1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <stdio.h> 34 #include <limits.h> 35 #include <unistd.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <sys/signal.h> 39 #include <sys/mnttab.h> 40 #include <errno.h> 41 #include <sys/types.h> 42 #include <sys/stat.h> 43 #include <sys/param.h> 44 #include <sys/wait.h> 45 #include <sys/vfstab.h> 46 #include <sys/fcntl.h> 47 #include <sys/resource.h> 48 #include <sys/mntent.h> 49 #include <sys/ctfs.h> 50 #include <locale.h> 51 #include <stdarg.h> 52 #include <sys/mount.h> 53 #include <sys/objfs.h> 54 #include "fslib.h" 55 56 #define FS_PATH "/usr/lib/fs" 57 #define ALT_PATH "/etc/fs" 58 #define FULLPATH_MAX 32 59 #define FSTYPE_MAX 8 60 #define ARGV_MAX 16 61 62 int aflg, oflg, Vflg, dashflg, dflg, fflg; 63 64 extern void rpterr(), usage(), mnterror(); 65 66 extern char *optarg; /* used by getopt */ 67 extern int optind, opterr; 68 69 static char *myname; 70 char fs_path[] = FS_PATH; 71 char alt_path[] = ALT_PATH; 72 char mnttab[MAXPATHLEN + 1]; 73 char *oarg, *farg; 74 int maxrun, nrun; 75 int no_mnttab; 76 int lofscnt; /* presence of lofs prohibits parallel */ 77 /* umounting */ 78 int exitcode; 79 char resolve[MAXPATHLEN]; 80 static char ibuf[BUFSIZ]; 81 82 /* 83 * Currently, mounting cachefs's simultaneous uncovers various problems. 84 * For the short term, we serialize cachefs activity while we fix 85 * these cachefs bugs. 86 */ 87 #define CACHEFS_BUG 88 #ifdef CACHEFS_BUG 89 #include <sys/fs/cachefs_fs.h> /* for BACKMNT_NAME */ 90 int cachefs_running; /* parallel cachefs not supported yet */ 91 #endif 92 93 /* 94 * The basic mount struct that describes an mnttab entry. 95 * It is used both in an array and as a linked list elem. 96 */ 97 98 typedef struct mountent { 99 struct mnttab ment; /* the mnttab data */ 100 int mlevel; /* mount level of the mount pt */ 101 pid_t pid; /* the pid of this mount process */ 102 #define RDPIPE 0 103 #define WRPIPE 1 104 int sopipe[2]; /* pipe attached to child's stdout */ 105 int sepipe[2]; /* pipe attached to child's stderr */ 106 struct mountent *link; /* used when in linked list */ 107 } mountent_t; 108 109 static mountent_t *mntll; /* head of global linked list of */ 110 /* mountents */ 111 int listlength; /* # of elems in this list */ 112 113 /* 114 * If the automatic flag (-a) is given and mount points are not specified 115 * on the command line, then do not attempt to umount these. These 116 * generally need to be kept mounted until system shutdown. 117 */ 118 static const char *keeplist[] = { 119 "/", 120 "/dev", 121 "/dev/fd", 122 "/devices", 123 "/etc/mnttab", 124 "/etc/svc/volatile", 125 "/lib", 126 "/proc", 127 "/sbin", 128 CTFS_ROOT, 129 OBJFS_ROOT, 130 "/tmp", 131 "/usr", 132 "/var", 133 "/var/adm", 134 "/var/run", 135 NULL 136 }; 137 138 static void nomem(); 139 static void doexec(struct mnttab *); 140 static int setup_iopipe(mountent_t *); 141 static void setup_output(mountent_t *); 142 static void doio(mountent_t *); 143 static void do_umounts(mountent_t **); 144 static int dowait(); 145 static int parumount(); 146 static int mcompar(const void *, const void *); 147 static void cleanup(int); 148 149 static mountent_t **make_mntarray(char **, int); 150 static mountent_t *getmntall(); 151 static mountent_t *new_mountent(struct mnttab *); 152 static mountent_t *getmntlast(mountent_t *, char *, char *); 153 154 main(argc, argv) 155 int argc; 156 char **argv; 157 { 158 int cc; 159 struct mnttab mget; 160 char *mname, *is_special; 161 int fscnt; 162 mountent_t *mp; 163 164 (void) setlocale(LC_ALL, ""); 165 166 #if !defined(TEXT_DOMAIN) 167 #define TEXT_DOMAIN "SYS_TEST" 168 #endif 169 (void) textdomain(TEXT_DOMAIN); 170 171 myname = strrchr(argv[0], '/'); 172 if (myname) 173 myname++; 174 else 175 myname = argv[0]; 176 177 /* 178 * Process the args. 179 * "-d" for compatibility 180 */ 181 while ((cc = getopt(argc, argv, "ado:Vf?")) != -1) 182 switch (cc) { 183 case 'a': 184 aflg++; 185 break; 186 #ifdef DEBUG 187 case 'd': 188 dflg++; 189 break; 190 #endif 191 192 case '?': 193 usage(); 194 break; 195 case 'o': 196 if (oflg) 197 usage(); 198 else { 199 oflg++; 200 oarg = optarg; 201 } 202 break; 203 case 'f': 204 fflg++; 205 break; 206 case 'V': 207 if (Vflg) 208 usage(); 209 else 210 Vflg++; 211 break; 212 default: 213 usage(); 214 break; 215 } 216 217 fscnt = argc - optind; 218 if (!aflg && fscnt != 1) 219 usage(); 220 221 /* copy '--' to specific */ 222 if (strcmp(argv[optind-1], "--") == 0) 223 dashflg++; 224 225 /* 226 * mnttab may be a symlink to a file in another file system. 227 * This happens during install when / is mounted read-only 228 * and /etc/mnttab is symlinked to a file in /tmp. 229 * If this is the case, we need to follow the symlink to the 230 * read-write file itself so that the subsequent mnttab.temp 231 * open and rename will work. 232 */ 233 if (realpath(MNTTAB, mnttab) == NULL) { 234 strcpy(mnttab, MNTTAB); 235 } 236 237 /* 238 * bugid 1205242 239 * call the realpath() here, so that if the user is 240 * trying to umount an autofs directory, the directory 241 * is forced to mount. 242 */ 243 244 mname = argv[optind]; 245 is_special = realpath(mname, resolve); 246 247 /* 248 * Read the whole mnttab into memory. 249 */ 250 mntll = getmntall(); 251 252 if (aflg && fscnt != 1) 253 exit(parumount(argv + optind, fscnt)); 254 255 aflg = 0; 256 257 mntnull(&mget); 258 if (listlength == 0) { 259 fprintf(stderr, gettext( 260 "%s: warning: no entries found in %s\n"), 261 myname, mnttab); 262 mget.mnt_mountp = mname; /* assume mount point */ 263 no_mnttab++; 264 doexec(&mget); 265 exit(0); 266 } 267 268 mp = NULL; 269 270 /* 271 * if realpath fails, it can't be a mount point, so we'll 272 * go straight to the code that treats the arg as a special. 273 * if realpath succeeds, it could be a special or a mount point; 274 * we'll start by assuming it's a mount point, and if it's not, 275 * try to treat it as a special. 276 */ 277 if (is_special != NULL) { 278 /* 279 * if this succeeds, 280 * we'll have the appropriate record; if it fails 281 * we'll assume the arg is a special of some sort 282 */ 283 mp = getmntlast(mntll, NULL, resolve); 284 } 285 /* 286 * Since stackable mount is allowed (RFE 2001535), 287 * we will un-mount the last entry in the MNTTAB that matches. 288 */ 289 if (mp == NULL) { 290 /* 291 * Perhaps there is a bogus mnttab entry that 292 * can't be resolved: 293 */ 294 if ((mp = getmntlast(mntll, NULL, mname)) == NULL) 295 /* 296 * assume it's a device (special) now 297 */ 298 mp = getmntlast(mntll, mname, NULL); 299 if (mp) { 300 /* 301 * Found it. 302 * This is a device. Now we want to know if 303 * it stackmounted on by something else. 304 * The original fix for bug 1103850 has a 305 * problem with lockfs (bug 1119731). This 306 * is a revised method. 