1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <stdio.h> 30 #include <stddef.h> 31 #include <stdlib.h> 32 #include <stdarg.h> 33 #include <string.h> 34 #include <strings.h> 35 #include <ctype.h> 36 #include <fcntl.h> 37 #include <unistd.h> 38 #include <errno.h> 39 #include <limits.h> 40 #include <sys/types.h> 41 #include <sys/modctl.h> 42 #include <sys/stat.h> 43 #include <sys/wait.h> 44 #include <dtrace.h> 45 #include <sys/lockstat.h> 46 #include <alloca.h> 47 #include <signal.h> 48 #include <assert.h> 49 50 #define LOCKSTAT_OPTSTR "x:bths:n:d:i:l:f:e:ckwWgCHEATID:RpPo:V" 51 52 #define LS_MAX_STACK_DEPTH 50 53 #define LS_MAX_EVENTS 64 54 55 typedef struct lsrec { 56 struct lsrec *ls_next; /* next in hash chain */ 57 uintptr_t ls_lock; /* lock address */ 58 uintptr_t ls_caller; /* caller address */ 59 uint32_t ls_count; /* cumulative event count */ 60 uint32_t ls_event; /* type of event */ 61 uintptr_t ls_refcnt; /* cumulative reference count */ 62 uint64_t ls_time; /* cumulative event duration */ 63 uint32_t ls_hist[64]; /* log2(duration) histogram */ 64 uintptr_t ls_stack[LS_MAX_STACK_DEPTH]; 65 } lsrec_t; 66 67 typedef struct lsdata { 68 struct lsrec *lsd_next; /* next available */ 69 int lsd_count; /* number of records */ 70 } lsdata_t; 71 72 /* 73 * Definitions for the types of experiments which can be run. They are 74 * listed in increasing order of memory cost and processing time cost. 75 * The numerical value of each type is the number of bytes needed per record. 76 */ 77 #define LS_BASIC offsetof(lsrec_t, ls_time) 78 #define LS_TIME offsetof(lsrec_t, ls_hist[0]) 79 #define LS_HIST offsetof(lsrec_t, ls_stack[0]) 80 #define LS_STACK(depth) offsetof(lsrec_t, ls_stack[depth]) 81 82 static void report_stats(FILE *, lsrec_t **, size_t, uint64_t, uint64_t); 83 static void report_trace(FILE *, lsrec_t **); 84 85 extern int symtab_init(void); 86 extern char *addr_to_sym(uintptr_t, uintptr_t *, size_t *); 87 extern uintptr_t sym_to_addr(char *name); 88 extern size_t sym_size(char *name); 89 extern char *strtok_r(char *, const char *, char **); 90 91 #define DEFAULT_NRECS 10000 92 #define DEFAULT_HZ 97 93 #define MAX_HZ 1000 94 #define MIN_AGGSIZE (16 * 1024) 95 #define MAX_AGGSIZE (32 * 1024 * 1024) 96 97 static int g_stkdepth; 98 static int g_topn = INT_MAX; 99 static hrtime_t g_elapsed; 100 static int g_rates = 0; 101 static int g_pflag = 0; 102 static int g_Pflag = 0; 103 static int g_wflag = 0; 104 static int g_Wflag = 0; 105 static int g_cflag = 0; 106 static int g_kflag = 0; 107 static int g_gflag = 0; 108 static int g_Vflag = 0; 109 static int g_tracing = 0; 110 static size_t g_recsize; 111 static size_t g_nrecs; 112 static int g_nrecs_used; 113 static uchar_t g_enabled[LS_MAX_EVENTS]; 114 static hrtime_t g_min_duration[LS_MAX_EVENTS]; 115 static dtrace_hdl_t *g_dtp; 116 static char *g_predicate; 117 static char *g_ipredicate; 118 static char *g_prog; 119 static int g_proglen; 120 static int g_dropped; 121 122 typedef struct ls_event_info { 123 char ev_type; 124 char ev_lhdr[20]; 125 char ev_desc[80]; 126 char ev_units[10]; 127 char ev_name[DTRACE_NAMELEN]; 128 char *ev_predicate; 129 char *ev_acquire; 130 } ls_event_info_t; 131 132 static ls_event_info_t g_event_info[LS_MAX_EVENTS] = { 133 { 'C', "Lock", "Adaptive mutex spin", "spin", 134 "lockstat:::adaptive-spin" }, 135 { 'C', "Lock", "Adaptive mutex block", "nsec", 136 "lockstat:::adaptive-block" }, 137 { 'C', "Lock", "Spin lock spin", "spin", 138 "lockstat:::spin-spin" }, 139 { 'C', "Lock", "Thread lock spin", "spin", 140 "lockstat:::thread-spin" }, 141 { 'C', "Lock", "R/W writer blocked by writer", "nsec", 142 "lockstat:::rw-block", "arg2 == 0 && arg3 == 1" }, 143 { 'C', "Lock", "R/W writer blocked by readers", "nsec", 144 "lockstat:::rw-block", "arg2 == 0 && arg3 == 0 && arg4" }, 145 { 'C', "Lock", "R/W reader blocked by writer", "nsec", 146 "lockstat:::rw-block", "arg2 != 0 && arg3 == 1" }, 147 { 'C', "Lock", "R/W reader blocked by write wanted", "nsec", 148 "lockstat:::rw-block", "arg2 != 0 && arg3 == 0 && arg4" }, 149 { 'C', "Lock", "Unknown event (type 8)", "units" }, 150 { 'C', "Lock", "Unknown event (type 9)", "units" }, 151 { 'C', "Lock", "Unknown event (type 10)", "units" }, 152 { 'C', "Lock", "Unknown event (type 11)", "units" }, 153 { 'C', "Lock", "Unknown event (type 12)", "units" }, 154 { 'C', "Lock", "Unknown event (type 13)", "units" }, 155 { 'C', "Lock", "Unknown event (type 14)", "units" }, 156 { 'C', "Lock", "Unknown event (type 15)", "units" }, 157 { 'C', "Lock", "Unknown event (type 16)", "units" }, 158 { 'C', "Lock", "Unknown event (type 17)", "units" }, 159 { 'C', "Lock", "Unknown event (type 18)", "units" }, 160 { 'C', "Lock", "Unknown event (type 19)", "units" }, 161 { 'C', "Lock", "Unknown event (type 20)", "units" }, 162 { 'C', "Lock", "Unknown event (type 21)", "units" }, 163 { 'C', "Lock", "Unknown event (type 22)", "units" }, 164 { 'C', "Lock", "Unknown event (type 23)", "units" }, 165 { 'C', "Lock", "Unknown event (type 24)", "units" }, 166 { 'C', "Lock", "Unknown event (type 25)", "units" }, 167 { 'C', "Lock", "Unknown event (type 26)", "units" }, 168 { 'C', "Lock", "Unknown event (type 27)", "units" }, 169 { 'C', "Lock", "Unknown event (type 28)", "units" }, 170 { 'C', "Lock", "Unknown event (type 29)", "units" }, 171 { 'C', "Lock", "Unknown event (type 30)", "units" }, 172 { 'C', "Lock", "Unknown event (type 31)", "units" }, 173 { 'H', "Lock", "Adaptive mutex hold", "nsec", 174 "lockstat:::adaptive-release", NULL, 175 "lockstat:::adaptive-acquire" }, 176 { 'H', "Lock", "Spin lock hold", "nsec", 177 "lockstat:::spin-release", NULL, 178 "lockstat:::spin-acquire" }, 179 { 'H', "Lock", "R/W writer hold", "nsec", 180 "lockstat:::rw-release", "arg1 == 0", 181 "lockstat:::rw-acquire" }, 182 { 'H', "Lock", "R/W reader hold", "nsec", 183 "lockstat:::rw-release", "arg1 != 0", 184 "lockstat:::rw-acquire" }, 185 { 'H', "Lock", "Unknown event (type 36)", "units" }, 186 { 'H', "Lock", "Unknown event (type 37)", "units" }, 187 { 'H', "Lock", "Unknown event (type 38)", "units" }, 188 { 'H', "Lock", "Unknown event (type 39)", "units" }, 189 { 'H', "Lock", "Unknown event (type 40)", "units" }, 190 { 'H', "Lock", "Unknown event (type 41)", "units" }, 191 { 'H', "Lock", "Unknown