1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the functions responsible for opening the output file 33 * image, associating the appropriate input elf structures with the new image, 34 * and obtaining new elf structures to define the new image. 35 */ 36 #include <stdio.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include <link.h> 40 #include <errno.h> 41 #include <string.h> 42 #include <limits.h> 43 #include <debug.h> 44 #include <unistd.h> 45 #include "msg.h" 46 #include "_libld.h" 47 48 /* 49 * Determine a least common multiplier. Input sections contain an alignment 50 * requirement, which elf_update() uses to insure that the section is aligned 51 * correctly off of the base of the elf image. We must also insure that the 52 * sections mapping is congruent with this alignment requirement. For each 53 * input section associated with a loadable segment determine whether the 54 * segments alignment must be adjusted to compensate for a sections alignment 55 * requirements. 56 */ 57 Xword 58 ld_lcm(Xword a, Xword b) 59 { 60 Xword _r, _a, _b; 61 62 if ((_a = a) == 0) 63 return (b); 64 if ((_b = b) == 0) 65 return (a); 66 67 if (_a > _b) 68 _a = b, _b = a; 69 while ((_r = _b % _a) != 0) 70 _b = _a, _a = _r; 71 return ((a / _a) * b); 72 } 73 74 /* 75 * Open the output file and insure the correct access modes. 76 */ 77 uintptr_t 78 ld_open_outfile(Ofl_desc * ofl) 79 { 80 mode_t mode; 81 struct stat status; 82 83 /* 84 * Determine the required file mode from the type of output file we 85 * are creating. 86 */ 87 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 88 ? 0777 : 0666; 89 90 /* Determine if the output file already exists */ 91 if (stat(ofl->ofl_name, &status) == 0) { 92 if ((status.st_mode & S_IFMT) != S_IFREG) { 93 /* 94 * It is not a regular file, so don't delete it 95 * or allow it to be deleted. This allows root 96 * users to specify /dev/null output file for 97 * verification links. 98 */ 99 ofl->ofl_flags1 |= FLG_OF1_NONREG; 100 } else { 101 /* 102 * It's a regular file, so unlink it. In standard 103 * Unix fashion, the old file will continue to 104 * exist until its link count drops to 0 and no 105 * process has the file open. In the meantime, we 106 * create a new file (inode) under the same name, 107 * available for new use. 108 * 109 * The advantage of this policy is that creating 110 * a new executable or sharable library does not 111 * corrupt existing processes using the old file. 112 * A possible disadvantage is that if the existing 113 * file has a (link_count > 1), the other names will 114 * continue to reference the old inode, thus 115 * breaking the link. 116 * 117 * A subtlety here is that POSIX says we are not 118 * supposed to replace a non-writable file, which 119 * is something that unlink() is happy to do. The 120 * only 100% reliable test against this is to open 121 * the file for non-destructive write access. If the 122 * open succeeds, we are clear to unlink it, and if 123 * not, then the error generated is the error we 124 * need to report. 125 */ 126 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 127 mode)) < 0) { 128 int err = errno; 129 130 if (err != ENOENT) { 131 eprintf(ofl->ofl_lml, ERR_FATAL, 132 MSG_INTL(MSG_SYS_OPEN), 133 ofl->ofl_name, strerror(err)); 134 return (S_ERROR); 135 } 136 } else { 137 (void) close(ofl->ofl_fd); 138 } 139 140 if ((unlink(ofl->ofl_name) == -1) && 141 (errno != ENOENT)) { 142 int err = errno; 143 144 eprintf(ofl->ofl_lml, ERR_FATAL, 145 MSG_INTL(MSG_SYS_UNLINK), 146 ofl->ofl_name, strerror(err)); 147 return (S_ERROR); 148 } 149 } 150 } 151 152 /* 153 * Open (or create) the output file name (ofl_fd acts as a global 154 * flag to ldexit() signifying whether the output file should be 155 * removed or not on error). 156 */ 157 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 158 mode)) < 0) { 159 int err = errno; 160 161 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 162 ofl->ofl_name, strerror(err)); 163 return (S_ERROR); 164 } 165 166 return (1); 167 } 168 169 170 /* 171 * If we are creating a memory model we need to update the present memory image. 172 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 173 * of each section and its associated data buffers. From this information we 174 * can then determine what padding is required. 175 * Two actions are necessary to convert the present disc image into a memory 176 * image: 177 * 178 * o Loadable segments must be padded so that the next segments virtual 179 * address and file offset are the same. 180 * 181 * o NOBITS sections must be converted into allocated, null filled sections. 