xref: /titanic_52/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision 25345e466695fbe736faa53b8f3413d8e8f81981)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<stddef.h>
31 #include	<sys/elf_386.h>
32 #include	<sys/elf_amd64.h>
33 #include	<sys/elf_SPARC.h>
34 #include	<_libelf.h>
35 #include	<dwarf.h>
36 #include	<stdio.h>
37 #include	<unistd.h>
38 #include	<errno.h>
39 #include	<strings.h>
40 #include	<debug.h>
41 #include	<conv.h>
42 #include	<msg.h>
43 #include	<_elfdump.h>
44 
45 
46 /*
47  * VERSYM_STATE is used to maintain information about the VERSYM section
48  * in the object being analyzed. It is filled in by versions(), and used
49  * by init_symtbl_state() when displaying symbol information.
50  *
51  * There are three forms of symbol versioning known to us:
52  *
53  * 1) The original form, introduced with Solaris 2.5, in which
54  *	the Versym contains indexes to Verdef records, and the
55  *	Versym values for UNDEF symbols resolved by other objects
56  *	are all set to 0.
57  * 2) The GNU form, which is backward compatible with the original
58  *	Solaris form, but which adds several extensions:
59  *	- The Versym also contains indexes to Verneed records, recording
60  *		which object/version contributed the external symbol at
61  *		link time. These indexes start with the next value following
62  *		the final Verdef index. The index is written to the previously
63  *		reserved vna_other field of the ELF Vernaux structure.
64  *	- The top bit of the Versym value is no longer part of the index,
65  *		but is used as a "hidden bit" to prevent binding to the symbol.
66  *	- Multiple implementations of a given symbol, contained in varying
67  *		versions are allowed, using special assembler pseudo ops,
68  *		and encoded in the symbol name using '@' characters.
69  * 3) Modified Solaris form, in which we adopt the first GNU extension
70  *	(Versym indexes to Verneed records), but not the others.
71  *
72  * elfdump can handle any of these cases. The presence of a DT_VERSYM
73  * dynamic element indicates a full GNU object. An object that lacks
74  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
75  * structures is a modified Solaris object. An object that has neither of
76  * these uses the original form.
77  *
78  * max_verndx contains the largest version index that can appear
79  * in a Versym entry. This can never be less than 1: In the case where
80  * there is no verdef/verneed sections, the [0] index is reserved
81  * for local symbols, and the [1] index for globals. If the original
82  * Solaris versioning rules are in effect and there is a verdef section,
83  * then max_verndex is the number of defined versions. If one of the
84  * other versioning forms is in effect, then:
85  *	1) If there is no verneed section, it is the same as for
86  *		original Solaris versioning.
87  *	2) If there is a verneed section, the vna_other field of the
88  *		Vernaux structs contain versions, and max_verndx is the
89  *		largest such index.
90  *
91  * If gnu_full is True, the object uses the full GNU form of versioning.
92  * The value of the gnu_full field is based on the presence of
93  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
94  * Solaris ld does not.
95  *
96  * The gnu_needed field is True if the Versym contains indexes to
97  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
98  * section. If gnu_full is True, then gnu_needed will always be true.
99  * However, gnu_needed can be true without gnu_full. This is the modified
100  * Solaris form.
101  */
102 typedef struct {
103 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
104 	Versym	*data;		/* Pointer to versym array */
105 	int	gnu_full;	/* True if object uses GNU versioning rules */
106 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
107 				/*	VERNEED (subset of gnu_full) */
108 	int	max_verndx;	/* largest versym index value */
109 } VERSYM_STATE;
110 
111 /*
112  * SYMTBL_STATE is used to maintain information about a single symbol
113  * table section, for use by the routines that display symbol information.
114  */
115 typedef struct {
116 	const char	*file;		/* Name of file */
117 	Ehdr		*ehdr;		/* ELF header for file */
118 	Cache		*cache;		/* Cache of all section headers */
119 	uchar_t		osabi;		/* OSABI to use */
120 	Word		shnum;		/* # of sections in cache */
121 	Cache		*seccache;	/* Cache of symbol table section hdr */
122 	Word		secndx;		/* Index of symbol table section hdr */
123 	const char	*secname;	/* Name of section */
124 	uint_t		flags;		/* Command line option flags */
125 	struct {			/* Extended section index data */
126 		int	checked;	/* TRUE if already checked for shxndx */
127 		Word	*data;		/* NULL, or extended section index */
128 					/*	used for symbol table entries */
129 		uint_t	n;		/* # items in shxndx.data */
130 	} shxndx;
131 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
132 	Sym 		*sym;		/* Array of symbols */
133 	Word		symn;		/* # of symbols */
134 } SYMTBL_STATE;
135 
136 /*
137  * A variable of this type is used to track information related to
138  * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
139  */
140 typedef struct {
141 	Word		frame_cnt;	/* # .eh_frame sections seen */
142 	Word		frame_ndx;	/* Section index of 1st .eh_frame */
143 	Word		hdr_cnt;	/* # .eh_frame_hdr sections seen */
144 	Word		hdr_ndx;	/* Section index of 1st .eh_frame_hdr */
145 	uint64_t	frame_ptr;	/* Value of FramePtr field from first */
146 					/*	.eh_frame_hdr section */
147 	uint64_t	frame_base;	/* Data addr of 1st .eh_frame  */
148 } gnu_eh_state_t;
149 
150 /*
151  * C++ .exception_ranges entries make use of the signed ptrdiff_t
152  * type to record self-relative pointer values. We need a type
153  * for this that is matched to the ELFCLASS being processed.
154  */
155 #if	defined(_ELF64)
156 	typedef int64_t PTRDIFF_T;
157 #else
158 	typedef int32_t PTRDIFF_T;
159 #endif
160 
161 /*
162  * The Sun C++ ABI uses this struct to define each .exception_ranges
163  * entry. From the ABI:
164  *
165  * The field ret_addr is a self relative pointer to the start of the address
166  * range. The name was chosen because in the current implementation the range
167  * typically starts at the return address for a call site.
168  *
169  * The field length is the difference, in bytes, between the pc of the last
170  * instruction covered by the exception range and the first. When only a
171  * single call site is represented without optimization, this will equal zero.
172  *
173  * The field handler_addr is a relative pointer which stores the difference
174  * between the start of the exception range and the address of all code to
175  * catch exceptions and perform the cleanup for stack unwinding.
176  *
177  * The field type_block is a relative pointer which stores the difference
178  * between the start of the exception range and the address of an array used
179  * for storing a list of the types of exceptions which can be caught within
180  * the exception range.
181  */
182 typedef struct {
183 	PTRDIFF_T	ret_addr;
184 	Xword		length;
185 	PTRDIFF_T	handler_addr;
186 	PTRDIFF_T	type_block;
187 	Xword		reserved;
188 } exception_range_entry;
189 
190 /*
191  * Focal point for verifying symbol names.
192  */
193 static const char *
194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
195 {
196 	/*
197 	 * If an error in this routine is due to a property of the string
198 	 * section, as opposed to a bad offset into the section (a property of
199 	 * the referencing section), then we will detect the same error on
200 	 * every call involving those sections. We use these static variables
201 	 * to retain the information needed to only issue each such error once.
202 	 */
203 	static Cache	*last_refsec;	/* Last referencing section seen */
204 	static int	strsec_err;	/* True if error issued */
205 
206 	const char	*strs;
207 	Word		strn;
208 
209 	if (strsec->c_data == NULL)
210 		return (NULL);
211 
212 	strs = (char *)strsec->c_data->d_buf;
213 	strn = strsec->c_data->d_size;
214 
215 	/*
216 	 * We only print a diagnostic regarding a bad string table once per
217 	 * input section being processed. If the refsec has changed, reset
218 	 * our retained error state.
219 	 */
220 	if (last_refsec != refsec) {
221 		last_refsec = refsec;
222 		strsec_err = 0;
223 	}
224 
225 	/* Verify that strsec really is a string table */
226 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
227 		if (!strsec_err) {
228 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
229 			    file, strsec->c_ndx, refsec->c_ndx);
230 			strsec_err = 1;
231 		}
232 		return (MSG_INTL(MSG_STR_UNKNOWN));
233 	}
234 
235 	/*
236 	 * Is the string table offset within range of the available strings?
237 	 */
238 	if (name >= strn) {
239 		/*
240 		 * Do we have a empty string table?
241 		 */
242 		if (strs == NULL) {
243 			if (!strsec_err) {
244 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 				    file, strsec->c_name);
246 				strsec_err = 1;
247 			}
248 		} else {
249 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
250 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
251 			    EC_WORD(name), EC_WORD(strn - 1));
252 		}
253 
254 		/*
255 		 * Return the empty string so that the calling function can
256 		 * continue it's output diagnostics.
257 		 */
258 		return (MSG_INTL(MSG_STR_UNKNOWN));
259 	}
260 	return (strs + name);
261 }
262 
263 /*
264  * Relocations can reference section symbols and standard symbols.  If the
265  * former, establish the section name.
266  */
267 static const char *
268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
269     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
270 {
271 	Sym		*sym;
272 	const char	*name;
273 
274 	if (symndx >= symnum) {
275 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
276 		    file, EC_WORD(symndx), EC_WORD(relndx));
277 		return (MSG_INTL(MSG_STR_UNKNOWN));
278 	}
279 
280 	sym = (Sym *)(syms + symndx);
281 	name = string(csec, symndx, strsec, file, sym->st_name);
282 
283 	/*
284 	 * If the symbol represents a section offset construct an appropriate
285 	 * string.  Note, although section symbol table entries typically have
286 	 * a NULL name pointer, entries do exist that point into the string
287 	 * table to their own NULL strings.
288 	 */
289 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
290 	    ((sym->st_name == 0) || (*name == '\0'))) {
291 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
292 		    cache[sym->st_shndx].c_name);
293 		return ((const char *)secstr);
294 	}
295 
296 	return (name);
297 }
298 
299 /*
300  * Focal point for establishing a string table section.  Data such as the
301  * dynamic information simply points to a string table.  Data such as
302  * relocations, reference a symbol table, which in turn is associated with a
303  * string table.
304  */
305 static int
306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
307     Word *symnum, Cache **symsec, Cache **strsec)
308 {
309 	Shdr	*shdr = cache[ndx].c_shdr;
310 
311 	if (symtab) {
312 		/*
313 		 * Validate the symbol table section.
314 		 */
315 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
316 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
317 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
318 			return (0);
319 		}
320 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
321 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
322 			    file, cache[ndx].c_name);
323 			return (0);
324 		}
325 
326 		/*
327 		 * Obtain, and verify the symbol table data.
328 		 */
329 		if ((cache[ndx].c_data == NULL) ||
330 		    (cache[ndx].c_data->d_buf == NULL)) {
331 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
332 			    file, cache[ndx].c_name);
333 			return (0);
334 		}
335 
336 		/*
337 		 * Establish the string table index.
338 		 */
339 		ndx = shdr->sh_link;
340 		shdr = cache[ndx].c_shdr;
341 
342 		/*
343 		 * Return symbol table information.
344 		 */
345 		if (symnum)
346 			*symnum = (shdr->sh_size / shdr->sh_entsize);
347 		if (symsec)
348 			*symsec = &cache[ndx];
349 	}
350 
351 	/*
352 	 * Validate the associated string table section.
353 	 */
354 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
355 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
356 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
357 		return (0);
358 	}
359 
360 	if (strsec)
361 		*strsec = &cache[shdr->sh_link];
362 
363 	return (1);
364 }
365 
366 /*
367  * Lookup a symbol and set Sym accordingly.
368  *
369  * entry:
370  *	name - Name of symbol to lookup
371  *	cache - Cache of all section headers
372  *	shnum - # of sections in cache
373  *	sym - Address of pointer to receive symbol
374  *	target - NULL, or section to which the symbol must be associated.
375  *	symtab - Symbol table to search for symbol
376  *	file - Name of file
377  *
378  * exit:
379  *	If the symbol is found, *sym is set to reference it, and True is
380  *	returned. If target is non-NULL, the symbol must reference the given
381  *	section --- otherwise the section is not checked.
382  *
383  *	If no symbol is found, False is returned.
384  */
385 static int
386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
387     Cache *target, Cache *symtab, const char *file)
388 {
389 	Shdr	*shdr;
390 	Word	symn, cnt;
391 	Sym	*syms;
392 
393 	if (symtab == 0)
394 		return (0);
395 
396 	shdr = symtab->c_shdr;
397 
398 	/*
399 	 * Determine the symbol data and number.
400 	 */
401 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
402 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
403 		    file, symtab->c_name);
404 		return (0);
405 	}
406 	if (symtab->c_data == NULL)
407 		return (0);
408 
409 	/* LINTED */
410 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
411 	syms = (Sym *)symtab->c_data->d_buf;
412 
413 	/*
414 	 * Get the associated string table section.
415 	 */
416 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
417 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
418 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
419 		return (0);
420 	}
421 
422 	/*
423 	 * Loop through the symbol table to find a match.
424 	 */
425 	*sym = NULL;
426 	for (cnt = 0; cnt < symn; syms++, cnt++) {
427 		const char	*symname;
428 
429 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
430 		    syms->st_name);
431 
432 		if (symname && (strcmp(name, symname) == 0) &&
433 		    ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
434 			/*
435 			 * It is possible, though rare, for a local and
436 			 * global symbol of the same name to exist, each
437 			 * contributed by a different input object. If the
438 			 * symbol just found is local, remember it, but
439 			 * continue looking.
440 			 */
441 			*sym = syms;
442 			if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
443 				break;
444 		}
445 	}
446 
447 	return (*sym != NULL);
448 }
449 
450 /*
451  * Print section headers.
452  */
453 static void
454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
455 {
456 	size_t	seccnt;
457 
458 	for (seccnt = 1; seccnt < shnum; seccnt++) {
459 		Cache		*_cache = &cache[seccnt];
460 		Shdr		*shdr = _cache->c_shdr;
461 		const char	*secname = _cache->c_name;
462 
463 		/*
464 		 * Although numerous section header entries can be zero, it's
465 		 * usually a sign of trouble if the type is zero.
466 		 */
467 		if (shdr->sh_type == 0) {
468 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
469 			    file, secname, EC_WORD(shdr->sh_type));
470 		}
471 
472 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
473 			continue;
474 
475 		/*
476 		 * Identify any sections that are suspicious.  A .got section
477 		 * shouldn't exist in a relocatable object.
478 		 */
479 		if (ehdr->e_type == ET_REL) {
480 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
481 			    MSG_ELF_GOT_SIZE) == 0) {
482 				(void) fprintf(stderr,
483 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
484 				    secname);
485 			}
486 		}
487 
488 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
489 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
490 		Elf_shdr(0, osabi, ehdr->e_machine, shdr);
491 	}
492 }
493 
494 /*
495  * Obtain a specified Phdr entry.
496  */
497 static Phdr *
498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
499 {
500 	Word	cnt, tcnt;
501 	Phdr	*phdr;
502 
503 	if ((phdr = elf_getphdr(elf)) == NULL) {
504 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
505 		return (NULL);
506 	}
507 
508 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
509 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
510 			if (phdr->p_type == type_arr[tcnt])
511 				return (phdr);
512 		}
513 	}
514 	return (NULL);
515 }
516 
517 /*
518  * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
519  * sections.
520  *
521  * entry:
522  *	cache - Cache of all section headers
523  *	shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
524  *	shnum - Total number of sections which exist
525  *	uphdr - NULL, or unwind program header associated with
526  *		the .eh_frame_hdr section.
527  *	ehdr - ELF header for file
528  *	eh_state - Data used across calls to this routine. The
529  *		caller should zero it before the first call, and
530  *		pass it on every call.
531  *	osabi - OSABI to use in displaying information
532  *	file - Name of file
533  *	flags - Command line option flags
534  */
535 static void
536 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
537     gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
538 {
539 #if	defined(_ELF64)
540 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
541 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
542 #else
543 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
544 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
545 #endif
546 
547 	Cache			*_cache = &cache[shndx];
548 	Shdr			*shdr = _cache->c_shdr;
549 	uchar_t			*data = (uchar_t *)(_cache->c_data->d_buf);
550 	size_t			datasize = _cache->c_data->d_size;
551 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
552 	uint64_t		ndx, frame_ptr, fde_cnt, tabndx;
553 	uint_t			vers, frame_ptr_enc, fde_cnt_enc, table_enc;
554 	uint64_t		initloc, initloc0;
555 	uint64_t		gotaddr = 0;
556 	int			cnt;
557 
558 	for (cnt = 1; cnt < shnum; cnt++) {
559 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
560 		    MSG_ELF_GOT_SIZE) == 0) {
561 			gotaddr = cache[cnt].c_shdr->sh_addr;
562 			break;
563 		}
564 	}
565 
566 	/*
567 	 * Is this a .eh_frame_hdr?
568 	 */
569 	if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
570 	    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
571 	    MSG_SCN_FRMHDR_SIZE) == 0)) {
572 		/*
573 		 * There can only be a single .eh_frame_hdr.
574 		 * Flag duplicates.
575 		 */
576 		if (++eh_state->hdr_cnt > 1)
577 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
578 			    file, EC_WORD(shndx), _cache->c_name);
579 
580 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
581 		ndx = 0;
582 
583 		vers = data[ndx++];
584 		frame_ptr_enc = data[ndx++];
585 		fde_cnt_enc = data[ndx++];
586 		table_enc = data[ndx++];
587 
588 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
589 
590 		frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
591 		    ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
592 		if (eh_state->hdr_cnt == 1) {
593 			eh_state->hdr_ndx = shndx;
594 			eh_state->frame_ptr = frame_ptr;
595 		}
596 
597 		dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
598 		    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
599 		    EC_XWORD(frame_ptr));
600 
601 		fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
602 		    ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
603 
604 		dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
605 		    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
606 		    EC_XWORD(fde_cnt));
607 		dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
608 		    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
609 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
610 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
611 
612 		for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
613 			initloc = dwarf_ehe_extract(data, &ndx, table_enc,
614 			    ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
615 			/*LINTED:E_VAR_USED_BEFORE_SET*/
616 			if ((tabndx != 0) && (initloc0 > initloc))
617 				(void) fprintf(stderr,
618 				    MSG_INTL(MSG_ERR_BADSORT), file,
619 				    _cache->c_name, EC_WORD(tabndx));
620 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
621 			    EC_XWORD(initloc),
622 			    EC_XWORD(dwarf_ehe_extract(data, &ndx,
623 			    table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
624 			    ndx, gotaddr)));
625 			initloc0 = initloc;
626 		}
627 	} else {		/* Display the .eh_frame section */
628 		eh_state->frame_cnt++;
629 		if (eh_state->frame_cnt == 1) {
630 			eh_state->frame_ndx = shndx;
631 			eh_state->frame_base = shdr->sh_addr;
632 		} else if ((eh_state->frame_cnt >  1) &&
633 		    (ehdr->e_type != ET_REL)) {
634 			Conv_inv_buf_t	inv_buf;
635 
636 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
637 			    file, EC_WORD(shndx), _cache->c_name,
638 			    conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
639 		}
640 		dump_eh_frame(data, datasize, shdr->sh_addr,
641 		    ehdr->e_machine, ehdr->e_ident, gotaddr);
642 	}
643 
644 	/*
645 	 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
646 	 * compare the header frame_ptr to the address of the actual frame
647 	 * section to ensure the link-editor got this right.  Note, this
648 	 * diagnostic is only produced when unwind information is explicitly
649 	 * asked for, as shared objects built with an older ld(1) may reveal
650 	 * this inconsistency.  Although an inconsistency, it doesn't seem to
651 	 * have any adverse effect on existing tools.
652 	 */
653 	if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
654 	    (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
655 	    (eh_state->frame_ptr != eh_state->frame_base))
656 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
657 		    file, EC_WORD(eh_state->hdr_ndx),
658 		    cache[eh_state->hdr_ndx].c_name,
659 		    EC_XWORD(eh_state->frame_ptr),
660 		    EC_WORD(eh_state->frame_ndx),
661 		    cache[eh_state->frame_ndx].c_name,
662 		    EC_XWORD(eh_state->frame_base));
663 #undef MSG_UNW_BINSRTAB2
664 #undef MSG_UNW_BINSRTABENT
665 }
666 
667 /*
668  * Convert a self relative pointer into an address. A self relative
669  * pointer adds the address where the pointer resides to the offset
670  * contained in the pointer. The benefit is that the value of the
671  * pointer does not require relocation.
672  *
673  * entry:
674  *	base_addr - Address of the pointer.
675  *	delta - Offset relative to base_addr giving desired address
676  *
677  * exit:
678  *	The computed address is returned.
679  *
680  * note:
681  *	base_addr is an unsigned value, while ret_addr is signed. This routine
682  *	used explicit testing and casting to explicitly control type
683  *	conversion, and ensure that we handle the maximum possible range.