event (type 42)", "units" }, 192 { 'H', "Lock", "Unknown event (type 43)", "units" }, 193 { 'H', "Lock", "Unknown event (type 44)", "units" }, 194 { 'H', "Lock", "Unknown event (type 45)", "units" }, 195 { 'H', "Lock", "Unknown event (type 46)", "units" }, 196 { 'H', "Lock", "Unknown event (type 47)", "units" }, 197 { 'H', "Lock", "Unknown event (type 48)", "units" }, 198 { 'H', "Lock", "Unknown event (type 49)", "units" }, 199 { 'H', "Lock", "Unknown event (type 50)", "units" }, 200 { 'H', "Lock", "Unknown event (type 51)", "units" }, 201 { 'H', "Lock", "Unknown event (type 52)", "units" }, 202 { 'H', "Lock", "Unknown event (type 53)", "units" }, 203 { 'H', "Lock", "Unknown event (type 54)", "units" }, 204 { 'H', "Lock", "Unknown event (type 55)", "units" }, 205 { 'I', "CPU+PIL", "Profiling interrupt", "nsec", 206 "profile:::profile-97", NULL }, 207 { 'I', "Lock", "Unknown event (type 57)", "units" }, 208 { 'I', "Lock", "Unknown event (type 58)", "units" }, 209 { 'I', "Lock", "Unknown event (type 59)", "units" }, 210 { 'E', "Lock", "Recursive lock entry detected", "(N/A)", 211 "lockstat:::rw-release", NULL, "lockstat:::rw-acquire" }, 212 { 'E', "Lock", "Lockstat enter failure", "(N/A)" }, 213 { 'E', "Lock", "Lockstat exit failure", "nsec" }, 214 { 'E', "Lock", "Lockstat record failure", "(N/A)" }, 215 }; 216 217 static void 218 fail(int do_perror, const char *message, ...) 219 { 220 va_list args; 221 int save_errno = errno; 222 223 va_start(args, message); 224 (void) fprintf(stderr, "lockstat: "); 225 (void) vfprintf(stderr, message, args); 226 va_end(args); 227 if (do_perror) 228 (void) fprintf(stderr, ": %s", strerror(save_errno)); 229 (void) fprintf(stderr, "\n"); 230 exit(2); 231 } 232 233 static void 234 dfail(const char *message, ...) 235 { 236 va_list args; 237 238 va_start(args, message); 239 (void) fprintf(stderr, "lockstat: "); 240 (void) vfprintf(stderr, message, args); 241 va_end(args); 242 (void) fprintf(stderr, ": %s\n", 243 dtrace_errmsg(g_dtp, dtrace_errno(g_dtp))); 244 245 exit(2); 246 } 247 248 static void 249 show_events(char event_type, char *desc) 250 { 251 int i, first = -1, last; 252 253 for (i = 0; i < LS_MAX_EVENTS; i++) { 254 ls_event_info_t *evp = &g_event_info[i]; 255 if (evp->ev_type != event_type || 256 strncmp(evp->ev_desc, "Unknown event", 13) == 0) 257 continue; 258 if (first == -1) 259 first = i; 260 last = i; 261 } 262 263 (void) fprintf(stderr, 264 "\n%s events (lockstat -%c or lockstat -e %d-%d):\n\n", 265 desc, event_type, first, last); 266 267 for (i = first; i <= last; i++) 268 (void) fprintf(stderr, 269 "%4d = %s\n", i, g_event_info[i].ev_desc); 270 } 271 272 static void 273 usage(void) 274 { 275 (void) fprintf(stderr, 276 "Usage: lockstat [options] command [args]\n" 277 "\nEvent selection options:\n\n" 278 " -C watch contention events [on by default]\n" 279 " -E watch error events [off by default]\n" 280 " -H watch hold events [off by default]\n" 281 " -I watch interrupt events [off by default]\n" 282 " -A watch all lock events [equivalent to -CH]\n" 283 " -e event_list only watch the specified events (shown below);\n" 284 " <event_list> is a comma-separated list of\n" 285 " events or ranges of events, e.g. 1,4-7,35\n" 286 " -i rate interrupt rate for -I [default: %d Hz]\n" 287 "\nData gathering options:\n\n" 288 " -b basic statistics (lock, caller, event count)\n" 289 " -t timing for all events [default]\n" 290 " -h histograms for event times\n" 291 " -s depth stack traces <depth> deep\n" 292 " -x opt[=val] enable or modify DTrace options\n" 293 "\nData filtering options:\n\n" 294 " -n nrecords maximum number of data records [default: %d]\n" 295 " -l lock[,size] only watch <lock>, which can be specified as a\n" 296 " symbolic name or hex address; <size> defaults\n" 297 " to the ELF symbol size if available, 1 if not\n" 298 " -f func[,size] only watch events generated by <func>\n" 299 " -d duration only watch events longer than <duration>\n" 300 " -T trace (rather than sample) events\n" 301 "\nData reporting options:\n\n" 302 " -c coalesce lock data for arrays like pse_mutex[]\n" 303 " -k coalesce PCs within functions\n" 304 " -g show total events generated by function\n" 305 " -w wherever: don't distinguish events by caller\n" 306 " -W whichever: don't distinguish events by lock\n" 307 " -R display rates rather than counts\n" 308 " -p parsable output format (awk(1)-friendly)\n" 309 " -P sort lock data by (count * avg_time) product\n" 310 " -D n only display top <n> events of each type\n" 311 " -o filename send output to <filename>\n", 312 DEFAULT_HZ, DEFAULT_NRECS); 313 314 show_events('C', "Contention"); 315 show_events('H', "Hold-time"); 316 show_events('I', "Interrupt"); 317 show_events('E', "Error"); 318 (void) fprintf(stderr, "\n"); 319 320 exit(1); 321 } 322 323 static int 324 lockcmp(lsrec_t *a, lsrec_t *b) 325 { 326 int i; 327 328 if (a->ls_event < b->ls_event) 329 return (-1); 330 if (a->ls_event > b->ls_event) 331 return (1); 332 333 for (i = g_stkdepth - 1; i >= 0; i--) { 334 if (a->ls_stack[i] < b->ls_stack[i]) 335 return (-1); 336 if (a->ls_stack[i] > b->ls_stack[i]) 337 return (1); 338 } 339 340 if (a->ls_caller < b->ls_caller) 341 return (-1); 342 if (a->ls_caller > b->ls_caller) 343 return (1); 344 345 if (a->ls_lock < b->ls_lock) 346 return (-1); 347 if (a->ls_lock > b->ls_lock) 348 return (1); 349 350 return (0); 351 } 352 353 static int 354 countcmp(lsrec_t *a, lsrec_t *b) 355 { 356 if (a->ls_event < b->ls_event) 357 return (-1); 358 if (a->ls_event > b->ls_event) 359 return (1); 360 361 return (b->ls_count - a->ls_count); 362 } 363 364 static int 365 timecmp(lsrec_t *a, lsrec_t *b) 366 { 367 if (a->ls_event < b->ls_event) 368 return (-1); 369 if (a->ls_event > b->ls_event) 370 return (1); 371 372 if (a->ls_time < b->ls_time) 373 return (1); 374 if (a->ls_time > b->ls_time) 375 return (-1); 376 377 return (0); 378 } 379 380 static int 381 lockcmp_anywhere(lsrec_t *a, lsrec_t *b) 382 { 383 if (a->ls_event < b->ls_event) 384 return (-1); 385 if (a->ls_event > b->ls_event) 386 return (1); 387 388 if (a->ls_lock < b->ls_lock) 389 return (-1); 390 if (a->ls_lock > b->ls_lock) 391 return (1); 392 393 return (0); 394 } 395 396 static int 397 lock_and_count_cmp_anywhere(lsrec_t *a, lsrec_t *b) 398 { 399 if (a->ls_event < b->ls_event) 400 return (-1); 401 if (a->ls_event > b->ls_event) 402 return (1); 403 404 if (a->ls_lock < b->ls_lock) 405 return (-1); 406 if (a->ls_lock > b->ls_lock) 407 return (1); 408 409 return (b->ls_count - a->ls_count); 410 } 411 412 static int 413 sitecmp_anylock(lsrec_t *a, lsrec_t *b) 414 { 415 int i; 416 417 if (a->ls_event < b->ls_event) 418 return (-1); 419 if (a->ls_event > b->ls_event) 420 return (1); 421 422 for (i = g_stkdepth - 1; i >= 0; i--) { 423 if (a->ls_stack[i] < b->ls_stack[i]) 424 return (-1); 425 if (a->ls_stack[i] > b->ls_stack[i]) 426 return (1); 427 } 428 429 if (a->ls_caller < b->ls_caller) 430 return (-1); 431 if (a->ls_caller > b->ls_caller) 432 return (1); 433 434 return (0); 435 } 436 437 static int 438 site_and_count_cmp_anylock(lsrec_t *a, lsrec_t *b) 439 { 440 int i; 441 442 if (a->ls_event < b->ls_event) 443 return (-1); 444 if (a->ls_event > b->ls_event) 445 return (1); 446 447 for (i = g_stkdepth - 1; i >= 0; i--) { 448 if (a->ls_stack[i] < b->ls_stack[i]) 449 return (-1); 450 if (a->ls_stack[i] > b->ls_stack[i]) 451 return (1); 452 } 453 454 if (a->ls_caller < b->ls_caller) 455 return (-1); 456 if (a->ls_caller > b->ls_caller) 457 return (1); 458 459 return (b->ls_count - a->ls_count); 460 } 461 462 static void 463 mergesort(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **a, lsrec_t **b, int n) 464 { 465 int m = n / 2; 466 int i, j; 467 468 if (m > 1) 469 mergesort(cmp, a, b, m); 470 if (n - m > 1) 471 mergesort(cmp, a + m, b + m, n - m); 472 for (i = m; i > 0; i--) 473 b[i - 1] = a[i - 1]; 474 for (j = m - 1; j < n - 1; j++) 475 b[n + m - j - 2] = a[j + 1]; 476 while (i < j) 477 *a++ = cmp(b[i], b[j]) < 0 ? b[i++] : b[j--]; 478 *a = b[i]; 479 } 480 481 static void 482 coalesce(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **lock, int n) 483 { 484 int i, j; 485 lsrec_t *target, *current; 486 487 target = lock[0]; 488 489 for (i = 1; i < n; i++) { 490 current = lock[i]; 491 if (cmp(current, target) != 0) { 492 target = current; 493 continue; 494 } 495 current->ls_event = LS_MAX_EVENTS; 496 target->ls_count += current->ls_count; 497 target->ls_refcnt += current->ls_refcnt; 498 if (g_recsize < LS_TIME) 499 continue; 500 target->ls_time += current->ls_time; 501 if (g_recsize < LS_HIST) 502 continue; 503 for (j = 0; j < 64; j++) 504 target->ls_hist[j] += current->ls_hist[j]; 505 } 506 } 507 508 static void 509 coalesce_symbol(uintptr_t *addrp) 510 { 511 uintptr_t symoff; 512 size_t symsize; 513 514 if (addr_to_sym(*addrp, &symoff, &symsize) != NULL && symoff < symsize) 515 *addrp -= symoff; 516 } 517 518 static void 519 predicate_add(char **pred, char *what, char *cmp, uintptr_t value) 520 { 521 char *new; 522 int len, newlen; 523 524 if (what == NULL) 525 return; 526 527 if (*pred == NULL) { 528 *pred = malloc(1); 529 *pred[0] = '\0'; 530 } 531 532 len = strlen(*pred); 533 newlen = len + strlen(what) + 32 + strlen("( && )"); 534 new = malloc(newlen); 535 536 if (*pred[0] != '\0') { 537 if (cmp != NULL) { 538 (void) sprintf(new, "(%s) && (%s %s 0x%p)", 539 *pred, what, cmp, (void *)value); 540 } else { 541 (void) sprintf(new, "(%s) && (%s)", *pred, what); 542 } 543 } else { 544 if (cmp != NULL) { 545 (void) sprintf(new, "%s %s 0x%p", 546 what, cmp, (void *)value); 547 } else { 548 (void) sprintf(new, "%s", what); 549 } 550 } 551 552 free(*pred); 553 *pred = new; 554 } 555 556 static void 557 predicate_destroy(char **pred) 558 { 559 free(*pred); 560 *pred = NULL; 561 } 562 563 static void 564 filter_add(char **filt, char *what, uintptr_t base, uintptr_t size) 565 { 566 char buf[256], *c = buf, *new; 567 int len, newlen; 568 569 if (*filt == NULL) { 570 *filt = malloc(1); 571 *filt[0] = '\0'; 572 } 573 574 (void) sprintf(c, "%s(%s >= 0x%p && %s < 0x%p)", *filt[0] != '\0' ? 575 " || " : "", what, (void *)base, what, (void *)(base + size)); 576 577 newlen = (len = strlen(*filt) + 1) + strlen(c); 578 new = malloc(newlen); 579 bcopy(*filt, new, len); 580 (void) strcat(new, c); 581 free(*filt); 582 *filt = new; 583 } 584 585 static void 586 filter_destroy(char **filt) 587 { 588 free(*filt); 589 *filt = NULL; 590 } 591 592 static void 593 dprog_add(const char *fmt, ...) 594 { 595 va_list args; 596 int size, offs; 597 char c; 598 599 va_start(args, fmt); 600 size = vsnprintf(&c, 1, fmt, args) + 1; 601 602 if (g_proglen == 0) { 603 offs = 0; 604 } else { 605 offs = g_proglen - 1; 606 } 607 608 g_proglen = offs + size; 609 610 if ((g_prog = realloc(g_prog, g_proglen)) == NULL) 611 fail(1, "failed to reallocate program text"); 612 613 (void) vsnprintf(&g_prog[offs], size, fmt, args); 614 } 615 616 /* 617 * This function may read like an open sewer, but keep in mind that programs 618 * that generate other programs are rarely pretty. If one has the unenviable 619 * task of maintaining or -- worse -- extending this code, use the -V option 620 * to examine the D program as generated by this function. 621 */ 622 static void 623 dprog_addevent(int event) 624 { 625 ls_event_info_t *info = &g_event_info[event]; 626 char *pred = NULL; 627 char stack[20]; 628 const char *arg0, *caller; 629 char *arg1 = "arg1"; 630 char buf[80]; 631 hrtime_t dur; 632 int depth; 633 634 if (info->ev_name[0] == '\0') 635 return; 636 637 if (info->ev_type == 'I') { 638 /* 639 * For interrupt events, arg0 (normally the lock pointer) is 640 * the CPU address plus the current pil, and arg1 (normally 641 * the number of nanoseconds) is the number of nanoseconds 642 * late -- and it's stored in arg2. 643 */ 644 arg0 = "(uintptr_t)curthread->t_cpu + \n" 645 "\t curthread->t_cpu->cpu_profile_pil"; 646 caller = "(uintptr_t)arg0"; 647 arg1 = "arg2"; 648 } else { 649 arg0 = "(uintptr_t)arg0"; 650 caller = "caller"; 651 } 652 653 if (g_recsize > LS_HIST) { 654 for (depth = 0; g_recsize > LS_STACK(depth); depth++) 655 continue; 656 657 if (g_tracing) { 658 (void) sprintf(stack, "\tstack(%d);\n", depth); 659 } else { 660 (void) sprintf(stack, ", stack(%d)", depth); 661 } 662 } else { 663 (void) sprintf(stack, ""); 664 } 665 666 if (info->ev_acquire != NULL) { 667 /* 668 * If this is a hold event, we need to generate an additional 669 * clause for the acquire; the clause for the release will be 670 * generated with the aggregating statement, below. 