182 */ 183 static uintptr_t 184 pad_outfile(Ofl_desc *ofl) 185 { 186 Listnode *lnp; 187 off_t offset; 188 Elf_Scn *oscn = 0; 189 Sg_desc *sgp; 190 Ehdr *ehdr; 191 192 /* 193 * Update all the elf structures. This will assign offsets to the 194 * section headers and data buffers as they relate to the new image. 195 */ 196 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 197 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 198 ofl->ofl_name); 199 return (S_ERROR); 200 } 201 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 202 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 203 ofl->ofl_name); 204 return (S_ERROR); 205 } 206 207 /* 208 * Initialize the offset by skipping the Elf header and program 209 * headers. 210 */ 211 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 212 213 /* 214 * Traverse the segment list looking for loadable segments. 215 */ 216 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 217 Phdr *phdr = &(sgp->sg_phdr); 218 Os_desc **ospp, *osp; 219 Aliste off; 220 221 /* 222 * If we've already processed a loadable segment, the `scn' 223 * variable will be initialized to the last section that was 224 * part of that segment. Add sufficient padding to this section 225 * to cause the next segments virtual address and file offset to 226 * be the same. 227 */ 228 if (oscn && (phdr->p_type == PT_LOAD)) { 229 Elf_Data * data; 230 size_t size; 231 232 size = (size_t)(S_ROUND(offset, phdr->p_align) - 233 offset); 234 235 if ((data = elf_newdata(oscn)) == NULL) { 236 eprintf(ofl->ofl_lml, ERR_ELF, 237 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 238 return (S_ERROR); 239 } 240 if ((data->d_buf = libld_calloc(size, 1)) == 0) 241 return (S_ERROR); 242 243 data->d_type = ELF_T_BYTE; 244 data->d_size = size; 245 data->d_align = 1; 246 data->d_version = ofl->ofl_dehdr->e_version; 247 } 248 249 /* 250 * Traverse the output sections for this segment calculating the 251 * offset of each section. Retain the final section descriptor 252 * as this will be where any padding buffer will be added. 253 */ 254 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 255 Shdr *shdr; 256 257 osp = *ospp; 258 shdr = osp->os_shdr; 259 260 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 261 offset += shdr->sh_size; 262 263 /* 264 * If this is a NOBITS output section convert all of 265 * its associated input sections into real, null filled, 266 * data buffers, and change the section to PROGBITS. 267 */ 268 if (shdr->sh_type == SHT_NOBITS) 269 shdr->sh_type = SHT_PROGBITS; 270 } 271 272 /* 273 * If this is a loadable segment retain the last output section 274 * descriptor. This acts both as a flag that a loadable 275 * segment has been seen, and as the segment to which a padding 276 * buffer will be added. 277 */ 278 if (phdr->p_type == PT_LOAD) 279 oscn = osp->os_scn; 280 } 281 return (1); 282 } 283 284 /* 285 * Create an output section. The first instance of an input section triggers 286 * the creation of a new output section. 287 */ 288 static uintptr_t 289 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 290 Boolean fixalign) 291 { 292 Elf_Scn *scn; 293 Shdr *shdr; 294 295 /* 296 * Get a section descriptor for the section. 297 */ 298 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 299 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 300 ofl->ofl_name); 301 return (S_ERROR); 302 } 303 osp->os_scn = scn; 304 305 /* 306 * Get a new section header table entry and copy the pertinent 307 * information from the in-core descriptor. 308 */ 309 if ((shdr = elf_getshdr(scn)) == NULL) { 310 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 311 ofl->ofl_name); 312 return (S_ERROR); 313 } 314 *shdr = *(osp->os_shdr); 315 osp->os_shdr = shdr; 316 317 /* 318 * If this is the first section within a loadable segment, and the 319 * alignment needs to be updated, record this section. 