1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "tsol.h" 97 #include "typegraph.h" 98 #include "ldi.h" 99 #include "vfs.h" 100 #include "zone.h" 101 #include "modhash.h" 102 #include "mdi.h" 103 104 /* 105 * Surely this is defined somewhere... 106 */ 107 #define NINTR 16 108 109 #ifndef STACK_BIAS 110 #define STACK_BIAS 0 111 #endif 112 113 static char 114 pstat2ch(uchar_t state) 115 { 116 switch (state) { 117 case SSLEEP: return ('S'); 118 case SRUN: return ('R'); 119 case SZOMB: return ('Z'); 120 case SIDL: return ('I'); 121 case SONPROC: return ('O'); 122 case SSTOP: return ('T'); 123 default: return ('?'); 124 } 125 } 126 127 #define PS_PRTTHREADS 0x1 128 #define PS_PRTLWPS 0x2 129 #define PS_PSARGS 0x4 130 #define PS_TASKS 0x8 131 #define PS_PROJECTS 0x10 132 #define PS_ZONES 0x20 133 134 static int 135 ps_threadprint(uintptr_t addr, const void *data, void *private) 136 { 137 const kthread_t *t = (const kthread_t *)data; 138 uint_t prt_flags = *((uint_t *)private); 139 140 static const mdb_bitmask_t t_state_bits[] = { 141 { "TS_FREE", UINT_MAX, TS_FREE }, 142 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 143 { "TS_RUN", TS_RUN, TS_RUN }, 144 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 145 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 146 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 147 { NULL, 0, 0 } 148 }; 149 150 if (prt_flags & PS_PRTTHREADS) 151 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 152 153 if (prt_flags & PS_PRTLWPS) 154 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 155 156 return (WALK_NEXT); 157 } 158 159 int 160 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 161 { 162 uint_t prt_flags = 0; 163 proc_t pr; 164 struct pid pid, pgid, sid; 165 sess_t session; 166 cred_t cred; 167 task_t tk; 168 kproject_t pj; 169 zone_t zn; 170 171 if (!(flags & DCMD_ADDRSPEC)) { 172 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 173 mdb_warn("can't walk 'proc'"); 174 return (DCMD_ERR); 175 } 176 return (DCMD_OK); 177 } 178 179 if (mdb_getopts(argc, argv, 180 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 181 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 182 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 183 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 184 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 185 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 186 return (DCMD_USAGE); 187 188 if (DCMD_HDRSPEC(flags)) { 189 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 190 "S", "PID", "PPID", "PGID", "SID"); 191 if (prt_flags & PS_TASKS) 192 mdb_printf("%5s ", "TASK"); 193 if (prt_flags & PS_PROJECTS) 194 mdb_printf("%5s ", "PROJ"); 195 if (prt_flags & PS_ZONES) 196 mdb_printf("%5s ", "ZONE"); 197 mdb_printf("%6s %10s %?s %s%</u>\n", 198 "UID", "FLAGS", "ADDR", "NAME"); 199 } 200 201 mdb_vread(&pr, sizeof (pr), addr); 202 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 203 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 204 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 205 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 206 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 207 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 208 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 209 if (prt_flags & PS_PROJECTS) 210 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 211 if (prt_flags & PS_ZONES) 212 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 213 214 mdb_printf("%c %6d %6d %6d %6d ", 215 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 216 sid.pid_id); 217 if (prt_flags & PS_TASKS) 218 mdb_printf("%5d ", tk.tk_tkid); 219 if (prt_flags & PS_PROJECTS) 220 mdb_printf("%5d ", pj.kpj_id); 221 if (prt_flags & PS_ZONES) 222 mdb_printf("%5d ", zn.zone_id); 223 mdb_printf("%6d 0x%08x %0?p %s\n", 224 cred.cr_uid, pr.p_flag, addr, 225 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 226 227 if (prt_flags & ~PS_PSARGS) 228 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 229 230 return (DCMD_OK); 231 } 232 233 #define PG_NEWEST 0x0001 234 #define PG_OLDEST 0x0002 235 #define PG_PIPE_OUT 0x0004 236 #define PG_EXACT_MATCH 0x0008 237 238 typedef struct pgrep_data { 239 uint_t pg_flags; 240 uint_t pg_psflags; 241 uintptr_t pg_xaddr; 242 hrtime_t pg_xstart; 243 const char *pg_pat; 244 #ifndef _KMDB 245 regex_t pg_reg; 246 #endif 247 } pgrep_data_t; 248 249 /*ARGSUSED*/ 250 static int 251 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 252 { 253 const proc_t *prp = pdata; 254 pgrep_data_t *pgp = data; 255 #ifndef _KMDB 256 regmatch_t pmatch; 257 #endif 258 259 /* 260 * kmdb doesn't have access to the reg* functions, so we fall back 261 * to strstr/strcmp. 262 */ 263 #ifdef _KMDB 264 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 265 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 266 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 267 return (WALK_NEXT); 268 #else 269 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 270 return (WALK_NEXT); 271 272 if ((pgp->pg_flags & PG_EXACT_MATCH) && 273 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 274 return (WALK_NEXT); 275 #endif 276 277 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 278 hrtime_t start; 279 280 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 281 prp->p_user.u_start.tv_nsec; 282 283 if (pgp->pg_flags & PG_NEWEST) { 284 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 285 pgp->pg_xaddr = addr; 286 pgp->pg_xstart = start; 287 } 288 } else { 289 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 290 pgp->pg_xaddr = addr; 291 pgp->pg_xstart = start; 292 } 293 } 294 295 } else if (pgp->pg_flags & PG_PIPE_OUT) { 296 mdb_printf("%p\n", addr); 297 298 } else { 299 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 300 mdb_warn("can't invoke 'ps'"); 301 return (WALK_DONE); 302 } 303 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 304 } 305 306 return (WALK_NEXT); 307 } 308 309 /*ARGSUSED*/ 310 int 311 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 312 { 313 pgrep_data_t pg; 314 int i; 315 #ifndef _KMDB 316 int err; 317 #endif 318 319 if (flags & DCMD_ADDRSPEC) 320 return (DCMD_USAGE); 321 322 pg.pg_flags = 0; 323 pg.pg_xaddr = 0; 324 325 i = mdb_getopts(argc, argv, 326 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 327 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 328 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 329 NULL); 330 331 argc -= i; 332 argv += i; 333 334 if (argc != 1) 335 return (DCMD_USAGE); 336 337 /* 338 * -n and -o are mutually exclusive. 339 */ 340 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 341 return (DCMD_USAGE); 342 343 if (argv->a_type != MDB_TYPE_STRING) 344 return (DCMD_USAGE); 345 346 if (flags & DCMD_PIPE_OUT) 347 pg.pg_flags |= PG_PIPE_OUT; 348 349 pg.pg_pat = argv->a_un.a_str; 350 if (DCMD_HDRSPEC(flags)) 351 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 352 else 353 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 354 355 #ifndef _KMDB 356 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 357 size_t nbytes; 358 char *buf; 359 360 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 361 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 362 (void) regerror(err, &pg.pg_reg, buf, nbytes); 363 mdb_warn("%s\n", buf); 364 365 return (DCMD_ERR); 366 } 367 #endif 368 369 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 370 mdb_warn("can't walk 'proc'"); 371 return (DCMD_ERR); 372 } 373 374 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 375 if (pg.pg_flags & PG_PIPE_OUT) { 376 mdb_printf("%p\n", pg.pg_xaddr); 377 } else { 378 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 379 0, NULL) != 0) { 380 mdb_warn("can't invoke 'ps'"); 381 return (DCMD_ERR); 382 } 383 } 384 } 385 386 return (DCMD_OK); 387 } 388 389 int 390 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 391 { 392 task_t tk; 393 kproject_t pj; 394 395 if (!(flags & DCMD_ADDRSPEC)) { 396 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 397 mdb_warn("can't walk task_cache"); 398 return (DCMD_ERR); 399 } 400 return (DCMD_OK); 401 } 402 if (DCMD_HDRSPEC(flags)) { 403 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 404 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 405 } 406 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 407 mdb_warn("can't read task_t structure at %p", addr); 408 return (DCMD_ERR); 409 } 410 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 411 mdb_warn("can't read project_t structure at %p", addr); 412 return (DCMD_ERR); 413 } 414 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 415 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 416 tk.tk_flags); 417 return (DCMD_OK); 418 } 419 420 int 421 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 422 { 423 kproject_t pj; 424 425 if (!(flags & DCMD_ADDRSPEC)) { 426 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 427 mdb_warn("can't walk projects"); 428 return (DCMD_ERR); 429 } 430 return (DCMD_OK); 431 } 432 if (DCMD_HDRSPEC(flags)) { 433 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 434 "ADDR", "PROJID", "ZONEID", "REFCNT"); 435 } 436 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 437 mdb_warn("can't read kproject_t structure at %p", addr); 438 return (DCMD_ERR); 439 } 440 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 441 pj.kpj_count); 442 return (DCMD_OK); 443 } 444 445 /*ARGSUSED*/ 446 int 447 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 448 { 449 callout_table_t *co_ktable[CALLOUT_TABLES]; 450 int co_kfanout; 451 callout_table_t co_table; 452 callout_t co_callout; 453 callout_t *co_ptr; 454 int co_id; 455 clock_t lbolt; 456 int i, j, k; 457 const char *lbolt_sym; 458 459 if ((flags & DCMD_ADDRSPEC) || argc != 0) 460 return (DCMD_USAGE); 461 462 if (mdb_prop_postmortem) 463 lbolt_sym = "panic_lbolt"; 464 else 465 lbolt_sym = "lbolt"; 466 467 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 468 mdb_warn("failed to read '%s'", lbolt_sym); 469 return (DCMD_ERR); 470 } 471 472 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 473 mdb_warn("failed to read callout_fanout"); 474 return (DCMD_ERR); 475 } 476 477 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 478 mdb_warn("failed to read callout_table"); 479 return (DCMD_ERR); 480 } 481 482 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 483 "FUNCTION", "ARGUMENT", "ID", "TIME"); 484 485 for (i = 0; i < CALLOUT_NTYPES; i++) { 486 for (j = 0; j < co_kfanout; j++) { 487 488 co_id = CALLOUT_TABLE(i, j); 489 490 if (mdb_vread(&co_table, sizeof (co_table), 491 (uintptr_t)co_ktable[co_id]) == -1) { 492 mdb_warn("failed to read table at %p", 493 (uintptr_t)co_ktable[co_id]); 494 continue; 495 } 496 497 for (k = 0; k < CALLOUT_BUCKETS; k++) { 498 co_ptr = co_table.ct_idhash[k]; 499 500 while (co_ptr != NULL) { 501 mdb_vread(&co_callout, 502 sizeof (co_callout), 503 (uintptr_t)co_ptr); 504 505 mdb_printf("%-24a %0?p %0?lx %?lx " 506 "(T%+ld)\n", co_callout.c_func, 507 co_callout.c_arg, co_callout.c_xid, 508 co_callout.c_runtime, 509 co_callout.c_runtime - lbolt); 510 511 co_ptr = co_callout.c_idnext; 512 } 513 } 514 } 515 } 516 517 return (DCMD_OK); 518 } 519 520 /*ARGSUSED*/ 521 int 522 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 523 { 524 long num_classes, i; 525 sclass_t *class_tbl; 526 GElf_Sym g_sclass; 527 char class_name[PC_CLNMSZ]; 528 size_t tbl_size; 529 530 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 531 mdb_warn("failed to find symbol sclass\n"); 532 return (DCMD_ERR); 533 } 534 535 tbl_size = (size_t)g_sclass.st_size; 536 num_classes = tbl_size / (sizeof (sclass_t)); 537 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 538 539 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 540 mdb_warn("failed to read sclass"); 541 return (DCMD_ERR); 542 } 543 544 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 545 "INIT FCN", "CLASS FCN"); 546 547 for (i = 0; i < num_classes; i++) { 548 if (mdb_vread(class_name, sizeof (class_name), 549 (uintptr_t)class_tbl[i].cl_name) == -1) 550 (void) strcpy(class_name, "???"); 551 552 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 553 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 554 } 555 556 return (DCMD_OK); 557 } 558 559 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 560 561 int 562 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 563 { 564 uintptr_t rootdir; 565 vnode_t vn; 566 char buf[MAXPATHLEN]; 567 568 uint_t opt_F = FALSE; 569 570 if (mdb_getopts(argc, argv, 571 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 572 return (DCMD_USAGE); 573 574 if (!(flags & DCMD_ADDRSPEC)) { 575 mdb_warn("expected explicit vnode_t address before ::\n"); 576 return (DCMD_USAGE); 577 } 578 579 if (mdb_readvar(&rootdir, "rootdir") == -1) { 580 mdb_warn("failed to read rootdir"); 581 return (DCMD_ERR); 582 } 583 584 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 585 return (DCMD_ERR); 586 587 if (*buf == '\0') { 588 mdb_printf("??