671 */ 672 dprog_add("%s\n", info->ev_acquire); 673 predicate_add(&pred, info->ev_predicate, NULL, 0); 674 predicate_add(&pred, g_predicate, NULL, 0); 675 if (pred != NULL) 676 dprog_add("/%s/\n", pred); 677 678 dprog_add("{\n"); 679 (void) sprintf(buf, "self->ev%d[(uintptr_t)arg0]", event); 680 681 if (info->ev_type == 'H') { 682 dprog_add("\t%s = timestamp;\n", buf); 683 } else { 684 /* 685 * If this isn't a hold event, it's the recursive 686 * error event. For this, we simply bump the 687 * thread-local, per-lock count. 688 */ 689 dprog_add("\t%s++;\n", buf); 690 } 691 692 dprog_add("}\n\n"); 693 predicate_destroy(&pred); 694 pred = NULL; 695 696 if (info->ev_type == 'E') { 697 /* 698 * If this is the recursive lock error event, we need 699 * to generate an additional clause to decrement the 700 * thread-local, per-lock count. This assures that we 701 * only execute the aggregating clause if we have 702 * recursive entry. 703 */ 704 dprog_add("%s\n", info->ev_name); 705 dprog_add("/%s/\n{\n\t%s--;\n}\n\n", buf, buf); 706 } 707 708 predicate_add(&pred, buf, NULL, 0); 709 710 if (info->ev_type == 'H') { 711 (void) sprintf(buf, "timestamp -\n\t " 712 "self->ev%d[(uintptr_t)arg0]", event); 713 } 714 715 arg1 = buf; 716 } else { 717 predicate_add(&pred, info->ev_predicate, NULL, 0); 718 if (info->ev_type != 'I') 719 predicate_add(&pred, g_predicate, NULL, 0); 720 else 721 predicate_add(&pred, g_ipredicate, NULL, 0); 722 } 723 724 if ((dur = g_min_duration[event]) != 0) 725 predicate_add(&pred, arg1, ">=", dur); 726 727 dprog_add("%s\n", info->ev_name); 728 729 if (pred != NULL) 730 dprog_add("/%s/\n", pred); 731 predicate_destroy(&pred); 732 733 dprog_add("{\n"); 734 735 if (g_tracing) { 736 dprog_add("\ttrace(%dULL);\n", event); 737 dprog_add("\ttrace(%s);\n", arg0); 738 dprog_add("\ttrace(%s);\n", caller); 739 dprog_add(stack); 740 } else { 741 dprog_add("\t@avg[%dULL, %s, %s%s] = avg(%s);\n", 742 event, arg0, caller, stack, arg1); 743 744 if (g_recsize >= LS_HIST) { 745 dprog_add("\t@hist[%dULL, %s, %s%s] = quantize" 746 "(%s);\n", event, arg0, caller, stack, arg1); 747 } 748 } 749 750 if (info->ev_acquire != NULL) 751 dprog_add("\tself->ev%d[arg0] = 0;\n", event); 752 753 dprog_add("}\n\n"); 754 } 755 756 static void 757 dprog_compile() 758 { 759 dtrace_prog_t *prog; 760 dtrace_proginfo_t info; 761 762 if (g_Vflag) { 763 (void) fprintf(stderr, "lockstat: vvvv D program vvvv\n"); 764 (void) fputs(g_prog, stderr); 765 (void) fprintf(stderr, "lockstat: ^^^^ D program ^^^^\n"); 766 } 767 768 if ((prog = dtrace_program_strcompile(g_dtp, g_prog, 769 DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL) 770 dfail("failed to compile program"); 771 772 if (dtrace_program_exec(g_dtp, prog, &info) == -1) 773 dfail("failed to enable probes"); 774 775 if (dtrace_go(g_dtp) != 0) 776 dfail("couldn't start tracing"); 777 } 778 779 static void 780 status_fire(void) 781 {} 782 783 static void 784 status_init(void) 785 { 786 dtrace_optval_t val, status, agg; 787 struct sigaction act; 788 struct itimerspec ts; 789 struct sigevent ev; 790 timer_t tid; 791 792 if (dtrace_getopt(g_dtp, "statusrate", &status) == -1) 793 dfail("failed to get 'statusrate'"); 794 795 if (dtrace_getopt(g_dtp, "aggrate", &agg) == -1) 796 dfail("failed to get 'statusrate'"); 797 798 /* 799 * We would want to awaken at a rate that is the GCD of the statusrate 800 * and the aggrate -- but that seems a bit absurd. Instead, we'll 801 * simply awaken at a rate that is the more frequent of the two, which 802 * assures that we're never later than the interval implied by the 803 * more frequent rate. 804 */ 805 val = status < agg ? status : agg; 806 807 (void) sigemptyset(&act.sa_mask); 808 act.sa_flags = 0; 809 act.sa_handler = status_fire; 810 (void) sigaction(SIGUSR1, &act, NULL); 811 812 ev.sigev_notify = SIGEV_SIGNAL; 813 ev.sigev_signo = SIGUSR1; 814 815 if (timer_create(CLOCK_REALTIME, &ev, &tid) == -1) 816 dfail("cannot create CLOCK_REALTIME timer"); 817 818 ts.it_value.tv_sec = val / NANOSEC; 819 ts.it_value.tv_nsec = val % NANOSEC; 820 ts.it_interval = ts.it_value; 821 822 if (timer_settime(tid, TIMER_RELTIME, &ts, NULL) == -1) 823 dfail("cannot set time on CLOCK_REALTIME timer"); 824 } 825 826 static void 827 status_check(void) 828 { 829 if (!g_tracing && dtrace_aggregate_snap(g_dtp) != 0) 830 dfail("failed to snap aggregate"); 831 832 if (dtrace_status(g_dtp) == -1) 833 dfail("dtrace_status()"); 834 } 835 836 static void 837 lsrec_fill(lsrec_t *lsrec, dtrace_recdesc_t *rec, int nrecs, caddr_t data) 838 { 839 bzero(lsrec, g_recsize); 840 lsrec->ls_count = 1; 841 842 if ((g_recsize > LS_HIST && nrecs < 4) || (nrecs < 3)) 843 fail(0, "truncated DTrace record"); 844 845 if (rec->dtrd_size != sizeof (uint64_t)) 846 fail(0, "bad event size in first record"); 847 848 /* LINTED - alignment */ 849 lsrec->ls_event = (uint32_t)*((uint64_t *)(data + rec->dtrd_offset)); 850 rec++; 851 852 if (rec->dtrd_size != sizeof (uintptr_t)) 853 fail(0, "bad lock address size in second record"); 854 855 /* LINTED - alignment */ 856 lsrec->ls_lock = *((uintptr_t *)(data + rec->dtrd_offset)); 857 rec++; 858 859 if (rec->dtrd_size != sizeof (uintptr_t)) 860 fail(0, "bad caller size in third record"); 861 862 /* LINTED - alignment */ 863 lsrec->ls_caller = *((uintptr_t *)(data + rec->dtrd_offset)); 864 rec++; 865 866 if (g_recsize > LS_HIST) { 867 int frames, i; 868 pc_t *stack; 869 870 frames = rec->dtrd_size / sizeof (pc_t); 871 /* LINTED - alignment */ 872 stack = (pc_t *)(data + rec->dtrd_offset); 873 874 for (i = 1; i < frames; i++) 875 lsrec->ls_stack[i - 1] = stack[i]; 876 } 877 } 878 879 /*ARGSUSED*/ 880 static int 881 count_aggregate(dtrace_aggdata_t *agg, void *arg) 882 { 883 *((size_t *)arg) += 1; 884 885 return (DTRACE_AGGWALK_NEXT); 886 } 887 888 static int 889 process_aggregate(dtrace_aggdata_t *agg, void *arg) 890 { 891 dtrace_aggdesc_t *aggdesc = agg->dtada_desc; 892 caddr_t data = agg->dtada_data; 893 lsdata_t *lsdata = arg; 894 lsrec_t *lsrec = lsdata->lsd_next; 895 dtrace_recdesc_t *rec; 896 uint64_t *avg, *quantized; 897 int i, j; 898 899 assert(lsdata->lsd_count < g_nrecs); 900 901 rec = &aggdesc->dtagd_rec[0]; 902 903 if (rec->dtrd_size != sizeof (uint64_t)) 904 fail(0, "bad variable size in zeroth record"); 905 906 /* LINTED - alignment */ 907 if (*((uint64_t *)(data + rec->dtrd_offset))) { 908 /* 909 * If the variable is non-zero, this is the histogram entry. 