xref: /titanic_52/usr/src/cmd/sgs/ar/common/file.c (revision e5803b76927480e8f9b67b22201c484ccf4c2bcf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  *	Copyright (c) 1988 AT&T
28  *	  All Rights Reserved
29  *
30  */
31 
32 #include <sys/sendfile.h>
33 #include "inc.h"
34 #include "gelf.h"
35 
36 /*
37  * List of archive members, accessed globally by cmd and file.
38  */
39 ARFILE	*listhead, *listend;
40 
41 /*
42  * Type used to manage string tables. Archives can have two of these:
43  *
44  * sym_strtbl: String table included at the end of the symbol table
45  *	archive member, following the offset array.
46  *
47  * long_strtbl: String table used to hold member names that exceed 15
48  *	characters in length, found in the long names archive member.
49  */
50 typedef struct {
51 	char	*base;		/* Base of string table memory */
52 	size_t	used;		/* # bytes used from allocation */
53 	size_t	size;		/* Size of allocation */
54 } ARSTRTBL;
55 
56 static ARSTRTBL	sym_strtbl;
57 static ARSTRTBL	long_strtbl;
58 
59 
60 /*
61  * Name and file descriptor used when creating a new archive.
62  * If this variable references an open file when exit_cleanup()
63  * executes, it will close and remove the file, preventing incomplete
64  * temporary files from being left behind in the case of a failure
65  * or interruption.
66  */
67 static struct {
68 	int		fd;	/* -1, or open file descriptor */
69 	const char	*path;	/* Path to open file */
70 } ar_outfile;
71 
72 /*
73  * The ar file format requires objects to be padded to an even size.
74  * We do that, but it turns out to be beneficial to go farther.
75  *
76  * ld(1) accesses archives by mmapping them into memory. If the mapped
77  * objects (member data) have the proper alignment, we can access them
78  * directly. If the data alignment is wrong, libelf "slides" them over the
79  * archive header to correct the misalignment. This is expensive in time
80  * (to copy memory) and space (it causes swap to be allocated by the system
81  * to back the now-modified pages). Hence, we really want to ensure that
82  * the alignment is right.
83  *
84  * We used to align 32-bit objects at 4-byte boundaries, and 64-bit objects
85  * at 8-byte. More recently, an elf section type has appeared that has
86  * 8-byte alignment requirements (SUNW_move) even in 32-bit objects. So,
87  * the current strategy is to align all objects to 8-bytes.
88  *
89  * There are two important things to consider when setting this value:
90  *	1) If a new elf section that ld(1) accesses in memory appears
91  *	   with a greater than 8-byte alignment requirement, this value
92  *	   will need to be raised. Or, alternatively, the entire approach may
93  *	   need reconsideration.
94  *	2) The size of this padding must be smaller than the size of the
95  *	   smallest possible ELF section. Otherwise, the logic contained
96  *	   in recover_padding() can be tricked.
97  */
98 #define	PADSZ 8
99 
100 /*
101  * Forward Declarations
102  */
103 static void		arwrite(const char *, int, const char *, size_t);
104 static size_t		mklong_tab();
105 static size_t		mksymtab(const char *, ARFILEP **, int *);
106 static const char	*make_tmpname(const char *);
107 static size_t		sizeof_symtbl(size_t, int, size_t);
108 static void		savelongname(ARFILE *);
109 static void		savename(char *);
110 static int		search_sym_tab(const char *, ARFILE *, Elf *,
111 			    Elf_Scn *, size_t *, ARFILEP **, size_t *);
112 static size_t		sizeofmembers(size_t);
113 static char		*sputl32(uint32_t, char *);
114 static char		*sputl64(uint64_t, char *);
115 static void		strtbl_pad(ARSTRTBL *, size_t, int);
116 static char		*trimslash(char *s);
117 static void		writesymtab(const char *, int fd, size_t, ARFILEP *,
118 			    size_t);
119 
120 
121 /*
122  * Function to be called on exit to clean up incomplete new archive.
123  */
124 static void
125 exit_cleanup(void)
126 {
127 	if (ar_outfile.fd != -1) {
128 		/* Both of these system calls are Async-Signal-Safe */
129 		(void)  close(ar_outfile.fd);
130 		(void) unlink(ar_outfile.path);
131 	}
132 }
133 
134 /*
135  * Open an existing archive.
136  */
137 int
138 getaf(Cmd_info *cmd_info)
139 {
140 	Elf_Cmd cmd;
141 	int fd;
142 	char *arnam = cmd_info->arnam;
143 
144 	if (elf_version(EV_CURRENT) == EV_NONE) {
145 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_VERSION),
146 		    elf_errmsg(-1));
147 		exit(1);
148 	}
149 
150 	if ((cmd_info->afd = fd = open(arnam, O_RDONLY)) == -1) {
151 		int err = errno;
152 
153 		if (err == ENOENT) {
154 			/* archive does not exist yet, may have to create one */
155 			return (fd);
156 		} else {
157 			/* problem other than "does not exist" */
158 			(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
159 			    arnam, strerror(err));
160 			exit(1);
161 		}
162 	}
163 
164 	cmd = ELF_C_READ;
165 	cmd_info->arf = elf_begin(fd, cmd, (Elf *)0);
166 
167 	if (elf_kind(cmd_info->arf) != ELF_K_AR) {
168 		(void) fprintf(stderr, MSG_INTL(MSG_NOT_ARCHIVE), arnam);
169 		if (cmd_info->opt_flgs & (a_FLAG | b_FLAG))
170 			(void) fprintf(stderr, MSG_INTL(MSG_USAGE_06),
171 			    cmd_info->ponam);
172 		exit(1);
173 	}
174 	return (fd);
175 }
176 
177 /*
178  * Given a value, and a pad alignment, return the number of bytes
179  * required to pad the value to the next alignment boundary.
180  */
181 static size_t
182 pad(size_t n, size_t align)
183 {
184 	size_t r;
185 
186 	r = n % align;
187 	if (r)
188 		r = align - r;
189 
190 	return (r);
191 }
192 
193 /*
194  * If the current archive item is an ELF object, then ar(1) may have added
195  * newline padding at the end in order to bring the following object
196  * into PADSZ alignment within the file. This padding cannot be
197  * distinguished from data using the information kept in the member header.
198  * This routine examines the objects, using knowledge of
199  * ELF and how our tools lay out objects to determine whether padding was
200  * added to an archive item. If so, it adjusts the st_size and
201  * st_padding fields of the file argument to reflect it.
202  */
203 static void
204 recover_padding(Elf *elf, ARFILE *file)
205 {
206 	size_t		extent;
207 	size_t		padding;
208 	GElf_Ehdr	ehdr;
209 
210 
211 	/* ar(1) only pads objects, so bail if not looking at one */
212 	if (gelf_getclass(elf) == ELFCLASSNONE)
213 		return;
214 
215 	/*
216 	 * libelf always puts the section header array at the end
217 	 * of the object, and all of our compilers and other tools
218 	 * use libelf or follow this convention. So, it is extremely
219 	 * likely that the section header array is at the end of this
220 	 * object: Find the address at the end of the array and compare
221 	 * it to the archive ar_size. If they are within PADSZ bytes, then
222 	 * we've found the end, and the difference is padding (We assume
223 	 * that no ELF section can fit into PADSZ bytes).