\n"); 589 return (DCMD_OK); 590 } 591 592 mdb_printf("%s", buf); 593 if (opt_F && buf[strlen(buf)-1] != '/' && 594 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 595 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 596 mdb_printf("\n"); 597 598 return (DCMD_OK); 599 } 600 601 int 602 ld_walk_init(mdb_walk_state_t *wsp) 603 { 604 wsp->walk_data = (void *)wsp->walk_addr; 605 return (WALK_NEXT); 606 } 607 608 int 609 ld_walk_step(mdb_walk_state_t *wsp) 610 { 611 int status; 612 lock_descriptor_t ld; 613 614 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 615 mdb_warn("couldn't read lock_descriptor_t at %p\n", 616 wsp->walk_addr); 617 return (WALK_ERR); 618 } 619 620 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 621 if (status == WALK_ERR) 622 return (WALK_ERR); 623 624 wsp->walk_addr = (uintptr_t)ld.l_next; 625 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 626 return (WALK_DONE); 627 628 return (status); 629 } 630 631 int 632 lg_walk_init(mdb_walk_state_t *wsp) 633 { 634 GElf_Sym sym; 635 636 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 637 mdb_warn("failed to find symbol 'lock_graph'\n"); 638 return (WALK_ERR); 639 } 640 641 wsp->walk_addr = (uintptr_t)sym.st_value; 642 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 643 644 return (WALK_NEXT); 645 } 646 647 typedef struct lg_walk_data { 648 uintptr_t startaddr; 649 mdb_walk_cb_t callback; 650 void *data; 651 } lg_walk_data_t; 652 653 /* 654 * We can't use ::walk lock_descriptor directly, because the head of each graph 655 * is really a dummy lock. Rather than trying to dynamically determine if this 656 * is a dummy node or not, we just filter out the initial element of the 657 * list. 658 */ 659 static int 660 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 661 { 662 lg_walk_data_t *lw = priv; 663 664 if (addr != lw->startaddr) 665 return (lw->callback(addr, data, lw->data)); 666 667 return (WALK_NEXT); 668 } 669 670 int 671 lg_walk_step(mdb_walk_state_t *wsp) 672 { 673 graph_t *graph; 674 lg_walk_data_t lw; 675 676 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 677 return (WALK_DONE); 678 679 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 680 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 681 return (WALK_ERR); 682 } 683 684 wsp->walk_addr += sizeof (graph); 685 686 if (graph == NULL) 687 return (WALK_NEXT); 688 689 lw.callback = wsp->walk_callback; 690 lw.data = wsp->walk_cbdata; 691 692 lw.startaddr = (uintptr_t)&(graph->active_locks); 693 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 694 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 695 return (WALK_ERR); 696 } 697 698 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 699 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 700 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 701 return (WALK_ERR); 702 } 703 704 return (WALK_NEXT); 705 } 706 707 /* 708 * The space available for the path corresponding to the locked vnode depends 709 * on whether we are printing 32- or 64-bit addresses. 710 */ 711 #ifdef _LP64 712 #define LM_VNPATHLEN 20 713 #else 714 #define LM_VNPATHLEN 30 715 #endif 716 717 /*ARGSUSED*/ 718 static int 719 lminfo_cb(uintptr_t addr, const void *data, void *priv) 720 { 721 const lock_descriptor_t *ld = data; 722 char buf[LM_VNPATHLEN]; 723 proc_t p; 724 725 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 726 addr, ld->l_type == F_RDLCK ? "RD" : 727 ld->l_type == F_WRLCK ? "WR" : "??", 728 ld->l_state, ld->l_flock.l_pid, 729 ld->l_flock.l_pid == 0 ? "<kernel>" : 730 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 731 "<defunct>" : p.p_user.u_comm, 732 ld->l_vnode); 733 734 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 735 sizeof (buf)); 736 mdb_printf("%s\n", buf); 737 738 return (WALK_NEXT); 739 } 740 741 /*ARGSUSED*/ 742 int 743 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 744 { 745 if (DCMD_HDRSPEC(flags)) 746 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 747 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 748 749 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 750 } 751 752 /*ARGSUSED*/ 753 int 754 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 755 { 756 struct seg s; 757 758 if (argc != 0) 759 return (DCMD_USAGE); 760 761 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 762 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 763 "SEG", "BASE", "SIZE", "DATA", "OPS"); 764 } 765 766 if (mdb_vread(&s, sizeof (s), addr) == -1) { 767 mdb_warn("failed to read seg at %p", addr); 768 return (DCMD_ERR); 769 } 770 771 mdb_printf("%?p %?p %?lx %?p %a\n", 772 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 773 774 return (DCMD_OK); 775 } 776 777 /*ARGSUSED*/ 778 static int 779 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 780 { 781 uintptr_t pp = 782 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 783 784 if (pp != NULL) 785 (*nres)++; 786 787 return (WALK_NEXT); 788 } 789 790 static int 791 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 792 { 793 794 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 795 796 if (segvn == (uintptr_t)seg->s_ops) { 797 struct segvn_data svn; 798 int nres = 0; 799 800 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 801 802 if (svn.amp == NULL) { 803 mdb_printf(" %8s", ""); 804 goto drive_on; 805 } 806 807 /* 808 * We've got an amp for this segment; walk through 809 * the amp, and determine mappings. 810 */ 811 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 812 &nres, (uintptr_t)svn.amp) == -1) 813 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 814 815 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 816 drive_on: 817 818 if (svn.vp != NULL) { 819 char buf[29]; 820 821 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 822 mdb_printf(" %s", buf); 823 } else 824 mdb_printf(" [ anon ]"); 825 } 826 827 mdb_printf("\n"); 828 return (WALK_NEXT); 829 } 830 831 static int 832 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 833 { 834 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 835 836 if (segvn == (uintptr_t)seg->s_ops) { 837 struct segvn_data svn; 838 839 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 840 841 if (svn.vp != NULL) { 842 mdb_printf(" %0?p", svn.vp); 843 } else { 844 mdb_printf(" [ anon ]"); 845 } 846 } 847 848 mdb_printf("\n"); 849 return (WALK_NEXT); 850 } 851 852 /*ARGSUSED*/ 853 int 854 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 855 { 856 uintptr_t segvn; 857 proc_t proc; 858 uint_t quick = FALSE; 859 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 860 861 GElf_Sym sym; 862 863 if (!(flags & DCMD_ADDRSPEC)) 864 return (DCMD_USAGE); 865 866 if (mdb_getopts(argc, argv, 867 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 868 return (DCMD_USAGE); 869 870 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 871 mdb_warn("failed to read proc at %p", addr); 872 return (DCMD_ERR); 873 } 874 875 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 876 segvn = (uintptr_t)sym.st_value; 877 else 878 segvn = NULL; 879 880 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 881 882 if (quick) { 883 mdb_printf("VNODE\n"); 884 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 885 } else { 886 mdb_printf("%8s %s\n", "RES", "PATH"); 887 } 888 889 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 890 mdb_warn("failed to walk segments of as %p", proc.p_as); 891 return (DCMD_ERR); 892 } 893 894 return (DCMD_OK); 895 } 896 897 typedef struct anon_walk_data { 898 uintptr_t *aw_levone; 899 uintptr_t *aw_levtwo; 900 int aw_nlevone; 901 int aw_levone_ndx; 902 int aw_levtwo_ndx; 903 struct anon_map aw_amp; 904 struct anon_hdr aw_ahp; 905 } anon_walk_data_t; 906 907 int 908 anon_walk_init(mdb_walk_state_t *wsp) 909 { 910 anon_walk_data_t *aw; 911 912 if (wsp->walk_addr == NULL) { 913 mdb_warn("anon walk doesn't support global walks\n"); 914 return (WALK_ERR); 915 } 916 917 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 918 919 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 920 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 921 mdb_free(aw, sizeof (anon_walk_data_t)); 922 return (WALK_ERR); 923 } 924 925 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 926 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 927 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 928 mdb_free(aw, sizeof (anon_walk_data_t)); 929 return (WALK_ERR); 930 } 931 932 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 933 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 934 aw->aw_nlevone = aw->aw_ahp.size; 935 aw->aw_levtwo = NULL; 936 } else { 937 aw->aw_nlevone = 938 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 939 aw->aw_levtwo = 940 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 941 } 942 943 aw->aw_levone = 944 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 945 946 aw->aw_levone_ndx = 0; 947 aw->aw_levtwo_ndx = 0; 948 949 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 950 (uintptr_t)aw->aw_ahp.array_chunk); 951 952 if (aw->aw_levtwo != NULL) { 953 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 954 aw->aw_levone_ndx++; 955 if (aw->aw_levone_ndx == aw->aw_nlevone) { 956 mdb_warn("corrupt anon; couldn't" 957 "find ptr to lev two map"); 958 goto out; 959 } 960 } 961 962 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 963 aw->aw_levone[aw->aw_levone_ndx]); 964 } 965 966 out: 967 wsp->walk_data = aw; 968 return (0); 969 } 970 971 int 972 anon_walk_step(mdb_walk_state_t *wsp) 973 { 974 int status; 975 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 976 struct anon anon; 977 uintptr_t anonptr; 978 979 again: 980 /* 981 * Once we've walked through level one, we're done. 982 */ 983 if (aw->aw_levone_ndx == aw->aw_nlevone) 984 return (WALK_DONE); 985 986 if (aw->aw_levtwo == NULL) { 987 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 988 aw->aw_levone_ndx++; 989 } else { 990 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 991 aw->aw_levtwo_ndx++; 992 993 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 994 aw->aw_levtwo_ndx = 0; 995 996 do { 997 aw->aw_levone_ndx++; 998 999 if (aw->aw_levone_ndx == aw->aw_nlevone) 1000 return (WALK_DONE); 1001 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1002 1003 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1004 sizeof (uintptr_t), 1005 aw->aw_levone[aw->aw_levone_ndx]); 1006 } 1007 } 1008 1009 if (anonptr != NULL) { 1010 mdb_vread(&anon, sizeof (anon), anonptr); 1011 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1012 } else 1013 goto again; 1014 1015 return (status); 1016 } 1017 1018 void 1019 anon_walk_fini(mdb_walk_state_t *wsp) 1020 { 1021 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1022 1023 if (aw->aw_levtwo != NULL) 1024 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1025 1026 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1027 mdb_free(aw, sizeof (anon_walk_data_t)); 1028 } 1029 1030 /*ARGSUSED*/ 1031 int 1032 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1033 { 1034 if ((uintptr_t)f->f_vnode == *target) { 1035 mdb_printf("file %p\n", addr); 1036 *target = NULL; 1037 } 1038 1039 return (WALK_NEXT); 1040 } 1041 1042 /*ARGSUSED*/ 1043 int 1044 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1045 { 1046 uintptr_t t = *target; 1047 1048 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1049 mdb_warn("couldn't file walk proc %p", addr); 1050 return (WALK_ERR); 1051 } 1052 1053 if (t == NULL) 1054 mdb_printf("%p\n", addr); 1055 1056 return (WALK_NEXT); 1057 } 1058 1059 /*ARGSUSED*/ 1060 int 1061 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1062 { 1063 uintptr_t target = addr; 1064 1065 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1066 return (DCMD_USAGE); 1067 1068 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1069 mdb_warn("can't proc walk"); 1070 return (DCMD_ERR); 1071 } 1072 1073 return (DCMD_OK); 1074 } 1075 1076 typedef struct datafmt { 1077 char *hdr1; 1078 char *hdr2; 1079 char *dashes; 1080 char *fmt; 1081 } datafmt_t; 1082 1083 static datafmt_t kmemfmt[] = { 1084 { "cache ", "name ", 1085 "-------------------------", "%-25s " }, 1086 { " buf", " size", "------", "%6u " }, 1087 { " buf", "in use", "------", "%6u " }, 1088 { " buf", " total", "------", "%6u " }, 1089 { " memory", " in use", "---------", "%9u " }, 1090 { " alloc", " succeed", "---------", "%9u " }, 1091 { "alloc", " fail", "-----", "%5u " }, 1092 { NULL, NULL, NULL, NULL } 1093 }; 1094 1095 static datafmt_t vmemfmt[] = { 1096 { "vmem ", "name ", 1097 "-------------------------", "%-*s " }, 1098 { " memory", " in use", "---------", "%9llu " }, 1099 { " memory", " total", "----------", "%10llu " }, 1100 { " memory", " import", "---------", "%9llu " }, 1101 { " alloc", " succeed", "---------", "%9llu " }, 1102 { "alloc", " fail", "-----", "%5llu " }, 1103 { NULL, NULL, NULL, NULL } 1104 }; 1105 1106 /*ARGSUSED*/ 1107 static int 1108 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1109 { 1110 if (ccp->cc_rounds > 0) 1111 *avail += ccp->cc_rounds; 1112 if (ccp->cc_prounds > 0) 1113 *avail += ccp->cc_prounds; 1114 1115 return (WALK_NEXT); 1116 } 1117 1118 /*ARGSUSED*/ 1119 static int 1120 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1121 { 1122 *alloc += ccp->cc_alloc; 1123 1124 return (WALK_NEXT); 1125 } 1126 1127 /*ARGSUSED*/ 1128 static int 1129 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1130 { 1131 *avail += sp->slab_chunks - sp->slab_refcnt; 1132 1133 return (WALK_NEXT); 1134 } 1135 1136 typedef struct kmastat_vmem { 1137 uintptr_t kv_addr; 1138 struct kmastat_vmem *kv_next; 1139 int kv_meminuse; 1140 int kv_alloc; 1141 int kv_fail; 1142 } kmastat_vmem_t; 1143 1144 static int 1145 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1146 { 1147 kmastat_vmem_t *kv; 1148 datafmt_t *dfp = kmemfmt; 1149 int magsize; 1150 1151 int avail, alloc, total; 1152 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1153 cp->cache_slabsize; 1154 1155 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1156 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1157 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1158 1159 magsize = kmem_get_magsize(cp); 1160 1161 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1162 avail = cp->cache_full.ml_total * magsize; 