684  */
685 static Addr
686 srelptr(Addr base_addr, PTRDIFF_T delta)
687 {
688 	if (delta < 0)
689 		return (base_addr - (Addr) (-delta));
690 
691 	return (base_addr + (Addr) delta);
692 }
693 
694 /*
695  * Byte swap a PTRDIFF_T value.
696  */
697 static PTRDIFF_T
698 swap_ptrdiff(PTRDIFF_T value)
699 {
700 	PTRDIFF_T r;
701 	uchar_t	*dst = (uchar_t *)&r;
702 	uchar_t	*src = (uchar_t *)&value;
703 
704 	UL_ASSIGN_BSWAP_XWORD(dst, src);
705 	return (r);
706 }
707 
708 /*
709  * Display exception_range_entry items from the .exception_ranges section
710  * of a Sun C++ object.
711  */
712 static void
713 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
714 {
715 	/*
716 	 * Translate a PTRDIFF_T self-relative address field of
717 	 * an exception_range_entry struct into an address.
718 	 *
719 	 * entry:
720 	 *	exc_addr - Address of base of exception_range_entry struct
721 	 *	cur_ent - Pointer to data in the struct to be translated
722 	 *
723 	 *	_f - Field of struct to be translated
724 	 */
725 #define	SRELPTR(_f) \
726 	srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
727 
728 #if	defined(_ELF64)
729 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_64
730 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_64
731 #else
732 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_32
733 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_32
734 #endif
735 
736 	exception_range_entry	scratch, *ent, *cur_ent = &scratch;
737 	char			index[MAXNDXSIZE];
738 	Word			i, nelts;
739 	Addr			addr, addr0, offset = 0;
740 	Addr			exc_addr = _cache->c_shdr->sh_addr;
741 
742 	dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
743 	ent = (exception_range_entry *)(_cache->c_data->d_buf);
744 	nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
745 
746 	for (i = 0; i < nelts; i++, ent++) {
747 		if (do_swap) {
748 			/*
749 			 * Copy byte swapped values into the scratch buffer.
750 			 * The reserved field is not used, so we skip it.
751 			 */
752 			scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
753 			scratch.length = BSWAP_XWORD(ent->length);
754 			scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
755 			scratch.type_block = swap_ptrdiff(ent->type_block);
756 		} else {
757 			cur_ent = ent;
758 		}
759 
760 		/*
761 		 * The table is required to be sorted by the address
762 		 * derived from ret_addr, to allow binary searching. Ensure
763 		 * that addresses grow monotonically.
764 		 */
765 		addr = SRELPTR(ret_addr);
766 		/*LINTED:E_VAR_USED_BEFORE_SET*/
767 		if ((i != 0) && (addr0 > addr))
768 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
769 			    file, _cache->c_name, EC_WORD(i));
770 
771 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
772 		    EC_XWORD(i));
773 		dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
774 		    EC_ADDR(addr), EC_ADDR(cur_ent->length),
775 		    EC_ADDR(SRELPTR(handler_addr)),
776 		    EC_ADDR(SRELPTR(type_block)));
777 
778 		addr0 = addr;
779 		exc_addr += sizeof (exception_range_entry);
780 		offset += sizeof (exception_range_entry);
781 	}
782 
783 #undef SRELPTR
784 #undef MSG_EXR_TITLE
785 #undef MSG_EXR_ENTRY
786 }
787 
788 /*
789  * Display information from unwind/exception sections:
790  *
791  * -	GNU/amd64 .eh_frame and .eh_frame_hdr
792  * -	Sun C++ .exception_ranges
793  *
794  */
795 static void
796 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
797     const char *file, Elf *elf, uint_t flags)
798 {
799 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
800 
801 	Word			cnt;
802 	Phdr			*uphdr = NULL;
803 	gnu_eh_state_t		eh_state;
804 
805 	/*
806 	 * Historical background: .eh_frame and .eh_frame_hdr sections
807 	 * come from the GNU compilers (particularly C++), and are used
808 	 * under all architectures. Their format is based on DWARF. When
809 	 * the amd64 ABI was defined, these sections were adopted wholesale
810 	 * from the existing practice.
811 	 *
812 	 * When amd64 support was added to Solaris, support for these
813 	 * sections was added, using the SHT_AMD64_UNWIND section type
814 	 * to identify them. At first, we ignored them in objects for
815 	 * non-amd64 targets, but later broadened our support to include
816 	 * other architectures in order to better support gcc-generated
817 	 * objects.
818 	 *
819 	 * .exception_ranges implement the same basic concepts, but
820 	 * were invented at Sun for the Sun C++ compiler.
821 	 *
822 	 * We match these sections by name, rather than section type,
823 	 * because they can come in as either SHT_AMD64_UNWIND, or as
824 	 * SHT_PROGBITS, and because the type isn't enough to determine
825 	 * how they should be interpreted.
826 	 */
827 	/* Find the program header for .eh_frame_hdr if present */
828 	if (phnum)
829 		uphdr = getphdr(phnum, phdr_types,
830 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
831 
832 	/*
833 	 * eh_state is used to retain data used by unwind_eh_frame()
834 	 * across calls.
835 	 */
836 	bzero(&eh_state, sizeof (eh_state));
837 
838 	for (cnt = 1; cnt < shnum; cnt++) {
839 		Cache		*_cache = &cache[cnt];
840 		Shdr		*shdr = _cache->c_shdr;
841 		int		is_exrange;
842 
843 		/*
844 		 * Skip sections of the wrong type. On amd64, they
845 		 * can be SHT_AMD64_UNWIND. On all platforms, they
846 		 * can be SHT_PROGBITS (including amd64, if using
847 		 * the GNU compilers).
848 		 *
849 		 * Skip anything other than these two types. The name
850 		 * test below will thin out the SHT_PROGBITS that don't apply.
851 		 */
852 		if ((shdr->sh_type != SHT_PROGBITS) &&
853 		    (shdr->sh_type != SHT_AMD64_UNWIND))
854 			continue;
855 
856 		/*
857 		 * Only sections with certain well known names are of interest.
858 		 * These are:
859 		 *
860 		 *	.eh_frame - amd64/GNU-compiler unwind sections
861 		 *	.eh_frame_hdr - Sorted table referencing .eh_frame
862 		 *	.exception_ranges - Sun C++ unwind sections
863 		 *
864 		 * We do a prefix comparison, allowing for naming conventions
865 		 * like .eh_frame.foo, hence the use of strncmp() rather than
866 		 * strcmp(). This means that we only really need to test for
867 		 * .eh_frame, as it's a prefix of .eh_frame_hdr.
868 		 */
869 		is_exrange =  strncmp(_cache->c_name,
870 		    MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
871 		if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
872 		    MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
873 			continue;
874 
875 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
876 			continue;
877 
878 		if (_cache->c_data == NULL)
879 			continue;
880 
881 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
882 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
883 
884 		if (is_exrange)
885 			unwind_exception_ranges(_cache, file,
886 			    _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
887 		else
888 			unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
889 			    &eh_state, osabi, file, flags);
890 	}
891 }
892 
893 /*
894  * Initialize a symbol table state structure
895  *
896  * entry:
897  *	state - State structure to be initialized
898  *	cache - Cache of all section headers
899  *	shnum - # of sections in cache
900  *	secndx - Index of symbol table section
901  *	ehdr - ELF header for file
902  *	versym - Information about versym section
903  *	file - Name of file
904  *	flags - Command line option flags
905  */
906 static int
907 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
908     Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
909     uint_t flags)
910 {
911 	Shdr *shdr;
912 
913 	state->file = file;
914 	state->ehdr = ehdr;
915 	state->cache = cache;
916 	state->osabi = osabi;
917 	state->shnum = shnum;
918 	state->seccache = &cache[secndx];
919 	state->secndx = secndx;
920 	state->secname = state->seccache->c_name;
921 	state->flags = flags;
922 	state->shxndx.checked = 0;
923 	state->shxndx.data = NULL;
924 	state->shxndx.n = 0;
925 
926 	shdr = state->seccache->c_shdr;
927 
928 	/*
929 	 * Check the symbol data and per-item size.
930 	 */
931 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
932 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
933 		    file, state->secname);
934 		return (0);
935 	}
936 	if (state->seccache->c_data == NULL)
937 		return (0);
938 
939 	/* LINTED */
940 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
941 	state->sym = (Sym *)state->seccache->c_data->d_buf;
942 
943 	/*
944 	 * Check associated string table section.
945 	 */
946 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
947 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
948 		    file, state->secname, EC_WORD(shdr->sh_link));
949 		return (0);
950 	}
951 
952 	/*
953 	 * Determine if there is a associated Versym section
954 	 * with this Symbol Table.
955 	 */
956 	if (versym && versym->cache &&
957 	    (versym->cache->c_shdr->sh_link == state->secndx))
958 		state->versym = versym;
959 	else
960 		state->versym = NULL;
961 
962 
963 	return (1);
964 }
965 
966 /*
967  * Determine the extended section index used for symbol tables entries.
968  */
969 static void
970 symbols_getxindex(SYMTBL_STATE *state)
971 {
972 	uint_t	symn;
973 	Word	symcnt;
974 
975 	state->shxndx.checked = 1;   /* Note that we've been called */
976 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
977 		Cache	*_cache = &state->cache[symcnt];
978 		Shdr	*shdr = _cache->c_shdr;
979 
980 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
981 		    (shdr->sh_link != state->secndx))
982 			continue;
983 
984 		if ((shdr->sh_entsize) &&
985 		    /* LINTED */
986 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
987 			continue;
988 
989 		if (_cache->c_data == NULL)
990 			continue;
991 
992 		state->shxndx.data = _cache->c_data->d_buf;
993 		state->shxndx.n = symn;
994 		return;
995 	}
996 }
997 
998 /*
999  * Produce a line of output for the given symbol
1000  *
1001  * entry:
1002  *	state - Symbol table state
1003  *	symndx - Index of symbol within the table
1004  *	info - Value of st_info (indicates local/global range)
1005  *	symndx_disp - Index to display. This may not be the same
1006  *		as symndx if the display is relative to the logical
1007  *		combination of the SUNW_ldynsym/dynsym tables.
1008  *	sym - Symbol to display
1009  */
1010 static void
1011 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1012     Sym *sym)
1013 {
1014 	/*
1015 	 * Symbol types for which we check that the specified
1016 	 * address/size land inside the target section.
1017 	 */
1018 	static const int addr_symtype[] = {
1019 		0,			/* STT_NOTYPE */
1020 		1,			/* STT_OBJECT */
1021 		1,			/* STT_FUNC */
1022 		0,			/* STT_SECTION */
1023 		0,			/* STT_FILE */
1024 		1,			/* STT_COMMON */
1025 		0,			/* STT_TLS */
1026 		0,			/* 7 */
1027 		0,			/* 8 */
1028 		0,			/* 9 */
1029 		0,			/* 10 */
1030 		0,			/* 11 */
1031 		0,			/* 12 */
1032 		0,			/* STT_SPARC_REGISTER */
1033 		0,			/* 14 */
1034 		0,			/* 15 */
1035 	};
1036 #if STT_NUM != (STT_TLS + 1)
1037 #error "STT_NUM has grown. Update addr_symtype[]"
1038 #endif
1039 
1040 	char		index[MAXNDXSIZE];
1041 	const char	*symname, *sec;
1042 	Versym		verndx;
1043 	int		gnuver;
1044 	uchar_t		type;
1045 	Shdr		*tshdr;
1046 	Word		shndx;
1047 	Conv_inv_buf_t	inv_buf;
1048 
1049 	/* Ensure symbol index is in range */
1050 	if (symndx >= state->symn) {
1051 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1052 		    state->file, state->secname, EC_WORD(symndx));
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * If we are using extended symbol indexes, find the
1058 	 * corresponding SHN_SYMTAB_SHNDX table.
1059 	 */
1060 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1061 		symbols_getxindex(state);
1062 
1063 	/* LINTED */
1064 	symname = string(state->seccache, symndx,
1065 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1066 	    sym->st_name);
1067 
1068 	tshdr = NULL;
1069 	sec = NULL;
1070 
1071 	if (state->ehdr->e_type == ET_CORE) {
1072 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1073 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1074 		/*
1075 		 * If we are using fake section headers derived from
1076 		 * the program headers, then the section indexes
1077 		 * in the symbols do not correspond to these headers.
1078 		 * The section names are not available, so all we can
1079 		 * do is to display them in numeric form.
1080 		 */
1081 		sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1082 		    sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1083 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1084 	    (sym->st_shndx < state->shnum)) {
1085 		shndx = sym->st_shndx;
1086 		tshdr = state->cache[shndx].c_shdr;
1087 		sec = state->cache[shndx].c_name;
1088 	} else if (sym->st_shndx == SHN_XINDEX) {
1089 		if (state->shxndx.data) {
1090 			Word	_shxndx;
1091 
1092 			if (symndx > state->shxndx.n) {
1093 				(void) fprintf(stderr,
1094 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1095 				    state->file, state->secname,
1096 				    EC_WORD(symndx));
1097 			} else if ((_shxndx =
1098 			    state->shxndx.data[symndx]) > state->shnum) {
1099 				(void) fprintf(stderr,
1100 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1101 				    state->file, state->secname,
1102 				    EC_WORD(symndx), EC_WORD(_shxndx));
1103 			} else {
1104 				shndx = _shxndx;
1105 				tshdr = state->cache[shndx].c_shdr;
1106 				sec = state->cache[shndx].c_name;
1107 			}
1108 		} else {
1109 			(void) fprintf(stderr,
1110 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1111 			    state->file, state->secname, EC_WORD(symndx));
1112 		}
1113 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1114 	    (sym->st_shndx >= state->shnum)) {
1115 		(void) fprintf(stderr,
1116 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1117 		    state->secname, EC_WORD(symndx),
1118 		    demangle(symname, state->flags), sym->st_shndx);
1119 	}
1120 
1121 	/*
1122 	 * If versioning is available display the
1123 	 * version index. If not, then use 0.
1124 	 */
1125 	if (state->versym) {
1126 		Versym test_verndx;
1127 
1128 		verndx = test_verndx = state->versym->data[symndx];
1129 		gnuver = state->versym->gnu_full;
1130 
1131 		/*
1132 		 * Check to see if this is a defined symbol with a
1133 		 * version index that is outside the valid range for
1134 		 * the file. The interpretation of this depends on
1135 		 * the style of versioning used by the object.
1136 		 *
1137 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1138 		 * and are exempt from this checking.
1139 		 *
1140 		 * GNU style version indexes use the top bit of the
1141 		 * 16-bit index value (0x8000) as the "hidden bit".
1142 		 * We must mask off this bit in order to compare
1143 		 * the version against the maximum value.
1144 		 */
1145 		if (gnuver)
1146 			test_verndx &= ~0x8000;
1147 
1148 		if ((test_verndx > state->versym->max_verndx) &&
1149 		    (verndx < VER_NDX_LORESERVE))
1150 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1151 			    state->file, state->secname, EC_WORD(symndx),
1152 			    EC_HALF(test_verndx), state->versym->max_verndx);
1153 	} else {
1154 		verndx = 0;
1155 		gnuver = 0;
1156 	}
1157 
1158 	/*
1159 	 * Error checking for TLS.
1160 	 */
1161 	type = ELF_ST_TYPE(sym->st_info);
1162 	if (type == STT_TLS) {
1163 		if (tshdr &&
1164 		    (sym->st_shndx != SHN_UNDEF) &&
1165 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1166 			(void) fprintf(stderr,
1167 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1168 			    state->secname, EC_WORD(symndx),
1169 			    demangle(symname, state->flags));
1170 		}
1171 	} else if ((type != STT_SECTION) && sym->st_size &&
1172 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1173 		(void) fprintf(stderr,
1174 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1175 		    state->secname, EC_WORD(symndx),
1176 		    demangle(symname, state->flags));
1177 	}
1178 
1179 	/*
1180 	 * If a symbol with non-zero size has a type that
1181 	 * specifies an address, then make sure the location
1182 	 * it references is actually contained within the
1183 	 * section.  UNDEF symbols don't count in this case,
1184 	 * so we ignore them.
1185 	 *
1186 	 * The meaning of the st_value field in a symbol
1187 	 * depends on the type of object. For a relocatable
1188 	 * object, it is the offset within the section.
1189 	 * For sharable objects, it is the offset relative to
1190 	 * the base of the object, and for other types, it is
1191 	 * the virtual address. To get an offset within the
1192 	 * section for non-ET_REL files, we subtract the
1193 	 * base address of the section.
1194 	 */
1195 	if (addr_symtype[type] && (sym->st_size > 0) &&
1196 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1197 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1198 		Word v = sym->st_value;
1199 			if (state->ehdr->e_type != ET_REL)
1200 				v -= tshdr->sh_addr;
1201 		if (((v + sym->st_size) > tshdr->sh_size)) {
1202 			(void) fprintf(stderr,
1203 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1204 			    state->secname, EC_WORD(symndx),
1205 			    demangle(symname, state->flags),
1206 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1207 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * A typical symbol table uses the sh_info field to indicate one greater
1213 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1214 	 * Therefore, symbol indexes less than sh_info should have local
1215 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1216 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1217 	 * value and size, as these symbols may be the result of an mcs(1)
1218 	 * section deletion.
1219 	 */
1220 	if (info) {
1221 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1222 
1223 		if ((symndx < info) && (bind != STB_LOCAL)) {
1224 			(void) fprintf(stderr,
1225 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1226 			    state->secname, EC_WORD(symndx),
1227 			    demangle(symname, state->flags), EC_XWORD(info));
1228 
1229 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1230 		    ((sym->st_shndx != SHN_UNDEF) ||
1231 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1232 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1233 			(void) fprintf(stderr,
1234 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1235 			    state->secname, EC_WORD(symndx),
1236 			    demangle(symname, state->flags), EC_XWORD(info));
1237 		}
1238 	}
1239 
1240 	(void) snprintf(index, MAXNDXSIZE,
1241 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1242 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1243 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1244 }
1245 
1246 /*
1247  * Process a SHT_SUNW_cap capabilities section.
1248  */
1249 static int
1250 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1251     uchar_t osabi, Ehdr *ehdr, uint_t flags)
1252 {
1253 	SYMTBL_STATE	state;
1254 	Word		cnum, capnum, nulls, symcaps;
1255 	int		descapndx, objcap, title;
1256 	Cap		*cap = (Cap *)ccache->c_data->d_buf;
1257 	Shdr		*cishdr, *cshdr = ccache->c_shdr;
1258 	Cache		*cicache, *strcache;
1259 	Capinfo		*capinfo = NULL;
1260 	Word		capinfonum;
1261 	const char	*strs = NULL;
1262 	size_t		strs_size;
1263 
1264 	if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1265 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1266 		    file, ccache->c_name);
1267 		return (0);
1268 	}
1269 
1270 	/*
1271 	 * If this capabilities section is associated with symbols, then the
1272 	 * sh_link field points to the associated capabilities information
1273 	 * section.  The sh_link field of the capabilities information section
1274 	 * points to the associated symbol table.
1275 	 */
1276 	if (cshdr->sh_link) {
1277 		Cache	*scache;
1278 		Shdr	*sshdr;
1279 
1280 		/*
1281 		 * Validate that the sh_link field points to a capabilities
1282 		 * information section.
1283 		 */
1284 		if (cshdr->sh_link >= shnum) {
1285 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1286 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1287 			return (0);
1288 		}
1289 
1290 		cicache = &cache[cshdr->sh_link];
1291 		cishdr = cicache->c_shdr;
1292 
1293 		if (cishdr->sh_type != SHT_SUNW_capinfo) {
1294 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1295 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1296 			return (0);
1297 		}
1298 
1299 		capinfo = cicache->c_data->d_buf;
1300 		capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1301 
1302 		/*
1303 		 * Validate that the sh_link field of the capabilities
1304 		 * information section points to a valid symbol table.
1305 		 */
1306 		if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1307 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1308 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1309 			return (0);
1310 		}
1311 		scache = &cache[cishdr->sh_link];
1312 		sshdr = scache->c_shdr;
1313 
1314 		if ((sshdr->sh_type != SHT_SYMTAB) &&
1315 		    (sshdr->sh_type != SHT_DYNSYM)) {
1316 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1317 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1318 			return (0);
1319 		}
1320 
1321 		if (!init_symtbl_state(&state, cache, shnum,
1322 		    cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1323 			return (0);
1324 	}
1325 
1326 	/*
1327 	 * If this capabilities section contains capability string entries,
1328 	 * then determine the associated string table.  Capabilities entries
1329 	 * that define names require that the capability section indicate
1330 	 * which string table to use via sh_info.