224 	 */
225 	extent = gelf_getehdr(elf, &ehdr)
226 	    ? (ehdr.e_shoff + (ehdr.e_shnum * ehdr.e_shentsize)) : 0;
227 
228 	/*
229 	 * If the extent exceeds the end of the archive member
230 	 * (negative padding), then we don't know what is going on
231 	 * and simply leave things alone.
232 	 */
233 	if (extent > file->ar_size)
234 		return;
235 
236 	padding = file->ar_size - extent;
237 	if (padding >= PADSZ) {
238 		/*
239 		 * The section header array is not at the end of the object.
240 		 * Traverse the section headers and look for the one with
241 		 * the highest used address. If this address is within
242 		 * PADSZ bytes of ar_size, then this is the end of the object.
243 		 */
244 		Elf_Scn *scn = NULL;
245 
246 		do {
247 			scn = elf_nextscn(elf, scn);
248 			if (scn) {
249 				GElf_Shdr shdr;
250 
251 				if (gelf_getshdr(scn, &shdr)) {
252 					size_t t;
253 
254 					t = shdr.sh_offset + shdr.sh_size;
255 					if (t > extent)
256 						extent = t;
257 				}
258 			}
259 		} while (scn);
260 
261 		if (extent > file->ar_size)
262 			return;
263 		padding = file->ar_size - extent;
264 	}
265 
266 	/*
267 	 * Now, test the padding. We only act on padding in the range
268 	 * (0 < pad < PADSZ) (ar(1) will never add more than this). A pad
269 	 * of 0 requires no action, and any other size above (PADSZ-1) means
270 	 * that we don't understand the layout of this object, and as such,
271 	 * cannot do anything.
272 	 *
273 	 * If the padding is in range, and the raw data for the
274 	 * object is available, then we perform one additional sanity
275 	 * check before moving forward: ar(1) always pads with newline
276 	 * characters. If anything else is seen, it is not padding so
277 	 * leave it alone.
278 	 */
279 	if (padding < PADSZ) {
280 		if (file->ar_contents) {
281 			size_t cnt = padding;
282 			char *p = file->ar_contents + extent;
283 
284 			while (cnt--) {
285 				if (*p++ != '\n') {   /* No padding */
286 					padding = 0;
287 					break;
288 				}
289 			}
290 		}
291 
292 		/* Remove the padding from the size */
293 		file->ar_size -= padding;
294 		file->ar_padding = padding;
295 	}
296 }
297 
298 /*
299  * Each call to getfile() returns the next unread archive member
300  * from the archive opened by getaf(). Returns NULL if no more
301  * archive members are left.
302  */
303 ARFILE *
304 getfile(Cmd_info *cmd_info)
305 {
306 	Elf_Arhdr *mem_header = NULL;
307 	ARFILE	*file;
308 	char *tmp_rawname, *file_rawname;
309 	Elf *elf;
310 	char *arnam = cmd_info->arnam;
311 	int fd = cmd_info->afd;
312 	Elf *arf = cmd_info->arf;
313 
314 	if (fd == -1)
315 		return (NULL); /* the archive doesn't exist */
316 
317 	while (mem_header == NULL) {
318 		if ((elf = elf_begin(fd, ELF_C_READ, arf)) == 0)
319 			return (NULL);  /* archive is empty or have hit end */
320 
321 		if ((mem_header = elf_getarhdr(elf)) == NULL) {
322 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_MALARCHIVE),
323 			    arnam, EC_XWORD(elf_getbase(elf)), elf_errmsg(-1));
324 			exit(1);
325 		}
326 
327 		/* Ignore special members like the symbol and string tables */
328 		if (mem_header->ar_name[0] == '/') {
329 			(void) elf_next(elf);
330 			(void) elf_end(elf);
331 			mem_header = NULL;
332 		}
333 	}
334 
335 	/*
336 	 * NOTE:
337 	 *	The mem_header->ar_name[] is set to a NULL string
338 	 *	if the archive member header has some error.
339 	 *	(See elf_getarhdr() man page.)
340 	 *	It is set to NULL for example, the ar command reads
341 	 *	the archive files created by SunOS 4.1 system.
342 	 *	See c block comment in cmd.c, "Incompatible Archive Header".
343 	 */
344 	file = newfile();
345 	(void) strncpy(file->ar_name, mem_header->ar_name, SNAME);
346 
347 	if ((file->ar_longname = malloc(strlen(mem_header->ar_name) + 1))
348 	    == NULL) {
349 		int err = errno;
350 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(err));
351 		exit(1);
352 	}
353 	(void) strcpy(file->ar_longname, mem_header->ar_name);
354 	if ((file->ar_rawname = malloc(strlen(mem_header->ar_rawname) + 1))
355 	    == NULL) {
356 		int err = errno;
357 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(err));
358 		exit(1);
359 	}
360 	tmp_rawname = mem_header->ar_rawname;
361 	file_rawname = file->ar_rawname;
362 	while (!isspace(*tmp_rawname) &&
363 	    ((*file_rawname = *tmp_rawname) != '\0')) {
364 		file_rawname++;
365 		tmp_rawname++;
366 	}
367 	if (!(*tmp_rawname == '\0'))
368 		*file_rawname = '\0';
369 
370 	file->ar_date = mem_header->ar_date;
371 	file->ar_uid  = mem_header->ar_uid;
372 	file->ar_gid  = mem_header->ar_gid;
373 	file->ar_mode = (unsigned long) mem_header->ar_mode;
374 	file->ar_size = mem_header->ar_size;
375 
376 	/* reverse logic */
377 	if ((cmd_info->opt_flgs & (t_FLAG | s_FLAG)) != t_FLAG) {
378 		size_t ptr;
379 		file->ar_flag = F_ELFRAW;
380 		if ((file->ar_contents = elf_rawfile(elf, &ptr))
381 		    == NULL) {
382 			if (ptr != 0) {
383 				(void) fprintf(stderr,
384 				    MSG_INTL(MSG_ELF_RAWFILE), elf_errmsg(-1));
385 				exit(1);
386 			}
387 		}
388 		file->ar_elf = elf;
389 	}
390 
391 	recover_padding(elf, file);
392 
393 	(void) elf_next(elf);
394 	return (file);
395 }
396 
397 /*
398  * Allocate a new archive member descriptor and add it to the list.
399  */
400 ARFILE *
401 newfile(void)
402 {
403 	static ARFILE	*buffer =  NULL;
404 	static size_t	count = 0;
405 	ARFILE		*fileptr;
406 
407 	if (count == 0) {
408 		if ((buffer = (ARFILE *) calloc(CHUNK, sizeof (ARFILE)))
409 		    == NULL) {
410 			int err = errno;
411 			(void) fprintf(stderr, MSG_INTL(MSG_MALLOC),
412 			    strerror(err));
413 			exit(1);
414 		}
415 		count = CHUNK;
416 	}
417 	count--;
418 	fileptr = buffer++;
419 
420 	if (listhead)
421 		listend->ar_next = fileptr;
422 	else
423 		listhead = fileptr;
424 	listend = fileptr;
425 	return (fileptr);
426 }
427 
428 static char *
429 trimslash(char *s)
430 {
431 	static char buf[SNAME];
432 
433 	(void) strncpy(buf, trim(s), SNAME - 2);
434 	buf[SNAME - 2] = '\0';
435 	return (strcat(buf, MSG_ORIG(MSG_STR_SLASH)));
436 }
437 
438 char *
439 trim(char *s)
440 {
441 	char *p1, *p2;
442 
443 	for (p1 = s; *p1; p1++)
444 		;
445 	while (p1 > s) {
446 		if (*--p1 != '/')
447 			break;
448 		*p1 = 0;
449 	}
450 	p2 = s;
451 	for (p1 = s; *p1; p1++)
452 		if (*p1 == '/')
453 			p2 = p1 + 1;
454 	return (p2);
455 }
456 
457 
458 /*
459  * Find all the global symbols exported by ELF archive members, and
460  * build a list associating each one with the archive member that
461  * provides it.