320 */ 321 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 322 sgp->sg_fscn = scn; 323 324 /* 325 * Remove any SHF_ORDERED or SHF_LINK_ORDER flags. If we are not 326 * building a relocatable object, remove any SHF_GROUP flag. 327 */ 328 osp->os_shdr->sh_flags &= ~ALL_SHF_ORDER; 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~SHF_GROUP; 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (list_appendc(&ofl->ofl_ostlsseg, osp) == 0)) 341 return (S_ERROR); 342 343 return (0); 344 } 345 346 /* 347 * Create the elf structures that allow the input data to be associated with the 348 * new image: 349 * 350 * o define the new elf image using elf_begin(), 351 * 352 * o obtain an elf header for the image, 353 * 354 * o traverse the input segments and create a program header array 355 * to define the required segments, 356 * 357 * o traverse the output sections for each segment assigning a new 358 * section descriptor and section header for each, 359 * 360 * o traverse the input sections associated with each output section 361 * and assign a new data descriptor to each (each output section 362 * becomes a linked list of input data buffers). 363 */ 364 uintptr_t 365 ld_create_outfile(Ofl_desc *ofl) 366 { 367 Listnode *lnp1; 368 Sg_desc *sgp; 369 Os_desc **ospp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste off; 373 Word flags = ofl->ofl_flags; 374 Word flags1 = ofl->ofl_flags1; 375 size_t ndx = 0, fndx = 0; 376 Elf_Cmd cmd; 377 Boolean fixalign = FALSE; 378 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 379 380 /* 381 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 382 * we need to do alignment adjustment. 383 */ 384 if ((flags1 & FLG_OF1_VADDR) || 385 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 386 fixalign = TRUE; 387 } 388 389 if (flags1 & FLG_OF1_MEMORY) { 390 cmd = ELF_C_IMAGE; 391 fd = 0; 392 } else { 393 fd = ofl->ofl_fd; 394 cmd = ELF_C_WRITE; 395 } 396 397 /* 398 * If there are any ordered sections, handle them here. 399 */ 400 if ((ofl->ofl_ordered.head != NULL) && 401 (ld_sort_ordered(ofl) == S_ERROR)) 402 return (S_ERROR); 403 404 /* 405 * Tell the access library about our new temporary file. 406 */ 407 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 408 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 409 ofl->ofl_name); 410 return (S_ERROR); 411 } 412 413 /* 414 * Obtain a new Elf header. 415 */ 416 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 417 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 418 ofl->ofl_name); 419 return (S_ERROR); 420 } 421 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 422 423 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 424 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 425 int frst = 0; 426 Phdr *phdr = &(sgp->sg_phdr); 427 Word ptype = phdr->p_type; 428 429 /* 430 * Count the number of segments that will go in the program 431 * header table. If a segment is empty, ignore it. 432 */ 433 if (!(flags & FLG_OF_RELOBJ)) { 434 if (ptype == PT_PHDR) { 435 /* 436 * If we are generating an interp section (and 437 * thus an associated PT_INTERP program header 438 * entry) also generate a PT_PHDR program header 439 * entry. This allows the kernel to generate 440 * the appropriate aux vector entries to pass to 441 * the interpreter (refer to exec/elf/elf.c). 442 * Note that if an image was generated with an 443 * interp section, but no associated PT_PHDR 444 * program header entry, the kernel will simply 445 * pass the interpreter an open file descriptor 446 * when the image is executed). 447 */ 448 if (ofl->ofl_osinterp) 449 nseg++; 450 } else if (ptype == PT_INTERP) { 451 if (ofl->ofl_osinterp) 452 nseg++; 453 } else if (ptype == PT_DYNAMIC) { 454 if (flags & FLG_OF_DYNAMIC) 455 nseg++; 456 } else if (ptype == PT_TLS) { 457 if (flags & FLG_OF_TLSPHDR) 458 nseg++; 459 #if (defined(__i386) || defined(__amd64)) && defined(_ELF64) 460 } else if (ptype == PT_SUNW_UNWIND) { 461 if (ofl->ofl_unwindhdr) 462 nseg++; 463 #endif 464 } else if (ptype == PT_SUNWBSS) { 465 if (ofl->ofl_issunwbss) 466 nseg++; 467 } else if (ptype == PT_SUNWSTACK) { 468 nseg++; 469 } else if (ptype == PT_SUNWDTRACE) { 470 if (ofl->ofl_dtracesym) 471 nseg++; 472 } else if (ptype == PT_SUNWCAP) { 473 if (ofl->ofl_oscap) 474 nseg++; 475 } else if ((sgp->sg_osdescs != NULL) || 476 (sgp->sg_flags & FLG_SG_EMPTY)) { 477 if (((sgp->sg_flags & FLG_SG_EMPTY) == 0) && 478 ((sgp->sg_flags & FLG_SG_PHREQ) == 0)) { 479 /* 480 * If this is a segment for which 481 * we are not making a program header, 482 * don't increment nseg 483 */ 484 ptype = (sgp->sg_phdr).p_type = PT_NULL; 485 } else if (ptype != PT_NULL) 486 nseg++; 487 } 488 } 489 490 /* 491 * If the first loadable segment has the ?N flag, 492 * then ?N will be on. 493 */ 494 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 495 ptloadidx++; 496 if (sgp->sg_flags & FLG_SG_NOHDR) { 497 fixalign = TRUE; 498 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 499 } 500 } 501 502 shidx = 0; 503 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 504 Listnode *lnp2; 505 Os_desc *osp = *ospp; 506 507 dataidx = 0; 508 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 509 Elf_Data * data; 510 Ifl_desc * ifl = isp->is_file; 511 512 /* 513 * At this point we know whether a section has 514 * been referenced. If it hasn't, and the whole 515 * file hasn't been referenced (which would have 516 * been caught in ignore_section_processing()), 517 * give a diagnostic (-D unused,detail) or 518 * discard the section if -zignore is in effect. 