910 * We'll copy the quantized data into lc_hist, and jump over 911 * the rest. 912 */ 913 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 914 915 if (rec->dtrd_size != 916 DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 917 fail(0, "bad quantize size in aggregation record"); 918 919 /* LINTED - alignment */ 920 quantized = (uint64_t *)(data + rec->dtrd_offset); 921 922 for (i = DTRACE_QUANTIZE_ZEROBUCKET, j = 0; 923 i < DTRACE_QUANTIZE_NBUCKETS; i++, j++) 924 lsrec->ls_hist[j] = quantized[i]; 925 926 goto out; 927 } 928 929 lsrec_fill(lsrec, &aggdesc->dtagd_rec[1], 930 aggdesc->dtagd_nrecs - 1, data); 931 932 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 933 934 if (rec->dtrd_size != 2 * sizeof (uint64_t)) 935 fail(0, "bad avg size in aggregation record"); 936 937 /* LINTED - alignment */ 938 avg = (uint64_t *)(data + rec->dtrd_offset); 939 lsrec->ls_count = (uint32_t)avg[0]; 940 lsrec->ls_time = (uintptr_t)avg[1]; 941 942 if (g_recsize >= LS_HIST) 943 return (DTRACE_AGGWALK_NEXT); 944 945 out: 946 lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize); 947 lsdata->lsd_count++; 948 949 return (DTRACE_AGGWALK_NEXT); 950 } 951 952 static int 953 process_trace(const dtrace_probedata_t *pdata, void *arg) 954 { 955 lsdata_t *lsdata = arg; 956 lsrec_t *lsrec = lsdata->lsd_next; 957 dtrace_eprobedesc_t *edesc = pdata->dtpda_edesc; 958 caddr_t data = pdata->dtpda_data; 959 960 if (lsdata->lsd_count >= g_nrecs) 961 return (DTRACE_CONSUME_NEXT); 962 963 lsrec_fill(lsrec, edesc->dtepd_rec, edesc->dtepd_nrecs, data); 964 965 lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize); 966 lsdata->lsd_count++; 967 968 return (DTRACE_CONSUME_NEXT); 969 } 970 971 static int 972 process_data(FILE *out, char *data) 973 { 974 lsdata_t lsdata; 975 976 /* LINTED - alignment */ 977 lsdata.lsd_next = (lsrec_t *)data; 978 lsdata.lsd_count = 0; 979 980 if (g_tracing) { 981 if (dtrace_consume(g_dtp, out, 982 process_trace, NULL, &lsdata) != 0) 983 dfail("failed to consume buffer"); 984 985 return (lsdata.lsd_count); 986 } 987 988 if (dtrace_aggregate_walk_keyvarsorted(g_dtp, 989 process_aggregate, &lsdata) != 0) 990 dfail("failed to walk aggregate"); 991 992 return (lsdata.lsd_count); 993 } 994 995 /*ARGSUSED*/ 996 static int 997 drophandler(dtrace_dropdata_t *data, void *arg) 998 { 999 g_dropped++; 1000 (void) fprintf(stderr, "lockstat: warning: %s", data->dtdda_msg); 1001 return (DTRACE_HANDLE_OK); 1002 } 1003 1004 int 1005 main(int argc, char **argv) 1006 { 1007 char *data_buf; 1008 lsrec_t *lsp, **current, **first, **sort_buf, **merge_buf; 1009 FILE *out = stdout; 1010 char c; 1011 pid_t child; 1012 int status; 1013 int i, j; 1014 hrtime_t duration; 1015 char *addrp, *offp, *sizep, *evp, *lastp, *p; 1016 uintptr_t addr; 1017 size_t size, off; 1018 int events_specified = 0; 1019 int exec_errno = 0; 1020 uint32_t event; 1021 char *filt = NULL, *ifilt = NULL; 1022 static uint64_t ev_count[LS_MAX_EVENTS + 1]; 1023 static uint64_t ev_time[LS_MAX_EVENTS + 1]; 1024 dtrace_optval_t aggsize; 1025 char aggstr[10]; 1026 long ncpus; 1027 int dynvar = 0; 1028 int err; 1029 1030 if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL) { 1031 fail(0, "cannot open dtrace library: %s", 1032 dtrace_errmsg(NULL, err)); 1033 } 1034 1035 if (dtrace_handle_drop(g_dtp, &drophandler, NULL) == -1) 1036 dfail("couldn't establish drop handler"); 1037 1038 if (symtab_init() == -1) 1039 fail(1, "can't load kernel symbols"); 1040 1041 g_nrecs = DEFAULT_NRECS; 1042 1043 while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) { 1044 switch (c) { 1045 case 'b': 1046 g_recsize = LS_BASIC; 1047 break; 1048 1049 case 't': 1050 g_recsize = LS_TIME; 1051 break; 1052 1053 case 'h': 1054 g_recsize = LS_HIST; 1055 break; 1056 1057 case 's': 1058 if (!isdigit(optarg[0])) 1059 usage(); 1060 g_stkdepth = atoi(optarg); 1061 if (g_stkdepth > LS_MAX_STACK_DEPTH) 1062 fail(0, "max stack depth is %d", 1063 LS_MAX_STACK_DEPTH); 1064 g_recsize = LS_STACK(g_stkdepth); 1065 break; 1066 1067 case 'n': 1068 if (!isdigit(optarg[0])) 1069 usage(); 1070 g_nrecs = atoi(optarg); 1071 break; 1072 1073 case 'd': 1074 if (!isdigit(optarg[0])) 1075 usage(); 1076 duration = atoll(optarg); 1077 1078 /* 1079 * XXX -- durations really should be per event 1080 * since the units are different, but it's hard 1081 * to express this nicely in the interface. 1082 * Not clear yet what the cleanest solution is. 1083 */ 1084 for (i = 0; i < LS_MAX_EVENTS; i++) 1085 if (g_event_info[i].ev_type != 'E') 1086 g_min_duration[i] = duration; 1087 1088 break; 1089 1090 case 'i': 1091 if (!isdigit(optarg[0])) 1092 usage(); 1093 i = atoi(optarg); 1094 if (i <= 0) 1095 usage(); 1096 if (i > MAX_HZ) 1097 fail(0, "max interrupt rate is %d Hz", MAX_HZ); 1098 1099 for (j = 0; j < LS_MAX_EVENTS; j++) 1100 if (strcmp(g_event_info[j].ev_desc, 1101 "Profiling interrupt") == 0) 1102 break; 1103 1104 (void) sprintf(g_event_info[j].ev_name, 1105 "profile:::profile-%d", i); 1106 break; 1107 1108 case 'l': 1109 case 'f': 1110 addrp = strtok(optarg, ","); 1111 sizep = strtok(NULL, ","); 1112 addrp = strtok(optarg, ",+"); 1113 offp = strtok(NULL, ","); 1114 1115 size = sizep ? strtoul(sizep, NULL, 0) : 1; 1116 off = offp ? strtoul(offp, NULL, 0) : 0; 1117 1118 if (addrp[0] == '0') { 1119 addr = strtoul(addrp, NULL, 16) + off; 1120 } else { 1121 addr = sym_to_addr(addrp) + off; 1122 if (sizep == NULL) 1123 size = sym_size(addrp) - off; 1124 if (addr - off == 0) 1125 fail(0, "symbol '%s' not found", addrp); 1126 if (size == 0) 1127 size = 1; 1128 } 1129 1130 1131 if (c == 'l') { 1132 filter_add(&filt, "arg0", addr, size); 1133 } else { 1134 filter_add(&filt, "caller", addr, size); 1135 filter_add(&ifilt, "arg0", addr, size); 1136 } 1137 break; 1138 1139 case 'e': 1140 evp = strtok_r(optarg, ",", &lastp); 1141 while (evp) { 1142 int ev1, ev2; 1143 char *evp2; 1144 1145 (void) strtok(evp, "-"); 1146 evp2 = strtok(NULL, "-"); 1147 ev1 = atoi(evp); 1148 ev2 = evp2 ? atoi(evp2) : ev1; 1149 if ((uint_t)ev1 >= LS_MAX_EVENTS || 1150 (uint_t)ev2 >= LS_MAX_EVENTS || ev1 > ev2) 1151 fail(0, "-e events out of range"); 1152 for (i = ev1; i <= ev2; i++) 1153 g_enabled[i] = 1; 1154 evp = strtok_r(NULL, ",", &lastp); 1155 } 1156 events_specified = 1; 1157 break; 1158 1159 case 'c': 1160 g_cflag = 1; 1161 break; 1162 1163 case 'k': 1164 g_kflag = 1; 1165 break; 1166 1167 case 'w': 1168 g_wflag = 1; 1169 break; 1170 1171 case 'W': 1172 g_Wflag = 1; 1173 break; 1174 1175 case 'g': 1176 g_gflag = 1; 1177 break; 1178 1179 case 'C': 1180 case 'E': 1181 case 'H': 1182 case 'I': 1183 for (i = 0; i < LS_MAX_EVENTS; i++) 1184 if (g_event_info[i].ev_type == c) 1185 g_enabled[i] = 1; 1186 events_specified = 1; 1187 break; 1188 1189 case 'A': 1190 for (i = 0; i < LS_MAX_EVENTS; i++) 1191 if (strchr("CH", g_event_info[i].ev_type)) 1192 g_enabled[i] = 1; 1193 events_specified = 1; 1194 break; 1195 1196 case 'T': 1197 g_tracing = 1; 1198 break; 1199 1200 case 'D': 1201 if (!isdigit(optarg[0])) 1202 usage(); 1203 g_topn = atoi(optarg); 1204 break; 1205 1206 case 'R': 1207 g_rates = 1; 1208 break; 1209 1210 case 'p': 1211 g_pflag = 1; 1212 break; 1213 1214 case 'P': 1215 g_Pflag = 1; 1216 break; 1217 1218 case 'o': 1219 if ((out = fopen(optarg, "w")) == NULL) 1220 fail(1, "error opening file"); 1221 break; 1222 1223 case 'V': 1224 g_Vflag = 1; 1225 break; 1226 1227 default: 1228 if (strchr(LOCKSTAT_OPTSTR, c) == NULL) 1229 usage(); 1230 } 1231 } 1232 1233 if (filt != NULL) { 1234 predicate_add(&g_predicate, filt, NULL, 0); 1235 filter_destroy(&filt); 1236 } 1237 1238 if (ifilt != NULL) { 1239 predicate_add(&g_ipredicate, ifilt, NULL, 0); 1240 filter_destroy(&ifilt); 1241 } 1242 1243 if (g_recsize == 0) { 1244 if (g_gflag) { 1245 g_stkdepth = LS_MAX_STACK_DEPTH; 1246 g_recsize = LS_STACK(g_stkdepth); 1247 } else { 1248 g_recsize = LS_TIME; 1249 } 1250 } 1251 1252 if (g_gflag && g_recsize <= LS_STACK(0)) 1253 fail(0, "'-g' requires at least '-s 1' data gathering"); 1254 1255 /* 1256 * Make sure the alignment is reasonable 1257 */ 1258 g_recsize = -(-g_recsize & -sizeof (uint64_t)); 1259 1260 for (i = 0; i < LS_MAX_EVENTS; i++) { 1261 /* 1262 * If no events were specified, enable -C. 1263 */ 1264 if (!events_specified && g_event_info[i].ev_type == 'C') 1265 g_enabled[i] = 1; 1266 } 1267 1268 for (i = 0; i < LS_MAX_EVENTS; i++) { 1269 if (!g_enabled[i]) 1270 continue; 1271 1272 if (g_event_info[i].ev_acquire != NULL) { 1273 /* 1274 * If we've enabled a hold event, we must explicitly 1275 * allocate dynamic variable space. 1276 */ 1277 dynvar = 1; 1278 } 1279 1280 dprog_addevent(i); 1281 } 1282 1283 /* 1284 * Make sure there are remaining arguments to specify a child command 1285 * to execute. 1286 */ 1287 if (argc <= optind) 1288 usage(); 1289 1290 if ((ncpus = sysconf(_SC_NPROCESSORS_ONLN)) == -1) 1291 dfail("couldn't determine number of online CPUs"); 1292 1293 /* 1294 * By default, we set our data buffer size to be the number of records 1295 * multiplied by the size of the record, doubled to account for some 1296 * DTrace slop and divided by the number of CPUs. We silently clamp 1297 * the aggregation size at both a minimum and a maximum to prevent 1298 * absurdly low or high values. 1299 */ 1300 if ((aggsize = (g_nrecs * g_recsize * 2) / ncpus) < MIN_AGGSIZE) 1301 aggsize = MIN_AGGSIZE; 1302 1303 if (aggsize > MAX_AGGSIZE) 1304 aggsize = MAX_AGGSIZE; 1305 1306 (void) sprintf(aggstr, "%lld", (long long)aggsize); 1307 1308 if (!g_tracing) { 1309 if (dtrace_setopt(g_dtp, "bufsize", "4k") == -1) 1310 dfail("failed to set 'bufsize'"); 1311 1312 if (dtrace_setopt(g_dtp, "aggsize", aggstr) == -1) 1313 dfail("failed to set 'aggsize'"); 1314 1315 if (dynvar) { 1316 /* 1317 * If we're using dynamic variables, we set our 1318 * dynamic variable size to be one megabyte per CPU, 1319 * with a hard-limit of 32 megabytes. This may still 1320 * be too small in some cases, but it can be tuned 1321 * manually via -x if need be. 1322 */ 1323 (void) sprintf(aggstr, "%ldm", ncpus < 32 ? ncpus : 32); 1324 1325 if (dtrace_setopt(g_dtp, "dynvarsize", aggstr) == -1) 1326 dfail("failed to set 'dynvarsize'"); 1327 } 1328 } else { 1329 if (dtrace_setopt(g_dtp, "bufsize", aggstr) == -1) 1330 dfail("failed to set 'bufsize'"); 1331 } 1332 1333 if (dtrace_setopt(g_dtp, "statusrate", "10sec") == -1) 1334 dfail("failed to set 'statusrate'"); 1335 1336 optind = 1; 1337 while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) { 1338 switch (c) { 1339 case 'x': 1340 if ((p = strchr(optarg, '=')) != NULL) 1341 *p++ = '\0'; 1342 1343 if (dtrace_setopt(g_dtp, optarg, p) != 0) 1344 dfail("failed to set -x %s", optarg); 1345 break; 1346 } 1347 } 1348 1349 argc -= optind; 1350 argv += optind; 1351 1352 dprog_compile(); 1353 status_init(); 1354 1355 g_elapsed = -gethrtime(); 1356 1357 /* 1358 * Spawn the specified command and wait for it to complete. 1359 */ 1360 child = fork(); 1361 if (child == -1) 1362 fail(1, "cannot fork"); 1363 if (child == 0) { 1364 (void) dtrace_close(g_dtp); 1365 (void) execvp(argv[0], &argv[0]); 1366 exec_errno = errno; 1367 exit(127); 1368 } 1369 1370 while (waitpid(child, &status, WEXITED) != child) 1371 status_check(); 1372 1373 g_elapsed += gethrtime(); 1374 1375 if (WIFEXITED(status)) { 1376 if (WEXITSTATUS(status) != 0) { 1377 if (exec_errno != 0) { 1378 errno = exec_errno; 1379 fail(1, "could not execute %s", argv[0]); 1380 } 1381 (void) fprintf(stderr, 1382 "lockstat: warning: %s exited with code %d\n", 1383 argv[0], WEXITSTATUS(status)); 1384 } 1385 } else { 1386 (void) fprintf(stderr, 1387 "lockstat: warning: %s died on signal %d\n", 1388 argv[0], WTERMSIG(status)); 1389 } 1390 1391 if (dtrace_stop(g_dtp) == -1) 1392 dfail("failed to stop dtrace"); 1393 1394 /* 1395 * Before we read out the results, we need to allocate our buffer. 1396 * If we're tracing, then we'll just use the precalculated size. If 1397 * we're not, then we'll take a snapshot of the aggregate, and walk 1398 * it to count the number of records. 