462  *
463  * exit:
464  *	*symlist is set to the list of symbols. If any ELF object was
465  *	found, *found_obj is set to TRUE (1). Returns the number of symbols
466  *	located.
467  */
468 static size_t
469 mksymtab(const char *arname, ARFILEP **symlist, int *found_obj)
470 {
471 	ARFILE		*fptr;
472 	size_t		mem_offset = 0;
473 	Elf 		*elf;
474 	Elf_Scn		*scn;
475 	GElf_Ehdr	ehdr;
476 	int		newfd;
477 	size_t		nsyms = 0;
478 	int		class = 0;
479 	Elf_Data	*data;
480 	size_t		num_errs = 0;
481 
482 	newfd = 0;
483 	for (fptr = listhead; fptr; fptr = fptr->ar_next) {
484 		/* determine if file is coming from the archive or not */
485 		if ((fptr->ar_elf != NULL) && (fptr->ar_pathname == NULL)) {
486 			/*
487 			 * I can use the saved elf descriptor.
488 			 */
489 			elf = fptr->ar_elf;
490 		} else if ((fptr->ar_elf == NULL) &&
491 		    (fptr->ar_pathname != NULL)) {
492 #ifdef _LP64
493 			/*
494 			 * The archive member header ar_size field is 10
495 			 * decimal digits, sufficient to represent a 32-bit
496 			 * value, but not a 64-bit one. Hence, we reject
497 			 * attempts to insert a member larger than 4GB.
498 			 *
499 			 * One obvious way to extend the format without altering
500 			 * the ar_hdr struct is to use the same mechanism used
501 			 * for ar_name: Put the size string into the long name
502 			 * string table and write a string /xxx into ar_size,
503 			 * where xxx is the string table offset.
504 			 *
505 			 * At the time of this writing (June 2010), the largest
506 			 * relocatable objects are measured in 10s or 100s
507 			 * of megabytes, so we still have many years to go
508 			 * before this becomes limiting. By that time, it may
509 			 * turn out that a completely new archive format is
510 			 * a better solution, as the current format has many
511 			 * warts and inefficiencies. In the meantime, we
512 			 * won't burden the current implementation with support
513 			 * for a bandaid feature that will have little use.
514 			 */
515 			if (fptr->ar_size > 0xffffffff) {
516 				(void) fprintf(stderr,
517 				    MSG_INTL(MSG_ERR_MEMBER4G),
518 				    fptr->ar_pathname);
519 				num_errs++;
520 				continue;
521 			}
522 #endif
523 			if ((newfd  =
524 			    open(fptr->ar_pathname, O_RDONLY)) == -1) {
525 				int err = errno;
526 				(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
527 				    fptr->ar_pathname, strerror(err));
528 				num_errs++;
529 				continue;
530 			}
531 
532 			if ((elf = elf_begin(newfd,
533 			    ELF_C_READ, (Elf *)0)) == 0) {
534 				(void) fprintf(stderr,
535 				    MSG_INTL(MSG_ELF_BEGIN_FILE),
536 				    fptr->ar_pathname, elf_errmsg(-1));
537 				(void) close(newfd);
538 				newfd = 0;
539 				num_errs++;
540 				continue;
541 			}
542 			if (elf_kind(elf) == ELF_K_AR) {
543 				if (newfd) {
544 					(void) close(newfd);
545 					newfd = 0;
546 				}
547 				(void) elf_end(elf);
548 				continue;
549 			}
550 		} else {
551 			(void) fprintf(stderr, MSG_INTL(MSG_INTERNAL_01));
552 			exit(1);
553 		}
554 		if (gelf_getehdr(elf, &ehdr) != 0) {
555 			if ((class = gelf_getclass(elf)) == ELFCLASS64) {
556 				fptr->ar_flag |= F_CLASS64;
557 			} else if (class == ELFCLASS32)
558 				fptr->ar_flag |= F_CLASS32;
559 			scn = elf_getscn(elf, ehdr.e_shstrndx);
560 			if (scn == NULL) {
561 				if (fptr->ar_pathname != NULL)
562 					(void) fprintf(stderr,
563 					    MSG_INTL(MSG_ELF_GETSCN_FILE),
564 					    fptr->ar_pathname, elf_errmsg(-1));
565 				else
566 					(void) fprintf(stderr,
567 					    MSG_INTL(MSG_ELF_GETSCN_AR),
568 					    arname, fptr->ar_longname,
569 					    elf_errmsg(-1));
570 				num_errs++;
571 				if (newfd) {
572 					(void) close(newfd);
573 					newfd = 0;
574 				}
575 				(void) elf_end(elf);
576 				continue;
577 			}
578 
579 			data = 0;
580 			data = elf_getdata(scn, data);
581 			if (data == NULL) {
582 				if (fptr->ar_pathname != NULL)
583 					(void) fprintf(stderr,
584 					    MSG_INTL(MSG_ELF_GETDATA_FILE),
585 					    fptr->ar_pathname, elf_errmsg(-1));
586 				else
587 					(void) fprintf(stderr,
588 					    MSG_INTL(MSG_ELF_GETDATA_AR),
589 					    arname, fptr->ar_longname,
590 					    elf_errmsg(-1));
591 				num_errs++;
592 				if (newfd) {
593 					(void) close(newfd);
594 					newfd = 0;
595 				}
596 				(void) elf_end(elf);
597 				continue;
598 			}
599 			if (data->d_size == 0) {
600 				if (fptr->ar_pathname != NULL)
601 					(void) fprintf(stderr,
602 					    MSG_INTL(MSG_W_ELF_NODATA_FILE),
603 					    fptr->ar_pathname);
604 				else
605 					(void) fprintf(stderr,
606 					    MSG_INTL(MSG_W_ELF_NODATA_AR),
607 					    arname, fptr->ar_longname);
608 				if (newfd) {
609 					(void) close(newfd);
610 					newfd = 0;
611 				}
612 				(void) elf_end(elf);
613 				num_errs++;
614 				continue;
615 			}
616 
617 			/* loop through sections to find symbol table */
618 			scn = 0;
619 			while ((scn = elf_nextscn(elf, scn)) != 0) {
620 				GElf_Shdr shdr;
621 				if (gelf_getshdr(scn, &shdr) == NULL) {
622 					/* BEGIN CSTYLED */
623 					if (fptr->ar_pathname != NULL)
624 					    (void) fprintf(stderr,
625 						MSG_INTL(MSG_ELF_GETDATA_FILE),
626 						fptr->ar_pathname,
627 						elf_errmsg(-1));
628 					else
629 					    (void) fprintf(stderr,
630 						MSG_INTL(MSG_ELF_GETDATA_AR),
631 						arname, fptr->ar_longname,
632 						elf_errmsg(-1));
633 					/* END CSTYLED */
634 					if (newfd) {
635 						(void) close(newfd);
636 						newfd = 0;
637 					}
638 					num_errs++;
639 					(void) elf_end(elf);
640 					continue;
641 				}
642 				*found_obj = 1;
643 				if (shdr.sh_type == SHT_SYMTAB)
644 					if (search_sym_tab(arname, fptr, elf,
645 					    scn, &nsyms, symlist,
646 					    &num_errs) == -1) {
647 						if (newfd) {
648 							(void) close(newfd);
649 							newfd = 0;
650 						}
651 						continue;
652 					}
653 			}
654 		}
655 		mem_offset += sizeof (struct ar_hdr) + fptr->ar_size;
656 		if (fptr->ar_size & 01)
657 			mem_offset++;
658 		(void) elf_end(elf);
659 		if (newfd) {
660 			(void) close(newfd);
661 			newfd = 0;
662 		}
663 	}
664 	if (num_errs)
665 		exit(1);
666 
667 	if (found_obj) {
668 		if (nsyms == 0) {
669 			/*
670 			 * It is possible, though rare, to have ELF objects
671 			 * that do not export any global symbols. Presumably
672 			 * such objects operate via their .init/.fini
673 			 * sections. In this case, we produce an empty
674 			 * symbol table, so that applications that rely
675 			 * on a successful call to elf_getarsym() to determine
676 			 * if ELF objects are present will succeed. To do this,
677 			 * we require a small empty symbol string table.