1163 total = cp->cache_buftotal; 1164 1165 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1166 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1167 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1168 1169 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1170 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1171 goto out; 1172 } 1173 1174 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1175 kv->kv_next = *kvp; 1176 kv->kv_addr = (uintptr_t)cp->cache_arena; 1177 *kvp = kv; 1178 out: 1179 kv->kv_meminuse += meminuse; 1180 kv->kv_alloc += alloc; 1181 kv->kv_fail += cp->cache_alloc_fail; 1182 1183 mdb_printf((dfp++)->fmt, cp->cache_name); 1184 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1185 mdb_printf((dfp++)->fmt, total - avail); 1186 mdb_printf((dfp++)->fmt, total); 1187 mdb_printf((dfp++)->fmt, meminuse); 1188 mdb_printf((dfp++)->fmt, alloc); 1189 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1190 mdb_printf("\n"); 1191 1192 return (WALK_NEXT); 1193 } 1194 1195 static int 1196 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1197 { 1198 size_t len; 1199 1200 while (kv != NULL && kv->kv_addr != addr) 1201 kv = kv->kv_next; 1202 1203 if (kv == NULL || kv->kv_alloc == 0) 1204 return (WALK_NEXT); 1205 1206 len = MIN(17, strlen(v->vm_name)); 1207 1208 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1209 17 - len, "", "", "", "", 1210 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1211 1212 return (WALK_NEXT); 1213 } 1214 1215 /*ARGSUSED*/ 1216 static int 1217 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1218 { 1219 datafmt_t *dfp = vmemfmt; 1220 const vmem_kstat_t *vkp = &v->vm_kstat; 1221 uintptr_t paddr; 1222 vmem_t parent; 1223 int ident = 0; 1224 1225 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1226 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1227 mdb_warn("couldn't trace %p's ancestry", addr); 1228 ident = 0; 1229 break; 1230 } 1231 paddr = (uintptr_t)parent.vm_source; 1232 } 1233 1234 mdb_printf("%*s", ident, ""); 1235 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1236 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1237 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1238 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1239 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1240 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1241 1242 mdb_printf("\n"); 1243 1244 return (WALK_NEXT); 1245 } 1246 1247 /*ARGSUSED*/ 1248 int 1249 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1250 { 1251 kmastat_vmem_t *kv = NULL; 1252 datafmt_t *dfp; 1253 1254 if (argc != 0) 1255 return (DCMD_USAGE); 1256 1257 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1258 mdb_printf("%s ", dfp->hdr1); 1259 mdb_printf("\n"); 1260 1261 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1262 mdb_printf("%s ", dfp->hdr2); 1263 mdb_printf("\n"); 1264 1265 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1266 mdb_printf("%s ", dfp->dashes); 1267 mdb_printf("\n"); 1268 1269 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1270 mdb_warn("can't walk 'kmem_cache'"); 1271 return (DCMD_ERR); 1272 } 1273 1274 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1275 mdb_printf("%s ", dfp->dashes); 1276 mdb_printf("\n"); 1277 1278 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1279 mdb_warn("can't walk 'vmem'"); 1280 return (DCMD_ERR); 1281 } 1282 1283 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1284 mdb_printf("%s ", dfp->dashes); 1285 mdb_printf("\n"); 1286 1287 mdb_printf("\n"); 1288 1289 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1290 mdb_printf("%s ", dfp->hdr1); 1291 mdb_printf("\n"); 1292 1293 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1294 mdb_printf("%s ", dfp->hdr2); 1295 mdb_printf("\n"); 1296 1297 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1298 mdb_printf("%s ", dfp->dashes); 1299 mdb_printf("\n"); 1300 1301 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1302 mdb_warn("can't walk 'vmem'"); 1303 return (DCMD_ERR); 1304 } 1305 1306 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1307 mdb_printf("%s ", dfp->dashes); 1308 mdb_printf("\n"); 1309 return (DCMD_OK); 1310 } 1311 1312 /* 1313 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1314 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1315 * unfortunately, a few of the segs are both large and sparse, so we could 1316 * spend quite a bit of time scanning VAs which have no backing pages. 1317 * 1318 * So for the few very sparse segs, we skip the segment itself, and scan 1319 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1320 * Currently, we do this for: 1321 * 1322 * SEG VMEM ARENA 1323 * kvseg heap_arena 1324 * kvseg32 heap32_arena 1325 * kvseg_core heap_core_arena 1326 * 1327 * In addition, we skip the segkpm segment in its entirety, since it is very 1328 * sparse, and contains no new kernel data. 1329 */ 1330 typedef struct kgrep_walk_data { 1331 kgrep_cb_func *kg_cb; 1332 void *kg_cbdata; 1333 uintptr_t kg_kvseg; 1334 uintptr_t kg_kvseg32; 1335 uintptr_t kg_kvseg_core; 1336 uintptr_t kg_segkpm; 1337 uintptr_t kg_heap_lp_base; 1338 uintptr_t kg_heap_lp_end; 1339 } kgrep_walk_data_t; 1340 1341 static int 1342 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1343 { 1344 uintptr_t base = (uintptr_t)seg->s_base; 1345 1346 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1347 addr == kg->kg_kvseg_core) 1348 return (WALK_NEXT); 1349 1350 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1351 return (WALK_NEXT); 1352 1353 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1354 } 1355 1356 /*ARGSUSED*/ 1357 static int 1358 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1359 { 1360 /* 1361 * skip large page heap address range - it is scanned by walking 1362 * allocated vmem_segs in the heap_lp_arena 1363 */ 1364 if (seg->vs_start == kg->kg_heap_lp_base && 1365 seg->vs_end == kg->kg_heap_lp_end) 1366 return (WALK_NEXT); 1367 1368 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1369 } 1370 1371 /*ARGSUSED*/ 1372 static int 1373 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1374 { 1375 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1376 } 1377 1378 static int 1379 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1380 { 1381 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1382 1383 if (strcmp(vmem->vm_name, "heap") != 0 && 1384 strcmp(vmem->vm_name, "heap32") != 0 && 1385 strcmp(vmem->vm_name, "heap_core") != 0 && 1386 strcmp(vmem->vm_name, "heap_lp") != 0) 1387 return (WALK_NEXT); 1388 1389 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1390 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1391 1392 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1393 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1394 return (WALK_ERR); 1395 } 1396 1397 return (WALK_NEXT); 1398 } 1399 1400 int 1401 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1402 { 1403 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1404 kgrep_walk_data_t kg; 1405 1406 if (mdb_get_state() == MDB_STATE_RUNNING) { 1407 mdb_warn("kgrep can only be run on a system " 1408 "dump or under kmdb; see dumpadm(1M)\n"); 1409 return (DCMD_ERR); 1410 } 1411 1412 if (mdb_lookup_by_name("kas", &kas) == -1) { 1413 mdb_warn("failed to locate 'kas' symbol\n"); 1414 return (DCMD_ERR); 1415 } 1416 1417 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1418 mdb_warn("failed to locate 'kvseg' symbol\n"); 1419 return (DCMD_ERR); 1420 } 1421 1422 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1423 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1424 return (DCMD_ERR); 1425 } 1426 1427 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1428 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1429 return (DCMD_ERR); 1430 } 1431 1432 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1433 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1434 return (DCMD_ERR); 1435 } 1436 1437 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1438 mdb_warn("failed to read 'heap_lp_base'\n"); 1439 return (DCMD_ERR); 1440 } 1441 1442 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1443 mdb_warn("failed to read 'heap_lp_end'\n"); 1444 return (DCMD_ERR); 1445 } 1446 1447 kg.kg_cb = cb; 1448 kg.kg_cbdata = cbdata; 1449 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1450 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1451 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1452 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1453 1454 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1455 &kg, kas.st_value) == -1) { 1456 mdb_warn("failed to walk kas segments"); 1457 return (DCMD_ERR); 1458 } 1459 1460 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1461 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1462 return (DCMD_ERR); 1463 } 1464 1465 return (DCMD_OK); 1466 } 1467 1468 size_t 1469 kgrep_subr_pagesize(void) 1470 { 1471 return (PAGESIZE); 1472 } 1473 1474 typedef struct file_walk_data { 1475 struct uf_entry *fw_flist; 1476 int fw_flistsz; 1477 int fw_ndx; 1478 int fw_nofiles; 1479 } file_walk_data_t; 1480 1481 int 1482 file_walk_init(mdb_walk_state_t *wsp) 1483 { 1484 file_walk_data_t *fw; 1485 proc_t p; 1486 1487 if (wsp->walk_addr == NULL) { 1488 mdb_warn("file walk doesn't support global walks\n"); 1489 return (WALK_ERR); 1490 } 1491 1492 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1493 1494 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1495 mdb_free(fw, sizeof (file_walk_data_t)); 1496 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1497 return (WALK_ERR); 1498 } 1499 1500 if (p.p_user.u_finfo.fi_nfiles == 0) { 1501 mdb_free(fw, sizeof (file_walk_data_t)); 1502 return (WALK_DONE); 1503 } 1504 1505 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1506 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1507 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1508 1509 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1510 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1511 mdb_warn("failed to read file array at %p", 1512 p.p_user.u_finfo.fi_list); 1513 mdb_free(fw->fw_flist, fw->fw_flistsz); 1514 mdb_free(fw, sizeof (file_walk_data_t)); 1515 return (WALK_ERR); 1516 } 1517 1518 fw->fw_ndx = 0; 1519 wsp->walk_data = fw; 1520 1521 return (WALK_NEXT); 1522 } 1523 1524 int 1525 file_walk_step(mdb_walk_state_t *wsp) 1526 { 1527 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1528 struct file file; 1529 uintptr_t fp; 1530 1531 again: 1532 if (fw->fw_ndx == fw->fw_nofiles) 1533 return (WALK_DONE); 1534 1535 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1536 goto again; 1537 1538 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1539 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1540 } 1541 1542 int 1543 allfile_walk_step(mdb_walk_state_t *wsp) 1544 { 1545 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1546 struct file file; 1547 uintptr_t fp; 1548 1549 if (fw->fw_ndx == fw->fw_nofiles) 1550 return (WALK_DONE); 1551 1552 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1553 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1554 else 1555 bzero(&file, sizeof (file)); 1556 1557 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1558 } 1559 1560 void 1561 file_walk_fini(mdb_walk_state_t *wsp) 1562 { 1563 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1564 1565 mdb_free(fw->fw_flist, fw->fw_flistsz); 1566 mdb_free(fw, sizeof (file_walk_data_t)); 1567 } 1568 1569 int 1570 port_walk_init(mdb_walk_state_t *wsp) 1571 { 1572 if (wsp->walk_addr == NULL) { 1573 mdb_warn("port walk doesn't support global walks\n"); 1574 return (WALK_ERR); 1575 } 1576 1577 if (mdb_layered_walk("file", wsp) == -1) { 1578 mdb_warn("couldn't walk 'file'"); 1579 return (WALK_ERR); 1580 } 1581 return (WALK_NEXT); 1582 } 1583 1584 int 1585 port_walk_step(mdb_walk_state_t *wsp) 1586 { 1587 struct vnode vn; 1588 uintptr_t vp; 1589 uintptr_t pp; 1590 struct port port; 1591 1592 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1593 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1594 mdb_warn("failed to read vnode_t at %p", vp); 1595 return (WALK_ERR); 1596 } 1597 if (vn.v_type != VPORT) 1598 return (WALK_NEXT); 1599 1600 pp = (uintptr_t)vn.v_data; 1601 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1602 mdb_warn("failed to read port_t at %p", pp); 1603 return (WALK_ERR); 1604 } 1605 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1606 } 1607 1608 typedef struct portev_walk_data { 1609 list_node_t *pev_node; 1610 list_node_t *pev_last; 1611 size_t pev_offset; 1612 } portev_walk_data_t; 1613 1614 int 1615 portev_walk_init(mdb_walk_state_t *wsp) 1616 { 1617 portev_walk_data_t *pevd; 1618 struct port port; 1619 struct vnode vn; 1620 struct list *list; 1621 uintptr_t vp; 1622 1623 if (wsp->walk_addr == NULL) { 1624 mdb_warn("portev walk doesn't support global walks\n"); 1625 return (WALK_ERR); 1626 } 1627 1628 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1629 1630 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1631 mdb_free(pevd, sizeof (portev_walk_data_t)); 1632 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1633 return (WALK_ERR); 1634 } 1635 1636 vp = (uintptr_t)port.port_vnode; 1637 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1638 mdb_free(pevd, sizeof (portev_walk_data_t)); 1639 mdb_warn("failed to read vnode_t at %p", vp); 1640 return (WALK_ERR); 1641 } 1642 1643 if (vn.v_type != VPORT) { 1644 mdb_free(pevd, sizeof (portev_walk_data_t)); 1645 mdb_warn("input address (%p) does not point to an event port", 1646 wsp->walk_addr); 1647 return (WALK_ERR); 