			Rt_map *nlmp;
2548 
2549 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
2550 			    dip->di_info)
2551 				continue;
2552 
2553 			/*
2554 			 * If this object has already failed to lazy load, and
2555 			 * we're still processing the same runtime linker
2556 			 * operation that produced the failure, don't bother
2557 			 * to try and load the object again.
2558 			 */
2559 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
2560 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
2561 				if (pdip->di_info == (void *)ld_entry_cnt)
2562 					continue;
2563 
2564 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
2565 				pdip->di_info = NULL;
2566 			}
2567 
2568 			/*
2569 			 * Try loading this lazy dependency.  If the object
2570 			 * can't be loaded, consider this non-fatal and continue
2571 			 * the search.  Lazy loaded dependencies need not exist
2572 			 * and their loading should only turn out to be fatal
2573 			 * if they are required to satisfy a relocation.
2574 			 *
2575 			 * If the file is already loaded and relocated we must
2576 			 * still inspect it for symbols, even though it might
2577 			 * have already been searched.  This lazy load operation
2578 			 * might have promoted the permissions of the object,
2579 			 * and thus made the object applicable for this symbol
2580 			 * search, whereas before the object might have been
2581 			 * skipped.
2582 			 */
2583 			if ((nlmp = elf_lazy_load(lmp, &sl, cnt,
2584 			    name, in_nfavl)) == NULL)
2585 				continue;
2586 
2587 			/*
2588 			 * If this object isn't yet a part of the dynamic list
2589 			 * then inspect it for the symbol.  If the symbol isn't
2590 			 * found add the object to the dynamic list so that we
2591 			 * can inspect its dependencies.
2592 			 */
2593 			if (FLAGS(nlmp) & FLG_RT_TMPLIST)
2594 				continue;
2595 
2596 			sl.sl_imap = nlmp;
2597 			if (sym = lookup_sym(&sl, _lmp, binfo, in_nfavl))
2598 				break;
2599 
2600 			/*
2601 			 * Some dlsym() operations are already traversing a
2602 			 * link-map (dlopen(0)), and thus there's no need to
2603 			 * build our own dynamic dependency list.
2604 			 */
2605 			if ((sl.sl_flags & LKUP_NODESCENT) == 0) {
2606 				if (aplist_append(&alist, nlmp,
2607 				    AL_CNT_LAZYFIND) == NULL) {
2608 					elf_lazy_cleanup(alist);
2609 					return (NULL);
2610 				}
2611 				FLAGS(nlmp) |= FLG_RT_TMPLIST;
2612 			}
2613 		}
2614 		if (sym)
2615 			break;
2616 	}
2617 
2618 	elf_lazy_cleanup(alist);
2619 	return (sym);
2620 }
2621 
2622 /*
2623  * Warning message for bad r_offset.
2624  */
2625 void
2626 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
2627     ulong_t rsymndx)
2628 {
2629 	const char	*name = NULL;
2630 	Lm_list		*lml = LIST(lmp);
2631 	int		trace;
2632 
2633 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
2634 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
2635 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
2636 		trace = 1;
2637 	else
2638 		trace = 0;
2639 
2640 	if ((trace == 0) && (DBG_ENABLED == 0))
2641 		return;
2642 
2643 	if (rsymndx) {
2644 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
2645 		    (rsymndx * SYMENT(lmp)));
2646 
2647 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
2648 			name = (char *)(STRTAB(lmp) + symref->st_name);
2649 	}
2650 
2651 	if (name == NULL)
2652 		name = MSG_INTL(MSG_STR_UNKNOWN);
2653 
2654 	if (trace) {
2655 		const char *rstr;
2656 
2657 		rstr = _conv_reloc_type((uint_t)rtype);
2658 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
2659 		    EC_ADDR(roffset));
2660 		return;
2661 	}
2662 
2663 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
2664 }
2665 
2666 /*
2667  * Resolve a static TLS relocation.
2668  */
2669 long
2670 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
2671     ulong_t roffset, long value)
2672 {
2673 	Lm_list	*lml = LIST(lmp);
2674 
2675 	/*
2676 	 * Relocations against a static TLS block have limited support once
2677 	 * process initialization has completed.  Any error condition should be
2678 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
2679 	 * however individual relocations are tested in case the dynamic flag
2680 	 * had not been set when this object was built.
2681 	 */
2682 	if (PTTLS(lmp) == NULL) {
2683 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2684 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
2685 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2686 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2687 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2688 		return (0);
2689 	}
2690 
2691 	/*
2692 	 * If no static TLS has been set aside for this object, determine if
2693 	 * any can be obtained.  Enforce that any object using static TLS is
2694 	 * non-deletable.
2695 	 */
2696 	if (TLSSTATOFF(lmp) == 0) {
2697 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2698 		MODE(lmp) |= RTLD_NODELETE;
2699 
2700 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
2701 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2702 			    M_REL_SHT_TYPE, rel, NULL, 0, name));
2703 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2704 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2705 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2706 			return (0);
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * Typically, a static TLS offset is maintained as a symbols value.