1331 	 */
1332 	if (cshdr->sh_info) {
1333 		Shdr	*strshdr;
1334 
1335 		/*
1336 		 * Validate that the sh_info field points to a string table.
1337 		 */
1338 		if (cshdr->sh_info >= shnum) {
1339 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1340 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1341 			return (0);
1342 		}
1343 
1344 		strcache = &cache[cshdr->sh_info];
1345 		strshdr = strcache->c_shdr;
1346 
1347 		if (strshdr->sh_type != SHT_STRTAB) {
1348 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1349 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1350 			return (0);
1351 		}
1352 		strs = (const char *)strcache->c_data->d_buf;
1353 		strs_size = strcache->c_data->d_size;
1354 	}
1355 
1356 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1357 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1358 
1359 	capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1360 
1361 	nulls = symcaps = 0;
1362 	objcap = title = 1;
1363 	descapndx = -1;
1364 
1365 	/*
1366 	 * Traverse the capabilities section printing each capability group.
1367 	 * The first capabilities group defines any object capabilities.  Any
1368 	 * following groups define symbol capabilities.  In the case where no
1369 	 * object capabilities exist, but symbol capabilities do, a single
1370 	 * CA_SUNW_NULL terminator for the object capabilities exists.
1371 	 */
1372 	for (cnum = 0; cnum < capnum; cap++, cnum++) {
1373 		if (cap->c_tag == CA_SUNW_NULL) {
1374 			/*
1375 			 * A CA_SUNW_NULL tag terminates a capabilities group.
1376 			 * If the first capabilities tag is CA_SUNW_NULL, then
1377 			 * no object capabilities exist.
1378 			 */
1379 			if ((nulls++ == 0) && (cnum == 0))
1380 				objcap = 0;
1381 			title = 1;
1382 		} else {
1383 			if (title) {
1384 				if (nulls == 0) {
1385 					/*
1386 					 * If this capabilities group represents
1387 					 * the object capabilities (i.e., no
1388 					 * CA_SUNW_NULL tag has been processed
1389 					 * yet), then display an object
1390 					 * capabilities title.
1391 					 */
1392 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1393 					dbg_print(0,
1394 					    MSG_INTL(MSG_OBJ_CAP_TITLE));
1395 				} else {
1396 					/*
1397 					 * If this is a symbols capabilities
1398 					 * group (i.e., a CA_SUNW_NULL tag has
1399 					 * already be found that terminates
1400 					 * the object capabilities group), then
1401 					 * display a symbol capabilities title,
1402 					 * and retain this capabilities index
1403 					 * for later processing.
1404 					 */
1405 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1406 					dbg_print(0,
1407 					    MSG_INTL(MSG_SYM_CAP_TITLE));
1408 					descapndx = cnum;
1409 				}
1410 				Elf_cap_title(0);
1411 				title = 0;
1412 			}
1413 
1414 			/*
1415 			 * Print the capabilities data.
1416 			 *
1417 			 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1418 			 * entries require a string table, which should have
1419 			 * already been established.
1420 			 */
1421 			if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1422 			    (cap->c_tag == CA_SUNW_MACH) ||
1423 			    (cap->c_tag == CA_SUNW_ID))) {
1424 				(void) fprintf(stderr,
1425 				    MSG_INTL(MSG_WARN_INVCAP4), file,
1426 				    EC_WORD(elf_ndxscn(ccache->c_scn)),
1427 				    ccache->c_name, EC_WORD(cshdr->sh_info));
1428 			}
1429 			Elf_cap_entry(0, cap, cnum, strs, strs_size,
1430 			    ehdr->e_machine);
1431 		}
1432 
1433 		/*
1434 		 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1435 		 * group, determine the associated symbols.
1436 		 */
1437 		if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1438 		    (descapndx != -1)) {
1439 			Capinfo	*cip;
1440 			Word	inum;
1441 
1442 			symcaps++;
1443 
1444 			/*
1445 			 * Make sure we've discovered a SHT_SUNW_capinfo table.
1446 			 */
1447 			if ((cip = capinfo) == NULL) {
1448 				(void) fprintf(stderr,
1449 				    MSG_INTL(MSG_ERR_INVCAP), file,
1450 				    ccache->c_name, EC_WORD(cshdr->sh_link));
1451 				return (0);
1452 			}
1453 
1454 			/*
1455 			 * Determine what symbols reference this capabilities
1456 			 * group.
1457 			 */
1458 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1459 			dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1460 			Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1461 
1462 			for (inum = 1, cip++; inum < capinfonum;
1463 			    inum++, cip++) {
1464 				Word	gndx = (Word)ELF_C_GROUP(*cip);
1465 
1466 				if (gndx && (gndx == descapndx)) {
1467 					output_symbol(&state, inum, 0,
1468 					    inum, state.sym + inum);
1469 				}
1470 			}
1471 			descapndx = -1;
1472 			continue;
1473 		}
1474 
1475 		/*
1476 		 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1477 		 * object is suspicious as it has no effect.
1478 		 */
1479 		if ((cap->c_tag == CA_SUNW_SF_1) &&
1480 		    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1481 		    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1482 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1483 			    file, ccache->c_name);
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * If this is a dynamic object, with symbol capabilities, then a
1489 	 * .SUNW_capchain section should exist.  This section contains a chain
1490 	 * of symbol indexes for each capabilities family.  This is the list
1491 	 * that is searched by ld.so.1 to determine the best capabilities
1492 	 * candidate.
1493 	 *
1494 	 * Note, more than one capabilities lead symbol can point to the same
1495 	 * family chain.  For example, a weak/global pair of symbols can both
1496 	 * represent the same family of capabilities symbols.  Therefore, to
1497 	 * display all possible families we traverse the capabilities
1498 	 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1499 	 * From these we determine the associated capabilities chain to inspect.
1500 	 */
1501 	if (symcaps &&
1502 	    ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1503 		Capinfo		*cip;
1504 		Capchain	*chain;
1505 		Cache   	*chcache;
1506 		Shdr		*chshdr;
1507 		Word		chainnum, inum;
1508 
1509 		/*
1510 		 * Validate that the sh_info field of the capabilities
1511 		 * information section points to a capabilities chain section.
1512 		 */
1513 		if (cishdr->sh_info >= shnum) {
1514 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1515 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1516 			return (0);
1517 		}
1518 
1519 		chcache = &cache[cishdr->sh_info];
1520 		chshdr = chcache->c_shdr;
1521 
1522 		if (chshdr->sh_type != SHT_SUNW_capchain) {
1523 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1524 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1525 			return (0);
1526 		}
1527 
1528 		chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1529 		chain = (Capchain *)chcache->c_data->d_buf;
1530 
1531 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1532 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1533 
1534 		/*
1535 		 * Traverse the capabilities information section looking for
1536 		 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1537 		 */
1538 		cip = capinfo;
1539 		for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1540 			const char	*name;
1541 			Sym		*sym;
1542 			Word		sndx, cndx;
1543 			Word		gndx = (Word)ELF_C_GROUP(*cip);
1544 
1545 			if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1546 				continue;
1547 
1548 			/*
1549 			 * Determine the symbol that is associated with this
1550 			 * capability information entry, and use this to
1551 			 * identify this capability family.
1552 			 */
1553 			sym = (Sym *)(state.sym + inum);
1554 			name = string(cicache, inum, strcache, file,
1555 			    sym->st_name);
1556 
1557 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1558 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1559 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1560 
1561 			cndx = (Word)ELF_C_SYM(*cip);
1562 
1563 			/*
1564 			 * Traverse this families chain and identify each
1565 			 * family member.
1566 			 */
1567 			for (;;) {
1568 				char	_chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1569 
1570 				if (cndx >= chainnum) {
1571 					(void) fprintf(stderr,
1572 					    MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1573 					    cicache->c_name, EC_WORD(inum),
1574 					    EC_WORD(cndx));
1575 					break;
1576 				}
1577 				if ((sndx = chain[cndx]) == 0)
1578 					break;
1579 
1580 				/*
1581 				 * Determine this entries symbol reference.
1582 				 */
1583 				if (sndx > state.symn) {
1584 					(void) fprintf(stderr,
1585 					    MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1586 					    EC_WORD(sndx), chcache->c_name,
1587 					    EC_WORD(cndx));
1588 					name = MSG_INTL(MSG_STR_UNKNOWN);
1589 				} else {
1590 					sym = (Sym *)(state.sym + sndx);
1591 					name = string(chcache, sndx,
1592 					    strcache, file, sym->st_name);
1593 				}
1594 
1595 				/*
1596 				 * Display the family member.
1597 				 */
1598 				(void) snprintf(_chain, MAXNDXSIZE,
1599 				    MSG_ORIG(MSG_FMT_INTEGER), cndx);
1600 				(void) snprintf(_symndx, MAXNDXSIZE,
1601 				    MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1602 				dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1603 				    _chain, _symndx, demangle(name, flags));
1604 
1605 				cndx++;
1606 			}
1607 		}
1608 	}
1609 	return (objcap);
1610 }
1611 
1612 /*
1613  * Print the capabilities.
1614  *
1615  * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1616  * capabilities groups.  The first group defines the object capabilities.
1617  * This group defines the minimum capability requirements of the entire
1618  * object file.  If this is a dynamic object, this group should be associated
1619  * with a PT_SUNWCAP program header.
1620  *
1621  * Additional capabilities groups define the association of individual symbols
1622  * to specific capabilities.
1623  */
1624 static void
1625 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1626     uchar_t osabi, Elf *elf, uint_t flags)
1627 {
1628 	Word		cnt;
1629 	Shdr		*cshdr = NULL;
1630 	Cache		*ccache;
1631 	Off		cphdr_off = 0;
1632 	Xword		cphdr_sz;
1633 
1634 	/*
1635 	 * Determine if a global capabilities header exists.
1636 	 */
1637 	if (phnum) {
1638 		Phdr	*phdr;
1639 
1640 		if ((phdr = elf_getphdr(elf)) == NULL) {
1641 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1642 			return;
1643 		}
1644 
1645 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1646 			if (phdr->p_type == PT_SUNWCAP) {
1647 				cphdr_off = phdr->p_offset;
1648 				cphdr_sz = phdr->p_filesz;
1649 				break;
1650 			}
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Determine if a capabilities section exists.
1656 	 */
1657 	for (cnt = 1; cnt < shnum; cnt++) {
1658 		Cache	*_cache = &cache[cnt];
1659 		Shdr	*shdr = _cache->c_shdr;
1660 
1661 		/*
1662 		 * Process any capabilities information.
1663 		 */
1664 		if (shdr->sh_type == SHT_SUNW_cap) {
1665 			if (cap_section(file, cache, shnum, _cache, osabi,
1666 			    ehdr, flags)) {
1667 				/*
1668 				 * If this section defined an object capability
1669 				 * group, retain the section information for
1670 				 * program header validation.
1671 				 */
1672 				ccache = _cache;
1673 				cshdr = shdr;
1674 			}
1675 			continue;
1676 		}
1677 	}
1678 
1679 	if ((cshdr == NULL) && (cphdr_off == 0))
1680 		return;
1681 
1682 	if (cphdr_off && (cshdr == NULL))
1683 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1684 
1685 	/*
1686 	 * If this object is an executable or shared object, and it provided
1687 	 * an object capabilities group, then the group should have an
1688 	 * accompanying PT_SUNWCAP program header.
1689 	 */
1690 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1691 		if (cphdr_off == 0) {
1692 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1693 			    file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1694 			    ccache->c_name);
1695 		} else if ((cphdr_off != cshdr->sh_offset) ||
1696 		    (cphdr_sz != cshdr->sh_size)) {
1697 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1698 			    file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1699 			    ccache->c_name);
1700 		}
1701 	}
1702 }
1703 
1704 /*
1705  * Print the interpretor.
1706  */
1707 static void
1708 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1709 {
1710 	static Word phdr_types[] = { PT_INTERP };
1711 
1712 
1713 	Word	cnt;
1714 	Shdr	*ishdr = NULL;
1715 	Cache	*icache;
1716 	Off	iphdr_off = 0;
1717 	Xword	iphdr_fsz;
1718 
1719 	/*
1720 	 * Determine if an interp header exists.
1721 	 */
1722 	if (phnum) {
1723 		Phdr	*phdr;
1724 
1725 		phdr = getphdr(phnum, phdr_types,
1726 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1727 		if (phdr != NULL) {
1728 			iphdr_off = phdr->p_offset;
1729 			iphdr_fsz = phdr->p_filesz;
1730 		}
1731 	}
1732 
1733 	if (iphdr_off == 0)
1734 		return;
1735 
1736 	/*
1737 	 * Determine if an interp section exists.
1738 	 */
1739 	for (cnt = 1; cnt < shnum; cnt++) {
1740 		Cache	*_cache = &cache[cnt];
1741 		Shdr	*shdr = _cache->c_shdr;
1742 
1743 		/*
1744 		 * Scan sections to find a section which contains the PT_INTERP
1745 		 * string.  The target section can't be in a NOBITS section.
1746 		 */
1747 		if ((shdr->sh_type == SHT_NOBITS) ||
1748 		    (iphdr_off < shdr->sh_offset) ||
1749 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1750 			continue;
1751 
1752 		icache = _cache;
1753 		ishdr = shdr;
1754 		break;
1755 	}
1756 
1757 	/*
1758 	 * Print the interpreter string based on the offset defined in the
1759 	 * program header, as this is the offset used by the kernel.
1760 	 */
1761 	if (ishdr && icache->c_data) {
1762 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1763 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1764 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1765 		    (char *)icache->c_data->d_buf +
1766 		    (iphdr_off - ishdr->sh_offset));
1767 	} else
1768 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1769 
1770 	/*
1771 	 * If there are any inconsistences between the program header and
1772 	 * section information, flag them.
1773 	 */
1774 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1775 	    (iphdr_fsz != ishdr->sh_size))) {
1776 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1777 		    icache->c_name);
1778 	}
1779 }
1780 
1781 /*
1782  * Print the syminfo section.
1783  */
1784 static void
1785 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1786 {
1787 	Shdr		*infoshdr;
1788 	Syminfo		*info;
1789 	Sym		*syms;
1790 	Dyn		*dyns;
1791 	Word		infonum, cnt, ndx, symnum, dynnum;
1792 	Cache		*infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1793 	Boolean		*dynerr;
1794 
1795 	for (cnt = 1; cnt < shnum; cnt++) {
1796 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1797 			infocache = &cache[cnt];
1798 			break;
1799 		}
1800 	}
1801 	if (infocache == NULL)
1802 		return;
1803 
1804 	infoshdr = infocache->c_shdr;
1805 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1806 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1807 		    file, infocache->c_name);
1808 		return;
1809 	}
1810 	if (infocache->c_data == NULL)
1811 		return;
1812 
1813 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1814 	info = (Syminfo *)infocache->c_data->d_buf;
1815 
1816 	/*
1817 	 * If there is no associated dynamic section, determine if one
1818 	 * is needed, and if so issue a warning. If there is an
1819 	 * associated dynamic section, validate it and get the data buffer
1820 	 * for it.
1821 	 */
1822 	dyns = NULL;
1823 	dynnum = 0;
1824 	if (infoshdr->sh_info == 0) {
1825 		Syminfo	*_info = info + 1;
1826 
1827 		for (ndx = 1; ndx < infonum; ndx++, _info++) {
1828 			if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1829 				continue;
1830 
1831 			if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1832 				(void) fprintf(stderr,
1833 				    MSG_INTL(MSG_ERR_BADSHINFO), file,
1834 				    infocache->c_name,
1835 				    EC_WORD(infoshdr->sh_info));
1836 		}
1837 	} else if ((infoshdr->sh_info >= shnum) ||
1838 	    (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1839 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1840 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1841 	} else {
1842 		dyncache = &cache[infoshdr->sh_info];
1843 		if ((dyncache->c_data == NULL) ||
1844 		    ((dyns = dyncache->c_data->d_buf) == NULL)) {
1845 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1846 			    file, dyncache->c_name);
1847 		}
1848 		if (dyns != NULL) {
1849 			dynnum = dyncache->c_shdr->sh_size /
1850 			    dyncache->c_shdr->sh_entsize;
1851 
1852 			/*
1853 			 * We validate the type of dynamic elements referenced
1854 			 * from the syminfo. This array is used report any
1855 			 * bad dynamic entries.
1856 			 */
1857 			if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1858 			    NULL) {
1859 				int err = errno;
1860 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1861 				    file, strerror(err));
1862 				return;
1863 			}
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * Get the data buffer for the associated symbol table and string table.
1869 	 */
1870 	if (stringtbl(cache, 1, cnt, shnum, file,
1871 	    &symnum, &symsec, &strsec) == 0)
1872 		return;
1873 
1874 	syms = symsec->c_data->d_buf;
1875 
1876 	/*
1877 	 * Loop through the syminfo entries.
1878 	 */
1879 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1880 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1881 	Elf_syminfo_title(0);
1882 
1883 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1884 		Sym 		*sym;
1885 		const char	*needed, *name;
1886 		Word		expect_dt;
1887 		Word		boundto = info->si_boundto;
1888 
1889 		if ((info->si_flags == 0) && (boundto == 0))
1890 			continue;
1891 
1892 		sym = &syms[ndx];
1893 		name = string(infocache, ndx, strsec, file, sym->st_name);
1894 
1895 		/* Is si_boundto set to one of the reserved values? */
1896 		if (boundto >= SYMINFO_BT_LOWRESERVE) {
1897 			Elf_syminfo_entry(0, ndx, info, name, NULL);
1898 			continue;
1899 		}
1900 
1901 		/*
1902 		 * si_boundto is referencing a dynamic section. If we don't
1903 		 * have one, an error was already issued above, so it suffices
1904 		 * to display an empty string. If we are out of bounds, then
1905 		 * report that and then display an empty string.
1906 		 */
1907 		if ((dyns == NULL) || (boundto >= dynnum)) {
1908 			if (dyns != NULL)
1909 				(void) fprintf(stderr,
1910 				    MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1911 				    infocache->c_ndx, infocache->c_name,
1912 				    EC_WORD(ndx), EC_WORD(dynnum - 1),
1913 				    EC_WORD(boundto));
1914 			Elf_syminfo_entry(0, ndx, info, name,
1915 			    MSG_ORIG(MSG_STR_EMPTY));
1916 			continue;
1917 		}
1918 
1919 		/*
1920 		 * The si_boundto reference expects a specific dynamic element
1921 		 * type at the given index. The dynamic element is always a
1922 		 * string that gives an object name. The specific type depends
1923 		 * on the si_flags present. Ensure that we've got the right
1924 		 * type.
1925 		 */
1926 		if (info->si_flags & SYMINFO_FLG_FILTER)
1927 			expect_dt = DT_SUNW_FILTER;
1928 		else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
1929 			expect_dt = DT_SUNW_AUXILIARY;
1930 		else if (info->si_flags & (SYMINFO_FLG_DIRECT |
1931 		    SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
1932 			expect_dt = DT_NEEDED;
1933 		else
1934 			expect_dt = DT_NULL;   /* means we ignore the type */
1935 
1936 		if ((dyns[boundto].d_tag != expect_dt) &&
1937 		    (expect_dt != DT_NULL)) {
1938 			Conv_inv_buf_t	buf1, buf2;
1939 
1940 			/* Only complain about each dynamic element once */
1941 			if (!dynerr[boundto]) {
1942 				(void) fprintf(stderr,
1943 				    MSG_INTL(MSG_ERR_BADSIDYNTAG),
1944 				    file, infocache->c_ndx, infocache->c_name,
1945 				    EC_WORD(ndx), dyncache->c_ndx,
1946 				    dyncache->c_name, EC_WORD(boundto),
1947 				    conv_dyn_tag(expect_dt, osabi,
1948 				    ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
1949 				    conv_dyn_tag(dyns[boundto].d_tag, osabi,
1950 				    ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
1951 				dynerr[boundto] = TRUE;
1952 			}
1953 		}
1954 
1955 		/*
1956 		 * Whether or not the DT item we're pointing at is
1957 		 * of the right type, if it's a type we recognize as
1958 		 * providing a string, go ahead and show it. Otherwise
1959 		 * an empty string.
1960 		 */
1961 		switch (dyns[boundto].d_tag) {
1962 		case DT_NEEDED:
1963 		case DT_SONAME:
1964 		case DT_RPATH:
1965 		case DT_RUNPATH:
1966 		case DT_CONFIG:
1967 		case DT_DEPAUDIT:
1968 		case DT_USED:
1969 		case DT_AUDIT:
1970 		case DT_SUNW_AUXILIARY:
1971 		case DT_SUNW_FILTER:
1972 		case DT_FILTER:
1973 		case DT_AUXILIARY:
1974 			needed = string(infocache, boundto,
1975 			    strsec, file, dyns[boundto].d_un.d_val);
1976 			break;
1977 		default:
1978 			needed = MSG_ORIG(MSG_STR_EMPTY);
1979 		}
1980 		Elf_syminfo_entry(0, ndx, info, name, needed);
1981 	}
1982 	if (dyns != NULL)
1983 		free(dynerr);
1984 }
1985 
1986 /*
1987  * Print version definition section entries.