1648 } 1649 1650 if (port.port_queue.portq_nent == 0) { 1651 mdb_free(pevd, sizeof (portev_walk_data_t)); 1652 return (WALK_DONE); 1653 } 1654 list = &port.port_queue.portq_list; 1655 pevd->pev_offset = list->list_offset; 1656 pevd->pev_last = list->list_head.list_prev; 1657 pevd->pev_node = list->list_head.list_next; 1658 wsp->walk_data = pevd; 1659 return (WALK_NEXT); 1660 } 1661 1662 int 1663 portev_walk_step(mdb_walk_state_t *wsp) 1664 { 1665 portev_walk_data_t *pevd; 1666 struct port_kevent ev; 1667 uintptr_t evp; 1668 1669 pevd = (portev_walk_data_t *)wsp->walk_data; 1670 1671 if (pevd->pev_last == NULL) 1672 return (WALK_DONE); 1673 if (pevd->pev_node == pevd->pev_last) 1674 pevd->pev_last = NULL; /* last round */ 1675 1676 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1677 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1678 mdb_warn("failed to read port_kevent at %p", evp); 1679 return (WALK_DONE); 1680 } 1681 pevd->pev_node = ev.portkev_node.list_next; 1682 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1683 } 1684 1685 void 1686 portev_walk_fini(mdb_walk_state_t *wsp) 1687 { 1688 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1689 1690 if (pevd != NULL) 1691 mdb_free(pevd, sizeof (portev_walk_data_t)); 1692 } 1693 1694 typedef struct proc_walk_data { 1695 uintptr_t *pw_stack; 1696 int pw_depth; 1697 int pw_max; 1698 } proc_walk_data_t; 1699 1700 int 1701 proc_walk_init(mdb_walk_state_t *wsp) 1702 { 1703 GElf_Sym sym; 1704 proc_walk_data_t *pw; 1705 1706 if (wsp->walk_addr == NULL) { 1707 if (mdb_lookup_by_name("p0", &sym) == -1) { 1708 mdb_warn("failed to read 'practive'"); 1709 return (WALK_ERR); 1710 } 1711 wsp->walk_addr = (uintptr_t)sym.st_value; 1712 } 1713 1714 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1715 1716 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1717 mdb_warn("failed to read 'nproc'"); 1718 mdb_free(pw, sizeof (pw)); 1719 return (WALK_ERR); 1720 } 1721 1722 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1723 wsp->walk_data = pw; 1724 1725 return (WALK_NEXT); 1726 } 1727 1728 int 1729 proc_walk_step(mdb_walk_state_t *wsp) 1730 { 1731 proc_walk_data_t *pw = wsp->walk_data; 1732 uintptr_t addr = wsp->walk_addr; 1733 uintptr_t cld, sib; 1734 1735 int status; 1736 proc_t pr; 1737 1738 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1739 mdb_warn("failed to read proc at %p", addr); 1740 return (WALK_DONE); 1741 } 1742 1743 cld = (uintptr_t)pr.p_child; 1744 sib = (uintptr_t)pr.p_sibling; 1745 1746 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1747 pw->pw_depth--; 1748 goto sib; 1749 } 1750 1751 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1752 1753 if (status != WALK_NEXT) 1754 return (status); 1755 1756 if ((wsp->walk_addr = cld) != NULL) { 1757 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1758 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1759 addr, cld); 1760 goto sib; 1761 } 1762 1763 pw->pw_stack[pw->pw_depth++] = addr; 1764 1765 if (pw->pw_depth == pw->pw_max) { 1766 mdb_warn("depth %d exceeds max depth; try again\n", 1767 pw->pw_depth); 1768 return (WALK_DONE); 1769 } 1770 return (WALK_NEXT); 1771 } 1772 1773 sib: 1774 /* 1775 * We know that p0 has no siblings, and if another starting proc 1776 * was given, we don't want to walk its siblings anyway. 1777 */ 1778 if (pw->pw_depth == 0) 1779 return (WALK_DONE); 1780 1781 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1782 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1783 addr, sib); 1784 sib = NULL; 1785 } 1786 1787 if ((wsp->walk_addr = sib) == NULL) { 1788 if (pw->pw_depth > 0) { 1789 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1790 return (WALK_NEXT); 1791 } 1792 return (WALK_DONE); 1793 } 1794 1795 return (WALK_NEXT); 1796 } 1797 1798 void 1799 proc_walk_fini(mdb_walk_state_t *wsp) 1800 { 1801 proc_walk_data_t *pw = wsp->walk_data; 1802 1803 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1804 mdb_free(pw, sizeof (proc_walk_data_t)); 1805 } 1806 1807 int 1808 task_walk_init(mdb_walk_state_t *wsp) 1809 { 1810 task_t task; 1811 1812 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1813 mdb_warn("failed to read task at %p", wsp->walk_addr); 1814 return (WALK_ERR); 1815 } 1816 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1817 wsp->walk_data = task.tk_memb_list; 1818 return (WALK_NEXT); 1819 } 1820 1821 int 1822 task_walk_step(mdb_walk_state_t *wsp) 1823 { 1824 proc_t proc; 1825 int status; 1826 1827 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1828 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1829 return (WALK_DONE); 1830 } 1831 1832 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1833 1834 if (proc.p_tasknext == wsp->walk_data) 1835 return (WALK_DONE); 1836 1837 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1838 return (status); 1839 } 1840 1841 int 1842 project_walk_init(mdb_walk_state_t *wsp) 1843 { 1844 if (wsp->walk_addr == NULL) { 1845 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1846 mdb_warn("failed to read 'proj0p'"); 1847 return (WALK_ERR); 1848 } 1849 } 1850 wsp->walk_data = (void *)wsp->walk_addr; 1851 return (WALK_NEXT); 1852 } 1853 1854 int 1855 project_walk_step(mdb_walk_state_t *wsp) 1856 { 1857 uintptr_t addr = wsp->walk_addr; 1858 kproject_t pj; 1859 int status; 1860 1861 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1862 mdb_warn("failed to read project at %p", addr); 1863 return (WALK_DONE); 1864 } 1865 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1866 if (status != WALK_NEXT) 1867 return (status); 1868 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1869 if ((void *)wsp->walk_addr == wsp->walk_data) 1870 return (WALK_DONE); 1871 return (WALK_NEXT); 1872 } 1873 1874 static int 1875 generic_walk_step(mdb_walk_state_t *wsp) 1876 { 1877 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1878 wsp->walk_cbdata)); 1879 } 1880 1881 int 1882 seg_walk_init(mdb_walk_state_t *wsp) 1883 { 1884 if (wsp->walk_addr == NULL) { 1885 mdb_warn("seg walk must begin at struct as *\n"); 1886 return (WALK_ERR); 1887 } 1888 1889 /* 1890 * this is really just a wrapper to AVL tree walk 1891 */ 1892 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1893 return (avl_walk_init(wsp)); 1894 } 1895 1896 static int 1897 cpu_walk_cmp(const void *l, const void *r) 1898 { 1899 uintptr_t lhs = *((uintptr_t *)l); 1900 uintptr_t rhs = *((uintptr_t *)r); 1901 cpu_t lcpu, rcpu; 1902 1903 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1904 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1905 1906 if (lcpu.cpu_id < rcpu.cpu_id) 1907 return (-1); 1908 1909 if (lcpu.cpu_id > rcpu.cpu_id) 1910 return (1); 1911 1912 return (0); 1913 } 1914 1915 typedef struct cpu_walk { 1916 uintptr_t *cw_array; 1917 int cw_ndx; 1918 } cpu_walk_t; 1919 1920 int 1921 cpu_walk_init(mdb_walk_state_t *wsp) 1922 { 1923 cpu_walk_t *cw; 1924 int max_ncpus, i = 0; 1925 uintptr_t current, first; 1926 cpu_t cpu, panic_cpu; 1927 uintptr_t panicstr, addr; 1928 GElf_Sym sym; 1929 1930 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1931 1932 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1933 mdb_warn("failed to read 'max_ncpus'"); 1934 return (WALK_ERR); 1935 } 1936 1937 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1938 mdb_warn("failed to read 'panicstr'"); 1939 return (WALK_ERR); 1940 } 1941 1942 if (panicstr != NULL) { 1943 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1944 mdb_warn("failed to find 'panic_cpu'"); 1945 return (WALK_ERR); 1946 } 1947 1948 addr = (uintptr_t)sym.st_value; 1949 1950 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1951 mdb_warn("failed to read 'panic_cpu'"); 1952 return (WALK_ERR); 1953 } 1954 } 1955 1956 /* 1957 * Unfortunately, there is no platform-independent way to walk 1958 * CPUs in ID order. We therefore loop through in cpu_next order, 1959 * building an array of CPU pointers which will subsequently be 1960 * sorted. 1961 */ 1962 cw->cw_array = 1963 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1964 1965 if (mdb_readvar(&first, "cpu_list") == -1) { 1966 mdb_warn("failed to read 'cpu_list'"); 1967 return (WALK_ERR); 1968 } 1969 1970 current = first; 1971 do { 1972 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1973 mdb_warn("failed to read cpu at %p", current); 1974 return (WALK_ERR); 1975 } 1976 1977 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1978 cw->cw_array[i++] = addr; 1979 } else { 1980 cw->cw_array[i++] = current; 1981 } 1982 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1983 1984 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1985 wsp->walk_data = cw; 1986 1987 return (WALK_NEXT); 1988 } 1989 1990 int 1991 cpu_walk_step(mdb_walk_state_t *wsp) 1992 { 1993 cpu_walk_t *cw = wsp->walk_data; 1994 cpu_t cpu; 1995 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 1996 1997 if (addr == NULL) 1998 return (WALK_DONE); 1999 2000 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2001 mdb_warn("failed to read cpu at %p", addr); 2002 return (WALK_DONE); 2003 } 2004 2005 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2006 } 2007 2008 typedef struct cpuinfo_data { 2009 intptr_t cid_cpu; 2010 uintptr_t cid_lbolt; 2011 uintptr_t **cid_ithr; 2012 char cid_print_head; 2013 char cid_print_thr; 2014 char cid_print_ithr; 2015 char cid_print_flags; 2016 } cpuinfo_data_t; 2017 2018 int 2019 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2020 { 2021 cpu_t c; 2022 int id; 2023 uint8_t pil; 2024 2025 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2026 return (WALK_NEXT); 2027 2028 if (thr->t_bound_cpu == NULL) { 2029 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2030 return (WALK_NEXT); 2031 } 2032 2033 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2034 2035 if ((id = c.cpu_id) >= NCPU) { 2036 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2037 thr->t_bound_cpu, id, NCPU); 2038 return (WALK_NEXT); 2039 } 2040 2041 if ((pil = thr->t_pil) >= NINTR) { 2042 mdb_warn("thread %p has pil (%d) greater than %d\n", 2043 addr, pil, NINTR); 2044 return (WALK_NEXT); 2045 } 2046 2047 if (cid->cid_ithr[id][pil] != NULL) { 2048 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2049 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2050 return (WALK_NEXT); 2051 } 2052 2053 cid->cid_ithr[id][pil] = addr; 2054 2055 return (WALK_NEXT); 2056 } 2057 2058 #define CPUINFO_IDWIDTH 3 2059 #define CPUINFO_FLAGWIDTH 9 2060 2061 #ifdef _LP64 2062 #if defined(__amd64) 2063 #define CPUINFO_TWIDTH 16 2064 #define CPUINFO_CPUWIDTH 16 2065 #else 2066 #define CPUINFO_CPUWIDTH 11 2067 #define CPUINFO_TWIDTH 11 2068 #endif 2069 #else 2070 #define CPUINFO_CPUWIDTH 8 2071 #define CPUINFO_TWIDTH 8 2072 #endif 2073 2074 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2075 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2076 #define CPUINFO_ITHRDELT 4 2077 2078 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2079 flagline < nflaglines ? flagbuf[flagline++] : "") 2080 2081 int 2082 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2083 { 2084 kthread_t t; 2085 disp_t disp; 2086 proc_t p; 2087 uintptr_t pinned; 2088 char **flagbuf; 2089 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2090 2091 const char *flags[] = { 2092 "RUNNING", "READY", "QUIESCED", "EXISTS", 2093 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2094 "SPARE", "FAULTED", NULL 2095 }; 2096 2097 if (cid->cid_cpu != -1) { 2098 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2099 return (WALK_NEXT); 2100 2101 /* 2102 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2103 */ 2104 cid->cid_cpu = -1; 2105 rval = WALK_DONE; 2106 } 2107 2108 if (cid->cid_print_head) { 2109 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2110 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2111 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2112 "PROC"); 2113 cid->cid_print_head = FALSE; 2114 } 2115 2116 bspl = cpu->cpu_base_spl; 2117 2118 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2119 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2120 return (WALK_ERR); 2121 } 2122 2123 mdb_printf("%3d %0*p %3x %4d %4d ", 2124 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2125 disp.disp_nrunnable, bspl); 2126 2127 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2128 mdb_printf("%3d ", t.t_pri); 2129 } else { 2130 mdb_printf("%3s ", "-"); 2131 } 2132 2133 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2134 cpu->cpu_kprunrun ? "yes" : "no"); 2135 2136 if (cpu->cpu_last_swtch) { 2137 clock_t lbolt; 2138 2139 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2140 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2141 return (WALK_ERR); 2142 } 2143 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2144 } else { 2145 mdb_printf("%-6s ", "-"); 2146 } 2147 2148 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2149 2150 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2151 mdb_printf(" (idle)\n"); 2152 else if (cpu->cpu_thread == NULL) 2153 mdb_printf(" -\n"); 2154 else { 2155 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2156 mdb_printf(" %s\n", p.p_user.u_comm); 2157 } else { 2158 mdb_printf(" ?\n"); 2159 } 2160 } 2161 2162 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2163 2164 if (cid->cid_print_flags) { 2165 int first = 1, i, j, k; 2166 char *s; 2167 2168 cid->cid_print_head = TRUE; 2169 2170 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2171 if (!