1399 */ 1400 if (!g_tracing) { 1401 if (dtrace_aggregate_snap(g_dtp) != 0) 1402 dfail("failed to snap aggregate"); 1403 1404 g_nrecs = 0; 1405 1406 if (dtrace_aggregate_walk(g_dtp, 1407 count_aggregate, &g_nrecs) != 0) 1408 dfail("failed to walk aggregate"); 1409 } 1410 1411 if ((data_buf = memalign(sizeof (uint64_t), 1412 (g_nrecs + 1) * g_recsize)) == NULL) 1413 fail(1, "Memory allocation failed"); 1414 1415 /* 1416 * Read out the DTrace data. 1417 */ 1418 g_nrecs_used = process_data(out, data_buf); 1419 1420 if (g_nrecs_used > g_nrecs || g_dropped) 1421 (void) fprintf(stderr, "lockstat: warning: " 1422 "ran out of data records (use -n for more)\n"); 1423 1424 /* LINTED - alignment */ 1425 for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, 1426 /* LINTED - alignment */ 1427 lsp = (lsrec_t *)((char *)lsp + g_recsize)) { 1428 ev_count[lsp->ls_event] += lsp->ls_count; 1429 ev_time[lsp->ls_event] += lsp->ls_time; 1430 } 1431 1432 /* 1433 * If -g was specified, convert stacks into individual records. 1434 */ 1435 if (g_gflag) { 1436 lsrec_t *newlsp, *oldlsp; 1437 1438 newlsp = memalign(sizeof (uint64_t), 1439 g_nrecs_used * LS_TIME * (g_stkdepth + 1)); 1440 if (newlsp == NULL) 1441 fail(1, "Cannot allocate space for -g processing"); 1442 lsp = newlsp; 1443 /* LINTED - alignment */ 1444 for (i = 0, oldlsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, 1445 /* LINTED - alignment */ 1446 oldlsp = (lsrec_t *)((char *)oldlsp + g_recsize)) { 1447 int fr; 1448 int caller_in_stack = 0; 1449 1450 if (oldlsp->ls_count == 0) 1451 continue; 1452 1453 for (fr = 0; fr < g_stkdepth; fr++) { 1454 if (oldlsp->ls_stack[fr] == 0) 1455 break; 1456 if (oldlsp->ls_stack[fr] == oldlsp->ls_caller) 1457 caller_in_stack = 1; 1458 bcopy(oldlsp, lsp, LS_TIME); 1459 lsp->ls_caller = oldlsp->ls_stack[fr]; 1460 /* LINTED - alignment */ 1461 lsp = (lsrec_t *)((char *)lsp + LS_TIME); 1462 } 1463 if (!caller_in_stack) { 1464 bcopy(oldlsp, lsp, LS_TIME); 1465 /* LINTED - alignment */ 1466 lsp = (lsrec_t *)((char *)lsp + LS_TIME); 1467 } 1468 } 1469 g_nrecs = g_nrecs_used = 1470 ((uintptr_t)lsp - (uintptr_t)newlsp) / LS_TIME; 1471 g_recsize = LS_TIME; 1472 g_stkdepth = 0; 1473 free(data_buf); 1474 data_buf = (char *)newlsp; 1475 } 1476 1477 if ((sort_buf = calloc(2 * (g_nrecs + 1), 1478 sizeof (void *))) == NULL) 1479 fail(1, "Sort buffer allocation failed"); 1480 merge_buf = sort_buf + (g_nrecs + 1); 1481 1482 /* 1483 * Build the sort buffer, discarding zero-count records along the way. 1484 */ 1485 /* LINTED - alignment */ 1486 for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, 1487 /* LINTED - alignment */ 1488 lsp = (lsrec_t *)((char *)lsp + g_recsize)) { 1489 if (lsp->ls_count == 0) 1490 lsp->ls_event = LS_MAX_EVENTS; 1491 sort_buf[i] = lsp; 1492 } 1493 1494 if (g_nrecs_used == 0) 1495 exit(0); 1496 1497 /* 1498 * Add a sentinel after the last record 1499 */ 1500 sort_buf[i] = lsp; 1501 lsp->ls_event = LS_MAX_EVENTS; 1502 1503 if (g_tracing) { 1504 report_trace(out, sort_buf); 1505 return (0); 1506 } 1507 1508 /* 1509 * Application of -g may have resulted in multiple records 1510 * with the same signature; coalesce them. 1511 */ 1512 if (g_gflag) { 1513 mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used); 1514 coalesce(lockcmp, sort_buf, g_nrecs_used); 1515 } 1516 1517 /* 1518 * Coalesce locks within the same symbol if -c option specified. 1519 * Coalesce PCs within the same function if -k option specified. 1520 */ 1521 if (g_cflag || g_kflag) { 1522 for (i = 0; i < g_nrecs_used; i++) { 1523 int fr; 1524 lsp = sort_buf[i]; 1525 if (g_cflag) 1526 coalesce_symbol(&lsp->ls_lock); 1527 if (g_kflag) { 1528 for (fr = 0; fr < g_stkdepth; fr++) 1529 coalesce_symbol(&lsp->ls_stack[fr]); 1530 coalesce_symbol(&lsp->ls_caller); 1531 } 1532 } 1533 mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used); 1534 coalesce(lockcmp, sort_buf, g_nrecs_used); 1535 } 1536 1537 /* 1538 * Coalesce callers if -w option specified 1539 */ 1540 if (g_wflag) { 1541 mergesort(lock_and_count_cmp_anywhere, 1542 sort_buf, merge_buf, g_nrecs_used); 1543 coalesce(lockcmp_anywhere, sort_buf, g_nrecs_used); 1544 } 1545 1546 /* 1547 * Coalesce locks if -W option specified 1548 */ 1549 if (g_Wflag) { 1550 mergesort(site_and_count_cmp_anylock, 1551 sort_buf, merge_buf, g_nrecs_used); 1552 coalesce(sitecmp_anylock, sort_buf, g_nrecs_used); 1553 } 1554 1555 /* 1556 * Sort data by contention count (ls_count) or total time (ls_time), 1557 * depending on g_Pflag. Override g_Pflag if time wasn't measured. 1558 */ 1559 if (g_recsize < LS_TIME) 1560 g_Pflag = 0; 1561 1562 if (g_Pflag) 1563 mergesort(timecmp, sort_buf, merge_buf, g_nrecs_used); 1564 else 1565 mergesort(countcmp, sort_buf, merge_buf, g_nrecs_used); 1566 1567 /* 1568 * Display data by event type 1569 */ 1570 first = &sort_buf[0]; 1571 while ((event = (*first)->ls_event) < LS_MAX_EVENTS) { 1572 current = first; 1573 while ((lsp = *current)->ls_event == event) 1574 current++; 1575 report_stats(out, first, current - first, ev_count[event], 1576 ev_time[event]); 1577 first = current; 1578 } 1579 1580 return (0); 1581 } 1582 1583 static char * 1584 format_symbol(char *buf, uintptr_t addr, int show_size) 1585 { 1586 uintptr_t symoff; 1587 char *symname; 1588 size_t symsize; 1589 1590 symname = addr_to_sym(addr, &symoff, &symsize); 1591 1592 if (show_size && symoff == 0) 1593 (void) sprintf(buf, "%s[%ld]", symname, (long)symsize); 1594 else if (symoff == 0) 1595 (void) sprintf(buf, "%s", symname); 1596 else if (symoff < 16 && bcmp(symname, "cpu[", 4) == 0) /* CPU+PIL */ 1597 (void) sprintf(buf, "%s+%ld", symname, (long)symoff); 1598 else if (symoff <= symsize || (symoff < 256 && addr != symoff)) 1599 (void) sprintf(buf, "%s+0x%llx", symname, 1600 (unsigned long long)symoff); 1601 else 1602 (void) sprintf(buf, "0x%llx", (unsigned long long)addr); 1603 return (buf); 1604 } 1605 1606 static void 1607 report_stats(FILE *out, lsrec_t **sort_buf, size_t nrecs, uint64_t total_count, 1608 uint64_t total_time) 1609 { 1610 uint32_t event = sort_buf[0]->ls_event; 1611 lsrec_t *lsp; 1612 double ptotal = 0.0; 1613 double percent; 1614 int i, j, fr; 1615 int displayed; 1616 int first_bin, last_bin, max_bin_count, total_bin_count; 1617 int rectype; 1618 char buf[256]; 1619 char lhdr[80], chdr[80]; 1620 1621 rectype = g_recsize; 1622 1623 if (g_topn == 0) { 1624 (void) fprintf(out, "%20llu %s\n", 1625 g_rates == 0 ? total_count : 1626 ((unsigned long long)total_count * NANOSEC) / g_elapsed, 1627 g_event_info[event].ev_desc); 1628 return; 1629 } 1630 1631 (void) sprintf(lhdr, "%s%s", 