678 			 */
679 			strtbl_pad(&sym_strtbl, 4, '\0');
680 		} else {
681 			/*
682 			 * Historical behavior is to pad string tables
683 			 * to a multiple of 4.
684 			 */
685 			strtbl_pad(&sym_strtbl, pad(sym_strtbl.used, 4), '\0');
686 		}
687 
688 	}
689 
690 	return (nsyms);
691 }
692 
693 /*
694  * Output a member header.
695  */
696 /*ARGSUSED*/
697 static void
698 write_member_header(const char *filename, int fd, int is_elf,
699     const char *name, time_t timestamp, uid_t uid, gid_t gid, mode_t mode,
700     size_t size)
701 {
702 	char	buf[sizeof (struct ar_hdr) + 1];
703 	int	len;
704 
705 	len = snprintf(buf, sizeof (buf), MSG_ORIG(MSG_MH_FORMAT), name,
706 	    EC_WORD(timestamp), EC_WORD(uid), EC_WORD(gid), EC_WORD(mode),
707 	    EC_XWORD(size), ARFMAG);
708 
709 	/*
710 	 * If snprintf() reports that it needed more space than we gave
711 	 * it, it means that the caller fed us a long name, which is a
712 	 * fatal internal error.
713 	 */
714 	if (len != sizeof (struct ar_hdr)) {
715 		(void) fprintf(stderr, MSG_INTL(MSG_INTERNAL_02));
716 		exit(1);
717 	}
718 
719 	arwrite(filename, fd, buf, len);
720 
721 	/*
722 	 * We inject inter-member padding to ensure that ELF object
723 	 * member data is aligned on PADSZ. If this is a debug build,
724 	 * verify that the computations were right.
725 	 */
726 	assert(!is_elf || (pad(lseek(fd, 0, SEEK_CUR), PADSZ) == 0));
727 }
728 
729 /*
730  * Write the archive symbol table member to the output archive file.
731  *
732  * note:
733  *	sizeofmembers() must have been called to establish member offset
734  *	and padding values before writesymtab() is used.
735  */
736 static void
737 writesymtab(const char *filename, int fd, size_t nsyms, ARFILEP *symlist,
738     size_t eltsize)
739 {
740 	size_t	i, j;
741 	ARFILEP	*ptr;
742 	size_t	tblsize;
743 	char	*buf, *dst;
744 	int	is64 = (eltsize == 8);
745 
746 	/*
747 	 * We require a buffer large enough to hold a symbol table count,
748 	 * plus one offset for each symbol.
749 	 */
750 	tblsize = (nsyms + 1) * eltsize;
751 	if ((buf = dst = malloc(tblsize)) == NULL) {
752 		int err = errno;
753 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(err));
754 		exit(1);
755 	}
756 
757 	write_member_header(filename, fd, 0,
758 	    (is64 ? MSG_ORIG(MSG_STR_SYM64) : MSG_ORIG(MSG_STR_SLASH)),
759 	    time(0), 0, 0, 0, tblsize + sym_strtbl.used);
760 
761 	dst = is64 ? sputl64(nsyms, dst) : sputl32(nsyms, dst);
762 
763 	for (i = 0, j = SYMCHUNK, ptr = symlist; i < nsyms; i++, j--, ptr++) {
764 		if (!j) {
765 			j = SYMCHUNK;
766 			ptr = (ARFILEP *)*ptr;
767 		}
768 		dst = is64 ? sputl64((*ptr)->ar_offset, dst) :
769 		    sputl32((*ptr)->ar_offset, dst);
770 	}
771 	arwrite(filename, fd, buf, tblsize);
772 	free(buf);
773 	arwrite(filename, fd, sym_strtbl.base, sym_strtbl.used);
774 }
775 
776 /*
777  * Grow the size of the given string table so that there is room
778  * for at least need bytes.
779  *
780  * entry:
781  *	strtbl - String table to grow
782  *	need - Amount of space required by caller
783  */
784 static void
785 strtbl_alloc(ARSTRTBL *strtbl, size_t need)
786 {
787 #define	STRTBL_INITSZ	8196
788 
789 	/*
790 	 * On 32-bit systems, we require a larger integer type in order
791 	 * to avoid overflow and wraparound when doing our computations.
792 	 */
793 	uint64_t	need64 = need;
794 	uint64_t	used64 = strtbl->used;
795 	uint64_t	size64 = strtbl->size;
796 	uint64_t	target = need64 + used64;
797 
798 	int		sys32, tbl32;
799 
800 	if (target <= size64)
801 		return;
802 
803 	/*
804 	 * Detect 32-bit system. We might usually do this with the preprocessor,
805 	 * but it can serve as a predicate in tests that also apply to 64-bit
806 	 * systems.
807 	 */
808 	sys32 = (sizeof (size_t) == 4);
809 
810 	/*
811 	 * The symbol string table can be larger than 32-bits on a 64-bit
812 	 * system. However, the long name table must stay below that limit.
813 	 * The reason for this is that there is not enough room in the ar_name
814 	 * field of the member header to represent 64-bit offsets.
815 	 */
816 	tbl32 = (strtbl == &long_strtbl);
817 
818 	/*
819 	 * If request is larger than 4GB and we can't do it because we
820 	 * are a 32-bit program, or because the table is format limited,
821 	 * we can go no further.
822 	 */
823 	if ((target > 0xffffffff) && (sys32 || tbl32))
824 		goto limit_fail;
825 
826 	/* Default starting size */
827 	if (strtbl->base == NULL)
828 		size64 = STRTBL_INITSZ;
829 
830 	/*
831 	 * Our strategy is to double the size until we find a size that
832 	 * exceeds the request. However, if this table cannot exceed 4GB,
833 	 * then once we exceed 2GB, we switch to a strategy of taking the
834 	 * current request and rounding it up to STRTBL_INITSZ.
835 	 */
836 	while (target > size64) {
837 		if ((target > 0x7fffffff) && (sys32 || tbl32)) {
838 			size64 = ((target + STRTBL_INITSZ) / STRTBL_INITSZ) *
839 			    STRTBL_INITSZ;
840 
841 			/*
842 			 * If we are so close to the line that this small
843 			 * increment exceeds 4GB, give it up.