2712 	 * For local symbols that are not apart of the dynamic symbol table,
2713 	 * the TLS relocation points to a section symbol, and the static TLS
2714 	 * offset was deposited in the associated GOT table.  Make sure the GOT
2715 	 * is cleared, so that the value isn't reused in do_reloc().
2716 	 */
2717 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
2718 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
2719 			value = *(long *)roffset;
2720 			*(long *)roffset = 0;
2721 		} else {
2722 			value = sym->st_value;
2723 		}
2724 	}
2725 	return (-(TLSSTATOFF(lmp) - value));
2726 }
2727 
2728 /*
2729  * If the symbol is not found and the reference was not to a weak symbol, report
2730  * an error.  Weak references may be unresolved.
2731  */
2732 int
2733 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
2734 {
2735 	Lm_list	*lml = LIST(lmp);
2736 
2737 	/*
2738 	 * Under crle(1), relocation failures are ignored.
2739 	 */
2740 	if (lml->lm_flags & LML_FLG_IGNRELERR)
2741 		return (1);
2742 
2743 	/*
2744 	 * Under ldd(1), unresolved references are reported.  However, if the
2745 	 * original reference is EXTERN or PARENT these references are ignored
2746 	 * unless ldd's -p option is in effect.
2747 	 */
2748 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2749 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
2750 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
2751 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
2752 			    demangle(name), NAME(lmp));
2753 		}
2754 		return (1);
2755 	}
2756 
2757 	/*
2758 	 * Otherwise, the unresolved references is fatal.
2759 	 */
2760 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
2761 	    NULL, 0, name));
2762 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
2763 	    demangle(name));
2764 
2765 	return (0);
2766 }
2767 
2768 /*
2769  * Generic relative relocation function.
2770  */
2771 inline static ulong_t
2772 _elf_reloc_relative(ulong_t rbgn, ulong_t base, Rt_map *lmp, APlist **textrel)
2773 {
2774 	mmapobj_result_t	*mpp;
2775 	ulong_t			roffset;
2776 
2777 	roffset = ((M_RELOC *)rbgn)->r_offset;
2778 	roffset += base;
2779 
2780 	/*
2781 	 * If this relocation is against an address that is not associated with
2782 	 * a mapped segment, fall back to the generic relocation loop to
2783 	 * collect the associated error.
2784 	 */
2785 	if ((mpp = find_segment((caddr_t)roffset, lmp)) == NULL)
2786 		return (0);
2787 
2788 	/*
2789 	 * If this relocation is against a segment that does not provide write
2790 	 * access, set the write permission for all non-writable mappings.
2791 	 */
2792 	if (((mpp->mr_prot & PROT_WRITE) == 0) && textrel &&
2793 	    ((set_prot(lmp, mpp, 1) == 0) ||
2794 	    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
2795 		return (0);
2796 
2797 	/*
2798 	 * Perform the actual relocation.  Note, for backward compatibility,
2799 	 * SPARC relocations are added to the offset contents (there was a time
2800 	 * when the offset was used to contain the addend, rather than using
2801 	 * the addend itself).
2802 	 */
2803 #if	defined(__sparc)
2804 	*((ulong_t *)roffset) += base + ((M_RELOC *)rbgn)->r_addend;
2805 #elif	defined(__amd64)
2806 	*((ulong_t *)roffset) = base + ((M_RELOC *)rbgn)->r_addend;
2807 #else
2808 	*((ulong_t *)roffset) += base;
2809 #endif
2810 	return (1);
2811 }
2812 
2813 /*
2814  * When a generic relocation loop realizes that it's dealing with relative
2815  * relocations, but no DT_RELCOUNT .dynamic tag is present, this tighter loop
2816  * is entered as an optimization.
2817  */
2818 ulong_t
2819 elf_reloc_relative(ulong_t rbgn, ulong_t rend, ulong_t rsize, ulong_t base,
2820     Rt_map *lmp, APlist **textrel)
2821 {
2822 	char	rtype;
2823 
2824 	do {
2825 		if (_elf_reloc_relative(rbgn, base, lmp, textrel) == 0)
2826 			break;
2827 
2828 		rbgn += rsize;
2829 		if (rbgn >= rend)
2830 			break;
2831 
2832 		/*
2833 		 * Make sure the next type is a relative relocation.
2834 		 */
2835 		rtype = ELF_R_TYPE(((M_RELOC *)rbgn)->r_info, M_MACH);
2836 
2837 	} while (rtype == M_R_RELATIVE);
2838 
2839 	return (rbgn);
2840 }
2841 
2842 /*
2843  * This is the tightest loop for RELATIVE relocations for those objects built
2844  * with the DT_RELACOUNT .dynamic entry.
2845  */
2846 ulong_t
2847 elf_reloc_relative_count(ulong_t rbgn, ulong_t rcount, ulong_t rsize,
2848     ulong_t base, Rt_map *lmp, APlist **textrel)
2849 {
2850 	for (; rcount; rcount--) {
2851 		if (_elf_reloc_relative(rbgn, base, lmp, textrel) == 0)
2852 			break;
2853 
2854 		rbgn += rsize;
2855 	}
2856 	return (rbgn);
2857 }
2858