519 */ 520 if (ifl && 521 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 522 ((ptype == PT_LOAD) && 523 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 524 (isp->is_shdr->sh_size > 0)))) { 525 Lm_list *lml = ofl->ofl_lml; 526 527 if (ifl->ifl_flags & FLG_IF_IGNORE) { 528 isp->is_flags |= FLG_IS_DISCARD; 529 DBG_CALL(Dbg_unused_sec(lml, isp)); 530 continue; 531 } else 532 DBG_CALL(Dbg_unused_sec(lml, isp)); 533 } 534 535 /* 536 * If this section provides no data, and isn't 537 * referenced, then it can be discarded as well. 538 * Note, if this is the first input section 539 * associated to an output section, let it 540 * through, there may be a legitimate reason why 541 * the user wants a null section. Discarding 542 * additional sections is intended to remove the 543 * empty clutter the compilers have a habit of 544 * creating. Don't provide an unused diagnostic 545 * as these sections aren't typically the users 546 * creation. 547 */ 548 if (ifl && dataidx && 549 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 550 (isp->is_shdr->sh_size == 0)) { 551 isp->is_flags |= FLG_IS_DISCARD; 552 continue; 553 } 554 555 /* 556 * The first input section triggers the creation 557 * of the associated output section. 558 */ 559 if (osp->os_scn == NULL) { 560 shidx++; 561 562 if (create_outsec(ofl, sgp, osp, ptype, 563 shidx, fixalign) == S_ERROR) 564 return (S_ERROR); 565 } 566 567 dataidx++; 568 569 /* 570 * Create a new output data buffer for each 571 * input data buffer, thus linking the new 572 * buffers to the new elf output structures. 573 * Simply make the new data buffers point to 574 * the old data. 575 */ 576 if ((data = elf_newdata(osp->os_scn)) == NULL) { 577 eprintf(ofl->ofl_lml, ERR_ELF, 578 MSG_INTL(MSG_ELF_NEWDATA), 579 ofl->ofl_name); 580 return (S_ERROR); 581 } 582 *data = *(isp->is_indata); 583 isp->is_indata = data; 584 585 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 586 (shidx == 1) && (dataidx == 1)) 587 data->d_align = sgp->sg_addralign; 588 589 /* 590 * Save the first TLS data buffer, as this is 591 * the start of the TLS segment. Realign this 592 * buffer based on the alignment requirements 593 * of all the TLS input sections. 594 */ 595 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 596 (isp->is_shdr->sh_flags & SHF_TLS)) { 597 if (tlsdata == 0) 598 tlsdata = data; 599 tlsdata->d_align = 600 ld_lcm(tlsdata->d_align, 601 isp->is_shdr->sh_addralign); 602 } 603 604 #if defined(_ELF64) && defined(_ILP32) 605 /* 606 * 4106312, the 32-bit ELF64 version of ld 607 * needs to be able to create large .bss 608 * sections. The d_size member of Elf_Data 609 * only allows 32-bits in _ILP32, so we build 610 * multiple data-items that each fit into 32- 611 * bits. libelf (4106398) can summ these up 612 * into a 64-bit quantity. This only works 613 * for NOBITS sections which don't have any 614 * real data to maintain and don't require 615 * large file support. 616 */ 617 if (isp->is_shdr->sh_type == SHT_NOBITS) { 618 Xword sz = isp->is_shdr->sh_size; 619 620 while (sz >> 32) { 621 data->d_size = SIZE_MAX; 622 sz -= (Xword)SIZE_MAX; 623 624 data = elf_newdata(osp->os_scn); 625 if (data == NULL) 626 return (S_ERROR); 627 } 628 data->d_size = (size_t)sz; 629 } 630 #endif 631 632 /* 633 * If this segment requires rounding realign the 634 * first data buffer associated with the first 635 * section. 636 */ 637 if ((frst++ == 0) && 638 (sgp->sg_flags & FLG_SG_ROUND)) { 639 Xword align; 640 641 if (data->d_align) 642 align = (Xword) 643 S_ROUND(data->d_align, 644 sgp->sg_round); 645 else 646 align = sgp->sg_round; 647 648 data->d_align = (size_t)align; 649 } 650 } 651 652 /* 653 * Clear the szoutrels counter so that it can be used 654 * again in the building of relocs. See machrel.c. 655 */ 656 osp->os_szoutrels = 0; 657 } 658 } 659 660 /* 661 * Build an empty PHDR. 662 */ 663 if (nseg) { 664 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 665 nseg)) == NULL) { 666 eprintf(ofl->ofl_lml, ERR_ELF, 667 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 668 return (S_ERROR); 669 } 670 } 671 672 /* 673 * If we need to generate a memory model, pad the image. 