844 			 */
845 			if ((size64 > 0xffffffff) && (sys32 || tbl32))
846 				goto limit_fail;
847 
848 			break;
849 		}
850 
851 		size64 *= 2;
852 	}
853 
854 	strtbl->base = realloc(strtbl->base, size64);
855 	if (strtbl->base == NULL) {
856 		int err = errno;
857 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(err));
858 		exit(1);
859 	}
860 	strtbl->size = (size_t)size64;
861 	return;
862 
863 limit_fail:
864 	/*
865 	 * Control comes here if we are unable to allocate more than 4GB of
866 	 * memory for the string table due to one of the following reasons:
867 	 *
868 	 * - A 32-bit process is attempting to be larger than 4GB
869 	 *
870 	 * - A 64-bit process is attempting to grow the long names string
871 	 *	table beyond the ar format limit of 32-bits.
872 	 */
873 	if (sys32)
874 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(ENOMEM));
875 	else
876 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_LONGSTRTBLSZ));
877 	exit(1);
878 
879 #undef STRTBL_INITSZ
880 }
881 
882 /*
883  * Add the specified number of pad characters to the end of the
884  * given string table.
885  *
886  * entry:
887  *	strtbl - String table to pad
888  *	n - # of pad characters to add
889  *	ch - Pad character to use
890  */
891 static void
892 strtbl_pad(ARSTRTBL *strtbl, size_t n, int ch)
893 {
894 	if (n == 0)
895 		return;
896 
897 	if ((n + strtbl->used) > strtbl->size)
898 		strtbl_alloc(strtbl, n);
899 
900 	while (n--)
901 		strtbl->base[strtbl->used++] = ch;
902 }
903 
904 /*
905  * Enter a symbol name into the symbol string table.
906  */
907 static void
908 savename(char *symbol)
909 {
910 	size_t need;
911 
912 	need = strlen(symbol) + 1;
913 	if ((need + sym_strtbl.used) > sym_strtbl.size)
914 		strtbl_alloc(&sym_strtbl, need);
915 
916 	(void) strcpy(sym_strtbl.base + sym_strtbl.used, symbol);
917 	sym_strtbl.used += need;
918 }
919 
920 /*
921  * Prepare an archive member with a long (>15 characters) name for
922  * the output archive.
923  *
924  * entry:
925  *	fptr - pointer to archive member with long name
926  *
927  * exit:
928  *	The long name is entered into the long name string table,
929  *	and fptr->ar_name has been replaced with the special /xxx
930  *	name used to indicate that the real name is in the string table
931  *	at offset xxx.
932  */
933 static void
934 savelongname(ARFILE *fptr)
935 {
936 	size_t	len, need;
937 	char	*p;
938 
939 	/* Size of new item to add */
940 	len = strlen(fptr->ar_longname);
941 	need = len + 2;
942 
943 	/* Ensure there's room */
944 	if ((need + long_strtbl.used) > long_strtbl.size)
945 		strtbl_alloc(&long_strtbl, need);
946 
947 	/*
948 	 * Generate the index string to be written into the member header
949 	 *
950 	 * This will not overflow the ar_name field because that field is
951 	 * 16 characters in size, and a 32-bit unsigned value can be formatted
952 	 * in 10 characters. Allowing a character for the leading '/', and one
953 	 * for the NULL termination, that leaves us with 4 extra spaces.
954 	 */
955 	(void) snprintf(fptr->ar_name, sizeof (fptr->ar_name),
956 	    MSG_ORIG(MSG_FMT_LLINT), EC_XWORD(long_strtbl.used));
957 
958 	/*
959 	 * Enter long name into reserved spot, terminated with a slash
960 	 * and a newline character.
961 	 */
962 	p = long_strtbl.base + long_strtbl.used;
963 	long_strtbl.used += need;
964 	(void) strcpy(p, fptr->ar_longname);
965 	p += len;
966 	*p++ = '/';
967 	*p++ = '\n';
968 }
969 
970 /*
971  * Determine if the archive we're about to write will exceed the
972  * 32-bit limit of 4GB.
973  *
974  * entry:
975  *      mksymtab() and mklong_tab() have been called to set up
976  *	the string tables.
977  *
978  * exit:
979  *	Returns TRUE (1) if the 64-bit symbol table is needed, and
980  *	FALSE (0) otherwise.
981  *
982  */
983 static int
984 require64(size_t nsyms, int found_obj, size_t longnames)
985 {
986 	ARFILE		*fptr;
987 	uint64_t	size;
988 
989 	/*
990 	 * If there are more than 4GB symbols, we have to use
991 	 * the 64-bit form. Note that longnames cannot exceed 4GB
992 	 * because that symbol table is limited to a length of 4GB by
993 	 * the archive format.
994 	 */
995 	if (nsyms > 0xffffffff)
996 		return (1);
997 
998 	/*
999 	 * Make a worst case estimate for the size of the resulting
1000 	 * archive by assuming full padding between members.
1001 	 */
1002 	size = 	SARMAG;
1003 	if (longnames)
1004 		size += sizeof (struct ar_hdr) + long_strtbl.used + PADSZ;
1005 
1006 	if (found_obj)
1007 		size += sizeof_symtbl(nsyms, found_obj, 4) + PADSZ;
1008 
1009 	if (size > 0xffffffff)
1010 		return (1);
1011 
1012 	for (fptr = listhead; fptr; fptr = fptr->ar_next) {
1013 		size += sizeof (struct ar_hdr) + fptr->ar_size + PADSZ;
1014 
1015 		if (size > 0xffffffff)
1016 			return (1);
1017 	}
1018 
1019 	/* 32-bit symbol table will suffice */
1020 	return (0);
1021 }
1022 
1023 void
1024 writefile(Cmd_info *cmd_info)
1025 {
1026 	ARFILE		*fptr;
1027 	ARFILEP		*symlist = 0;
1028 	size_t		longnames;
1029 	size_t		nsyms;
1030 	int		new_archive = 0;
1031 	char		*name = cmd_info->arnam;
1032 	size_t		arsize;	/* Size of magic # and special members */
1033 	size_t		symtbl_eltsize = 4;
1034 	int		found_obj = 0;
1035 	int		fd;
1036 	off_t		off;
1037 	struct stat	stbuf, ar_stbuf;
1038 	char		pad_bytes[PADSZ];
1039 	size_t		pad_cnt;
1040 	int		is_elf;
1041 
1042 	/*
1043 	 * Gather the list of symbols and associate each one to the
1044 	 * ARFILE descriptor of the object it belongs to. At the same
1045 	 * time, tag each ELF object with the appropriate F_CLASSxx
1046 	 * flag.
1047 	 */
1048 	nsyms = mksymtab(name, &symlist, &found_obj);
1049 
1050 	/* Generate the string table for long member names */
1051 	longnames = mklong_tab();
1052 
1053 	/*
1054 	 * Will this archive exceed 4GB? If we're a 32-bit process, we can't
1055 	 * do it. If we're a 64-bit process, then we'll have to use a
1056 	 * 64-bit symbol table.
1057 	 */
1058 	if (require64(nsyms, found_obj, longnames)) {
1059 #ifdef _LP64
1060 		symtbl_eltsize = 8;
1061 #else
1062 		(void) fprintf(stderr, MSG_INTL(MSG_TOOBIG4G));
1063 		exit(1);
1064 #endif
1065 	}
1066 
1067 	/*
1068 	 * If the user requested it, use the 64-bit symbol table even if
1069 	 * a 32-bit one would suffice. 32-bit tables are more portable and
1070 	 * take up less room, so this feature is primarily for testing.