1632 g_Wflag ? "Hottest " : "", g_event_info[event].ev_lhdr); 1633 (void) sprintf(chdr, "%s%s", 1634 g_wflag ? "Hottest " : "", "Caller"); 1635 1636 if (!g_pflag) 1637 (void) fprintf(out, 1638 "\n%s: %.0f events in %.3f seconds (%.0f events/sec)\n\n", 1639 g_event_info[event].ev_desc, (double)total_count, 1640 (double)g_elapsed / NANOSEC, 1641 (double)total_count * NANOSEC / g_elapsed); 1642 1643 if (!g_pflag && rectype < LS_HIST) { 1644 (void) sprintf(buf, "%s", g_event_info[event].ev_units); 1645 (void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n", 1646 g_rates ? "ops/s" : "Count", 1647 g_gflag ? "genr" : "indv", 1648 "cuml", "rcnt", rectype >= LS_TIME ? buf : "", lhdr, chdr); 1649 (void) fprintf(out, "---------------------------------" 1650 "----------------------------------------------\n"); 1651 } 1652 1653 displayed = 0; 1654 for (i = 0; i < nrecs; i++) { 1655 lsp = sort_buf[i]; 1656 1657 if (displayed++ >= g_topn) 1658 break; 1659 1660 if (g_pflag) { 1661 int j; 1662 1663 (void) fprintf(out, "%u %u", 1664 lsp->ls_event, lsp->ls_count); 1665 (void) fprintf(out, " %s", 1666 format_symbol(buf, lsp->ls_lock, g_cflag)); 1667 (void) fprintf(out, " %s", 1668 format_symbol(buf, lsp->ls_caller, 0)); 1669 (void) fprintf(out, " %f", 1670 (double)lsp->ls_refcnt / lsp->ls_count); 1671 if (rectype >= LS_TIME) 1672 (void) fprintf(out, " %llu", 1673 (unsigned long long)lsp->ls_time); 1674 if (rectype >= LS_HIST) { 1675 for (j = 0; j < 64; j++) 1676 (void) fprintf(out, " %u", 1677 lsp->ls_hist[j]); 1678 } 1679 for (j = 0; j < LS_MAX_STACK_DEPTH; j++) { 1680 if (rectype <= LS_STACK(j) || 1681 lsp->ls_stack[j] == 0) 1682 break; 1683 (void) fprintf(out, " %s", 1684 format_symbol(buf, lsp->ls_stack[j], 0)); 1685 } 1686 (void) fprintf(out, "\n"); 1687 continue; 1688 } 1689 1690 if (rectype >= LS_HIST) { 1691 (void) fprintf(out, "---------------------------------" 1692 "----------------------------------------------\n"); 1693 (void) sprintf(buf, "%s", 1694 g_event_info[event].ev_units); 1695 (void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n", 1696 g_rates ? "ops/s" : "Count", 1697 g_gflag ? "genr" : "indv", 1698 "cuml", "rcnt", buf, lhdr, chdr); 1699 } 1700 1701 if (g_Pflag && total_time != 0) 1702 percent = (lsp->ls_time * 100.00) / total_time; 1703 else 1704 percent = (lsp->ls_count * 100.00) / total_count; 1705 1706 ptotal += percent; 1707 1708 if (rectype >= LS_TIME) 1709 (void) sprintf(buf, "%llu", 1710 (unsigned long long)(lsp->ls_time / lsp->ls_count)); 1711 else 1712 buf[0] = '\0'; 1713 1714 (void) fprintf(out, "%5llu ", 1715 g_rates == 0 ? lsp->ls_count : 1716 ((uint64_t)lsp->ls_count * NANOSEC) / g_elapsed); 1717 1718 (void) fprintf(out, "%3.0f%% ", percent); 1719 1720 if (g_gflag) 1721 (void) fprintf(out, "---- "); 1722 else 1723 (void) fprintf(out, "%3.0f%% ", ptotal); 1724 1725 (void) fprintf(out, "%4.2f %8s ", 1726 (double)lsp->ls_refcnt / lsp->ls_count, buf); 1727 1728 (void) fprintf(out, "%-22s ", 1729 format_symbol(buf, lsp->ls_lock, g_cflag)); 1730 1731 (void) fprintf(out, "%-24s\n", 1732 format_symbol(buf, lsp->ls_caller, 0)); 1733 1734 if (rectype < LS_HIST) 1735 continue; 1736 1737 (void) fprintf(out, "\n"); 1738 (void) fprintf(out, "%10s %31s %-9s %-24s\n", 1739 g_event_info[event].ev_units, 1740 "------ Time Distribution ------", 1741 g_rates ? "ops/s" : "count", 1742 rectype > LS_STACK(0) ? "Stack" : ""); 1743 1744 first_bin = 0; 1745 while (lsp->ls_hist[first_bin] == 0) 1746 first_bin++; 1747 1748 last_bin = 63; 1749 while (lsp->ls_hist[last_bin] == 0) 1750 last_bin--; 1751 1752 max_bin_count = 0; 1753 total_bin_count = 0; 1754 for (j = first_bin; j <= last_bin; j++) { 1755 total_bin_count += lsp->ls_hist[j]; 1756 if (lsp->ls_hist[j] > max_bin_count) 1757 max_bin_count = lsp->ls_hist[j]; 1758 } 1759 1760 /* 1761 * If we went a few frames below the caller, ignore them 1762 */ 1763 for (fr = 3; fr > 0; fr--) 1764 if (lsp->ls_stack[fr] == lsp->ls_caller) 1765 break; 1766 1767 for (j = first_bin; j <= last_bin; j++) { 1768 uint_t depth = (lsp->ls_hist[j] * 30) / total_bin_count; 1769 (void) fprintf(out, "%10llu |%s%s %-9u ", 1770 1ULL << j, 1771 "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" + 30 - depth, 1772 " " + depth, 1773 g_rates == 0 ? lsp->ls_hist[j] : 1774 (uint_t)(((uint64_t)lsp->ls_hist[j] * NANOSEC) / 1775 g_elapsed)); 1776 if (rectype <= LS_STACK(fr) || lsp->ls_stack[fr] == 0) { 1777 (void) fprintf(out, "\n"); 1778 continue; 1779 } 1780 (void) fprintf(out, "%-24s\n", 1781 format_symbol(buf, lsp->ls_stack[fr], 0)); 1782 fr++; 1783 } 1784 while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) { 1785 (void) fprintf(out, "%15s %-36s %-24s\n", "", "", 1786 format_symbol(buf, lsp->ls_stack[fr], 0)); 1787 fr++; 1788 } 1789 } 1790 1791 if (!g_pflag) 1792 (void) fprintf(out, "---------------------------------" 1793 "----------------------------------------------\n"); 1794 1795 (void) fflush(out); 1796 } 1797 1798 static void 1799 report_trace(FILE *out, lsrec_t **sort_buf) 1800 { 1801 lsrec_t *lsp; 1802 int i, fr; 1803 int rectype; 1804 char buf[256], buf2[256]; 1805 1806 rectype = g_recsize; 1807 1808 if (!g_pflag) { 1809 (void) fprintf(out, "%5s %7s %11s %-24s %-24s\n", 1810 "Event", "Time", "Owner", "Lock", "Caller"); 1811 (void) fprintf(out, "---------------------------------" 1812 "----------------------------------------------\n"); 1813 } 1814 1815 for (i = 0; i < g_nrecs_used; i++) { 1816 1817 lsp = sort_buf[i]; 1818 1819 if (lsp->ls_event >= LS_MAX_EVENTS || lsp->ls_count == 0) 1820 continue; 1821 1822 (void) fprintf(out, "%2d %10llu %11p %-24s %-24s\n", 1823 lsp->ls_event, (unsigned long long)lsp->ls_time, 1824 (void *)lsp->ls_next, 1825 format_symbol(buf, lsp->ls_lock, 0), 1826 format_symbol(buf2, lsp->ls_caller, 0)); 1827 1828 if (rectype <= LS_STACK(0)) 1829 continue; 1830 1831 /* 1832 * If we went a few frames below the caller, ignore them 1833 */ 1834 for (fr = 3; fr > 0; fr--) 1835 if (lsp->ls_stack[fr] == lsp->ls_caller) 1836 break; 1837 1838 while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) { 1839 (void) fprintf(out, "%53s %-24s\n", "", 1840 format_symbol(buf, lsp->ls_stack[fr], 0)); 1841 fr++; 1842 } 1843 (void) fprintf(out, "\n"); 1844 } 1845 1846 (void) fflush(out); 1847 } 1848