1988  */
1989 static void
1990 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1991     const char *file)
1992 {
1993 	Word	cnt;
1994 	char	index[MAXNDXSIZE];
1995 
1996 	Elf_ver_def_title(0);
1997 
1998 	for (cnt = 1; cnt <= vdf_num; cnt++,
1999 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2000 		Conv_ver_flags_buf_t	ver_flags_buf;
2001 		const char		*name, *dep;
2002 		Half			vcnt = vdf->vd_cnt - 1;
2003 		Half			ndx = vdf->vd_ndx;
2004 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2005 
2006 		/*
2007 		 * Obtain the name and first dependency (if any).
2008 		 */
2009 		name = string(vcache, cnt, scache, file, vdap->vda_name);
2010 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2011 		if (vcnt)
2012 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
2013 		else
2014 			dep = MSG_ORIG(MSG_STR_EMPTY);
2015 
2016 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2017 		    EC_XWORD(ndx));
2018 		Elf_ver_line_1(0, index, name, dep,
2019 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2020 
2021 		/*
2022 		 * Print any additional dependencies.
2023 		 */
2024 		if (vcnt) {
2025 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2026 			for (vcnt--; vcnt; vcnt--,
2027 			    vdap = (Verdaux *)((uintptr_t)vdap +
2028 			    vdap->vda_next)) {
2029 				dep = string(vcache, cnt, scache, file,
2030 				    vdap->vda_name);
2031 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2032 			}
2033 		}
2034 	}
2035 }
2036 
2037 /*
2038  * Print version needed section entries.
2039  *
2040  * entry:
2041  *	vnd - Address of verneed data
2042  *	vnd_num - # of Verneed entries
2043  *	vcache - Cache of verneed section being processed
2044  *	scache - Cache of associated string table section
2045  *	file - Name of object being processed.
2046  *	versym - Information about versym section
2047  *
2048  * exit:
2049  *	The versions have been printed. If GNU style versioning
2050  *	is in effect, versym->max_verndx has been updated to
2051  *	contain the largest version index seen.
2052  *
2053  * note:
2054  * 	The versym section of an object that follows the original
2055  *	Solaris versioning rules only contains indexes into the verdef
2056  *	section. Symbols defined in other objects (UNDEF) are given
2057  *	a version of 0, indicating that they are not defined by
2058  *	this file, and the Verneed entries do not have associated version
2059  *	indexes. For these reasons, we do not display a version index
2060  *	for original-style Verneed sections.
2061  *
2062  *	The GNU versioning extensions alter this: Symbols defined in other
2063  *	objects receive a version index in the range above those defined
2064  *	by the Verdef section, and the vna_other field of the Vernaux
2065  *	structs inside the Verneed section contain the version index for
2066  *	that item. We therefore  display the index when showing the
2067  *	contents of a GNU style Verneed section. You should not
2068  *	necessarily expect these indexes to appear in sorted
2069  *	order --- it seems that the GNU ld assigns the versions as
2070  *	symbols are encountered during linking, and then the results
2071  *	are assembled into the Verneed section afterwards.
2072  */
2073 static void
2074 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2075     const char *file, VERSYM_STATE *versym)
2076 {
2077 	Word		cnt;
2078 	char		index[MAXNDXSIZE];
2079 	const char	*index_str;
2080 
2081 	Elf_ver_need_title(0, versym->gnu_needed);
2082 
2083 	for (cnt = 1; cnt <= vnd_num; cnt++,
2084 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2085 		Conv_ver_flags_buf_t	ver_flags_buf;
2086 		const char		*name, *dep;
2087 		Half			vcnt = vnd->vn_cnt;
2088 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2089 
2090 		/*
2091 		 * Obtain the name of the needed file and the version name
2092 		 * within it that we're dependent on.  Note that the count
2093 		 * should be at least one, otherwise this is a pretty bogus
2094 		 * entry.
2095 		 */
2096 		name = string(vcache, cnt, scache, file, vnd->vn_file);
2097 		if (vcnt)
2098 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
2099 		else
2100 			dep = MSG_INTL(MSG_STR_NULL);
2101 
2102 		if (vnap->vna_other == 0) {	/* Traditional form */
2103 			index_str = MSG_ORIG(MSG_STR_EMPTY);
2104 		} else {			/* GNU form */
2105 			index_str = index;
2106 			/* Format the version index value */
2107 			(void) snprintf(index, MAXNDXSIZE,
2108 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2109 			if (vnap->vna_other > versym->max_verndx)
2110 				versym->max_verndx = vnap->vna_other;
2111 		}
2112 		Elf_ver_line_1(0, index_str, name, dep,
2113 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2114 
2115 		/*
2116 		 * Print any additional version dependencies.
2117 		 */
2118 		if (vcnt) {
2119 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2120 			for (vcnt--; vcnt; vcnt--,
2121 			    vnap = (Vernaux *)((uintptr_t)vnap +
2122 			    vnap->vna_next)) {
2123 				dep = string(vcache, cnt, scache, file,
2124 				    vnap->vna_name);
2125 				if (vnap->vna_other > 0) {
2126 					/* Format the next index value */
2127 					(void) snprintf(index, MAXNDXSIZE,
2128 					    MSG_ORIG(MSG_FMT_INDEX),
2129 					    EC_XWORD(vnap->vna_other));
2130 					Elf_ver_line_1(0, index,
2131 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2132 					    conv_ver_flags(vnap->vna_flags,
2133 					    0, &ver_flags_buf));
2134 					if (vnap->vna_other >
2135 					    versym->max_verndx)
2136 						versym->max_verndx =
2137 						    vnap->vna_other;
2138 				} else {
2139 					Elf_ver_line_3(0,
2140 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2141 					    conv_ver_flags(vnap->vna_flags,
2142 					    0, &ver_flags_buf));
2143 				}
2144 			}
2145 		}
2146 	}
2147 }
2148 
2149 /*
2150  * Examine the Verneed section for information related to GNU
2151  * style Versym indexing:
2152  *	- A non-zero vna_other field indicates that Versym indexes can
2153  *		reference Verneed records.
2154  *	- If the object uses GNU style Versym indexing, the
2155  *	  maximum index value is needed to detect bad Versym entries.
2156  *
2157  * entry:
2158  *	vnd - Address of verneed data
2159  *	vnd_num - # of Verneed entries
2160  *	versym - Information about versym section
2161  *
2162  * exit:
2163  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
2164  *
2165  *	versym->max_verndx has been updated to contain the largest
2166  *	version index seen.
2167  */
2168 static void
2169 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2170 {
2171 	Word		cnt;
2172 
2173 	for (cnt = 1; cnt <= vnd_num; cnt++,
2174 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2175 		Half	vcnt = vnd->vn_cnt;
2176 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2177 
2178 		/*
2179 		 * A non-zero value of vna_other indicates that this
2180 		 * object references VERNEED items from the VERSYM
2181 		 * array.
2182 		 */
2183 		if (vnap->vna_other != 0) {
2184 			versym->gnu_needed = 1;
2185 			if (vnap->vna_other > versym->max_verndx)
2186 				versym->max_verndx = vnap->vna_other;
2187 		}
2188 
2189 		/*
2190 		 * Check any additional version dependencies.
2191 		 */
2192 		if (vcnt) {
2193 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2194 			for (vcnt--; vcnt; vcnt--,
2195 			    vnap = (Vernaux *)((uintptr_t)vnap +
2196 			    vnap->vna_next)) {
2197 				if (vnap->vna_other == 0)
2198 					continue;
2199 
2200 				versym->gnu_needed = 1;
2201 				if (vnap->vna_other > versym->max_verndx)
2202 					versym->max_verndx = vnap->vna_other;
2203 			}
2204 		}
2205 	}
2206 }
2207 
2208 /*
2209  * Display version section information if the flags require it.
2210  * Return version information needed by other output.
2211  *
2212  * entry:
2213  *	cache - Cache of all section headers
2214  *	shnum - # of sections in cache
2215  *	file - Name of file
2216  *	flags - Command line option flags
2217  *	versym - VERSYM_STATE block to be filled in.
2218  */
2219 static void
2220 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2221     VERSYM_STATE *versym)
2222 {
2223 	GElf_Word	cnt;
2224 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
2225 
2226 
2227 	/* Gather information about the version sections */
2228 	bzero(versym, sizeof (*versym));
2229 	versym->max_verndx = 1;
2230 	for (cnt = 1; cnt < shnum; cnt++) {
2231 		Cache		*_cache = &cache[cnt];
2232 		Shdr		*shdr = _cache->c_shdr;
2233 		Dyn		*dyn;
2234 		ulong_t		numdyn;
2235 
2236 		switch (shdr->sh_type) {
2237 		case SHT_DYNAMIC:
2238 			/*
2239 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
2240 			 * section so that the runtime linker can use it to
2241 			 * implement their versioning rules. They allow multiple
2242 			 * incompatible functions with the same name to exist
2243 			 * in different versions. The Solaris ld does not
2244 			 * support this mechanism, and as such, does not
2245 			 * produce DT_VERSYM. We use this fact to determine
2246 			 * which ld produced this object, and how to interpret
2247 			 * the version values.
2248 			 */
2249 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2250 			    (_cache->c_data == NULL))
2251 				continue;
2252 			numdyn = shdr->sh_size / shdr->sh_entsize;
2253 			dyn = (Dyn *)_cache->c_data->d_buf;
2254 			for (; numdyn-- > 0; dyn++)
2255 				if (dyn->d_tag == DT_VERSYM) {
2256 					versym->gnu_full =
2257 					    versym->gnu_needed = 1;
2258 					break;
2259 				}
2260 			break;
2261 
2262 		case SHT_SUNW_versym:
2263 			/* Record data address for later symbol processing */
2264 			if (_cache->c_data != NULL) {
2265 				versym->cache = _cache;
2266 				versym->data = _cache->c_data->d_buf;
2267 				continue;
2268 			}
2269 			break;
2270 
2271 		case SHT_SUNW_verdef:
2272 		case SHT_SUNW_verneed:
2273 			/*
2274 			 * Ensure the data is non-NULL and the number
2275 			 * of items is non-zero. Otherwise, we don't
2276 			 * understand the section, and will not use it.
2277 			 */
2278 			if ((_cache->c_data == NULL) ||
2279 			    (_cache->c_data->d_buf == NULL)) {
2280 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2281 				    file, _cache->c_name);
2282 				continue;
2283 			}
2284 			if (shdr->sh_info == 0) {
2285 				(void) fprintf(stderr,
2286 				    MSG_INTL(MSG_ERR_BADSHINFO),
2287 				    file, _cache->c_name,
2288 				    EC_WORD(shdr->sh_info));
2289 				continue;
2290 			}
2291 
2292 			/* Make sure the string table index is in range */
2293 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2294 				(void) fprintf(stderr,
2295 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
2296 				    _cache->c_name, EC_WORD(shdr->sh_link));
2297 				continue;
2298 			}
2299 
2300 			/*
2301 			 * The section is usable. Save the cache entry.
2302 			 */
2303 			if (shdr->sh_type == SHT_SUNW_verdef) {
2304 				verdef_cache = _cache;
2305 				/*
2306 				 * Under Solaris rules, if there is a verdef
2307 				 * section, the max versym index is number
2308 				 * of version definitions it supplies.
2309 				 */
2310 				versym->max_verndx = shdr->sh_info;
2311 			} else {
2312 				verneed_cache = _cache;
2313 			}
2314 			break;
2315 		}
2316 	}
2317 
2318 	/*
2319 	 * If there is a Verneed section, examine it for information
2320 	 * related to GNU style versioning.
2321 	 */
2322 	if (verneed_cache != NULL)
2323 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2324 		    verneed_cache->c_shdr->sh_info, versym);
2325 
2326 	/*
2327 	 * Now that all the information is available, display the
2328 	 * Verdef and Verneed section contents, if requested.
2329 	 */
2330 	if ((flags & FLG_SHOW_VERSIONS) == 0)
2331 		return;
2332 	if (verdef_cache != NULL) {
2333 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2334 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2335 		    verdef_cache->c_name);
2336 		version_def((Verdef *)verdef_cache->c_data->d_buf,
2337 		    verdef_cache->c_shdr->sh_info, verdef_cache,
2338 		    &cache[verdef_cache->c_shdr->sh_link], file);
2339 	}
2340 	if (verneed_cache != NULL) {
2341 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2342 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2343 		    verneed_cache->c_name);
2344 		/*
2345 		 * If GNU versioning applies to this object, version_need()
2346 		 * will update versym->max_verndx, and it is not
2347 		 * necessary to call update_gnu_verndx().
2348 		 */
2349 		version_need((Verneed *)verneed_cache->c_data->d_buf,
2350 		    verneed_cache->c_shdr->sh_info, verneed_cache,
2351 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
2352 	}
2353 }
2354 
2355 /*
2356  * Search for and process any symbol tables.
2357  */
2358 void
2359 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2360     VERSYM_STATE *versym, const char *file, uint_t flags)
2361 {
2362 	SYMTBL_STATE state;
2363 	Cache *_cache;
2364 	Word secndx;
2365 
2366 	for (secndx = 1; secndx < shnum; secndx++) {
2367 		Word		symcnt;
2368 		Shdr		*shdr;
2369 
2370 		_cache = &cache[secndx];
2371 		shdr = _cache->c_shdr;
2372 
2373 		if ((shdr->sh_type != SHT_SYMTAB) &&
2374 		    (shdr->sh_type != SHT_DYNSYM) &&
2375 		    ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2376 		    (osabi != ELFOSABI_SOLARIS)))
2377 			continue;
2378 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2379 			continue;
2380 
2381 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2382 		    osabi, versym, file, flags))
2383 			continue;
2384 		/*
2385 		 * Loop through the symbol tables entries.
2386 		 */
2387 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2388 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2389 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2390 
2391 		for (symcnt = 0; symcnt < state.symn; symcnt++)
2392 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2393 			    state.sym + symcnt);
2394 	}
2395 }
2396 
2397 /*
2398  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2399  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2400  */
2401 static void
2402 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2403     VERSYM_STATE *versym, const char *file, uint_t flags)
2404 {
2405 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
2406 	Cache		*sortcache,	*symcache;
2407 	Shdr		*sortshdr,	*symshdr;
2408 	Word		sortsecndx,	symsecndx;
2409 	Word		ldynsym_cnt;
2410 	Word		*ndx;
2411 	Word		ndxn;
2412 	int		output_cnt = 0;
2413 	Conv_inv_buf_t	inv_buf;
2414 
2415 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2416 
2417 		sortcache = &cache[sortsecndx];
2418 		sortshdr = sortcache->c_shdr;
2419 
2420 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2421 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
2422 			continue;
2423 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2424 		    sortshdr->sh_type))
2425 			continue;
2426 
2427 		/*
2428 		 * If the section references a SUNW_ldynsym, then we
2429 		 * expect to see the associated .dynsym immediately
2430 		 * following. If it references a .dynsym, there is no
2431 		 * SUNW_ldynsym. If it is any other type, then we don't
2432 		 * know what to do with it.
2433 		 */
2434 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2435 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2436 			    file, sortcache->c_name,
2437 			    EC_WORD(sortshdr->sh_link));
2438 			continue;
2439 		}
2440 		symcache = &cache[sortshdr->sh_link];
2441 		symshdr = symcache->c_shdr;
2442 		symsecndx = sortshdr->sh_link;
2443 		ldynsym_cnt = 0;
2444 		switch (symshdr->sh_type) {
2445 		case SHT_SUNW_LDYNSYM:
2446 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2447 			    symsecndx, ehdr, osabi, versym, file, flags))
2448 				continue;
2449 			ldynsym_cnt = ldynsym_state.symn;
2450 			/*
2451 			 * We know that the dynsym follows immediately
2452 			 * after the SUNW_ldynsym, and so, should be at
2453 			 * (sortshdr->sh_link + 1). However, elfdump is a
2454 			 * diagnostic tool, so we do the full paranoid
2455 			 * search instead.
2456 			 */
2457 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2458 				symcache = &cache[symsecndx];
2459 				symshdr = symcache->c_shdr;
2460 				if (symshdr->sh_type == SHT_DYNSYM)
2461 					break;
2462 			}
2463 			if (symsecndx >= shnum) {	/* Dynsym not found! */
2464 				(void) fprintf(stderr,
2465 				    MSG_INTL(MSG_ERR_NODYNSYM),
2466 				    file, sortcache->c_name);
2467 				continue;
2468 			}
2469 			/* Fallthrough to process associated dynsym */
2470 			/* FALLTHROUGH */
2471 		case SHT_DYNSYM:
2472 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
2473 			    symsecndx, ehdr, osabi, versym, file, flags))
2474 				continue;
2475 			break;
2476 		default:
2477 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2478 			    file, sortcache->c_name,
2479 			    conv_sec_type(osabi, ehdr->e_machine,
2480 			    symshdr->sh_type, 0, &inv_buf));
2481 			continue;
2482 		}
2483 
2484 		/*
2485 		 * Output header
2486 		 */
2487 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2488 		if (ldynsym_cnt > 0) {
2489 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2490 			    sortcache->c_name, ldynsym_state.secname,
2491 			    dynsym_state.secname);
2492 			/*
2493 			 * The data for .SUNW_ldynsym and dynsym sections
2494 			 * is supposed to be adjacent with SUNW_ldynsym coming
2495 			 * first. Check, and issue a warning if it isn't so.
2496 			 */
2497 			if (((ldynsym_state.sym + ldynsym_state.symn)
2498 			    != dynsym_state.sym) &&
2499 			    ((flags & FLG_CTL_FAKESHDR) == 0))
2500 				(void) fprintf(stderr,
2501 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2502 				    ldynsym_state.secname,
2503 				    dynsym_state.secname);
2504 		} else {
2505 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2506 			    sortcache->c_name, dynsym_state.secname);
2507 		}
2508 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2509 
2510 		/* If not first one, insert a line of white space */
2511 		if (output_cnt++ > 0)
2512 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2513 
2514 		/*
2515 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2516 		 * symbol indices. Iterate over the array entries,
2517 		 * dispaying the referenced symbols.
2518 		 */
2519 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2520 		ndx = (Word *)sortcache->c_data->d_buf;
2521 		for (; ndxn-- > 0; ndx++) {
2522 			if (*ndx >= ldynsym_cnt) {
2523 				Word sec_ndx = *ndx - ldynsym_cnt;
2524 
2525 				output_symbol(&dynsym_state, sec_ndx, 0,
2526 				    *ndx, dynsym_state.sym + sec_ndx);
2527 			} else {
2528 				output_symbol(&ldynsym_state, *ndx, 0,
2529 				    *ndx, ldynsym_state.sym + *ndx);
2530 			}
2531 		}
2532 	}
2533 }
2534 
2535 /*
2536  * Search for and process any relocation sections.
2537  */
2538 static void
2539 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2540 {
2541 	Word	cnt;
2542 
2543 	for (cnt = 1; cnt < shnum; cnt++) {
2544 		Word		type, symnum;
2545 		Xword		relndx, relnum, relsize;
2546 		void		*rels;
2547 		Sym		*syms;
2548 		Cache		*symsec, *strsec;
2549 		Cache		*_cache = &cache[cnt];
2550 		Shdr		*shdr = _cache->c_shdr;
2551 		char		*relname = _cache->c_name;
2552 		Conv_inv_buf_t	inv_buf;
2553 
2554 		if (((type = shdr->sh_type) != SHT_RELA) &&
2555 		    (type != SHT_REL))
2556 			continue;
2557 		if (!match(MATCH_F_ALL, relname, cnt, type))
2558 			continue;
2559 
2560 		/*
2561 		 * Decide entry size.
2562 		 */
2563 		if (((relsize = shdr->sh_entsize) == 0) ||
2564 		    (relsize > shdr->sh_size)) {
2565 			if (type == SHT_RELA)
2566 				relsize = sizeof (Rela);
2567 			else
2568 				relsize = sizeof (Rel);
2569 		}
2570 
2571 		/*
2572 		 * Determine the number of relocations available.
2573 		 */
2574 		if (shdr->sh_size == 0) {
2575 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2576 			    file, relname);
2577 			continue;
2578 		}
2579 		if (_cache->c_data == NULL)
2580 			continue;
2581 
2582 		rels = _cache->c_data->d_buf;
2583 		relnum = shdr->sh_size / relsize;
2584 
2585 		/*
2586 		 * Get the data buffer for the associated symbol table and
2587 		 * string table.