307 */ 308 mountent_t *lmp; 309 lmp = getmntlast(mntll, NULL, mp->ment.mnt_mountp); 310 311 if (lmp && strcmp(lmp->ment.mnt_special, 312 mp->ment.mnt_special)) { 313 errno = EBUSY; 314 rpterr(mname); 315 exit(1); 316 } 317 } else { 318 fprintf(stderr, gettext( 319 "%s: warning: %s not in mnttab\n"), 320 myname, mname); 321 if (Vflg) 322 exit(1); 323 /* 324 * same error as mount -V 325 * would give for unknown 326 * mount point 327 */ 328 mget.mnt_special = mget.mnt_mountp = mname; 329 } 330 } 331 332 if (mp) 333 doexec(&mp->ment); 334 else 335 doexec(&mget); 336 337 exit(0); 338 } 339 340 void 341 doexec(struct mnttab *ment) 342 { 343 int ret; 344 345 #ifdef DEBUG 346 if (dflg) 347 fprintf(stderr, "%d: umounting %s\n", 348 getpid(), ment->mnt_mountp); 349 #endif 350 351 /* try to exec the dependent portion */ 352 if ((ment->mnt_fstype != NULL) || Vflg) { 353 char full_path[FULLPATH_MAX]; 354 char alter_path[FULLPATH_MAX]; 355 char *newargv[ARGV_MAX]; 356 int ii; 357 358 if (strlen(ment->mnt_fstype) > (size_t)FSTYPE_MAX) { 359 fprintf(stderr, gettext( 360 "%s: FSType %s exceeds %d characters\n"), 361 myname, ment->mnt_fstype, FSTYPE_MAX); 362 exit(1); 363 } 364 365 /* build the full pathname of the fstype dependent command. */ 366 sprintf(full_path, "%s/%s/%s", fs_path, ment->mnt_fstype, 367 myname); 368 sprintf(alter_path, "%s/%s/%s", alt_path, ment->mnt_fstype, 369 myname); 370 371 /* 372 * create the new arg list, and end the list with a 373 * null pointer 374 */ 375 ii = 2; 376 if (oflg) { 377 newargv[ii++] = "-o"; 378 newargv[ii++] = oarg; 379 } 380 if (dashflg) { 381 newargv[ii++] = "--"; 382 } 383 if (fflg) { 384 newargv[ii++] = "-f"; 385 } 386 newargv[ii++] = (ment->mnt_mountp) 387 ? ment->mnt_mountp : ment->mnt_special; 388 newargv[ii] = NULL; 389 390 /* set the new argv[0] to the filename */ 391 newargv[1] = myname; 392 393 if (Vflg) { 394 printf("%s", myname); 395 for (ii = 2; newargv[ii]; ii++) 396 printf(" %s", newargv[ii]); 397 printf("\n"); 398 fflush(stdout); 399 exit(0); 400 } 401 402 /* Try to exec the fstype dependent umount. */ 403 execv(full_path, &newargv[1]); 404 if (errno == ENOEXEC) { 405 newargv[0] = "sh"; 406 newargv[1] = full_path; 407 execv("/sbin/sh", &newargv[0]); 408 } 409 newargv[1] = myname; 410 execv(alter_path, &newargv[1]); 411 if (errno == ENOEXEC) { 412 newargv[0] = "sh"; 413 newargv[1] = alter_path; 414 execv("/sbin/sh", &newargv[0]); 415 } 416 /* exec failed */ 417 if (errno != ENOENT) { 418 fprintf(stderr, gettext("umount: cannot execute %s\n"), 419 full_path); 420 exit(1); 421 } 422 } 423 /* 424 * No fstype independent executable then. We'll go generic 425 * from here. 426 */ 427 428 /* don't use -o with generic */ 429 if (oflg) { 430 fprintf(stderr, gettext( 431 "%s: %s specific umount does not exist; -o suboption ignored\n"), 432 myname, ment->mnt_fstype ? ment->mnt_fstype : "<null>"); 433 } 434 435 signal(SIGHUP, SIG_IGN); 436 signal(SIGQUIT, SIG_IGN); 437 signal(SIGINT, SIG_IGN); 438 /* 439 * Try to umount the mountpoint. 440 * If that fails, try the corresponding special. 441 * (This ordering is necessary for nfs umounts.) 