674 */ 675 if (flags1 & FLG_OF1_MEMORY) { 676 if (pad_outfile(ofl) == S_ERROR) 677 return (S_ERROR); 678 } 679 680 /* 681 * After all the basic input file processing, all data pointers are 682 * referencing two types of memory: 683 * 684 * o allocated memory, ie. elf structures, internal link 685 * editor structures, and any new sections that have been 686 * created. 687 * 688 * o original input file mmap'ed memory, ie. the actual data 689 * sections of the input file images. 690 * 691 * Up until now, the only memory modifications have been carried out on 692 * the allocated memory. Before carrying out any relocations, write the 693 * new output file image and reassign any necessary data pointers to the 694 * output files memory image. This insures that any relocation 695 * modifications are made to the output file image and not to the input 696 * file image, thus preventing the creation of dirty pages and reducing 697 * the overall swap space requirement. 698 * 699 * Write out the elf structure so as to create the new file image. 700 */ 701 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 702 ELF_C_WRIMAGE)) == (size_t)-1) { 703 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 704 ofl->ofl_name); 705 return (S_ERROR); 706 } 707 708 /* 709 * Initialize the true `ofl' information with the memory images address 710 * and size. This will be used to write() out the image once any 711 * relocation processing has been completed. We also use this image 712 * information to setup a new Elf descriptor, which is used to obtain 713 * all the necessary elf pointers within the new output image. 714 */ 715 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 716 ofl->ofl_welf)) == NULL) { 717 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 718 ofl->ofl_name); 719 return (S_ERROR); 720 } 721 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 722 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 723 ofl->ofl_name); 724 return (S_ERROR); 725 } 726 if (!(flags & FLG_OF_RELOBJ)) 727 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 728 eprintf(ofl->ofl_lml, ERR_ELF, 729 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 730 return (S_ERROR); 731 } 732 733 /* 734 * Reinitialize the section descriptors, section headers and obtain new 735 * output data buffer pointers (these will be used to perform any 736 * relocations). 737 */ 738 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 739 Phdr *_phdr = &(sgp->sg_phdr); 740 Os_desc **ospp; 741 Aliste off; 742 Boolean recorded = FALSE; 743 744 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 745 Os_desc *osp = *ospp; 746 747 /* 748 * Make sure that an output section was originally 749 * created. Input sections that had been marked as 750 * discarded may have made an output section 751 * unnecessary. Remove this alist entry so that 752 * future output section descriptor processing doesn't 753 * have to compensate for this empty section. 754 */ 755 if (osp->os_scn == NULL) { 756 (void) alist_delete(sgp->sg_osdescs, 0, &off); 757 continue; 758 } 759 760 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 761 NULL) { 762 eprintf(ofl->ofl_lml, ERR_ELF, 763 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 764 ndx); 765 return (S_ERROR); 766 } 767 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 768 NULL) { 769 eprintf(ofl->ofl_lml, ERR_ELF, 770 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 771 return (S_ERROR); 772 } 773 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 774 (recorded == FALSE)) { 775 Elf_Scn *scn; 776 777 scn = sgp->sg_fscn; 778 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 779 eprintf(ofl->ofl_lml, ERR_ELF, 780 MSG_INTL(MSG_ELF_NDXSCN), 781 ofl->ofl_name); 782 return (S_ERROR); 783 } 784 if (ndx == fndx) { 785 sgp->sg_fscn = osp->os_scn; 786 recorded = TRUE; 787 } 788 } 789 790 if ((osp->os_outdata = 791 elf_getdata(osp->os_scn, NULL)) == NULL) { 792 eprintf(ofl->ofl_lml, ERR_ELF, 793 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 794 return (S_ERROR); 795 } 796 797 /* 798 * If this section is part of a loadable segment insure 799 * that the segments alignment is appropriate. 800 */ 801 if (_phdr->p_type == PT_LOAD) { 802 _phdr->p_align = ld_lcm(_phdr->p_align, 803 osp->os_shdr->sh_addralign); 804 } 805 } 806 } 807 return (1); 808 } 809