1071 	 */
1072 	if (cmd_info->opt_flgs & S_FLAG)
1073 		symtbl_eltsize = 8;
1074 
1075 	/*
1076 	 * If the first non-special archive member is an ELF object, then we
1077 	 * need to arrange for its data to have an alignment of PADSZ. The
1078 	 * preceeding special member will be the symbol table, or the long
1079 	 * name string table. We pad the string table that precedes the
1080 	 * ELF member in order to achive the desired alignment.
1081 	 */
1082 	is_elf = listhead && (listhead->ar_flag & (F_CLASS32 | F_CLASS64));
1083 	arsize = SARMAG;
1084 	if (found_obj) {
1085 		arsize += sizeof_symtbl(nsyms, found_obj, symtbl_eltsize);
1086 		if (is_elf && (longnames == 0)) {
1087 			pad_cnt = pad(arsize + sizeof (struct ar_hdr), PADSZ);
1088 			strtbl_pad(&sym_strtbl, pad_cnt, '\0');
1089 			arsize += pad_cnt;
1090 		}
1091 	}
1092 	if (longnames > 0) {
1093 		arsize += sizeof (struct ar_hdr) + long_strtbl.used;
1094 		if (is_elf) {
1095 			pad_cnt = pad(arsize + sizeof (struct ar_hdr), PADSZ);
1096 			strtbl_pad(&long_strtbl, pad_cnt, '\0');
1097 			arsize += pad_cnt;
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * For each user visible (non-special) archive member, determine
1103 	 * the header offset, and the size of any required padding.
1104 	 */
1105 	(void) sizeofmembers(arsize);
1106 
1107 	/*
1108 	 * Is this a new archive, or are we updating an existing one?
1109 	 *
1110 	 * A subtlety here is that POSIX says we are not supposed
1111 	 * to replace a non-writable file. The only 100% reliable test
1112 	 * against this is to open the file for non-destructive
1113 	 * write access. If the open succeeds, we are clear to
1114 	 * replace it, and if not, then the error generated is
1115 	 * the error we need to report.
1116 	 */
1117 	if ((fd = open(name, O_RDWR)) < 0) {
1118 		int	err = errno;
1119 
1120 		if (err != ENOENT) {
1121 			(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
1122 			    name, strerror(err));
1123 			exit(1);
1124 		}
1125 		new_archive = 1;
1126 		if ((cmd_info->opt_flgs & c_FLAG) == 0) {
1127 			(void) fprintf(stderr, MSG_INTL(MSG_BER_MES_CREATE),
1128 			    cmd_info->arnam);
1129 		}
1130 	} else {
1131 		/* Capture mode and owner information to apply to replacement */
1132 		if (fstat(fd, &ar_stbuf) < 0) {
1133 			int err = errno;
1134 			(void) fprintf(stderr, MSG_INTL(MSG_SYS_STAT),
1135 			    name, strerror(err));
1136 			(void) close(fd);
1137 			exit(1);
1138 		}
1139 		(void) close(fd);
1140 		new_archive = 0;
1141 	}
1142 
1143 
1144 	/*
1145 	 * Register exit handler function to clean up after us if we exit
1146 	 * before completing the new archive. atexit() is defined as
1147 	 * only being able to fail due to memory exhaustion.
1148 	 */
1149 	if (atexit(exit_cleanup) != 0) {
1150 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(ENOMEM));
1151 		exit(1);
1152 	}
1153 
1154 	/*
1155 	 * If a new archive, create it in place. If updating an archive,
1156 	 * create the replacement under a temporary name and then rename it
1157 	 * into place.
1158 	 */
1159 	ar_outfile.path = new_archive ? name : make_tmpname(name);
1160 	ar_outfile.fd = open(ar_outfile.path, O_RDWR|O_CREAT|O_LARGEFILE, 0666);
1161 	if (ar_outfile.fd == -1) {
1162 		int err = errno;
1163 		(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
1164 		    ar_outfile.path, strerror(err));
1165 		exit(1);
1166 	}
1167 
1168 	/* Output magic string */
1169 	arwrite(name, ar_outfile.fd, ARMAG, SARMAG);
1170 
1171 	/*
1172 	 * The symbol table member is always first if present. Note that
1173 	 * writesymtab() uses the member offsets computed by sizeofmembers()
1174 	 * above.
1175 	 */
1176 	if (found_obj)
1177 		writesymtab(name, ar_outfile.fd, nsyms, symlist,
1178 		    symtbl_eltsize);
1179 
1180 	if (longnames) {
1181 		write_member_header(name, ar_outfile.fd, 0,
1182 		    MSG_ORIG(MSG_STR_DSLASH), time(0), 0, 0, 0,
1183 		    long_strtbl.used);
1184 		arwrite(name, ar_outfile.fd, long_strtbl.base,
1185 		    long_strtbl.used);
1186 	}
1187 
1188 	/*
1189 	 * The accuracy of the symbol table depends on our having calculated
1190 	 * the size of the archive accurately to this point. If this is a
1191 	 * debug build, verify it.
1192 	 */
1193 	assert(arsize == lseek(ar_outfile.fd, 0, SEEK_CUR));
1194 
1195 #ifndef XPG4
1196 	if (cmd_info->opt_flgs & v_FLAG) {
1197 		(void) fprintf(stderr, MSG_INTL(MSG_BER_MES_WRITE),
1198 		    cmd_info->arnam);
1199 	}
1200 #endif
1201 
1202 	/*
1203 	 * Fill pad_bytes array with newline characters. This array
1204 	 * is used to supply padding bytes at the end of ELF objects.
1205 	 * There can never be more tha PADSZ such bytes, so this number
1206 	 * will always suffice.
1207 	 */
1208 	for (pad_cnt = 0; pad_cnt < PADSZ; pad_cnt++)
1209 		pad_bytes[pad_cnt] = '\n';
1210 
1211 	for (fptr = listhead; fptr; fptr = fptr->ar_next) {
1212 		/*
1213 		 * We computed the expected offset for each ELF member and
1214 		 * used those offsets to fill the symbol table. If this is
1215 		 * a debug build, verify that the computed offset was right.
1216 		 */
1217 		is_elf = (fptr->ar_flag & (F_CLASS32 | F_CLASS64)) != 0;
1218 		assert(!is_elf ||
1219 		    (fptr->ar_offset == lseek(ar_outfile.fd, 0, SEEK_CUR)));
1220 
1221 		/*
1222 		 * NOTE:
1223 		 * The mem_header->ar_name[] is set to a NULL string
1224 		 * if the archive member header has some error.
1225 		 * (See elf_getarhdr() man page.)
1226 		 * It is set to NULL for example, the ar command reads
1227 		 * the archive files created by SunOS 4.1 system.
1228 		 * See c block comment in cmd.c, "Incompatible Archive Header".
1229 		 */
1230 		if (fptr->ar_name[0] == 0) {
1231 			fptr->ar_longname = fptr->ar_rawname;
1232 			(void) strncpy(fptr->ar_name, fptr->ar_rawname, SNAME);
1233 		}
1234 		write_member_header(name, ar_outfile.fd, is_elf,
1235 		    (strlen(fptr->ar_longname) <= (unsigned)SNAME-2) ?