2588 		 */
2589 		if (stringtbl(cache, 1, cnt, shnum, file,
2590 		    &symnum, &symsec, &strsec) == 0)
2591 			continue;
2592 
2593 		syms = symsec->c_data->d_buf;
2594 
2595 		/*
2596 		 * Loop through the relocation entries.
2597 		 */
2598 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2599 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2600 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2601 
2602 		for (relndx = 0; relndx < relnum; relndx++,
2603 		    rels = (void *)((char *)rels + relsize)) {
2604 			Half		mach = ehdr->e_machine;
2605 			char		section[BUFSIZ];
2606 			const char	*symname;
2607 			Word		symndx, reltype;
2608 			Rela		*rela;
2609 			Rel		*rel;
2610 
2611 			/*
2612 			 * Unravel the relocation and determine the symbol with
2613 			 * which this relocation is associated.
2614 			 */
2615 			if (type == SHT_RELA) {
2616 				rela = (Rela *)rels;
2617 				symndx = ELF_R_SYM(rela->r_info);
2618 				reltype = ELF_R_TYPE(rela->r_info, mach);
2619 			} else {
2620 				rel = (Rel *)rels;
2621 				symndx = ELF_R_SYM(rel->r_info);
2622 				reltype = ELF_R_TYPE(rel->r_info, mach);
2623 			}
2624 
2625 			symname = relsymname(cache, _cache, strsec, symndx,
2626 			    symnum, relndx, syms, section, BUFSIZ, file);
2627 
2628 			/*
2629 			 * A zero symbol index is only valid for a few
2630 			 * relocations.
2631 			 */
2632 			if (symndx == 0) {
2633 				int	badrel = 0;
2634 
2635 				if ((mach == EM_SPARC) ||
2636 				    (mach == EM_SPARC32PLUS) ||
2637 				    (mach == EM_SPARCV9)) {
2638 					if ((reltype != R_SPARC_NONE) &&
2639 					    (reltype != R_SPARC_REGISTER) &&
2640 					    (reltype != R_SPARC_RELATIVE))
2641 						badrel++;
2642 				} else if (mach == EM_386) {
2643 					if ((reltype != R_386_NONE) &&
2644 					    (reltype != R_386_RELATIVE))
2645 						badrel++;
2646 				} else if (mach == EM_AMD64) {
2647 					if ((reltype != R_AMD64_NONE) &&
2648 					    (reltype != R_AMD64_RELATIVE))
2649 						badrel++;
2650 				}
2651 
2652 				if (badrel) {
2653 					(void) fprintf(stderr,
2654 					    MSG_INTL(MSG_ERR_BADREL1), file,
2655 					    conv_reloc_type(mach, reltype,
2656 					    0, &inv_buf));
2657 				}
2658 			}
2659 
2660 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2661 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2662 			    rels, relname, symname, 0);
2663 		}
2664 	}
2665 }
2666 
2667 
2668 /*
2669  * This value controls which test dyn_test() performs.
2670  */
2671 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2672 
2673 /*
2674  * Used by dynamic() to compare the value of a dynamic element against
2675  * the starting address of the section it references.
2676  *
2677  * entry:
2678  *	test_type - Specify which dyn item is being tested.
2679  *	sh_type - SHT_* type value for required section.
2680  *	sec_cache - Cache entry for section, or NULL if the object lacks
2681  *		a section of this type.
2682  *	dyn - Dyn entry to be tested
2683  *	dynsec_cnt - # of dynamic section being examined. The first
2684  *		dynamic section is 1, the next is 2, and so on...
2685  *	ehdr - ELF header for file
2686  *	file - Name of file
2687  */
2688 static void
2689 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2690     Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2691 {
2692 	Conv_inv_buf_t	buf1, buf2;
2693 
2694 	/*
2695 	 * These tests are based around the implicit assumption that
2696 	 * there is only one dynamic section in an object, and also only
2697 	 * one of the sections it references. We have therefore gathered
2698 	 * all of the necessary information to test this in a single pass
2699 	 * over the section headers, which is very efficient. We are not
2700 	 * aware of any case where more than one dynamic section would
2701 	 * be meaningful in an ELF object, so this is a reasonable solution.
2702 	 *
2703 	 * To test multiple dynamic sections correctly would be more
2704 	 * expensive in code and time. We would have to build a data structure
2705 	 * containing all the dynamic elements. Then, we would use the address
2706 	 * to locate the section it references and ensure the section is of
2707 	 * the right type and that the address in the dynamic element is
2708 	 * to the start of the section. Then, we could check the size and
2709 	 * entsize values against those same sections. This is O(n^2), and
2710 	 * also complicated.
2711 	 *
2712 	 * In the highly unlikely case that there is more than one dynamic
2713 	 * section, we only test the first one, and simply allow the values
2714 	 * of the subsequent one to be displayed unchallenged.
2715 	 */
2716 	if (dynsec_cnt != 1)
2717 		return;
2718 
2719 	/*
2720 	 * A DT_ item that references a section address should always find
2721 	 * the section in the file.
2722 	 */
2723 	if (sec_cache == NULL) {
2724 		const char *name;
2725 
2726 		/*
2727 		 * Supply section names instead of section types for
2728 		 * things that reference progbits so that the error
2729 		 * message will make more sense.
2730 		 */
2731 		switch (dyn->d_tag) {
2732 		case DT_INIT:
2733 			name = MSG_ORIG(MSG_ELF_INIT);
2734 			break;
2735 		case DT_FINI:
2736 			name = MSG_ORIG(MSG_ELF_FINI);
2737 			break;
2738 		default:
2739 			name = conv_sec_type(osabi, ehdr->e_machine,
2740 			    sh_type, 0, &buf1);
2741 			break;
2742 		}
2743 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2744 		    name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2745 		    CONV_FMT_ALT_CF, &buf2));
2746 		return;
2747 	}
2748 
2749 
2750 	switch (test_type) {
2751 	case DYN_TEST_ADDR:
2752 		/* The section address should match the DT_ item value */
2753 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2754 			(void) fprintf(stderr,
2755 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2756 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2757 			    CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2758 			    sec_cache->c_ndx, sec_cache->c_name,
2759 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2760 		break;
2761 
2762 	case DYN_TEST_SIZE:
2763 		/* The section size should match the DT_ item value */
2764 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2765 			(void) fprintf(stderr,
2766 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2767 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2768 			    CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2769 			    sec_cache->c_ndx, sec_cache->c_name,
2770 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2771 		break;
2772 
2773 	case DYN_TEST_ENTSIZE:
2774 		/* The sh_entsize value should match the DT_ item value */
2775 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2776 			(void) fprintf(stderr,
2777 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2778 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2779 			    CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2780 			    sec_cache->c_ndx, sec_cache->c_name,
2781 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2782 		break;
2783 	}
2784 }
2785 
2786 /*
2787  * There are some DT_ entries that have corresponding symbols
2788  * (e.g. DT_INIT and _init). It is expected that these items will
2789  * both have the same value if both are present. This routine
2790  * examines the well known symbol tables for such symbols and
2791  * issues warnings for any that don't match.
2792  *
2793  * entry:
2794  *	dyn - Dyn entry to be tested
2795  *	symname - Name of symbol that corresponds to dyn
2796  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2797  *	target_cache - Section the symname section is expected to be
2798  *		associated with.
2799  *	cache - Cache of all section headers
2800  *	shnum - # of sections in cache
2801  *	ehdr - ELF header for file
2802  *	osabi - OSABI to apply when interpreting object
2803  *	file - Name of file
2804  */
2805 static void
2806 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2807     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2808     Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2809 {
2810 	Conv_inv_buf_t	buf;
2811 	int		i;
2812 	Sym		*sym;
2813 	Cache		*_cache;
2814 
2815 	for (i = 0; i < 3; i++) {
2816 		switch (i) {
2817 		case 0:
2818 			_cache = symtab_cache;
2819 			break;
2820 		case 1:
2821 			_cache = dynsym_cache;
2822 			break;
2823 		case 2:
2824 			_cache = ldynsym_cache;
2825 			break;
2826 		}
2827 
2828 		if ((_cache != NULL) &&
2829 		    symlookup(symname, cache, shnum, &sym, target_cache,
2830 		    _cache, file) && (sym->st_value != dyn->d_un.d_val))
2831 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2832 			    file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2833 			    osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2834 			    symname, EC_ADDR(sym->st_value));
2835 	}
2836 }
2837 
2838 /*
2839  * Search for and process a .dynamic section.
2840  */
2841 static void
2842 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2843 {
2844 	struct {
2845 		Cache	*symtab;
2846 		Cache	*dynstr;
2847 		Cache	*dynsym;
2848 		Cache	*hash;
2849 		Cache	*fini;
2850 		Cache	*fini_array;
2851 		Cache	*init;
2852 		Cache	*init_array;
2853 		Cache	*preinit_array;
2854 		Cache	*rel;
2855 		Cache	*rela;
2856 		Cache	*sunw_cap;
2857 		Cache	*sunw_capinfo;
2858 		Cache	*sunw_capchain;
2859 		Cache	*sunw_ldynsym;
2860 		Cache	*sunw_move;
2861 		Cache	*sunw_syminfo;
2862 		Cache	*sunw_symsort;
2863 		Cache	*sunw_tlssort;
2864 		Cache	*sunw_verdef;
2865 		Cache	*sunw_verneed;
2866 		Cache	*sunw_versym;
2867 	} sec;
2868 	Word	dynsec_ndx;
2869 	Word	dynsec_num;
2870 	int	dynsec_cnt;
2871 	Word	cnt;
2872 	int	osabi_solaris = osabi == ELFOSABI_SOLARIS;
2873 
2874 	/*
2875 	 * Make a pass over all the sections, gathering section information
2876 	 * we'll need below.
2877 	 */
2878 	dynsec_num = 0;
2879 	bzero(&sec, sizeof (sec));
2880 	for (cnt = 1; cnt < shnum; cnt++) {
2881 		Cache	*_cache = &cache[cnt];
2882 
2883 		switch (_cache->c_shdr->sh_type) {
2884 		case SHT_DYNAMIC:
2885 			if (dynsec_num == 0) {
2886 				dynsec_ndx = cnt;
2887 
2888 				/* Does it have a valid string table? */
2889 				(void) stringtbl(cache, 0, cnt, shnum, file,
2890 				    0, 0, &sec.dynstr);
2891 			}
2892 			dynsec_num++;
2893 			break;
2894 
2895 
2896 		case SHT_PROGBITS:
2897 			/*
2898 			 * We want to detect the .init and .fini sections,
2899 			 * if present. These are SHT_PROGBITS, so all we
2900 			 * have to go on is the section name. Normally comparing
2901 			 * names is a bad idea, but there are some special
2902 			 * names (i.e. .init/.fini/.interp) that are very
2903 			 * difficult to use in any other context, and for
2904 			 * these symbols, we do the heuristic match.
2905 			 */
2906 			if (strcmp(_cache->c_name,
2907 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2908 				if (sec.init == NULL)
2909 					sec.init = _cache;
2910 			} else if (strcmp(_cache->c_name,
2911 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2912 				if (sec.fini == NULL)
2913 					sec.fini = _cache;
2914 			}
2915 			break;
2916 
2917 		case SHT_REL:
2918 			/*
2919 			 * We want the SHT_REL section with the lowest
2920 			 * offset. The linker gathers them together,
2921 			 * and puts the address of the first one
2922 			 * into the DT_REL dynamic element.
2923 			 */
2924 			if ((sec.rel == NULL) ||
2925 			    (_cache->c_shdr->sh_offset <
2926 			    sec.rel->c_shdr->sh_offset))
2927 				sec.rel = _cache;
2928 			break;
2929 
2930 		case SHT_RELA:
2931 			/* RELA is handled just like RELA above */
2932 			if ((sec.rela == NULL) ||
2933 			    (_cache->c_shdr->sh_offset <
2934 			    sec.rela->c_shdr->sh_offset))
2935 				sec.rela = _cache;
2936 			break;
2937 
2938 		/*
2939 		 * The GRAB macro is used for the simple case in which
2940 		 * we simply grab the first section of the desired type.
2941 		 */
2942 #define	GRAB(_sec_type, _sec_field) \
2943 		case _sec_type: \
2944 			if (sec._sec_field == NULL) \
2945 				sec._sec_field = _cache; \
2946 				break
2947 		GRAB(SHT_SYMTAB,	symtab);
2948 		GRAB(SHT_DYNSYM,	dynsym);
2949 		GRAB(SHT_FINI_ARRAY,	fini_array);
2950 		GRAB(SHT_HASH,		hash);
2951 		GRAB(SHT_INIT_ARRAY,	init_array);
2952 		GRAB(SHT_SUNW_move,	sunw_move);
2953 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2954 		GRAB(SHT_SUNW_cap,	sunw_cap);
2955 		GRAB(SHT_SUNW_capinfo,	sunw_capinfo);
2956 		GRAB(SHT_SUNW_capchain,	sunw_capchain);
2957 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2958 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2959 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2960 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2961 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2962 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2963 		GRAB(SHT_SUNW_versym,	sunw_versym);
2964 #undef GRAB
2965 		}
2966 	}
2967 
2968 	/*
2969 	 * If no dynamic section, return immediately. If more than one
2970 	 * dynamic section, then something odd is going on and an error
2971 	 * is in order, but then continue on and display them all.
2972 	 */
2973 	if (dynsec_num == 0)
2974 		return;
2975 	if (dynsec_num > 1)
2976 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2977 		    file, EC_WORD(dynsec_num));
2978 
2979 
2980 	dynsec_cnt = 0;
2981 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2982 	    cnt++) {
2983 		Dyn	*dyn;
2984 		ulong_t	numdyn;
2985 		int	ndx, end_ndx;
2986 		Cache	*_cache = &cache[cnt], *strsec;
2987 		Shdr	*shdr = _cache->c_shdr;
2988 		int	dumped = 0;
2989 
2990 		if (shdr->sh_type != SHT_DYNAMIC)
2991 			continue;
2992 		dynsec_cnt++;
2993 
2994 		/*
2995 		 * Verify the associated string table section.
2996 		 */
2997 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2998 			continue;
2999 
3000 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3001 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3002 			    file, _cache->c_name);
3003 			continue;
3004 		}
3005 		if (_cache->c_data == NULL)
3006 			continue;
3007 
3008 		numdyn = shdr->sh_size / shdr->sh_entsize;
3009 		dyn = (Dyn *)_cache->c_data->d_buf;
3010 
3011 		/*
3012 		 * We expect the REL/RELA entries to reference the reloc
3013 		 * section with the lowest address. However, this is
3014 		 * not true for dumped objects. Detect if this object has
3015 		 * been dumped so that we can skip the reloc address test
3016 		 * in that case.
3017 		 */
3018 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3019 			if (dyn->d_tag == DT_FLAGS_1) {
3020 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3021 				break;
3022 			}
3023 		}
3024 		dyn = (Dyn *)_cache->c_data->d_buf;
3025 
3026 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3027 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3028 
3029 		Elf_dyn_title(0);
3030 
3031 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3032 			union {
3033 				Conv_inv_buf_t		inv;
3034 				Conv_dyn_flag_buf_t	flag;
3035 				Conv_dyn_flag1_buf_t	flag1;
3036 				Conv_dyn_posflag1_buf_t	posflag1;
3037 				Conv_dyn_feature1_buf_t	feature1;
3038 			} c_buf;
3039 			const char	*name = NULL;
3040 
3041 			/*
3042 			 * Print the information numerically, and if possible
3043 			 * as a string. If a string is available, name is
3044 			 * set to reference it.
3045 			 *
3046 			 * Also, take this opportunity to sanity check
3047 			 * the values of DT elements. In the code above,
3048 			 * we gathered information on sections that are
3049 			 * referenced by the dynamic section. Here, we
3050 			 * compare the attributes of those sections to
3051 			 * the DT_ items that reference them and report
3052 			 * on inconsistencies.
3053 			 *
3054 			 * Things not currently tested that could be improved
3055 			 * in later revisions include:
3056 			 *	- We don't check PLT or GOT related items
3057 			 *	- We don't handle computing the lengths of
3058 			 *		relocation arrays. To handle this
3059 			 *		requires examining data that spans
3060 			 *		across sections, in a contiguous span
3061 			 *		within a single segment.
3062 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
3063 			 *		verified without parsing the sections.
3064 			 *	- We don't handle DT_SUNW_SYMSZ, which would
3065 			 *		be the sum of the lengths of .dynsym and
3066 			 *		.SUNW_ldynsym
3067 			 *	- DT_SUNW_STRPAD can't be verified other than
3068 			 *		to check that it's not larger than
3069 			 *		the string table.
3070 			 *	- Some items come in "all or none" clusters
3071 			 *		that give an address, element size,
3072 			 *		and data length in bytes. We don't
3073 			 *		verify that there are no missing items
3074 			 *		in such groups.
3075 			 */
3076 			switch (dyn->d_tag) {
3077 			case DT_NULL:
3078 				/*
3079 				 * Special case: DT_NULLs can come in groups
3080 				 * that we prefer to reduce to a single line.
3081 				 */
3082 				end_ndx = ndx;
3083 				while ((end_ndx < (numdyn - 1)) &&
3084 				    ((dyn + 1)->d_tag == DT_NULL)) {
3085 					dyn++;
3086 					end_ndx++;
3087 				}
3088 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3089 				ndx = end_ndx;
3090 				continue;
3091 
3092 			/*
3093 			 * String items all reference the dynstr. The string()
3094 			 * function does the necessary sanity checking.
3095 			 */
3096 			case DT_NEEDED:
3097 			case DT_SONAME:
3098 			case DT_FILTER:
3099 			case DT_AUXILIARY:
3100 			case DT_CONFIG:
3101 			case DT_RPATH:
3102 			case DT_RUNPATH:
3103 			case DT_USED:
3104 			case DT_DEPAUDIT:
3105 			case DT_AUDIT:
3106 				name = string(_cache, ndx, strsec,
3107 				    file, dyn->d_un.d_ptr);
3108 				break;
3109 
3110 			case DT_SUNW_AUXILIARY:
3111 			case DT_SUNW_FILTER:
3112 				if (osabi_solaris)
3113 					name = string(_cache, ndx, strsec,
3114 					    file, dyn->d_un.d_ptr);
3115 				break;
3116 
3117 			case DT_FLAGS:
3118 				name = conv_dyn_flag(dyn->d_un.d_val,
3119 				    0, &c_buf.flag);
3120 				break;
3121 			case DT_FLAGS_1:
3122 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3123 				    &c_buf.flag1);
3124 				break;
3125 			case DT_POSFLAG_1:
3126 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3127 				    &c_buf.posflag1);
3128 				break;
3129 			case DT_FEATURE_1:
3130 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3131 				    &c_buf.feature1);
3132 				break;
3133 			case DT_DEPRECATED_SPARC_REGISTER:
3134 				name = MSG_INTL(MSG_STR_DEPRECATED);
3135 				break;
3136 
3137 			case DT_SUNW_LDMACH:
3138 				if (!osabi_solaris)
3139 					break;
3140 				name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3141 				    0, &c_buf.inv);
3142 				break;
3143 
3144 			/*
3145 			 * Cases below this point are strictly sanity checking,
3146 			 * and do not generate a name string. The TEST_ macros
3147 			 * are used to hide the boiler plate arguments neeeded
3148 			 * by dyn_test().