(cpu->cpu_flags & i)) 2172 continue; 2173 2174 if (first) { 2175 s = mdb_alloc(CPUINFO_THRDELT + 1, 2176 UM_GC | UM_SLEEP); 2177 2178 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2179 "%*s|%*s", CPUINFO_FLAGDELT, "", 2180 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2181 flagbuf[nflaglines++] = s; 2182 } 2183 2184 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2185 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2186 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2187 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2188 first ? "<--+" : ""); 2189 2190 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2191 s[k] = ' '; 2192 s[k] = '\0'; 2193 2194 flagbuf[nflaglines++] = s; 2195 first = 0; 2196 } 2197 } 2198 2199 if (cid->cid_print_ithr) { 2200 int i, found_one = FALSE; 2201 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2202 2203 for (i = NINTR - 1; i >= 0; i--) { 2204 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2205 2206 if (iaddr == NULL) 2207 continue; 2208 2209 if (!found_one) { 2210 found_one = TRUE; 2211 2212 CPUINFO_INDENT; 2213 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2214 CPUINFO_ITHRDELT, ""); 2215 2216 CPUINFO_INDENT; 2217 mdb_printf("%c%*s+--> %3s %s\n", 2218 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2219 "", "PIL", "THREAD"); 2220 } 2221 2222 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2223 mdb_warn("failed to read kthread_t at %p", 2224 iaddr); 2225 return (WALK_ERR); 2226 } 2227 2228 CPUINFO_INDENT; 2229 mdb_printf("%c%*s %3d %0*p\n", 2230 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2231 t.t_pil, CPUINFO_TWIDTH, iaddr); 2232 2233 pinned = (uintptr_t)t.t_intr; 2234 } 2235 2236 if (found_one && pinned != NULL) { 2237 cid->cid_print_head = TRUE; 2238 (void) strcpy(p.p_user.u_comm, "?"); 2239 2240 if (mdb_vread(&t, sizeof (t), 2241 (uintptr_t)pinned) == -1) { 2242 mdb_warn("failed to read kthread_t at %p", 2243 pinned); 2244 return (WALK_ERR); 2245 } 2246 if (mdb_vread(&p, sizeof (p), 2247 (uintptr_t)t.t_procp) == -1) { 2248 mdb_warn("failed to read proc_t at %p", 2249 t.t_procp); 2250 return (WALK_ERR); 2251 } 2252 2253 CPUINFO_INDENT; 2254 mdb_printf("%c%*s %3s %0*p %s\n", 2255 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2256 CPUINFO_TWIDTH, pinned, 2257 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2258 "(idle)" : p.p_user.u_comm); 2259 } 2260 } 2261 2262 if (disp.disp_nrunnable && cid->cid_print_thr) { 2263 dispq_t *dq; 2264 2265 int i, npri = disp.disp_npri; 2266 2267 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2268 2269 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2270 (uintptr_t)disp.disp_q) == -1) { 2271 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2272 return (WALK_ERR); 2273 } 2274 2275 CPUINFO_INDENT; 2276 mdb_printf("|\n"); 2277 2278 CPUINFO_INDENT; 2279 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2280 CPUINFO_TWIDTH, "THREAD", "PROC"); 2281 2282 for (i = npri - 1; i >= 0; i--) { 2283 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2284 2285 while (taddr != NULL) { 2286 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2287 mdb_warn("failed to read kthread_t " 2288 "at %p", taddr); 2289 return (WALK_ERR); 2290 } 2291 if (mdb_vread(&p, sizeof (p), 2292 (uintptr_t)t.t_procp) == -1) { 2293 mdb_warn("failed to read proc_t at %p", 2294 t.t_procp); 2295 return (WALK_ERR); 2296 } 2297 2298 CPUINFO_INDENT; 2299 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2300 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2301 2302 taddr = (uintptr_t)t.t_link; 2303 } 2304 } 2305 cid->cid_print_head = TRUE; 2306 } 2307 2308 while (flagline < nflaglines) 2309 mdb_printf("%s\n", flagbuf[flagline++]); 2310 2311 if (cid->cid_print_head) 2312 mdb_printf("\n"); 2313 2314 return (rval); 2315 } 2316 2317 int 2318 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2319 { 2320 uint_t verbose = FALSE; 2321 cpuinfo_data_t cid; 2322 GElf_Sym sym; 2323 clock_t lbolt; 2324 2325 cid.cid_print_ithr = FALSE; 2326 cid.cid_print_thr = FALSE; 2327 cid.cid_print_flags = FALSE; 2328 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2329 cid.cid_cpu = -1; 2330 2331 if (flags & DCMD_ADDRSPEC) 2332 cid.cid_cpu = addr; 2333 2334 if (mdb_getopts(argc, argv, 2335 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2336 return (DCMD_USAGE); 2337 2338 if (verbose) { 2339 cid.cid_print_ithr = TRUE; 2340 cid.cid_print_thr = TRUE; 2341 cid.cid_print_flags = TRUE; 2342 cid.cid_print_head = TRUE; 2343 } 2344 2345 if (cid.cid_print_ithr) { 2346 int i; 2347 2348 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2349 * NCPU, UM_SLEEP | UM_GC); 2350 2351 for (i = 0; i < NCPU; i++) 2352 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2353 NINTR, UM_SLEEP | UM_GC); 2354 2355 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2356 &cid) == -1) { 2357 mdb_warn("couldn't walk thread"); 2358 return (DCMD_ERR); 2359 } 2360 } 2361 2362 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2363 mdb_warn("failed to find panic_lbolt"); 2364 return (DCMD_ERR); 2365 } 2366 2367 cid.cid_lbolt = (uintptr_t)sym.st_value; 2368 2369 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2370 mdb_warn("failed to read panic_lbolt"); 2371 return (DCMD_ERR); 2372 } 2373 2374 if (lbolt == 0) { 2375 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2376 mdb_warn("failed to find lbolt"); 2377 return (DCMD_ERR); 2378 } 2379 cid.cid_lbolt = (uintptr_t)sym.st_value; 2380 } 2381 2382 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2383 mdb_warn("can't walk cpus"); 2384 return (DCMD_ERR); 2385 } 2386 2387 if (cid.cid_cpu != -1) { 2388 /* 2389 * We didn't find this CPU when we walked through the CPUs 2390 * (i.e. the address specified doesn't show up in the "cpu" 2391 * walk). However, the specified address may still correspond 2392 * to a valid cpu_t (for example, if the specified address is 2393 * the actual panicking cpu_t and not the cached panic_cpu). 2394 * Point is: even if we didn't find it, we still want to try 2395 * to print the specified address as a cpu_t. 2396 */ 2397 cpu_t cpu; 2398 2399 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2400 mdb_warn("%p is neither a valid CPU ID nor a " 2401 "valid cpu_t address\n", cid.cid_cpu); 2402 return (DCMD_ERR); 2403 } 2404 2405 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2406 } 2407 2408 return (DCMD_OK); 2409 } 2410 2411 /*ARGSUSED*/ 2412 int 2413 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2414 { 2415 int i; 2416 2417 if (!(flags & DCMD_ADDRSPEC)) 2418 return (DCMD_USAGE); 2419 2420 for (i = 0; i < sizeof (addr) * NBBY; i++) 2421 mdb_printf("%p\n", addr ^ (1UL << i)); 2422 2423 return (DCMD_OK); 2424 } 2425 2426 /* 2427 * Grumble, grumble. 2428 */ 2429 #define SMAP_HASHFUNC(vp, off) \ 2430 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2431 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2432 2433 int 2434 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2435 { 2436 long smd_hashmsk; 2437 int hash; 2438 uintptr_t offset = 0; 2439 struct smap smp; 2440 uintptr_t saddr, kaddr; 2441 uintptr_t smd_hash, smd_smap; 2442 struct seg seg; 2443 2444 if (!(flags & DCMD_ADDRSPEC)) 2445 return (DCMD_USAGE); 2446 2447 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2448 mdb_warn("failed to read smd_hashmsk"); 2449 return (DCMD_ERR); 2450 } 2451 2452 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2453 mdb_warn("failed to read smd_hash"); 2454 return (DCMD_ERR); 2455 } 2456 2457 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2458 mdb_warn("failed to read smd_hash"); 2459 return (DCMD_ERR); 2460 } 2461 2462 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2463 mdb_warn("failed to read segkmap"); 2464 return (DCMD_ERR); 2465 } 2466 2467 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2468 mdb_warn("failed to read segkmap at %p", kaddr); 2469 return (DCMD_ERR); 2470 } 2471 2472 if (argc != 0) { 2473 const mdb_arg_t *arg = &argv[0]; 2474 2475 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2476 offset = arg->a_un.a_val; 2477 else 2478 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2479 } 2480 2481 hash = SMAP_HASHFUNC(addr, offset); 2482 2483 if (mdb_vread(&saddr, sizeof (saddr), 2484 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2485 mdb_warn("couldn't read smap at %p", 2486 smd_hash + hash * sizeof (uintptr_t)); 2487 return (DCMD_ERR); 2488 } 2489 2490 do { 2491 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2492 mdb_warn("couldn't read smap at %p", saddr); 2493 return (DCMD_ERR); 2494 } 2495 2496 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2497 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2498 addr, offset, saddr, ((saddr - smd_smap) / 2499 sizeof (smp)) * MAXBSIZE + seg.s_base); 2500 return (DCMD_OK); 2501 } 2502 2503 saddr = (uintptr_t)smp.sm_hash; 2504 } while (saddr != NULL); 2505 2506 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2507 return (DCMD_OK); 2508 } 2509 2510 /*ARGSUSED*/ 2511 int 2512 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2513 { 2514 uintptr_t kaddr; 2515 struct seg seg; 2516 struct segmap_data sd; 2517 2518 if (!(flags & DCMD_ADDRSPEC)) 2519 return (DCMD_USAGE); 2520 2521 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2522 mdb_warn("failed to read segkmap"); 2523 return (DCMD_ERR); 2524 } 2525 2526 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2527 mdb_warn("failed to read segkmap at %p", kaddr); 2528 return (DCMD_ERR); 2529 } 2530 2531 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2532 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2533 return (DCMD_ERR); 2534 } 2535 2536 mdb_printf("%p is smap %p\n", addr, 2537 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2538 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2539 2540 return (DCMD_OK); 2541 } 2542 2543 int 2544 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2545 { 2546 if (p->p_as == *asp) 2547 mdb_printf("%p\n", addr); 2548 return (WALK_NEXT); 2549 } 2550 2551 /*ARGSUSED*/ 2552 int 2553 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2554 { 2555 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2556 return (DCMD_USAGE); 2557 2558 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2559 mdb_warn("failed to walk proc"); 2560 return (DCMD_ERR); 2561 } 2562 2563 return (DCMD_OK); 2564 } 2565 2566 /*ARGSUSED*/ 2567 int 2568 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2569 { 2570 proc_t parent; 2571 int ident = 0; 2572 uintptr_t paddr; 2573 2574 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2575 mdb_vread(&parent, sizeof (parent), paddr); 2576 paddr = (uintptr_t)parent.p_parent; 2577 } 2578 2579 mdb_inc_indent(ident); 2580 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2581 mdb_dec_indent(ident); 2582 2583 return (WALK_NEXT); 2584 } 2585 2586 void 2587 ptree_ancestors(uintptr_t addr, uintptr_t start) 2588 { 2589 proc_t p; 2590 2591 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2592 mdb_warn("couldn't read ancestor at %p", addr); 2593 return; 2594 } 2595 2596 if (p.p_parent != NULL) 2597 ptree_ancestors((uintptr_t)p.p_parent, start); 2598 2599 if (addr != start) 2600 (void) ptree_walk(addr, &p, NULL); 2601 } 2602 2603 /*ARGSUSED*/ 2604 int 2605 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2606 { 2607 if (!(flags & DCMD_ADDRSPEC)) 2608 addr = NULL; 2609 else 2610 ptree_ancestors(addr, addr); 2611 2612 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2613 mdb_warn("couldn't walk 'proc'"); 2614 return (DCMD_ERR); 2615 } 2616 2617 return (DCMD_OK); 2618 } 2619 2620 /*ARGSUSED*/ 2621 static int 2622 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2623 { 2624 int fdnum; 2625 const mdb_arg_t *argp = &argv[0]; 2626 proc_t p; 2627 uf_entry_t uf; 2628 2629 if ((flags & DCMD_ADDRSPEC) == 0) { 2630 mdb_warn("fd doesn't give global information\n"); 2631 return (DCMD_ERR); 2632 } 2633 if (argc != 1) 2634 return (DCMD_USAGE); 2635 2636 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2637 fdnum = argp->a_un.a_val; 2638 else 2639 fdnum = mdb_strtoull(argp->a_un.a_str); 2640 2641 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2642 mdb_warn("couldn't read proc_t at %p", addr); 2643 return (DCMD_ERR); 2644 } 2645 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2646 mdb_warn("process %p only has %d files open.