1236 		    trimslash(fptr->ar_longname) : fptr->ar_name,
1237 		    EC_WORD(fptr->ar_date), fptr->ar_uid, fptr->ar_gid,
1238 		    fptr->ar_mode, fptr->ar_size + fptr->ar_padding);
1239 
1240 
1241 		if ((fptr->ar_flag & F_ELFRAW) == 0) {
1242 			/*
1243 			 * The file doesn't come from the archive, and is
1244 			 * therefore not already in memory(fptr->ar_contents)
1245 			 * so open it and do a direct file-to-file transfer of
1246 			 * its contents. We use the sendfile() system call
1247 			 * to make the kernel do the transfer, so we don't have
1248 			 * to buffer data in process, and we trust that the
1249 			 * kernel will use an optimal transfer strategy.
1250 			 */
1251 			if ((fd = open(fptr->ar_pathname, O_RDONLY)) == -1) {
1252 				int err = errno;
1253 				(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
1254 				    fptr->ar_longname, strerror(err));
1255 				exit(1);
1256 			}
1257 			if (stat(fptr->ar_pathname, &stbuf) < 0) {
1258 				int err = errno;
1259 				(void) fprintf(stderr, MSG_INTL(MSG_SYS_OPEN),
1260 				    fptr->ar_longname, strerror(err));
1261 				(void) close(fd);
1262 				exit(1);
1263 			}
1264 			off = 0;
1265 			if (sendfile(ar_outfile.fd, fd, &off,
1266 			    stbuf.st_size) != stbuf.st_size) {
1267 				int err = errno;
1268 				(void) fprintf(stderr, MSG_INTL(MSG_SYS_WRITE),
1269 				    name, strerror(err));
1270 				exit(2);
1271 			}
1272 			(void) close(fd);
1273 		} else {
1274 			/* Archive member is in memory. Write it out */
1275 			arwrite(name, ar_outfile.fd, fptr->ar_contents,
1276 			    fptr->ar_size);
1277 		}
1278 
1279 		/*
1280 		 * All archive members are padded to at least a boundary of 2.
1281 		 * The expression ((fptr->ar_size & 0x1) != 0) yields 1 for
1282 		 * odd boundaries, and 0 for even ones. To this, we add
1283 		 * whatever padding is needed for ELF objects.
1284 		 */
1285 		pad_cnt = ((fptr->ar_size & 0x1) != 0) + fptr->ar_padding;
1286 		if (pad_cnt > 0)
1287 			arwrite(name, ar_outfile.fd, pad_bytes, pad_cnt);
1288 	}
1289 
1290 	/*
1291 	 * All archive output is done.
1292 	 */
1293 	if (close(ar_outfile.fd) < 0) {
1294 		int err = errno;
1295 		(void) fprintf(stderr, MSG_INTL(MSG_SYS_CLOSE), ar_outfile.path,
1296 		    strerror(err));
1297 		exit(1);
1298 	}
1299 	ar_outfile.fd = -1;	/* Prevent removal on exit */
1300 	(void) elf_end(cmd_info->arf);
1301 	(void) close(cmd_info->afd);
1302 
1303 	/*
1304 	 * If updating an existing archive, rename the new version on
1305 	 * top of the original.
1306 	 */
1307 	if (!new_archive) {
1308 		/*
1309 		 * Prevent the replacement of the original archive from
1310 		 * being interrupted, to lower the possibility of an
1311 		 * interrupt destroying a pre-existing archive.
1312 		 */
1313 		establish_sighandler(SIG_IGN);
1314 
1315 		if (rename(ar_outfile.path, name) < 0) {
1316 			int err = errno;
1317 			(void) fprintf(stderr, MSG_INTL(MSG_SYS_RENAME),
1318 			    ar_outfile.path, name, strerror(err));
1319 			(void) unlink(ar_outfile.path);
1320 			exit(1);
1321 		}
1322 		(void) chmod(name, ar_stbuf.st_mode & 0777);
1323 		if (chown(name, ar_stbuf.st_uid, ar_stbuf.st_gid) >= 0)
1324 			(void) chmod(name, ar_stbuf.st_mode & 07777);
1325 
1326 	}
1327 }
1328 
1329 /*
1330  * Examine all the archive members, enter any member names longer than
1331  * 15 characters into the long name string table, and count the number
1332  * of names found.
1333  *
1334  * Returns the size of the resulting archive member, including the
1335  * member header.
1336  */
1337 static size_t
1338 mklong_tab(void)
1339 {
1340 	ARFILE  *fptr;
1341 	size_t longnames = 0;
1342 
1343 	for (fptr = listhead; fptr; fptr = fptr->ar_next) {
1344 		if (strlen(fptr->ar_longname) >= (unsigned)SNAME-1) {
1345 			longnames++;
1346 			savelongname(fptr);
1347 		}
1348 	}
1349 
1350 	/* round up table that keeps the long filenames */
1351 	if (longnames > 0)
1352 		strtbl_pad(&long_strtbl, pad(long_strtbl.used, 4), '\n');
1353 
1354 	return (longnames);
1355 }
1356 
1357 /*
1358  * Write 32/64-bit words into buffer in archive symbol table
1359  * standard byte order (MSB).
1360  */
1361 static char *
1362 sputl32(uint32_t n, char *cp)
1363 {
1364 	*cp++ = n >> 24;
1365 	*cp++ = n >> 16;
1366 	*cp++ = n >> 8;
1367 
1368 	*cp++ = n & 255;
1369 
1370 	return (cp);
1371 }
1372 
1373 static char *
1374 sputl64(uint64_t n, char *cp)
1375 {
1376 	*cp++ = n >> 56;
1377 	*cp++ = n >> 48;
1378 	*cp++ = n >> 40;
1379 	*cp++ = n >> 32;
1380 
1381 	*cp++ = n >> 24;
1382 	*cp++ = n >> 16;
1383 	*cp++ = n >> 8;
1384 
1385 	*cp++ = n & 255;
1386 
1387 	return (cp);
1388 }
1389 
1390 static int
1391 search_sym_tab(const char *arname, ARFILE *fptr, Elf *elf, Elf_Scn *scn,
1392 	size_t *nsyms, ARFILEP **symlist, size_t *num_errs)
1393 {
1394 	Elf_Data *str_data, *sym_data; /* string table, symbol table */
1395 	Elf_Scn *str_scn;
1396 	GElf_Sxword no_of_symbols;
1397 	GElf_Shdr shdr;
1398 	int counter;
1399 	int str_shtype;
1400 	char *symname;
1401 	static ARFILEP *sym_ptr = 0;
1402 	static ARFILEP *nextsym = NULL;
1403 	static int syms_left = 0;
1404 	char *fname = fptr->ar_pathname;
1405 
1406 	(void) gelf_getshdr(scn, &shdr);
1407 	str_scn = elf_getscn(elf, shdr.sh_link); /* index for string table */
1408 	if (str_scn == NULL) {
1409 		if (fname != NULL)
1410 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETDATA_FILE),
1411 			    fname, elf_errmsg(-1));
1412 		else
1413 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETDATA_AR),
1414 			    arname, fptr->ar_longname, elf_errmsg(-1));
1415 		(*num_errs)++;
1416 		return (-1);
1417 	}
1418 
1419 	no_of_symbols = shdr.sh_size / shdr.sh_entsize;
1420 	if (no_of_symbols == -1) {
1421 		(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_01));
1422 		return (-1);
1423 	}
1424 
1425 	(void) gelf_getshdr(str_scn, &shdr);
1426 	str_shtype = shdr.sh_type;
1427 	if (str_shtype == -1) {
1428 		if (fname != NULL)