3149 			 */
3150 #define	TEST_ADDR(_sh_type, _sec_field) \
3151 				dyn_test(DYN_TEST_ADDR, _sh_type, \
3152 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3153 				    osabi, file)
3154 #define	TEST_SIZE(_sh_type, _sec_field) \
3155 				dyn_test(DYN_TEST_SIZE, _sh_type, \
3156 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3157 				    osabi, file)
3158 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
3159 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3160 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3161 				    osabi, file)
3162 
3163 			case DT_FINI:
3164 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3165 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3166 				    sec.fini, cache, shnum, ehdr, osabi, file);
3167 				TEST_ADDR(SHT_PROGBITS, fini);
3168 				break;
3169 
3170 			case DT_FINI_ARRAY:
3171 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3172 				break;
3173 
3174 			case DT_FINI_ARRAYSZ:
3175 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3176 				break;
3177 
3178 			case DT_HASH:
3179 				TEST_ADDR(SHT_HASH, hash);
3180 				break;
3181 
3182 			case DT_INIT:
3183 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3184 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3185 				    sec.init, cache, shnum, ehdr, osabi, file);
3186 				TEST_ADDR(SHT_PROGBITS, init);
3187 				break;
3188 
3189 			case DT_INIT_ARRAY:
3190 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
3191 				break;
3192 
3193 			case DT_INIT_ARRAYSZ:
3194 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
3195 				break;
3196 
3197 			case DT_MOVEENT:
3198 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3199 				break;
3200 
3201 			case DT_MOVESZ:
3202 				TEST_SIZE(SHT_SUNW_move, sunw_move);
3203 				break;
3204 
3205 			case DT_MOVETAB:
3206 				TEST_ADDR(SHT_SUNW_move, sunw_move);
3207 				break;
3208 
3209 			case DT_PREINIT_ARRAY:
3210 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3211 				break;
3212 
3213 			case DT_PREINIT_ARRAYSZ:
3214 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3215 				break;
3216 
3217 			case DT_REL:
3218 				if (!dumped)
3219 					TEST_ADDR(SHT_REL, rel);
3220 				break;
3221 
3222 			case DT_RELENT:
3223 				TEST_ENTSIZE(SHT_REL, rel);
3224 				break;
3225 
3226 			case DT_RELA:
3227 				if (!dumped)
3228 					TEST_ADDR(SHT_RELA, rela);
3229 				break;
3230 
3231 			case DT_RELAENT:
3232 				TEST_ENTSIZE(SHT_RELA, rela);
3233 				break;
3234 
3235 			case DT_STRTAB:
3236 				TEST_ADDR(SHT_STRTAB, dynstr);
3237 				break;
3238 
3239 			case DT_STRSZ:
3240 				TEST_SIZE(SHT_STRTAB, dynstr);
3241 				break;
3242 
3243 			case DT_SUNW_CAP:
3244 				if (osabi_solaris)
3245 					TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3246 				break;
3247 
3248 			case DT_SUNW_CAPINFO:
3249 				if (osabi_solaris)
3250 					TEST_ADDR(SHT_SUNW_capinfo,
3251 					    sunw_capinfo);
3252 				break;
3253 
3254 			case DT_SUNW_CAPCHAIN:
3255 				if (osabi_solaris)
3256 					TEST_ADDR(SHT_SUNW_capchain,
3257 					    sunw_capchain);
3258 				break;
3259 
3260 			case DT_SUNW_SYMTAB:
3261 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3262 				break;
3263 
3264 			case DT_SYMENT:
3265 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3266 				break;
3267 
3268 			case DT_SYMINENT:
3269 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3270 				break;
3271 
3272 			case DT_SYMINFO:
3273 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3274 				break;
3275 
3276 			case DT_SYMINSZ:
3277 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3278 				break;
3279 
3280 			case DT_SYMTAB:
3281 				TEST_ADDR(SHT_DYNSYM, dynsym);
3282 				break;
3283 
3284 			case DT_SUNW_SORTENT:
3285 				/*
3286 				 * This entry is related to both the symsort and
3287 				 * tlssort sections.
3288 				 */
3289 				if (osabi_solaris) {
3290 					int test_tls =
3291 					    (sec.sunw_tlssort != NULL);
3292 					int test_sym =
3293 					    (sec.sunw_symsort != NULL) ||
3294 					    !test_tls;
3295 					if (test_sym)
3296 						TEST_ENTSIZE(SHT_SUNW_symsort,
3297 						    sunw_symsort);
3298 					if (test_tls)
3299 						TEST_ENTSIZE(SHT_SUNW_tlssort,
3300 						    sunw_tlssort);
3301 				}
3302 				break;
3303 
3304 
3305 			case DT_SUNW_SYMSORT:
3306 				if (osabi_solaris)
3307 					TEST_ADDR(SHT_SUNW_symsort,
3308 					    sunw_symsort);
3309 				break;
3310 
3311 			case DT_SUNW_SYMSORTSZ:
3312 				if (osabi_solaris)
3313 					TEST_SIZE(SHT_SUNW_symsort,
3314 					    sunw_symsort);
3315 				break;
3316 
3317 			case DT_SUNW_TLSSORT:
3318 				if (osabi_solaris)
3319 					TEST_ADDR(SHT_SUNW_tlssort,
3320 					    sunw_tlssort);
3321 				break;
3322 
3323 			case DT_SUNW_TLSSORTSZ:
3324 				if (osabi_solaris)
3325 					TEST_SIZE(SHT_SUNW_tlssort,
3326 					    sunw_tlssort);
3327 				break;
3328 
3329 			case DT_VERDEF:
3330 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3331 				break;
3332 
3333 			case DT_VERNEED:
3334 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3335 				break;
3336 
3337 			case DT_VERSYM:
3338 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3339 				break;
3340 #undef TEST_ADDR
3341 #undef TEST_SIZE
3342 #undef TEST_ENTSIZE
3343 			}
3344 
3345 			if (name == NULL)
3346 				name = MSG_ORIG(MSG_STR_EMPTY);
3347 			Elf_dyn_entry(0, dyn, ndx, name,
3348 			    osabi, ehdr->e_machine);
3349 		}
3350 	}
3351 }
3352 
3353 /*
3354  * Search for and process a MOVE section.
3355  */
3356 static void
3357 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3358 {
3359 	Word		cnt;
3360 	const char	*fmt = NULL;
3361 
3362 	for (cnt = 1; cnt < shnum; cnt++) {
3363 		Word	movenum, symnum, ndx;
3364 		Sym	*syms;
3365 		Cache	*_cache = &cache[cnt];
3366 		Shdr	*shdr = _cache->c_shdr;
3367 		Cache	*symsec, *strsec;
3368 		Move	*move;
3369 
3370 		if (shdr->sh_type != SHT_SUNW_move)
3371 			continue;
3372 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3373 			continue;
3374 
3375 		/*
3376 		 * Determine the move data and number.
3377 		 */
3378 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3379 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3380 			    file, _cache->c_name);
3381 			continue;
3382 		}
3383 		if (_cache->c_data == NULL)
3384 			continue;
3385 
3386 		move = (Move *)_cache->c_data->d_buf;
3387 		movenum = shdr->sh_size / shdr->sh_entsize;
3388 
3389 		/*
3390 		 * Get the data buffer for the associated symbol table and
3391 		 * string table.
3392 		 */
3393 		if (stringtbl(cache, 1, cnt, shnum, file,
3394 		    &symnum, &symsec, &strsec) == 0)
3395 			return;
3396 
3397 		syms = (Sym *)symsec->c_data->d_buf;
3398 
3399 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3400 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3401 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3402 
3403 		if (fmt == NULL)
3404 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
3405 
3406 		for (ndx = 0; ndx < movenum; move++, ndx++) {
3407 			const char	*symname;
3408 			char		index[MAXNDXSIZE], section[BUFSIZ];
3409 			Word		symndx, shndx;
3410 			Sym		*sym;
3411 
3412 			/*
3413 			 * Check for null entries
3414 			 */
3415 			if ((move->m_info == 0) && (move->m_value == 0) &&
3416 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
3417 			    (move->m_stride == 0)) {
3418 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3419 				    EC_XWORD(move->m_poffset), 0, 0, 0,
3420 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3421 				continue;
3422 			}
3423 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3424 			    (symndx >= symnum)) {
3425 				(void) fprintf(stderr,
3426 				    MSG_INTL(MSG_ERR_BADMINFO), file,
3427 				    _cache->c_name, EC_XWORD(move->m_info));
3428 
3429 				(void) snprintf(index, MAXNDXSIZE,
3430 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3431 				dbg_print(0, fmt, index,
3432 				    EC_XWORD(move->m_poffset),
3433 				    ELF_M_SIZE(move->m_info), move->m_repeat,
3434 				    move->m_stride, move->m_value,
3435 				    MSG_INTL(MSG_STR_UNKNOWN));
3436 				continue;
3437 			}
3438 
3439 			symname = relsymname(cache, _cache, strsec,
3440 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
3441 			sym = (Sym *)(syms + symndx);
3442 
3443 			/*
3444 			 * Additional sanity check.
3445 			 */
3446 			shndx = sym->st_shndx;
3447 			if (!((shndx == SHN_COMMON) ||
3448 			    (((shndx >= 1) && (shndx <= shnum)) &&
3449 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3450 				(void) fprintf(stderr,
3451 				    MSG_INTL(MSG_ERR_BADSYM2), file,
3452 				    _cache->c_name, EC_WORD(symndx),
3453 				    demangle(symname, flags));
3454 			}
3455 
3456 			(void) snprintf(index, MAXNDXSIZE,
3457 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3458 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3459 			    ELF_M_SIZE(move->m_info), move->m_repeat,
3460 			    move->m_stride, move->m_value,
3461 			    demangle(symname, flags));
3462 		}
3463 	}
3464 }
3465 
3466 /*
3467  * parse_note_t is used to track the state used by parse_note_entry()
3468  * between calls, and also to return the results of each call.
3469  */
3470 typedef struct {
3471 	/* pns_ fields track progress through the data */
3472 	const char	*pns_file;	/* File name */
3473 	Cache		*pns_cache;	/* Note section cache entry */
3474 	size_t		pns_size;	/* # unprocessed data bytes */
3475 	Word		*pns_data;	/* # to next unused data byte */
3476 
3477 	/* pn_ fields return the results for a single call */
3478 	Word		pn_namesz;	/* Value of note namesz field */
3479 	Word		pn_descsz;	/* Value of note descsz field */
3480 	Word		pn_type;	/* Value of note type field */
3481 	const char	*pn_name;	/* if (namesz > 0) ptr to name bytes */
3482 	const char	*pn_desc;	/* if (descsx > 0) ptr to data bytes */
3483 } parse_note_t;
3484 
3485 /*
3486  * Extract the various sub-parts of a note entry, and advance the
3487  * data pointer past it.
3488  *
3489  * entry:
3490  *	The state pns_ fields contain current values for the Note section
3491  *
3492  * exit:
3493  *	On success, True (1) is returned, the state pns_ fields have been
3494  *	advanced to point at the start of the next entry, and the information
3495  *	for the recovered note entry is found in the state pn_ fields.
3496  *
3497  *	On failure, False (0) is returned. The values contained in state
3498  *	are undefined.
3499  */
3500 static int
3501 parse_note_entry(parse_note_t *state)
3502 {
3503 	size_t	pad, noteoff;
3504 
3505 	noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3506 	/*
3507 	 * Make sure we can at least reference the 3 initial entries
3508 	 * (4-byte words) of the note information block.
3509 	 */
3510 	if (state->pns_size >= (sizeof (Word) * 3)) {
3511 		state->pns_size -= (sizeof (Word) * 3);
3512 	} else {
3513 		(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3514 		    state->pns_file, state->pns_cache->c_name,
3515 		    EC_WORD(noteoff));
3516 		return (0);
3517 	}
3518 
3519 	/*
3520 	 * Make sure any specified name string can be referenced.
3521 	 */
3522 	if ((state->pn_namesz = *state->pns_data++) != 0) {
3523 		if (state->pns_size >= state->pn_namesz) {
3524 			state->pns_size -= state->pn_namesz;
3525 		} else {
3526 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3527 			    state->pns_file, state->pns_cache->c_name,
3528 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3529 			return (0);
3530 		}
3531 	}
3532 
3533 	/*
3534 	 * Make sure any specified descriptor can be referenced.
3535 	 */
3536 	if ((state->pn_descsz = *state->pns_data++) != 0) {
3537 		/*
3538 		 * If namesz isn't a 4-byte multiple, account for any
3539 		 * padding that must exist before the descriptor.
3540 		 */
3541 		if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3542 			pad = sizeof (Word) - pad;
3543 			state->pns_size -= pad;
3544 		}
3545 		if (state->pns_size >= state->pn_descsz) {
3546 			state->pns_size -= state->pn_descsz;
3547 		} else {
3548 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3549 			    state->pns_file, state->pns_cache->c_name,
3550 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3551 			return (0);
3552 		}
3553 	}
3554 
3555 	state->pn_type = *state->pns_data++;
3556 
3557 	/* Name */
3558 	if (state->pn_namesz) {
3559 		state->pn_name = (char *)state->pns_data;
3560 		pad = (state->pn_namesz +
3561 		    (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3562 		/* LINTED */
3563 		state->pns_data = (Word *)(state->pn_name + pad);
3564 	}
3565 
3566 	/*
3567 	 * If multiple information blocks exist within a .note section
3568 	 * account for any padding that must exist before the next
3569 	 * information block.
3570 	 */
3571 	if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3572 		pad = sizeof (Word) - pad;
3573 		if (state->pns_size > pad)
3574 			state->pns_size -= pad;
3575 	}
3576 
3577 	/* Data */
3578 	if (state->pn_descsz) {
3579 		state->pn_desc = (const char *)state->pns_data;
3580 		/* LINTED */
3581 		state->pns_data = (Word *)(state->pn_desc +
3582 		    state->pn_descsz + pad);
3583 	}
3584 
3585 	return (1);
3586 }
3587 
3588 /*
3589  * Callback function for use with conv_str_to_c_literal() below.
3590  */
3591 /*ARGSUSED2*/
3592 static void
3593 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3594 {
3595 	(void) fwrite(ptr, size, 1, stdout);
3596 }
3597 
3598 /*
3599  * Traverse a note section analyzing each note information block.
3600  * The data buffers size is used to validate references before they are made,
3601  * and is decremented as each element is processed.
3602  */
3603 void
3604 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3605 {
3606 	int		cnt = 0;
3607 	int		is_corenote;
3608 	int		do_swap;
3609 	Conv_inv_buf_t	inv_buf;
3610 	parse_note_t	pnstate;
3611 
3612 	pnstate.pns_file = file;
3613 	pnstate.pns_cache = cache;
3614 	pnstate.pns_size = size;
3615 	pnstate.pns_data = data;
3616 	do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3617 
3618 	/*
3619 	 * Print out a single `note' information block.
3620 	 */
3621 	while (pnstate.pns_size > 0) {
3622 
3623 		if (parse_note_entry(&pnstate) == 0)
3624 			return;
3625 
3626 		/*
3627 		 * Is this a Solaris core note? Such notes all have
3628 		 * the name "CORE".
3629 		 */
3630 		is_corenote = (ehdr->e_type == ET_CORE) &&
3631 		    (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3632 		    (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3633 		    MSG_STR_CORE_SIZE + 1) == 0);
3634 
3635 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3636 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3637 		cnt++;
3638 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3639 		    EC_WORD(pnstate.pn_namesz));
3640 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3641 		    EC_WORD(pnstate.pn_descsz));
3642 
3643 		if (is_corenote)
3644 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3645 			    conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3646 		else
3647 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3648 			    EC_WORD(pnstate.pn_type));
3649 		if (pnstate.pn_namesz) {
3650 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3651 			/*
3652 			 * The name string can contain embedded 'null'
3653 			 * bytes and/or unprintable characters. Also,
3654 			 * the final NULL is documented in the ELF ABI
3655 			 * as being included in the namesz. So, display
3656 			 * the name using C literal string notation, and
3657 			 * include the terminating NULL in the output.
3658 			 * We don't show surrounding double quotes, as
3659 			 * that implies the termination that we are showing
3660 			 * explicitly.
3661 			 */
3662 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
3663 			    MSG_STR_8SP_SIZE, 1, stdout);
3664 			conv_str_to_c_literal(pnstate.pn_name,
3665 			    pnstate.pn_namesz, c_literal_cb, NULL);
3666 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3667 		}
3668 
3669 		if (pnstate.pn_descsz) {
3670 			int		hexdump = 1;
3671 
3672 			/*
3673 			 * If this is a core note, let the corenote()
3674 			 * function handle it.
3675 			 */
3676 			if (is_corenote) {
3677 				/* We only issue the bad arch error once */
3678 				static int	badnote_done = 0;
3679 				corenote_ret_t	corenote_ret;
3680 
3681 				corenote_ret = corenote(ehdr->e_machine,
3682 				    do_swap, pnstate.pn_type, pnstate.pn_desc,
3683 				    pnstate.pn_descsz);
3684 				switch (corenote_ret) {
3685 				case CORENOTE_R_OK:
3686 					hexdump = 0;
3687 					break;
3688 				case CORENOTE_R_BADDATA:
3689 					(void) fprintf(stderr,
3690 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
3691 					    file);
3692 					break;
3693 				case CORENOTE_R_BADARCH:
3694 					if (badnote_done)
3695 						break;
3696 					(void) fprintf(stderr,
3697 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
3698 					    file,
3699 					    conv_ehdr_mach(ehdr->e_machine,
3700 					    0, &inv_buf));
3701 					break;
3702 				}
3703 			}
3704 
3705 			/*
3706 			 * The default thing when we don't understand
3707 			 * the note data is to display it as hex bytes.
3708 			 */
3709 			if (hexdump) {
3710 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3711 				dump_hex_bytes(pnstate.pn_desc,
3712 				    pnstate.pn_descsz, 8, 4, 4);
3713 			}
3714 		}
3715 	}
3716 }
3717 
3718 /*
3719  * Search for and process .note sections.
3720  *
3721  * Returns the number of note sections seen.
3722  */
3723 static Word
3724 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3725 {
3726 	Word	cnt, note_cnt = 0;
3727 
3728 	/*
3729 	 * Otherwise look for any .note sections.
3730 	 */
3731 	for (cnt = 1; cnt < shnum; cnt++) {
3732 		Cache	*_cache = &cache[cnt];
3733 		Shdr	*shdr = _cache->c_shdr;
3734 
3735 		if (shdr->sh_type != SHT_NOTE)
3736 			continue;
3737 		note_cnt++;
3738 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3739 			continue;
3740 
3741 		/*
3742 		 * As these sections are often hand rolled, make sure they're
3743 		 * properly aligned before proceeding, and issue an error
3744 		 * as necessary.
3745 		 *
3746 		 * Note that we will continue on to display the note even
3747 		 * if it has bad alignment. We can do this safely, because
3748 		 * libelf knows the alignment required for SHT_NOTE, and
3749 		 * takes steps to deliver a properly aligned buffer to us
3750 		 * even if the actual file is misaligned.
3751 		 */
3752 		if (shdr->sh_offset & (sizeof (Word) - 1))
3753 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3754 			    file, _cache->c_name);
3755 
3756 		if (_cache->c_data == NULL)
3757 			continue;
3758 
3759 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3760 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3761 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3762 		/* LINTED */
3763 		    (Word)_cache->c_data->d_size, ehdr, file);
3764 	}
3765 
3766 	return (note_cnt);
3767 }
3768 
3769 /*
3770  * The Linux Standard Base defines a special note named .note.ABI-tag
3771  * that is used to maintain Linux ABI information. Presence of this section
3772  * is a strong indication that the object should be considered to be
3773  * ELFOSABI_LINUX.
3774  *
3775  * This function returns True (1) if such a note is seen, and False (0)
3776  * otherwise.
3777  */
3778 static int
3779 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3780 {
3781 	Word	cnt;
3782 
3783 	for (cnt = 1; cnt < shnum; cnt++) {
3784 		parse_note_t	pnstate;
3785 		Cache		*_cache = &cache[cnt];
3786 		Shdr		*shdr = _cache->c_shdr;
3787 
3788 		/*
3789 		 * Section must be SHT_NOTE, must have the name
3790 		 * .note.ABI-tag, and must have data.
3791 		 */
3792 		if ((shdr->sh_type != SHT_NOTE) ||
3793 		    (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3794 		    _cache->c_name) != 0) || (_cache->c_data == NULL))
3795 			continue;
3796 
3797 		pnstate.pns_file = file;
3798 		pnstate.pns_cache = _cache;
3799 		pnstate.pns_size = _cache->c_data->d_size;
3800 		pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3801 
3802 		while (pnstate.pns_size > 0) {
3803 			Word *w;
3804 
3805 			if (parse_note_entry(&pnstate) == 0)
3806 				break;
3807 
3808 			/*
3809 			 * The type must be 1, and the name must be "GNU".
3810 			 * The descsz must be at least 16 bytes.
3811 			 */
3812 			if ((pnstate.pn_type != 1) ||
3813 			    (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3814 			    (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3815 			    MSG_STR_CORE_SIZE + 1) != 0) ||
3816 			    (pnstate.pn_descsz < 16))
3817 				continue;
3818 
3819 			/*
3820 			 * desc contains 4 32-bit fields. Field 0 must be 0,
3821 			 * indicating Linux. The second, third, and fourth
3822 			 * fields represent the earliest Linux kernel
3823 			 * version compatible with this object.
3824 			 */
3825 			/*LINTED*/
3826 			w = (Word *) pnstate.pn_desc;
3827 			if (*w == 0)
3828 				return (1);
3829 		}
3830 	}
3831 
3832 	return (0);
3833 }
3834 
3835 /*
3836  * Determine an individual hash entry.  This may be the initial hash entry,
3837  * or an associated chain entry.