\n", 2647 addr, p.p_user.u_finfo.fi_nfiles); 2648 return (DCMD_ERR); 2649 } 2650 if (mdb_vread(&uf, sizeof (uf_entry_t), 2651 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2652 mdb_warn("couldn't read uf_entry_t at %p", 2653 &p.p_user.u_finfo.fi_list[fdnum]); 2654 return (DCMD_ERR); 2655 } 2656 2657 mdb_printf("%p\n", uf.uf_file); 2658 return (DCMD_OK); 2659 } 2660 2661 /*ARGSUSED*/ 2662 static int 2663 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2664 { 2665 pid_t pid = (pid_t)addr; 2666 2667 if (argc != 0) 2668 return (DCMD_USAGE); 2669 2670 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2671 mdb_warn("PID 0t%d not found\n", pid); 2672 return (DCMD_ERR); 2673 } 2674 2675 mdb_printf("%p\n", addr); 2676 return (DCMD_OK); 2677 } 2678 2679 static char *sysfile_cmd[] = { 2680 "exclude:", 2681 "include:", 2682 "forceload:", 2683 "rootdev:", 2684 "rootfs:", 2685 "swapdev:", 2686 "swapfs:", 2687 "moddir:", 2688 "set", 2689 "unknown", 2690 }; 2691 2692 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2693 2694 /*ARGSUSED*/ 2695 static int 2696 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2697 { 2698 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2699 *target = NULL; 2700 return (WALK_DONE); 2701 } 2702 return (WALK_NEXT); 2703 } 2704 2705 /*ARGSUSED*/ 2706 static int 2707 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2708 { 2709 struct sysparam *sysp, sys; 2710 char var[256]; 2711 char modname[256]; 2712 char val[256]; 2713 char strval[256]; 2714 vmem_t *mod_sysfile_arena; 2715 void *straddr; 2716 2717 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2718 mdb_warn("failed to read sysparam_hd"); 2719 return (DCMD_ERR); 2720 } 2721 2722 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2723 mdb_warn("failed to read mod_sysfile_arena"); 2724 return (DCMD_ERR); 2725 } 2726 2727 while (sysp != NULL) { 2728 var[0] = '\0'; 2729 val[0] = '\0'; 2730 modname[0] = '\0'; 2731 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2732 mdb_warn("couldn't read sysparam %p", sysp); 2733 return (DCMD_ERR); 2734 } 2735 if (sys.sys_modnam != NULL && 2736 mdb_readstr(modname, 256, 2737 (uintptr_t)sys.sys_modnam) == -1) { 2738 mdb_warn("couldn't read modname in %p", sysp); 2739 return (DCMD_ERR); 2740 } 2741 if (sys.sys_ptr != NULL && 2742 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2743 mdb_warn("couldn't read ptr in %p", sysp); 2744 return (DCMD_ERR); 2745 } 2746 if (sys.sys_op != SETOP_NONE) { 2747 /* 2748 * Is this an int or a string? We determine this 2749 * by checking whether straddr is contained in 2750 * mod_sysfile_arena. If so, the walker will set 2751 * straddr to NULL. 2752 */ 2753 straddr = (void *)(uintptr_t)sys.sys_info; 2754 if (sys.sys_op == SETOP_ASSIGN && 2755 sys.sys_info != 0 && 2756 mdb_pwalk("vmem_seg", 2757 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2758 (uintptr_t)mod_sysfile_arena) == 0 && 2759 straddr == NULL && 2760 mdb_readstr(strval, 256, 2761 (uintptr_t)sys.sys_info) != -1) { 2762 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2763 strval); 2764 } else { 2765 (void) mdb_snprintf(val, sizeof (val), 2766 "0x%llx [0t%llu]", sys.sys_info, 2767 sys.sys_info); 2768 } 2769 } 2770 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2771 modname, modname[0] == '\0' ? "" : ":", 2772 var, sysfile_ops[sys.sys_op], val); 2773 2774 sysp = sys.sys_next; 2775 } 2776 2777 return (DCMD_OK); 2778 } 2779 2780 /* 2781 * Dump a taskq_ent_t given its address. 2782 */ 2783 /*ARGSUSED*/ 2784 int 2785 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2786 { 2787 taskq_ent_t taskq_ent; 2788 GElf_Sym sym; 2789 char buf[MDB_SYM_NAMLEN+1]; 2790 2791 2792 if (!(flags & DCMD_ADDRSPEC)) { 2793 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2794 return (DCMD_USAGE); 2795 } 2796 2797 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2798 mdb_warn("failed to read taskq_ent_t at %p", addr); 2799 return (DCMD_ERR); 2800 } 2801 2802 if (DCMD_HDRSPEC(flags)) { 2803 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2804 "ENTRY", "ARG", "FUNCTION"); 2805 } 2806 2807 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2808 buf, sizeof (buf), &sym) == -1) { 2809 (void) strcpy(buf, "????"); 2810 } 2811 2812 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2813 2814 return (DCMD_OK); 2815 } 2816 2817 /* 2818 * Given the address of the (taskq_t) task queue head, walk the queue listing 2819 * the address of every taskq_ent_t. 2820 */ 2821 int 2822 taskq_walk_init(mdb_walk_state_t *wsp) 2823 { 2824 taskq_t tq_head; 2825 2826 2827 if (wsp->walk_addr == NULL) { 2828 mdb_warn("start address required\n"); 2829 return (WALK_ERR); 2830 } 2831 2832 2833 /* 2834 * Save the address of the list head entry. This terminates the list. 2835 */ 2836 wsp->walk_data = (void *) 2837 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2838 2839 2840 /* 2841 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2842 */ 2843 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2844 -1) { 2845 mdb_warn("failed to read taskq list head at %p", 2846 wsp->walk_addr); 2847 } 2848 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2849 2850 2851 /* 2852 * Check for null list (next=head) 2853 */ 2854 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2855 return (WALK_DONE); 2856 } 2857 2858 return (WALK_NEXT); 2859 } 2860 2861 2862 int 2863 taskq_walk_step(mdb_walk_state_t *wsp) 2864 { 2865 taskq_ent_t tq_ent; 2866 int status; 2867 2868 2869 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2870 -1) { 2871 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2872 return (DCMD_ERR); 2873 } 2874 2875 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2876 wsp->walk_cbdata); 2877 2878 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2879 2880 2881 /* Check if we're at the last element (next=head) */ 2882 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2883 return (WALK_DONE); 2884 } 2885 2886 return (status); 2887 } 2888 2889 int 2890 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2891 { 2892 2893 if (*didp == thr->t_did) { 2894 mdb_printf("%p\n", addr); 2895 return (WALK_DONE); 2896 } else 2897 return (WALK_NEXT); 2898 } 2899 2900 /*ARGSUSED*/ 2901 int 2902 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2903 { 2904 const mdb_arg_t *argp = &argv[0]; 2905 kt_did_t did; 2906 2907 if (argc != 1) 2908 return (DCMD_USAGE); 2909 2910 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2911 2912 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2913 mdb_warn("failed to walk thread"); 2914 return (DCMD_ERR); 2915 2916 } 2917 return (DCMD_OK); 2918 2919 } 2920 2921 static int 2922 errorq_walk_init(mdb_walk_state_t *wsp) 2923 { 2924 if (wsp->walk_addr == NULL && 2925 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2926 mdb_warn("failed to read errorq_list"); 2927 return (WALK_ERR); 2928 } 2929 2930 return (WALK_NEXT); 2931 } 2932 2933 static int 2934 errorq_walk_step(mdb_walk_state_t *wsp) 2935 { 2936 uintptr_t addr = wsp->walk_addr; 2937 errorq_t eq; 2938 2939 if (addr == NULL) 2940 return (WALK_DONE); 2941 2942 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2943 mdb_warn("failed to read errorq at %p", addr); 2944 return (WALK_ERR); 2945 } 2946 2947 wsp->walk_addr = (uintptr_t)eq.eq_next; 2948 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2949 } 2950 2951 typedef struct eqd_walk_data { 2952 uintptr_t *eqd_stack; 2953 void *eqd_buf; 2954 ulong_t eqd_qpos; 2955 ulong_t eqd_qlen; 2956 size_t eqd_size; 2957 } eqd_walk_data_t; 2958 2959 /* 2960 * In order to walk the list of pending error queue elements, we push the 2961 * addresses of the corresponding data buffers in to the eqd_stack array. 2962 * The error lists are in reverse chronological order when iterating using 2963 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2964 * walker client gets addresses in order from oldest error to newest error. 2965 */ 2966 static void 2967 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2968 { 2969 errorq_elem_t eqe; 2970 2971 while (addr != NULL) { 2972 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2973 mdb_warn("failed to read errorq element at %p", addr); 2974 break; 2975 } 2976 2977 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2978 mdb_warn("errorq is overfull -- more than %lu " 2979 "elems found\n", eqdp->eqd_qlen); 2980 break; 2981 } 2982 2983 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2984 addr = (uintptr_t)eqe.eqe_prev; 2985 } 2986 } 2987 2988 static int 2989 eqd_walk_init(mdb_walk_state_t *wsp) 2990 { 2991 eqd_walk_data_t *eqdp; 2992 errorq_elem_t eqe, *addr; 2993 errorq_t eq; 2994 ulong_t i; 2995 2996 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 2997 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 2998 return (WALK_ERR); 2999 } 3000 3001 if (eq.eq_ptail != NULL && 3002 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3003 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3004 return (WALK_ERR); 3005 } 3006 3007 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3008 wsp->walk_data = eqdp; 3009 3010 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3011 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3012 eqdp->eqd_qlen = eq.eq_qlen; 3013 eqdp->eqd_qpos = 0; 3014 eqdp->eqd_size = eq.eq_size; 3015 3016 /* 3017 * The newest elements in the queue are on the pending list, so we 3018 * push those on to our stack first. 3019 */ 3020 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3021 3022 /* 3023 * If eq_ptail is set, it may point to a subset of the errors on the 3024 * pending list in the event a casptr() failed; if ptail's data is 3025 * already in our stack, NULL out eq_ptail and ignore it. 3026 */ 3027 if (eq.eq_ptail != NULL) { 3028 for (i = 0; i < eqdp->eqd_qpos; i++) { 3029 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3030 eq.eq_ptail = NULL; 3031 break; 3032 } 3033 } 3034 } 3035 3036 /* 3037 * If eq_phead is set, it has the processing list in order from oldest 3038 * to newest. Use this to recompute eq_ptail as best we can and then 3039 * we nicely fall into eqd_push_list() of eq_ptail below. 3040 */ 3041 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3042 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3043 eq.eq_ptail = addr; 3044 3045 /* 3046 * The oldest elements in the queue are on the processing list, subject 3047 * to machinations in the if-clauses above. Push any such elements. 3048 */ 3049 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3050 return (WALK_NEXT); 3051 } 3052 3053 static int 3054 eqd_walk_step(mdb_walk_state_t *wsp) 3055 { 3056 eqd_walk_data_t *eqdp = wsp->walk_data; 3057 uintptr_t addr; 3058 3059 if (eqdp->eqd_qpos == 0) 3060 return (WALK_DONE); 3061 3062 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3063 3064 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3065 mdb_warn("failed to read errorq data at %p", addr); 3066 return (WALK_ERR); 3067 } 3068 3069 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3070 } 3071 3072 static void 3073 eqd_walk_fini(mdb_walk_state_t *wsp) 3074 { 3075 eqd_walk_data_t *eqdp = wsp->walk_data; 3076 3077 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3078 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3079 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3080 } 3081 3082 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3083 3084 static int 3085 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3086 { 3087 int i; 3088 errorq_t eq; 3089 uint_t opt_v = FALSE; 3090 3091 if (!(flags & DCMD_ADDRSPEC)) { 3092 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3093 mdb_warn("can't walk 'errorq'"); 3094 return (DCMD_ERR); 3095 } 3096 return (DCMD_OK); 3097 } 3098 3099 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3100 argc -= i; 3101 argv += i; 3102 3103 if (argc != 0) 3104 return (DCMD_USAGE); 3105 3106 if (opt_v || DCMD_HDRSPEC(flags)) { 3107 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3108 "ADDR", "NAME", "S", "V", "N"); 3109 if (!opt_v) { 3110 mdb_printf("%7s %7s %7s%</u>\n", 3111 "ACCEPT", "DROP", "LOG"); 3112 } else { 3113 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3114 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3115 } 3116 } 3117 3118 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3119 mdb_warn("failed to read errorq at %p", addr); 3120 return (DCMD_ERR); 3121 } 3122 3123 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3124 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3125 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3126 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3127 3128 if (!opt_v) { 3129 mdb_printf("%7llu %7llu %7llu\n", 3130 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3131 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3132 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3133 } else { 3134 mdb_printf("%5s %6lu %6lu %3u %a\n", 3135 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3136 mdb_printf("%38s\n%41s" 3137 "%12s %llu\n" 3138 "%53s %llu\n" 3139 "%53s %llu\n" 3140 "%53s %llu\n" 3141 "%53s %llu\n" 3142 "%53s %llu\n" 3143 "%53s %llu\n" 3144 "%53s %llu\n\n", 3145 "|", "+-> ", 3146 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3147 "DROPPED", EQKSVAL(eq, eqk_dropped), 3148 "LOGGED", EQKSVAL(eq, eqk_logged), 3149 "RESERVED", EQKSVAL(eq, eqk_reserved), 3150 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3151 "COMMITTED", EQKSVAL(eq, eqk_committed), 3152 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3153 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3154 } 3155 3156 return (DCMD_OK); 3157 } 3158 3159 /*ARGSUSED*/ 3160 static int 3161 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3162 { 3163 cpu_t panic_cpu; 3164 kthread_t *panic_thread; 3165 void *panicbuf; 3166 panic_data_t *pd; 3167 int i, n; 3168 3169 if (!mdb_prop_postmortem) { 3170 mdb_warn("panicinfo can only be run on a system " 3171 "dump; see dumpadm(1M)\n"); 3172 return (DCMD_ERR); 3173 } 3174 3175 if (flags & DCMD_ADDRSPEC || argc != 0) 3176 return (DCMD_USAGE); 3177 3178 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3179 mdb_warn("failed to read 'panic_cpu'"); 3180 else 3181 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3182 3183 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3184 mdb_warn("failed to read 'panic_thread'"); 3185 else 3186 mdb_printf("%16s %?p\n", "thread", panic_thread); 3187 3188 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3189 pd = (panic_data_t *)panicbuf; 3190 3191 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3192 pd->pd_version != PANICBUFVERS) { 3193 mdb_warn("failed to read 'panicbuf'"); 3194 mdb_free(panicbuf, PANICBUFSIZE); 3195 return (DCMD_ERR); 3196 } 3197 3198 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3199 3200 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3201 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3202 3203 for (i = 0; i < n; i++) 3204 mdb_printf("%16s %?llx\n", 3205 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3206 3207 mdb_free(panicbuf, PANICBUFSIZE); 3208 return (DCMD_OK); 3209 } 3210 