1429 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETDATA_FILE),
1430 			    fname, elf_errmsg(-1));
1431 		else
1432 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_GETDATA_AR),
1433 			    arname, fptr->ar_longname, elf_errmsg(-1));
1434 		(*num_errs)++;
1435 		return (-1);
1436 	}
1437 
1438 	/* This test must happen before testing the string table. */
1439 	if (no_of_symbols == 1)
1440 		return (0);	/* no symbols; 0th symbol is the non-symbol */
1441 
1442 	if (str_shtype != SHT_STRTAB) {
1443 		if (fname != NULL)
1444 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_NOSTR_FILE),
1445 			    fname);
1446 		else
1447 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_NOSTR_AR),
1448 			    arname, fptr->ar_longname);
1449 		return (0);
1450 	}
1451 	str_data = 0;
1452 	if ((str_data = elf_getdata(str_scn, str_data)) == 0) {
1453 		if (fname != NULL)
1454 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_NODAT_FILE),
1455 			    fname);
1456 		else
1457 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_NODAT_AR),
1458 			    arname, fptr->ar_longname);
1459 		return (0);
1460 	}
1461 	if (str_data->d_size == 0) {
1462 		if (fname != NULL)
1463 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_ZDAT_FILE),
1464 			    fname);
1465 		else
1466 			(void) fprintf(stderr, MSG_INTL(MSG_SYMTAB_ZDAT_AR),
1467 			    arname, fptr->ar_longname);
1468 		return (0);
1469 	}
1470 	sym_data = 0;
1471 	if ((sym_data = elf_getdata(scn, sym_data)) == NULL) {
1472 		if (fname != NULL)
1473 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_LIB_FILE),
1474 			    fname, elf_errmsg(-1));
1475 		else
1476 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_LIB_AR),
1477 			    arname, fptr->ar_longname, elf_errmsg(-1));
1478 		return (0);
1479 	}
1480 
1481 	/* start at 1, first symbol entry is ignored */
1482 	for (counter = 1; counter < no_of_symbols; counter++) {
1483 		GElf_Sym sym;
1484 		(void) gelf_getsym(sym_data, counter, &sym);
1485 
1486 		symname = (char *)(str_data->d_buf) + sym.st_name;
1487 
1488 		if (((GELF_ST_BIND(sym.st_info) == STB_GLOBAL) ||
1489 		    (GELF_ST_BIND(sym.st_info) == STB_WEAK)) &&
1490 		    (sym.st_shndx != SHN_UNDEF)) {
1491 			if (!syms_left) {
1492 				sym_ptr = malloc((SYMCHUNK+1)
1493 				    * sizeof (ARFILEP));
1494 				if (sym_ptr == NULL) {
1495 					int err = errno;
1496 					(void) fprintf(stderr,
1497 					    MSG_INTL(MSG_MALLOC),
1498 					    strerror(err));
1499 					exit(1);
1500 				}
1501 				syms_left = SYMCHUNK;
1502 				if (nextsym)
1503 					*nextsym = (ARFILEP)sym_ptr;
1504 				else
1505 					*symlist = sym_ptr;
1506 				nextsym = sym_ptr;
1507 			}
1508 			sym_ptr = nextsym;
1509 			nextsym++;
1510 			syms_left--;
1511 			(*nsyms)++;
1512 			*sym_ptr = fptr;
1513 			savename(symname);	/* put name in the archiver's */
1514 						/* symbol table string table */
1515 		}
1516 	}
1517 	return (0);
1518 }
1519 
1520 /*
1521  * Get the output file size
1522  */
1523 static size_t
1524 sizeofmembers(size_t psum)
1525 {
1526 	size_t	sum = 0;
1527 	ARFILE	*fptr;
1528 	size_t	hdrsize = sizeof (struct ar_hdr);
1529 
1530 	for (fptr = listhead; fptr; fptr = fptr->ar_next) {
1531 		fptr->ar_offset = psum + sum;
1532 		sum += fptr->ar_size;
1533 		if (fptr->ar_size & 01)
1534 			sum++;
1535 		sum += hdrsize;
1536 
1537 		/*
1538 		 * If the current item, and the next item are both ELF
1539 		 * objects, then add padding to current item so that the
1540 		 * data in the next item will have PADSZ alignment.
1541 		 *
1542 		 * In any other case, set the padding to 0. If the
1543 		 * item comes from another archive, it may be carrying
1544 		 * a non-zero padding value from that archive that does
1545 		 * not apply to the one we are about to build.
1546 		 */
1547 		if ((fptr->ar_flag & (F_CLASS32 | F_CLASS64)) &&
1548 		    fptr->ar_next &&
1549 		    (fptr->ar_next->ar_flag & (F_CLASS32 | F_CLASS64))) {
1550 			fptr->ar_padding = pad(psum + sum + hdrsize, PADSZ);
1551 			sum += fptr->ar_padding;
1552 		} else {
1553 			fptr->ar_padding = 0;
1554 		}
1555 	}
1556 	return (sum);
1557 }
1558 
1559 /*
1560  * Compute the size of the symbol table archive member.
1561  *
1562  * entry:
1563  *	nsyms - # of symbols in the table
1564  *	found_obj - TRUE if the archive contains any ELF objects
1565  *	eltsize - Size of the integer type to use for the symbol
1566  *		table. 4 for 32-bit tables, and 8 for 64-bit tables.
1567  */
1568 static size_t
1569 sizeof_symtbl(size_t nsyms, int found_obj, size_t eltsize)
1570 {
1571 	size_t sum = 0;
1572 
1573 	if (found_obj) {
1574 		/* Member header, symbol count, and one slot per symbol */
1575 		sum += sizeof (struct ar_hdr) + ((nsyms + 1) * eltsize);
1576 		sum += sym_strtbl.used;
1577 	}
1578 
1579 	return (sum);
1580 }
1581 
1582 static void
1583 arwrite(const char *name, int nfd, const char *dst, size_t size) {
1584 	if (write(nfd, dst, size) != size) {
1585 		int err = errno;
1586 		(void) fprintf(stderr, MSG_INTL(MSG_SYS_WRITE),
1587 		    name, strerror(err));
1588 		exit(2);
1589 	}
1590 }
1591 
1592 static const char *
1593 make_tmpname(const char *filename) {
1594 	char	*slash, *tmpname;
1595 	size_t	prefix_cnt = 0;
1596 
1597 	/*
1598 	 * If there is a path prefix in front of the filename, we
1599 	 * want to put the temporary file in the same directory.
1600 	 * Determine the length of the path.
1601 	 */
1602 	slash = strrchr(filename, '/');
1603 	if (slash != NULL)
1604 		prefix_cnt = slash - filename + 1;
1605 	tmpname = malloc(prefix_cnt + MSG_STR_MKTEMP_SIZE + 1);
1606 	if (tmpname == NULL) {
1607 		int err = errno;
1608 		(void) fprintf(stderr, MSG_INTL(MSG_MALLOC), strerror(err));
1609 		exit(1);
1610 	}
1611 
1612 	if (prefix_cnt > 0)
1613 		(void) strncpy(tmpname, filename, prefix_cnt);
1614 	(void) strcpy(tmpname + prefix_cnt, MSG_ORIG(MSG_STR_MKTEMP));
1615 	(void) mktemp(tmpname);
1616 
1617 	return (tmpname);
1618 }
1619