3838  */
3839 static void
3840 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3841     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3842     uint_t flags, int chain)
3843 {
3844 	Sym		*sym;
3845 	const char	*symname, *str;
3846 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3847 	ulong_t		nbkt, nhash;
3848 
3849 	if (symndx > symn) {
3850 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3851 		    EC_WORD(symndx), EC_WORD(hashndx));
3852 		symname = MSG_INTL(MSG_STR_UNKNOWN);
3853 	} else {
3854 		sym = (Sym *)(syms + symndx);
3855 		symname = string(refsec, symndx, strsec, file, sym->st_name);
3856 	}
3857 
3858 	if (chain == 0) {
3859 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3860 		    hashndx);
3861 		str = (const char *)_bucket;
3862 	} else
3863 		str = MSG_ORIG(MSG_STR_EMPTY);
3864 
3865 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3866 	    EC_WORD(symndx));
3867 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3868 	    demangle(symname, flags));
3869 
3870 	/*
3871 	 * Determine if this string is in the correct bucket.
3872 	 */
3873 	nhash = elf_hash(symname);
3874 	nbkt = nhash % bkts;
3875 
3876 	if (nbkt != hashndx) {
3877 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3878 		    hsecname, symname, EC_WORD(hashndx), nbkt);
3879 	}
3880 }
3881 
3882 #define	MAXCOUNT	500
3883 
3884 static void
3885 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3886 {
3887 	static int	count[MAXCOUNT];
3888 	Word		cnt;
3889 	ulong_t		ndx, bkts;
3890 	char		number[MAXNDXSIZE];
3891 
3892 	for (cnt = 1; cnt < shnum; cnt++) {
3893 		uint_t		*hash, *chain;
3894 		Cache		*_cache = &cache[cnt];
3895 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3896 		char		*ssecname, *hsecname = _cache->c_name;
3897 		Sym		*syms;
3898 		Word		symn;
3899 
3900 		if (hshdr->sh_type != SHT_HASH)
3901 			continue;
3902 
3903 		/*
3904 		 * Determine the hash table data and size.
3905 		 */
3906 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3907 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3908 			    file, hsecname);
3909 			continue;
3910 		}
3911 		if (_cache->c_data == NULL)
3912 			continue;
3913 
3914 		hash = (uint_t *)_cache->c_data->d_buf;
3915 		bkts = *hash;
3916 		chain = hash + 2 + bkts;
3917 		hash += 2;
3918 
3919 		/*
3920 		 * Get the data buffer for the associated symbol table.
3921 		 */
3922 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3923 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3924 			    file, hsecname, EC_WORD(hshdr->sh_link));
3925 			continue;
3926 		}
3927 
3928 		_cache = &cache[hshdr->sh_link];
3929 		ssecname = _cache->c_name;
3930 
3931 		if (_cache->c_data == NULL)
3932 			continue;
3933 
3934 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3935 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3936 			    file, ssecname);
3937 			continue;
3938 		}
3939 
3940 		sshdr = _cache->c_shdr;
3941 		/* LINTED */
3942 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3943 
3944 		/*
3945 		 * Get the associated string table section.
3946 		 */
3947 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3948 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3949 			    file, ssecname, EC_WORD(sshdr->sh_link));
3950 			continue;
3951 		}
3952 
3953 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3954 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3955 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3956 
3957 		/*
3958 		 * Loop through the hash buckets, printing the appropriate
3959 		 * symbols.
3960 		 */
3961 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3962 			Word	_ndx, _cnt;
3963 
3964 			if (*hash == 0) {
3965 				count[0]++;
3966 				continue;
3967 			}
3968 
3969 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3970 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3971 
3972 			/*
3973 			 * Determine if any other symbols are chained to this
3974 			 * bucket.
3975 			 */
3976 			_ndx = chain[*hash];
3977 			_cnt = 1;
3978 			while (_ndx) {
3979 				hash_entry(_cache, &cache[sshdr->sh_link],
3980 				    hsecname, ndx, _ndx, symn, syms, file,
3981 				    bkts, flags, 1);
3982 				_ndx = chain[_ndx];
3983 				_cnt++;
3984 			}
3985 
3986 			if (_cnt >= MAXCOUNT) {
3987 				(void) fprintf(stderr,
3988 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3989 				    _cache->c_name, EC_WORD(ndx),
3990 				    EC_WORD(_cnt));
3991 			} else
3992 				count[_cnt]++;
3993 		}
3994 		break;
3995 	}
3996 
3997 	/*
3998 	 * Print out the count information.
3999 	 */
4000 	bkts = cnt = 0;
4001 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4002 
4003 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4004 		Word	_cnt;
4005 
4006 		if ((_cnt = count[ndx]) == 0)
4007 			continue;
4008 
4009 		(void) snprintf(number, MAXNDXSIZE,
4010 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4011 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4012 		    EC_WORD(ndx));
4013 		bkts += _cnt;
4014 		cnt += (Word)(ndx * _cnt);
4015 	}
4016 	if (cnt) {
4017 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4018 		    bkts);
4019 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4020 		    EC_WORD(cnt));
4021 	}
4022 }
4023 
4024 static void
4025 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4026 {
4027 	Word	scnt;
4028 
4029 	for (scnt = 1; scnt < shnum; scnt++) {
4030 		Cache		*_cache = &cache[scnt];
4031 		Shdr		*shdr = _cache->c_shdr;
4032 		Word		*grpdata, gcnt, grpcnt, symnum, unknown;
4033 		Cache		*symsec, *strsec;
4034 		Sym		*syms, *sym;
4035 		char		flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4036 		const char	*grpnam;
4037 
4038 		if (shdr->sh_type != SHT_GROUP)
4039 			continue;
4040 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4041 			continue;
4042 		if ((_cache->c_data == NULL) ||
4043 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4044 			continue;
4045 		grpcnt = shdr->sh_size / sizeof (Word);
4046 
4047 		/*
4048 		 * Get the data buffer for the associated symbol table and
4049 		 * string table.
4050 		 */
4051 		if (stringtbl(cache, 1, scnt, shnum, file,
4052 		    &symnum, &symsec, &strsec) == 0)
4053 			return;
4054 
4055 		syms = symsec->c_data->d_buf;
4056 
4057 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4058 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4059 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4060 
4061 		/*
4062 		 * The first element of the group defines the group.  The
4063 		 * associated symbol is defined by the sh_link field.
4064 		 */
4065 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4066 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4067 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
4068 			return;
4069 		}
4070 
4071 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4072 		if (grpdata[0] & GRP_COMDAT) {
4073 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4074 		}
4075 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4076 			size_t	len = strlen(flgstrbuf);
4077 
4078 			(void) snprintf(&flgstrbuf[len],
4079 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
4080 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4081 		}
4082 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4083 		sym = (Sym *)(syms + shdr->sh_info);
4084 
4085 		/*
4086 		 * The GNU assembler can use section symbols as the signature
4087 		 * symbol as described by this comment in the gold linker
4088 		 * (found via google):
4089 		 *
4090 		 *	It seems that some versions of gas will create a
4091 		 *	section group associated with a section symbol, and
4092 		 *	then fail to give a name to the section symbol.  In
4093 		 *	such a case, use the name of the section.
4094 		 *
4095 		 * In order to support such objects, we do the same.
4096 		 */
4097 		grpnam = string(_cache, 0, strsec, file, sym->st_name);
4098 		if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4099 		    (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4100 			grpnam = cache[sym->st_shndx].c_name;
4101 
4102 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4103 		    demangle(grpnam, flags));
4104 
4105 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4106 			char		index[MAXNDXSIZE];
4107 			const char	*name;
4108 
4109 			(void) snprintf(index, MAXNDXSIZE,
4110 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4111 
4112 			if (grpdata[gcnt] >= shnum)
4113 				name = MSG_INTL(MSG_GRP_INVALSCN);
4114 			else
4115 				name = cache[grpdata[gcnt]].c_name;
4116 
4117 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4118 			    EC_XWORD(grpdata[gcnt]));
4119 		}
4120 	}
4121 }
4122 
4123 static void
4124 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4125 {
4126 	Cache		*gotcache = NULL, *symtab = NULL;
4127 	Addr		gotbgn, gotend;
4128 	Shdr		*gotshdr;
4129 	Word		cnt, gotents, gotndx;
4130 	size_t		gentsize;
4131 	Got_info	*gottable;
4132 	char		*gotdata;
4133 	Sym		*gotsym;
4134 	Xword		gotsymaddr;
4135 	uint_t		sys_encoding;
4136 
4137 	/*
4138 	 * First, find the got.
4139 	 */
4140 	for (cnt = 1; cnt < shnum; cnt++) {
4141 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4142 		    MSG_ELF_GOT_SIZE) == 0) {
4143 			gotcache = &cache[cnt];
4144 			break;
4145 		}
4146 	}
4147 	if (gotcache == NULL)
4148 		return;
4149 
4150 	/*
4151 	 * A got section within a relocatable object is suspicious.
4152 	 */
4153 	if (ehdr->e_type == ET_REL) {
4154 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4155 		    gotcache->c_name);
4156 	}
4157 
4158 	gotshdr = gotcache->c_shdr;
4159 	if (gotshdr->sh_size == 0) {
4160 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4161 		    file, gotcache->c_name);
4162 		return;
4163 	}
4164 
4165 	gotbgn = gotshdr->sh_addr;
4166 	gotend = gotbgn + gotshdr->sh_size;
4167 
4168 	/*
4169 	 * Some architectures don't properly set the sh_entsize for the GOT
4170 	 * table.  If it's not set, default to a size of a pointer.
4171 	 */
4172 	if ((gentsize = gotshdr->sh_entsize) == 0)
4173 		gentsize = sizeof (Xword);
4174 
4175 	if (gotcache->c_data == NULL)
4176 		return;
4177 
4178 	/* LINTED */
4179 	gotents = (Word)(gotshdr->sh_size / gentsize);
4180 	gotdata = gotcache->c_data->d_buf;
4181 
4182 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4183 		int err = errno;
4184 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4185 		    strerror(err));
4186 		return;
4187 	}
4188 
4189 	/*
4190 	 * Now we scan through all the sections looking for any relocations
4191 	 * that may be against the GOT.  Since these may not be isolated to a
4192 	 * .rel[a].got section we check them all.
4193 	 * While scanning sections save the symbol table entry (a symtab
4194 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4195 	 */
4196 	for (cnt = 1; cnt < shnum; cnt++) {
4197 		Word		type, symnum;
4198 		Xword		relndx, relnum, relsize;
4199 		void		*rels;
4200 		Sym		*syms;
4201 		Cache		*symsec, *strsec;
4202 		Cache		*_cache = &cache[cnt];
4203 		Shdr		*shdr;
4204 
4205 		shdr = _cache->c_shdr;
4206 		type = shdr->sh_type;
4207 
4208 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
4209 			symtab = _cache;
4210 			continue;
4211 		}
4212 		if (type == SHT_SYMTAB) {
4213 			symtab = _cache;
4214 			continue;
4215 		}
4216 		if ((type != SHT_RELA) && (type != SHT_REL))
4217 			continue;
4218 
4219 		/*
4220 		 * Decide entry size.
4221 		 */
4222 		if (((relsize = shdr->sh_entsize) == 0) ||
4223 		    (relsize > shdr->sh_size)) {
4224 			if (type == SHT_RELA)
4225 				relsize = sizeof (Rela);
4226 			else
4227 				relsize = sizeof (Rel);
4228 		}
4229 
4230 		/*
4231 		 * Determine the number of relocations available.
4232 		 */
4233 		if (shdr->sh_size == 0) {
4234 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4235 			    file, _cache->c_name);
4236 			continue;
4237 		}
4238 		if (_cache->c_data == NULL)
4239 			continue;
4240 
4241 		rels = _cache->c_data->d_buf;
4242 		relnum = shdr->sh_size / relsize;
4243 
4244 		/*
4245 		 * Get the data buffer for the associated symbol table and
4246 		 * string table.
4247 		 */
4248 		if (stringtbl(cache, 1, cnt, shnum, file,
4249 		    &symnum, &symsec, &strsec) == 0)
4250 			continue;
4251 
4252 		syms = symsec->c_data->d_buf;
4253 
4254 		/*
4255 		 * Loop through the relocation entries.
4256 		 */
4257 		for (relndx = 0; relndx < relnum; relndx++,
4258 		    rels = (void *)((char *)rels + relsize)) {
4259 			char		section[BUFSIZ];
4260 			Addr		offset;
4261 			Got_info	*gip;
4262 			Word		symndx, reltype;
4263 			Rela		*rela;
4264 			Rel		*rel;
4265 
4266 			/*
4267 			 * Unravel the relocation.
4268 			 */
4269 			if (type == SHT_RELA) {
4270 				rela = (Rela *)rels;
4271 				symndx = ELF_R_SYM(rela->r_info);
4272 				reltype = ELF_R_TYPE(rela->r_info,
4273 				    ehdr->e_machine);
4274 				offset = rela->r_offset;
4275 			} else {
4276 				rel = (Rel *)rels;
4277 				symndx = ELF_R_SYM(rel->r_info);
4278 				reltype = ELF_R_TYPE(rel->r_info,
4279 				    ehdr->e_machine);
4280 				offset = rel->r_offset;
4281 			}
4282 
4283 			/*
4284 			 * Only pay attention to relocations against the GOT.
4285 			 */
4286 			if ((offset < gotbgn) || (offset >= gotend))
4287 				continue;
4288 
4289 			/* LINTED */
4290 			gotndx = (Word)((offset - gotbgn) /
4291 			    gotshdr->sh_entsize);
4292 			gip = &gottable[gotndx];
4293 
4294 			if (gip->g_reltype != 0) {
4295 				(void) fprintf(stderr,
4296 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
4297 				    EC_WORD(gotndx), EC_ADDR(offset));
4298 				continue;
4299 			}
4300 
4301 			if (symndx)
4302 				gip->g_symname = relsymname(cache, _cache,
4303 				    strsec, symndx, symnum, relndx, syms,
4304 				    section, BUFSIZ, file);
4305 			gip->g_reltype = reltype;
4306 			gip->g_rel = rels;
4307 		}
4308 	}
4309 
4310 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4311 	    symtab, file))
4312 		gotsymaddr = gotsym->st_value;
4313 	else
4314 		gotsymaddr = gotbgn;
4315 
4316 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4317 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4318 	Elf_got_title(0);
4319 
4320 	sys_encoding = _elf_sys_encoding();
4321 	for (gotndx = 0; gotndx < gotents; gotndx++) {
4322 		Got_info	*gip;
4323 		Sword		gindex;
4324 		Addr		gaddr;
4325 		Xword		gotentry;
4326 
4327 		gip = &gottable[gotndx];
4328 
4329 		gaddr = gotbgn + (gotndx * gentsize);
4330 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4331 
4332 		if (gentsize == sizeof (Word))
4333 			/* LINTED */
4334 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4335 		else
4336 			/* LINTED */
4337 			gotentry = *((Xword *)(gotdata) + gotndx);
4338 
4339 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4340 		    ehdr->e_ident[EI_DATA], sys_encoding,
4341 		    gip->g_reltype, gip->g_rel, gip->g_symname);
4342 	}
4343 	free(gottable);
4344 }
4345 
4346 void
4347 checksum(Elf *elf)
4348 {
4349 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4350 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4351 }
4352 
4353 /*
4354  * This variable is used by regular() to communicate the address of
4355  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4356  * the qsort() interface does not include a userdata argument by which
4357  * such arbitrary data can be passed, so we are stuck using global data.
4358  */
4359 static Cache *sort_shdr_ndx_arr_cache;
4360 
4361 
4362 /*
4363  * Used with qsort() to sort the section indices so that they can be
4364  * used to access the section headers in order of increasing data offset.
4365  *
4366  * entry:
4367  *	sort_shdr_ndx_arr_cache - Contains address of
4368  *		section header cache.
4369  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4370  *
4371  * exit:
4372  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
4373  */
4374 static int
4375 sort_shdr_ndx_arr(const void *v1, const void *v2)
4376 {
4377 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4378 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4379 
4380 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4381 		return (-1);
4382 
4383 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4384 		return (1);
4385 
4386 	return (0);
4387 }
4388 
4389 
4390 static int
4391 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4392     size_t shnum, Cache **cache_ret, Word flags)
4393 {
4394 	Elf_Scn		*scn;
4395 	Elf_Data	*data;
4396 	size_t		ndx;
4397 	Shdr		*nameshdr;
4398 	char		*names = NULL;
4399 	Cache		*cache, *_cache;
4400 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
4401 
4402 
4403 	/*
4404 	 * Obtain the .shstrtab data buffer to provide the required section
4405 	 * name strings.
4406 	 */
4407 	if (shstrndx == SHN_UNDEF) {
4408 		/*
4409 		 * It is rare, but legal, for an object to lack a
4410 		 * header string table section.
4411 		 */
4412 		names = NULL;
4413 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4414 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4415 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4416 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4417 		    EC_XWORD(shstrndx));
4418 
4419 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
4420 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4421 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4422 		    EC_XWORD(shstrndx));
4423 
4424 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4425 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4426 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4427 		    EC_WORD(elf_ndxscn(scn)));
4428 
4429 	} else if ((names = data->d_buf) == NULL)
4430 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4431 
4432 	/*
4433 	 * Allocate a cache to maintain a descriptor for each section.
4434 	 */
4435 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4436 		int err = errno;
4437 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4438 		    file, strerror(err));
4439 		return (0);
4440 	}
4441 
4442 	*cache = cache_init;
4443 	_cache = cache;
4444 	_cache++;
4445 
4446 	/*
4447 	 * Allocate an array that will hold the section index for
4448 	 * each section that has data in the ELF file:
4449 	 *
4450 	 *	- Is not a NOBITS section
4451 	 *	- Data has non-zero length
4452 	 *
4453 	 * Note that shnum is an upper bound on the size required. It
4454 	 * is likely that we won't use a few of these array elements.
4455 	 * Allocating a modest amount of extra memory in this case means
4456 	 * that we can avoid an extra loop to count the number of needed
4457 	 * items, and can fill this array immediately in the first loop
4458 	 * below.
4459 	 */
4460 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4461 		int err = errno;
4462 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4463 		    file, strerror(err));
4464 		return (0);
4465 	}
4466 	shdr_ndx_arr_cnt = 0;
4467 
4468 	/*
4469 	 * Traverse the sections of the file.  This gathering of data is
4470 	 * carried out in two passes.  First, the section headers are captured
4471 	 * and the section header names are evaluated.  A verification pass is
4472 	 * then carried out over the section information.  Files have been
4473 	 * known to exhibit overlapping (and hence erroneous) section header
4474 	 * information.
4475 	 *
4476 	 * Finally, the data for each section is obtained.  This processing is
4477 	 * carried out after section verification because should any section
4478 	 * header overlap occur, and a file needs translating (ie. xlate'ing
4479 	 * information from a non-native architecture file), then the process
4480 	 * of translation can corrupt the section header information.  Of
4481 	 * course, if there is any section overlap, the data related to the
4482 	 * sections is going to be compromised.  However, it is the translation
4483 	 * of this data that has caused problems with elfdump()'s ability to
4484 	 * extract the data.
4485 	 */
4486 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4487 	    ndx++, _cache++) {
4488 		char	scnndxnm[100];
4489 
4490 		_cache->c_ndx = ndx;
4491 		_cache->c_scn = scn;
4492 
4493 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4494 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4495 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4496 			    EC_WORD(elf_ndxscn(scn)));
4497 		}
4498 
4499 		/*
4500 		 * If this section has data in the file, include it in
4501 		 * the array of sections to check for address overlap.
4502 		 */
4503 		if ((_cache->c_shdr->sh_size != 0) &&
4504 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
4505 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4506 
4507 		/*
4508 		 * If a shstrtab exists, assign the section name.
4509 		 */
4510 		if (names && _cache->c_shdr) {
4511 			if (_cache->c_shdr->sh_name &&
4512 			    /* LINTED */
4513 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4514 				const char	*symname;
4515 				char		*secname;
4516 
4517 				secname = names + _cache->c_shdr->sh_name;
4518 
4519 				/*
4520 				 * A SUN naming convention employs a "%" within
4521 				 * a section name to indicate a section/symbol
4522 				 * name.  This originated from the compilers
4523 				 * -xF option, that places functions into their
4524 				 * own sections.  This convention (which has no
4525 				 * formal standard) has also been followed for
4526 				 * COMDAT sections.  To demangle the symbol
4527 				 * name, the name must be separated from the
4528 				 * section name.