3211 static const mdb_dcmd_t dcmds[] = { 3212 3213 /* from genunix.c */ 3214 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3215 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3216 { "binding_hash_entry", ":", "print driver names hash table entry", 3217 binding_hash_entry }, 3218 { "callout", NULL, "print callout table", callout }, 3219 { "class", NULL, "print process scheduler classes", class }, 3220 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3221 { "did2thread", "? kt_did", "find kernel thread for this id", 3222 did2thread }, 3223 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3224 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3225 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3226 { "lminfo", NULL, "print lock manager information", lminfo }, 3227 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3228 { "panicinfo", NULL, "print panic information", panicinfo }, 3229 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3230 { "pmap", ":[-q]", "print process memory map", pmap }, 3231 { "project", NULL, "display kernel project(s)", project }, 3232 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3233 { "pgrep", "[-x] [-n | -o] pattern", 3234 "pattern match against all processes", pgrep }, 3235 { "ptree", NULL, "print process tree", ptree }, 3236 { "seg", ":", "print address space segment", seg }, 3237 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3238 sysevent}, 3239 { "sysevent_channel", "?", "print sysevent channel database", 3240 sysevent_channel}, 3241 { "sysevent_class_list", ":", "print sysevent class list", 3242 sysevent_class_list}, 3243 { "sysevent_subclass_list", ":", 3244 "print sysevent subclass list", sysevent_subclass_list}, 3245 { "system", NULL, "print contents of /etc/system file", sysfile }, 3246 { "task", NULL, "display kernel task(s)", task }, 3247 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3248 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3249 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3250 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3251 whereopen }, 3252 3253 /* from zone.c */ 3254 { "zone", "?", "display kernel zone(s)", zoneprt }, 3255 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3256 3257 /* from bio.c */ 3258 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3259 3260 /* from contract.c */ 3261 { "contract", "?", "display a contract", cmd_contract }, 3262 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3263 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3264 3265 /* from cpupart.c */ 3266 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3267 3268 /* from cyclic.c */ 3269 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3270 { "cycid", "?", "dump a cyclic id", cycid }, 3271 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3272 { "cyclic", ":", "developer information", cyclic }, 3273 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3274 3275 /* from devinfo.c */ 3276 { "devbindings", "?[-qs] [device-name | major-num]", 3277 "print devinfo nodes bound to device-name or major-num", 3278 devbindings, devinfo_help }, 3279 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3280 devinfo_help }, 3281 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3282 devinfo_audit }, 3283 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3284 devinfo_audit_log }, 3285 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3286 devinfo_audit_node }, 3287 { "devinfo2driver", ":", "find driver name for this devinfo node", 3288 devinfo2driver }, 3289 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3290 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3291 dev2major }, 3292 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3293 dev2minor }, 3294 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3295 devt }, 3296 { "major2name", "?<major-num>", "convert major number to dev name", 3297 major2name }, 3298 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3299 minornodes }, 3300 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3301 modctl2devinfo }, 3302 { "name2major", "<dev-name>", "convert dev name to major number", 3303 name2major }, 3304 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3305 { "softstate", ":<instance>", "retrieve soft-state pointer", 3306 softstate }, 3307 { "devinfo_fm", ":", "devinfo fault managment configuration", 3308 devinfo_fm }, 3309 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3310 devinfo_fmce}, 3311 3312 /* from findstack.c */ 3313 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3314 { "findstack_debug", NULL, "toggle findstack debugging", 3315 findstack_debug }, 3316 3317 /* from kgrep.c + genunix.c */ 3318 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3319 kgrep_help }, 3320 3321 /* from kmem.c */ 3322 { "allocdby", ":", "given a thread, print its allocated buffers", 3323 allocdby }, 3324 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3325 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3326 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3327 { "kmalog", "?[ fail | slab ]", 3328 "display kmem transaction log and stack traces", kmalog }, 3329 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3330 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3331 "of the kmem allocator", kmausers, kmausers_help }, 3332 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3333 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3334 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3335 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3336 kmem_verify }, 3337 { "vmem", "?", "print a vmem_t", vmem }, 3338 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3339 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3340 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3341 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3342 whatis_help }, 3343 { "whatthread", ":[-v]", "print threads whose stack contains the " 3344 "given address", whatthread }, 3345 3346 /* from ldi.c */ 3347 { "ldi_handle", "?[-i]", "display a layered driver handle", 3348 ldi_handle, ldi_handle_help }, 3349 { "ldi_ident", NULL, "display a layered driver identifier", 3350 ldi_ident, ldi_ident_help }, 3351 3352 /* from leaky.c + leaky_subr.c */ 3353 { "findleaks", FINDLEAKS_USAGE, 3354 "search for potential kernel memory leaks", findleaks, 3355 findleaks_help }, 3356 3357 /* from lgrp.c */ 3358 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3359 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3360 3361 /* from log.c */ 3362 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3363 3364 /* from memory.c */ 3365 { "page", "?", "display a summarized page_t", page }, 3366 { "memstat", NULL, "display memory usage summary", memstat }, 3367 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3368 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3369 3370 /* from mmd.c */ 3371 { "multidata", ":[-sv]", "display a summarized multidata_t", 3372 multidata }, 3373 { "pattbl", ":", "display a summarized multidata attribute table", 3374 pattbl }, 3375 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3376 pattr2multidata }, 3377 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3378 pdesc2slab }, 3379 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3380 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3381 slab2multidata }, 3382 3383 /* from modhash.c */ 3384 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3385 "display information about one or all mod_hash structures", 3386 modhash, modhash_help }, 3387 { "modent", ":[-k | -v | -t type]", 3388 "display information about a mod_hash_entry", modent, 3389 modent_help }, 3390 3391 /* from net.c */ 3392 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3393 mi }, 3394 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3395 "show network statistics", netstat }, 3396 { "sonode", "?[-f inet | inet6 | unix | #] " 3397 "[-t stream | dgram | raw | #] [-p #]", 3398 "filter and display sonode", sonode }, 3399 3400 /* from nvpair.c */ 3401 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3402 nvpair_print }, 3403 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3404 print_nvlist }, 3405 3406 /* from rctl.c */ 3407 { "rctl_dict", "?", "print systemwide default rctl definitions", 3408 rctl_dict }, 3409 { "rctl_list", ":[handle]", "print rctls for the given proc", 3410 rctl_list }, 3411 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3412 rctl }, 3413 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3414 "sequence", rctl_validate }, 3415 3416 /* from sobj.c */ 3417 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3418 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3419 mutex_help }, 3420 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3421 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3422 { "turnstile", "?", "display a turnstile", turnstile }, 3423 3424 /* from stream.c */ 3425 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3426 "print an mblk", mblk_prt, mblk_help }, 3427 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3428 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3429 mblk2dblk }, 3430 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3431 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3432 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3433 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3434 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3435 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3436 "filter and display STREAM queue", queue, queue_help }, 3437 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3438 "filter and display STREAM head", stdata, stdata_help }, 3439 { "str2mate", ":", "print mate of this stream", str2mate }, 3440 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3441 { "stream", ":", "display STREAM", stream }, 3442 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3443 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3444 "filter and display STREAM sync queue", syncq, syncq_help }, 3445 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3446 3447 /* from thread.c */ 3448 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3449 thread_help }, 3450 { "threadlist", "?[-v [count]]", 3451 "display threads and associated C stack traces", threadlist, 3452 threadlist_help }, 3453 3454 /* from tsd.c */ 3455 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3456 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3457 3458 /* 3459 * typegraph does not work under kmdb, as it requires too much memory 3460 * for its internal data structures. 3461 */ 3462 #ifndef _KMDB 3463 /* from typegraph.c */ 3464 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3465 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3466 findfalse }, 3467 { "typegraph", NULL, "build type graph", typegraph }, 3468 { "istype", ":type", "manually set object type", istype }, 3469 { "notype", ":", "manually clear object type", notype }, 3470 { "whattype", ":", "determine object type", whattype }, 3471 #endif 3472 3473 /* from vfs.c */ 3474 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3475 { "pfiles", ":[-fp]", "print process file information", pfiles, 3476 pfiles_help }, 3477 3478 /* from mdi.c */ 3479 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3480 "and detailed pi_prop list", mdipi }, 3481 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3482 mdiprops }, 3483 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3484 "list all paths", mdiphci }, 3485 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3486 "all phcis", mdivhci }, 3487 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3488 "client links", mdiclient_paths }, 3489 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3490 "phci links", mdiphci_paths }, 3491 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3492 mdiphcis }, 3493 3494 { NULL } 3495 }; 3496 3497 static const mdb_walker_t walkers[] = { 3498 3499 /* from genunix.c */ 3500 { "anon", "given an amp, list of anon structures", 3501 anon_walk_init, anon_walk_step, anon_walk_fini }, 3502 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3503 { "errorq", "walk list of system error queues", 3504 errorq_walk_init, errorq_walk_step, NULL }, 3505 { "errorq_data", "walk pending error queue data buffers", 3506 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3507 { "allfile", "given a proc pointer, list all file pointers", 3508 file_walk_init, allfile_walk_step, file_walk_fini }, 3509 { "file", "given a proc pointer, list of open file pointers", 3510 file_walk_init, file_walk_step, file_walk_fini }, 3511 { "lock_descriptor", "walk lock_descriptor_t structures", 3512 ld_walk_init, ld_walk_step, NULL }, 3513 { "lock_graph", "walk lock graph", 3514 lg_walk_init, lg_walk_step, NULL }, 3515 { "port", "given a proc pointer, list of created event ports", 3516 port_walk_init, port_walk_step, NULL }, 3517 { "portev", "given a port pointer, list of events in the queue", 3518 portev_walk_init, portev_walk_step, portev_walk_fini }, 3519 { "proc", "list of active proc_t structures", 3520 proc_walk_init, proc_walk_step, proc_walk_fini }, 3521 { "projects", "walk a list of kernel projects", 3522 project_walk_init, project_walk_step, NULL }, 3523 { "seg", "given an as, list of segments", 3524 seg_walk_init, avl_walk_step, avl_walk_fini }, 3525 { "sysevent_pend", "walk sysevent pending queue", 3526 sysevent_pend_walk_init, sysevent_walk_step, 3527 sysevent_walk_fini}, 3528 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3529 sysevent_walk_step, sysevent_walk_fini}, 3530 { "sysevent_channel", "walk sysevent