4529 				 */
4530 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4531 				    ((symname = strchr(secname, '%')) == NULL))
4532 					_cache->c_name = secname;
4533 				else {
4534 					size_t	secsz = ++symname - secname;
4535 					size_t	strsz;
4536 
4537 					symname = demangle(symname, flags);
4538 					strsz = secsz + strlen(symname) + 1;
4539 
4540 					if ((_cache->c_name =
4541 					    malloc(strsz)) == NULL) {
4542 						int err = errno;
4543 						(void) fprintf(stderr,
4544 						    MSG_INTL(MSG_ERR_MALLOC),
4545 						    file, strerror(err));
4546 						return (0);
4547 					}
4548 					(void) snprintf(_cache->c_name, strsz,
4549 					    MSG_ORIG(MSG_FMT_SECSYM),
4550 					    EC_WORD(secsz), secname, symname);
4551 				}
4552 
4553 				continue;
4554 			}
4555 
4556 			/*
4557 			 * Generate an error if the section name index is zero
4558 			 * or exceeds the shstrtab data.  Fall through to
4559 			 * fabricate a section name.
4560 			 */
4561 			if ((_cache->c_shdr->sh_name == 0) ||
4562 			    /* LINTED */
4563 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4564 				(void) fprintf(stderr,
4565 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
4566 				    EC_WORD(ndx),
4567 				    EC_XWORD(_cache->c_shdr->sh_name));
4568 			}
4569 		}
4570 
4571 		/*
4572 		 * If there exists no shstrtab data, or a section header has no
4573 		 * name (an invalid index of 0), then compose a name for the
4574 		 * section.
4575 		 */
4576 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
4577 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
4578 
4579 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4580 			int err = errno;
4581 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4582 			    file, strerror(err));
4583 			return (0);
4584 		}
4585 		(void) strcpy(_cache->c_name, scnndxnm);
4586 	}
4587 
4588 	/*
4589 	 * Having collected all the sections, validate their address range.
4590 	 * Cases have existed where the section information has been invalid.
4591 	 * This can lead to all sorts of other, hard to diagnose errors, as
4592 	 * each section is processed individually (ie. with elf_getdata()).
4593 	 * Here, we carry out some address comparisons to catch a family of
4594 	 * overlapping memory issues we have observed (likely, there are others
4595 	 * that we have yet to discover).
4596 	 *
4597 	 * Note, should any memory overlap occur, obtaining any additional
4598 	 * data from the file is questionable.  However, it might still be
4599 	 * possible to inspect the ELF header, Programs headers, or individual
4600 	 * sections, so rather than bailing on an error condition, continue
4601 	 * processing to see if any data can be salvaged.
4602 	 */
4603 	if (shdr_ndx_arr_cnt > 1) {
4604 		sort_shdr_ndx_arr_cache = cache;
4605 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4606 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4607 	}
4608 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4609 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
4610 		Shdr	*shdr = _cache->c_shdr;
4611 		Off	bgn1, bgn = shdr->sh_offset;
4612 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
4613 		size_t	ndx1;
4614 
4615 		/*
4616 		 * Check the section against all following ones, reporting
4617 		 * any overlaps. Since we've sorted the sections by offset,
4618 		 * we can stop after the first comparison that fails. There
4619 		 * are no overlaps in a properly formed ELF file, in which
4620 		 * case this algorithm runs in O(n) time. This will degenerate
4621 		 * to O(n^2) for a completely broken file. Such a file is
4622 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
4623 		 * for the analysis to take longer.
4624 		 */
4625 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4626 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
4627 			Shdr	*shdr1 = _cache1->c_shdr;
4628 
4629 			bgn1 = shdr1->sh_offset;
4630 			end1 = shdr1->sh_offset + shdr1->sh_size;
4631 
4632 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
4633 			    ((bgn1 < end) && (end1 >= end))) {
4634 				(void) fprintf(stderr,
4635 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
4636 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
4637 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4638 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
4639 				    _cache1->c_name, EC_OFF(bgn1),
4640 				    EC_OFF(end1));
4641 			} else {	/* No overlap, so can stop */
4642 				break;
4643 			}
4644 		}
4645 
4646 		/*
4647 		 * In addition to checking for sections overlapping
4648 		 * each other (done above), we should also make sure
4649 		 * the section doesn't overlap the section header array.
4650 		 */
4651 		bgn1 = ehdr->e_shoff;
4652 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4653 
4654 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
4655 		    ((bgn1 < end) && (end1 >= end))) {
4656 			(void) fprintf(stderr,
4657 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4658 			    EC_OFF(end1),
4659 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
4660 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4661 		}
4662 	}
4663 
4664 	/*
4665 	 * Obtain the data for each section.
4666 	 */
4667 	for (ndx = 1; ndx < shnum; ndx++) {
4668 		Cache	*_cache = &cache[ndx];
4669 		Elf_Scn	*scn = _cache->c_scn;
4670 
4671 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4672 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4673 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4674 			    EC_WORD(elf_ndxscn(scn)));
4675 		}
4676 
4677 		/*
4678 		 * If a string table, verify that it has NULL first and
4679 		 * final bytes.
4680 		 */
4681 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4682 		    (_cache->c_data->d_buf != NULL) &&
4683 		    (_cache->c_data->d_size > 0)) {
4684 			const char *s = _cache->c_data->d_buf;
4685 
4686 			if ((*s != '\0') ||
4687 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
4688 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4689 				    file, _cache->c_name);
4690 		}
4691 	}
4692 
4693 	return (1);
4694 }
4695 
4696 
4697 
4698 /*
4699  * Generate a cache of section headers and related information
4700  * for use by the rest of elfdump. If requested (or the file
4701  * contains no section headers), we generate a fake set of
4702  * headers from the information accessible from the program headers.
4703  * Otherwise, we use the real section headers contained in the file.
4704  */
4705 static int
4706 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4707     size_t shstrndx, size_t *shnum, uint_t *flags)
4708 {
4709 	/*
4710 	 * If there are no section headers, then resort to synthesizing
4711 	 * section headers from the program headers. This is normally
4712 	 * only done by explicit request, but in this case there's no
4713 	 * reason not to go ahead, since the alternative is simply to quit.
4714 	 */
4715 	if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4716 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4717 		*flags |= FLG_CTL_FAKESHDR;
4718 	}
4719 
4720 	if (*flags & FLG_CTL_FAKESHDR) {
4721 		if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4722 			return (0);
4723 	} else {
4724 		if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4725 		    cache, *flags) == 0)
4726 			return (0);
4727 	}
4728 
4729 	return (1);
4730 }
4731 
4732 int
4733 regular(const char *file, int fd, Elf *elf, uint_t flags,
4734     const char *wname, int wfd, uchar_t osabi)
4735 {
4736 	enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4737 	Elf_Scn		*scn;
4738 	Ehdr		*ehdr;
4739 	size_t		ndx, shstrndx, shnum, phnum;
4740 	Shdr		*shdr;
4741 	Cache		*cache;
4742 	VERSYM_STATE	versym;
4743 	int		ret = 0;
4744 	int		addr_align;
4745 
4746 	if ((ehdr = elf_getehdr(elf)) == NULL) {
4747 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4748 		return (ret);
4749 	}
4750 
4751 	if (elf_getshdrnum(elf, &shnum) == -1) {
4752 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4753 		return (ret);
4754 	}
4755 
4756 	if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4757 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4758 		return (ret);
4759 	}
4760 
4761 	if (elf_getphdrnum(elf, &phnum) == -1) {
4762 		failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4763 		return (ret);
4764 	}
4765 	/*
4766 	 * If the user requested section headers derived from the
4767 	 * program headers (-P option) and this file doesn't have
4768 	 * any program headers (i.e. ET_REL), then we can't do it.
4769 	 */
4770 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4771 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4772 		return (ret);
4773 	}
4774 
4775 
4776 	if ((scn = elf_getscn(elf, 0)) != NULL) {
4777 		if ((shdr = elf_getshdr(scn)) == NULL) {
4778 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4779 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4780 			return (ret);
4781 		}
4782 	} else
4783 		shdr = NULL;
4784 
4785 	/*
4786 	 * Print the elf header.
4787 	 */
4788 	if (flags & FLG_SHOW_EHDR)
4789 		Elf_ehdr(0, ehdr, shdr);
4790 
4791 	/*
4792 	 * If the section headers or program headers have inadequate
4793 	 * alignment for the class of object, print a warning. libelf
4794 	 * can handle such files, but programs that use them can crash
4795 	 * when they dereference unaligned items.
4796 	 *
4797 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4798 	 * allows access to data types smaller than 128-bits to be on
4799 	 * word alignment.
4800 	 */
4801 	if (ehdr->e_machine == EM_AMD64)
4802 		addr_align = sizeof (Word);
4803 	else
4804 		addr_align = sizeof (Addr);
4805 
4806 	if (ehdr->e_phoff & (addr_align - 1))
4807 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4808 	if (ehdr->e_shoff & (addr_align - 1))
4809 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4810 
4811 
4812 	/*
4813 	 * Determine the Operating System ABI (osabi) we will use to
4814 	 * interpret the object.
4815 	 */
4816 	if (flags & FLG_CTL_OSABI) {
4817 		/*
4818 		 * If the user explicitly specifies '-O none', we need
4819 		 * to display a completely generic view of the file.
4820 		 * However, libconv is written to assume that ELFOSABI_NONE
4821 		 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4822 		 * effect, we use an osabi that libconv has no knowledge of.
4823 		 */
4824 		if (osabi == ELFOSABI_NONE)
4825 			osabi = ELFOSABI_UNKNOWN4;
4826 	} else {
4827 		/* Determine osabi from file */
4828 		osabi = ehdr->e_ident[EI_OSABI];
4829 		if (osabi == ELFOSABI_NONE) {
4830 			/*
4831 			 * Chicken/Egg scenario:
4832 			 *
4833 			 * Ideally, we wait to create the section header cache
4834 			 * until after the program headers are printed. If we
4835 			 * only output program headers, we can skip building
4836 			 * the cache entirely.
4837 			 *
4838 			 * Proper interpretation of program headers requires
4839 			 * the osabi, which is supposed to be in the ELF header.
4840 			 * However, many systems (Solaris and Linux included)
4841 			 * have a history of setting the osabi to the generic
4842 			 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4843 			 * in such cases, but would like to check the object
4844 			 * to see if it has a Linux .note.ABI-tag section,
4845 			 * which implies ELFOSABI_LINUX. This requires a
4846 			 * section header cache.
4847 			 *
4848 			 * To break the cycle, we create section headers now
4849 			 * if osabi is ELFOSABI_NONE, and later otherwise.
4850 			 * If it succeeds, we use them, if not, we defer
4851 			 * exiting until after the program headers are out.
4852 			 */
4853 			if (create_cache(file, fd, elf, ehdr, &cache,
4854 			    shstrndx, &shnum, &flags) == 0) {
4855 				cache_state = CACHE_FAIL;
4856 			} else {
4857 				cache_state = CACHE_OK;
4858 				if (has_linux_abi_note(cache, shnum, file)) {
4859 					Conv_inv_buf_t	ibuf1, ibuf2;
4860 
4861 					(void) fprintf(stderr,
4862 					    MSG_INTL(MSG_INFO_LINUXOSABI), file,
4863 					    conv_ehdr_osabi(osabi, 0, &ibuf1),
4864 					    conv_ehdr_osabi(ELFOSABI_LINUX,
4865 					    0, &ibuf2));
4866 					osabi = ELFOSABI_LINUX;
4867 				}
4868 			}
4869 		}
4870 		/*
4871 		 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4872 		 * Mapping NONE to SOLARIS simplifies the required test.
4873 		 */
4874 		if (osabi == ELFOSABI_NONE)
4875 			osabi = ELFOSABI_SOLARIS;
4876 	}
4877 
4878 	/*
4879 	 * Print the program headers.
4880 	 */
4881 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4882 		Phdr	*phdr;
4883 
4884 		if ((phdr = elf_getphdr(elf)) == NULL) {
4885 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4886 			return (ret);
4887 		}
4888 
4889 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4890 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4891 			    NULL, ndx, phdr->p_type))
4892 				continue;
4893 
4894 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4895 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4896 			Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4897 		}
4898 	}
4899 
4900 	/*
4901 	 * If we have flag bits set that explicitly require a show or calc
4902 	 * operation, but none of them require the section headers, then
4903 	 * we are done and can return now.
4904 	 */
4905 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4906 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4907 		return (ret);
4908 
4909 	/*
4910 	 * Everything from this point on requires section headers.
4911 	 * If we have no section headers, there is no reason to continue.
4912 	 *
4913 	 * If we tried above to create the section header cache and failed,
4914 	 * it is time to exit. Otherwise, create it if needed.
4915 	 */
4916 	switch (cache_state) {
4917 	case CACHE_NEEDED:
4918 		if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4919 		    &shnum, &flags) == 0)
4920 			return (ret);
4921 		break;
4922 	case CACHE_FAIL:
4923 		return (ret);
4924 	}
4925 	if (shnum <= 1)
4926 		goto done;
4927 
4928 	/*
4929 	 * If -w was specified, find and write out the section(s) data.
4930 	 */
4931 	if (wfd) {
4932 		for (ndx = 1; ndx < shnum; ndx++) {
4933 			Cache	*_cache = &cache[ndx];
4934 
4935 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4936 			    ndx, _cache->c_shdr->sh_type) &&
4937 			    _cache->c_data && _cache->c_data->d_buf) {
4938 				if (write(wfd, _cache->c_data->d_buf,
4939 				    _cache->c_data->d_size) !=
4940 				    _cache->c_data->d_size) {
4941 					int err = errno;
4942 					(void) fprintf(stderr,
4943 					    MSG_INTL(MSG_ERR_WRITE), wname,
4944 					    strerror(err));
4945 					/*
4946 					 * Return an exit status of 1, because
4947 					 * the failure is not related to the
4948 					 * ELF file, but by system resources.
4949 					 */
4950 					ret = 1;
4951 					goto done;
4952 				}
4953 			}
4954 		}
4955 	}
4956 
4957 	/*
4958 	 * If we have no flag bits set that explicitly require a show or calc
4959 	 * operation, but match options (-I, -N, -T) were used, then run
4960 	 * through the section headers and see if we can't deduce show flags
4961 	 * from the match options given.
4962 	 *
4963 	 * We don't do this if -w was specified, because (-I, -N, -T) used
4964 	 * with -w in lieu of some other option is supposed to be quiet.
4965 	 */
4966 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4967 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4968 		for (ndx = 1; ndx < shnum; ndx++) {
4969 			Cache	*_cache = &cache[ndx];
4970 
4971 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4972 			    ndx, _cache->c_shdr->sh_type))
4973 				continue;
4974 
4975 			switch (_cache->c_shdr->sh_type) {
4976 			case SHT_PROGBITS:
4977 				/*
4978 				 * Heuristic time: It is usually bad form
4979 				 * to assume the meaning/format of a PROGBITS
4980 				 * section based on its name. However, there
4981 				 * are ABI mandated exceptions. Check for
4982 				 * these special names.
4983 				 */
4984 
4985 				/* The ELF ABI specifies .interp and .got */
4986 				if (strcmp(_cache->c_name,
4987 				    MSG_ORIG(MSG_ELF_INTERP)) == 0) {
4988 					flags |= FLG_SHOW_INTERP;
4989 					break;
4990 				}
4991 				if (strcmp(_cache->c_name,
4992 				    MSG_ORIG(MSG_ELF_GOT)) == 0) {
4993 					flags |= FLG_SHOW_GOT;
4994 					break;
4995 				}
4996 				/*
4997 				 * The GNU compilers, and amd64 ABI, define
4998 				 * .eh_frame and .eh_frame_hdr. The Sun
4999 				 * C++ ABI defines .exception_ranges.
5000 				 */
5001 				if ((strncmp(_cache->c_name,
5002 				    MSG_ORIG(MSG_SCN_FRM),
5003 				    MSG_SCN_FRM_SIZE) == 0) ||
5004 				    (strncmp(_cache->c_name,
5005 				    MSG_ORIG(MSG_SCN_EXRANGE),
5006 				    MSG_SCN_EXRANGE_SIZE) == 0)) {
5007 					flags |= FLG_SHOW_UNWIND;
5008 					break;
5009 				}
5010 				break;
5011 
5012 			case SHT_SYMTAB:
5013 			case SHT_DYNSYM:
5014 			case SHT_SUNW_LDYNSYM:
5015 			case SHT_SUNW_versym:
5016 			case SHT_SYMTAB_SHNDX:
5017 				flags |= FLG_SHOW_SYMBOLS;
5018 				break;
5019 
5020 			case SHT_RELA:
5021 			case SHT_REL:
5022 				flags |= FLG_SHOW_RELOC;
5023 				break;
5024 
5025 			case SHT_HASH:
5026 				flags |= FLG_SHOW_HASH;
5027 				break;
5028 
5029 			case SHT_DYNAMIC:
5030 				flags |= FLG_SHOW_DYNAMIC;
5031 				break;
5032 
5033 			case SHT_NOTE:
5034 				flags |= FLG_SHOW_NOTE;
5035 				break;
5036 
5037 			case SHT_GROUP:
5038 				flags |= FLG_SHOW_GROUP;
5039 				break;
5040 
5041 			case SHT_SUNW_symsort:
5042 			case SHT_SUNW_tlssort:
5043 				flags |= FLG_SHOW_SORT;
5044 				break;
5045 
5046 			case SHT_SUNW_cap:
5047 				flags |= FLG_SHOW_CAP;
5048 				break;
5049 
5050 			case SHT_SUNW_move:
5051 				flags |= FLG_SHOW_MOVE;
5052 				break;
5053 
5054 			case SHT_SUNW_syminfo:
5055 				flags |= FLG_SHOW_SYMINFO;
5056 				break;
5057 
5058 			case SHT_SUNW_verdef:
5059 			case SHT_SUNW_verneed:
5060 				flags |= FLG_SHOW_VERSIONS;
5061 				break;
5062 
5063 			case SHT_AMD64_UNWIND:
5064 				flags |= FLG_SHOW_UNWIND;
5065 				break;
5066 			}
5067 		}
5068 	}
5069 
5070 
5071 	if (flags & FLG_SHOW_SHDR)
5072 		sections(file, cache, shnum, ehdr, osabi);
5073 
5074 	if (flags & FLG_SHOW_INTERP)
5075 		interp(file, cache, shnum, phnum, elf);
5076 
5077 	if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5078 		versions(cache, shnum, file, flags, &versym);
5079 
5080 	if (flags & FLG_SHOW_SYMBOLS)
5081 		symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5082 
5083 	if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5084 		sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5085 
5086 	if (flags & FLG_SHOW_HASH)
5087 		hash(cache, shnum, file, flags);
5088 
5089 	if (flags & FLG_SHOW_GOT)
5090 		got(cache, shnum, ehdr, file);
5091 
5092 	if (flags & FLG_SHOW_GROUP)
5093 		group(cache, shnum, file, flags);
5094 
5095 	if (flags & FLG_SHOW_SYMINFO)
5096 		syminfo(cache, shnum, ehdr, osabi, file);
5097 
5098 	if (flags & FLG_SHOW_RELOC)
5099 		reloc(cache, shnum, ehdr, file);
5100 
5101 	if (flags & FLG_SHOW_DYNAMIC)
5102 		dynamic(cache, shnum, ehdr, osabi, file);
5103 
5104 	if (flags & FLG_SHOW_NOTE) {
5105 		Word	note_cnt;
5106 		size_t	note_shnum;
5107 		Cache	*note_cache;
5108 
5109 		note_cnt = note(cache, shnum, ehdr, file);
5110 
5111 		/*
5112 		 * Solaris core files have section headers, but these
5113 		 * headers do not include SHT_NOTE sections that reference
5114 		 * the core note sections. This means that note() won't
5115 		 * find the core notes. Fake section headers (-P option)
5116 		 * recover these sections, but it is inconvenient to require
5117 		 * users to specify -P in this situation. If the following
5118 		 * are all true:
5119 		 *
5120 		 *	- No note sections were found
5121 		 *	- This is a core file
5122 		 *	- We are not already using fake section headers
5123 		 *
5124 		 * then we will automatically generate fake section headers
5125 		 * and then process them in a second call to note().
5126 		 */
5127 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5128 		    !(flags & FLG_CTL_FAKESHDR) &&
5129 		    (fake_shdr_cache(file, fd, elf, ehdr,
5130 		    &note_cache, &note_shnum) != 0)) {
5131 			(void) note(note_cache, note_shnum, ehdr, file);
5132 			fake_shdr_cache_free(note_cache, note_shnum);
5133 		}
5134 	}
5135 
5136 	if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5137 		move(cache, shnum, file, flags);
5138 
5139 	if (flags & FLG_CALC_CHECKSUM)
5140 		checksum(elf);
5141 
5142 	if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5143 		cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5144 
5145 	if ((flags & FLG_SHOW_UNWIND) &&
5146 	    ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5147 		unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5148 
5149 
5150 	/* Release the memory used to cache section headers */
5151 done:
5152 	if (flags & FLG_CTL_FAKESHDR)
5153 		fake_shdr_cache_free(cache, shnum);
5154 	else
5155 		free(cache);
5156 
5157 	return (ret);
5158 }
5159