channel subscriptions", 3531 sysevent_channel_walk_init, sysevent_channel_walk_step, 3532 sysevent_channel_walk_fini}, 3533 { "sysevent_class_list", "walk sysevent subscription's class list", 3534 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3535 sysevent_class_list_walk_fini}, 3536 { "sysevent_subclass_list", 3537 "walk sysevent subscription's subclass list", 3538 sysevent_subclass_list_walk_init, 3539 sysevent_subclass_list_walk_step, 3540 sysevent_subclass_list_walk_fini}, 3541 { "task", "given a task pointer, walk its processes", 3542 task_walk_init, task_walk_step, NULL }, 3543 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3544 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3545 3546 /* from avl.c */ 3547 { AVL_WALK_NAME, AVL_WALK_DESC, 3548 avl_walk_init, avl_walk_step, avl_walk_fini }, 3549 3550 /* from zone.c */ 3551 { "zone", "walk a list of kernel zones", 3552 zone_walk_init, zone_walk_step, NULL }, 3553 { "zsd", "walk list of zsd entries for a zone", 3554 zsd_walk_init, zsd_walk_step, NULL }, 3555 3556 /* from bio.c */ 3557 { "buf", "walk the bio buf hash", 3558 buf_walk_init, buf_walk_step, buf_walk_fini }, 3559 3560 /* from contract.c */ 3561 { "contract", "walk all contracts, or those of the specified type", 3562 ct_walk_init, generic_walk_step, NULL }, 3563 { "ct_event", "walk events on a contract event queue", 3564 ct_event_walk_init, generic_walk_step, NULL }, 3565 { "ct_listener", "walk contract event queue listeners", 3566 ct_listener_walk_init, generic_walk_step, NULL }, 3567 3568 /* from cpupart.c */ 3569 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3570 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3571 NULL }, 3572 { "cpupart_walk", "walk the set of cpu partitions", 3573 cpupart_walk_init, cpupart_walk_step, NULL }, 3574 3575 /* from ctxop.c */ 3576 { "ctxop", "walk list of context ops on a thread", 3577 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3578 3579 /* from cyclic.c */ 3580 { "cyccpu", "walk per-CPU cyc_cpu structures", 3581 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3582 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3583 cycomni_walk_init, cycomni_walk_step, NULL }, 3584 { "cyctrace", "walk cyclic trace buffer", 3585 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3586 3587 /* from devinfo.c */ 3588 { "binding_hash", "walk all entries in binding hash table", 3589 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3590 { "devinfo", "walk devinfo tree or subtree", 3591 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3592 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3593 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3594 devinfo_audit_log_walk_fini}, 3595 { "devinfo_audit_node", "walk per-devinfo audit history", 3596 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3597 devinfo_audit_node_walk_fini}, 3598 { "devinfo_children", "walk children of devinfo node", 3599 devinfo_children_walk_init, devinfo_children_walk_step, 3600 devinfo_children_walk_fini }, 3601 { "devinfo_parents", "walk ancestors of devinfo node", 3602 devinfo_parents_walk_init, devinfo_parents_walk_step, 3603 devinfo_parents_walk_fini }, 3604 { "devinfo_siblings", "walk siblings of devinfo node", 3605 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3606 { "devi_next", "walk devinfo list", 3607 NULL, devi_next_walk_step, NULL }, 3608 { "devnames", "walk devnames array", 3609 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3610 { "minornode", "given a devinfo node, walk minor nodes", 3611 minornode_walk_init, minornode_walk_step, NULL }, 3612 { "softstate", 3613 "given an i_ddi_soft_state*, list all in-use driver stateps", 3614 soft_state_walk_init, soft_state_walk_step, 3615 NULL, NULL }, 3616 { "softstate_all", 3617 "given an i_ddi_soft_state*, list all driver stateps", 3618 soft_state_walk_init, soft_state_all_walk_step, 3619 NULL, NULL }, 3620 { "devinfo_fmc", 3621 "walk a fault management handle cache active list", 3622 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3623 3624 /* from kmem.c */ 3625 { "allocdby", "given a thread, walk its allocated bufctls", 3626 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3627 { "bufctl", "walk a kmem cache's bufctls", 3628 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3629 { "bufctl_history", "walk the available history of a bufctl", 3630 bufctl_history_walk_init, bufctl_history_walk_step, 3631 bufctl_history_walk_fini }, 3632 { "freedby", "given a thread, walk its freed bufctls", 3633 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3634 { "freectl", "walk a kmem cache's free bufctls", 3635 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3636 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3637 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3638 { "freemem", "walk a kmem cache's free memory", 3639 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3640 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3641 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3642 { "kmem", "walk a kmem cache", 3643 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3644 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3645 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3646 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3647 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3648 { "kmem_log", "walk the kmem transaction log", 3649 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3650 { "kmem_slab", "given a kmem cache, walk its slabs", 3651 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3652 { "kmem_slab_partial", 3653 "given a kmem cache, walk its partially allocated slabs (min 1)", 3654 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3655 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3656 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3657 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3658 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3659 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3660 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3661 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3662 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3663 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3664 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3665 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3666 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3667 3668 /* from ldi.c */ 3669 { "ldi_handle", "walk the layered driver handle hash", 3670 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3671 { "ldi_ident", "walk the layered driver identifier hash", 3672 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3673 3674 /* from leaky.c + leaky_subr.c */ 3675 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3676 "stack trace", 3677 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3678 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3679 "leaks w/ same stack trace", 3680 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3681 3682 /* from lgrp.c */ 3683 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3684 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3685 { "lgrptbl", "walk lgroup table", 3686 lgrp_walk_init, lgrp_walk_step, NULL }, 3687 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3688 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3689 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3690 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3691 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3692 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3693 3694 /* from list.c */ 3695 { LIST_WALK_NAME, LIST_WALK_DESC, 3696 list_walk_init, list_walk_step, list_walk_fini }, 3697 3698 /* from memory.c */ 3699 { "page", "walk all pages, or those from the specified vnode", 3700 page_walk_init, page_walk_step, page_walk_fini }, 3701 { "memlist", "walk specified memlist", 3702 NULL, memlist_walk_step, NULL }, 3703 { "swapinfo", "walk swapinfo structures", 3704 swap_walk_init, swap_walk_step, NULL }, 3705 3706 /* from mmd.c */ 3707 { "pattr", "walk pattr_t structures", pattr_walk_init, 3708 mmdq_walk_step, mmdq_walk_fini }, 3709 { "pdesc", "walk pdesc_t structures", 3710 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3711 { "pdesc_slab", "walk pdesc_slab_t structures", 3712 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3713 3714 /* from modhash.c */ 3715 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3716 modhash_walk_step, NULL }, 3717 { "modent", "walk list of entries in a given mod_hash", 3718 modent_walk_init, modent_walk_step, modent_walk_fini }, 3719 { "modchain", "walk list of entries in a given mod_hash_entry", 3720 NULL, modchain_walk_step, NULL }, 3721 3722 /* from net.c */ 3723 { "ar", "walk ar_t structures using MI", 3724 mi_payload_walk_init, mi_payload_walk_step, 3725 mi_payload_walk_fini, &mi_ar_arg }, 3726 { "icmp", "walk ICMP control structures using MI", 3727 mi_payload_walk_init, mi_payload_walk_step, 3728 mi_payload_walk_fini, &mi_icmp_arg }, 3729 { "ill", "walk ill_t structures using MI", 3730 mi_payload_walk_init, mi_payload_walk_step, 3731 mi_payload_walk_fini, &mi_ill_arg }, 3732 { "mi", "given a MI_O, walk the MI", 3733 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3734 { "sonode", "given a sonode, walk its children", 3735 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3736 3737 /* from nvpair.c */ 3738 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3739 nvpair_walk_init, nvpair_walk_step, NULL }, 3740 3741 /* from rctl.c */ 3742 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3743 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3744 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3745 rctl_set_walk_step, NULL }, 3746 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3747 rctl_val_walk_init, rctl_val_walk_step }, 3748 3749 /* from sobj.c */ 3750 { "blocked", "walk threads blocked on a given sobj", 3751 blocked_walk_init, blocked_walk_step, NULL }, 3752 { "wchan", "given a wchan, list of blocked threads", 3753 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3754 3755 /* from stream.c */ 3756 { "b_cont", "walk mblk_t list using b_cont", 3757 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3758 { "b_next", "walk mblk_t list using b_next", 3759 mblk_walk_init, b_next_step, mblk_walk_fini }, 3760 { "qlink", "walk queue_t list using q_link", 3761 queue_walk_init, queue_link_step, queue_walk_fini }, 3762 { "qnext", "walk queue_t list using q_next", 3763 queue_walk_init, queue_next_step, queue_walk_fini }, 3764 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3765 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3766 { "readq", "walk read queue side of stdata", 3767 str_walk_init, strr_walk_step, str_walk_fini }, 3768 { "writeq", "walk write queue side of stdata", 3769 str_walk_init, strw_walk_step, str_walk_fini }, 3770 3771 /* from thread.c */ 3772 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3773 deathrow_walk_init, deathrow_walk_step, NULL }, 3774 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3775 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3776 { "cpupart_dispq", 3777 "given a cpupart_t, walk threads in dispatcher queues", 3778 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3779 { "lwp_deathrow", "walk lwp_deathrow", 3780 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3781 { "thread", "global or per-process kthread_t structures", 3782 thread_walk_init, thread_walk_step, thread_walk_fini }, 3783 { "thread_deathrow", "walk threads on thread_deathrow", 3784 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3785 3786 /* from tsd.c */ 3787 { "tsd", "walk list of thread-specific data", 3788 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3789 3790 /* from tsol.c */ 3791 { "tnrh", "walk remote host cache structures", 3792 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3793 { "tnrhtp", "walk remote host template structures", 3794 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3795 3796 /* 3797 * typegraph does not work under kmdb, as it requires too much memory 3798 * for its internal data structures. 3799 */ 3800 #ifndef _KMDB 3801 /* from typegraph.c */ 3802 { "typeconflict", "walk buffers with conflicting type inferences", 3803 typegraph_walk_init, typeconflict_walk_step }, 3804 { "typeunknown", "walk buffers with unknown types", 3805 typegraph_walk_init, typeunknown_walk_step }, 3806 #endif 3807 3808 /* from vfs.c */ 3809 { "vfs", "walk file system list", 3810 vfs_walk_init, vfs_walk_step }, 3811 3812 /* from mdi.c */ 3813 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3814 mdi_pi_client_link_walk_init, 3815 mdi_pi_client_link_walk_step, 3816 mdi_pi_client_link_walk_fini }, 3817 3818 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3819 mdi_pi_phci_link_walk_init, 3820 mdi_pi_phci_link_walk_step, 3821 mdi_pi_phci_link_walk_fini }, 3822 3823 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3824 mdi_phci_ph_next_walk_init, 3825 mdi_phci_ph_next_walk_step, 3826 mdi_phci_ph_next_walk_fini }, 3827 3828 { NULL } 3829 }; 3830 3831 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3832 3833 const mdb_modinfo_t * 3834 _mdb_init(void) 3835 { 3836 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3837 mdb_warn("failed to read 'top_devinfo'"); 3838 return (NULL); 3839 } 3840 3841 if (findstack_init() != DCMD_OK) 3842 return (NULL); 3843 3844 kmem_init(); 3845 3846 return (&modinfo); 3847 } 3848 3849 void 3850 _mdb_fini(void) 3851 { 3852 /* 3853 * Force ::findleaks to let go any cached memory 3854 */ 3855 leaky_cleanup(1); 3856 } 3857