442 * (for remote resources: if the first umount returns EBUSY 443 * don't call umount again - umount() with a resource name 444 * will return a misleading error to the user 445 */ 446 if (fflg) { 447 if (((ret = umount2(ment->mnt_mountp, MS_FORCE)) < 0) && 448 (errno != EBUSY && errno != ENOTSUP && 449 errno != EPERM)) 450 ret = umount2(ment->mnt_special, MS_FORCE); 451 } else { 452 if (((ret = umount2(ment->mnt_mountp, 0)) < 0) && 453 (errno != EBUSY) && (errno != EPERM)) 454 ret = umount2(ment->mnt_special, 0); 455 } 456 457 if (ret < 0) { 458 rpterr(ment->mnt_mountp); 459 if (errno != EINVAL && errno != EFAULT) 460 exit(1); 461 462 exitcode = 1; 463 } 464 465 exit(exitcode); 466 } 467 468 void 469 rpterr(sp) 470 char *sp; 471 { 472 switch (errno) { 473 case EPERM: 474 fprintf(stderr, gettext("%s: permission denied\n"), myname); 475 break; 476 case ENXIO: 477 fprintf(stderr, gettext("%s: %s no device\n"), myname, sp); 478 break; 479 case ENOENT: 480 fprintf(stderr, 481 gettext("%s: %s no such file or directory\n"), 482 myname, sp); 483 break; 484 case EINVAL: 485 fprintf(stderr, gettext("%s: %s not mounted\n"), myname, sp); 486 break; 487 case EBUSY: 488 fprintf(stderr, gettext("%s: %s busy\n"), myname, sp); 489 break; 490 case ENOTBLK: 491 fprintf(stderr, 492 gettext("%s: %s block device required\n"), myname, sp); 493 break; 494 case ECOMM: 495 fprintf(stderr, 496 gettext("%s: warning: broken link detected\n"), myname); 497 break; 498 default: 499 perror(myname); 500 fprintf(stderr, gettext("%s: cannot unmount %s\n"), myname, sp); 501 } 502 } 503 504 void 505 usage() 506 { 507 fprintf(stderr, gettext( 508 "Usage:\n%s [-f] [-V] [-o specific_options] {special | mount-point}\n"), 509 myname); 510 fprintf(stderr, gettext( 511 "%s -a [-f] [-V] [-o specific_options] [mount_point ...]\n"), myname); 512 exit(1); 513 } 514 515 void 516 mnterror(flag) 517 int flag; 518 { 519 switch (flag) { 520 case MNT_TOOLONG: 521 fprintf(stderr, 522 gettext("%s: line in mnttab exceeds %d characters\n"), 523 myname, MNT_LINE_MAX-2); 524 break; 525 case MNT_TOOFEW: 526 fprintf(stderr, 527 gettext("%s: line in mnttab has too few entries\n"), 528 myname); 529 break; 530 default: 531 break; 532 } 533 } 534 535 /* 536 * Search the mlist linked list for the 537 * first match of specp or mntp. The list is expected to be in reverse 538 * order of /etc/mnttab. 539 * If both are specified, then both have to match. 540 * Returns the (mountent_t *) of the match, otherwise returns NULL. 541 */ 542 mountent_t * 543 getmntlast(mountent_t *mlist, char *specp, char *mntp) 544 { 545 int mfound, sfound; 546 547 for (/* */; mlist; mlist = mlist->link) { 548 mfound = sfound = 0; 549 if (mntp && (strcmp(mlist->ment.mnt_mountp, mntp) == 0)) { 550 if (specp == NULL) 551 return (mlist); 552 mfound++; 553 } 554 if (specp && (strcmp(mlist->ment.mnt_special, specp) == 0)) { 555 if (mntp == NULL) 556 return (mlist); 557 sfound++; 558 } 559 if (mfound && sfound) 560 return (mlist); 561 } 562 return (NULL); 563 } 564 565 566 567 /* 568 * Perform the parallel version of umount. Returns 0 if no errors occurred, 569 * non zero otherwise. 570 */ 571 int 572 parumount(char **mntlist, int count) 573 { 574 int maxfd = OPEN_MAX; 575 struct rlimit rl; 576 mountent_t **mntarray, **ml, *mp; 577 578 /* 579 * If no mount points are specified and none were found in mnttab, 580 * then end it all here. 581 */ 582 if (count == 0 && mntll == NULL) 583 return (0); 584 585 /* 586 * This is the process scaling section. After running a series 587 * of tests based on the number of simultaneous processes and 588 * processors available, optimum performance was achieved near or 589 * at (PROCN * 2). 590 */ 591 if ((maxrun = sysconf(_SC_NPROCESSORS_ONLN)) == -1) 592 maxrun = 4; 593 else 594 maxrun = maxrun * 2 + 1; 595 596 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) { 597 rl.rlim_cur = rl.rlim_max; 598 if (setrlimit(RLIMIT_NOFILE, &rl) == 0) 599 maxfd = (int)rl.rlim_cur; 600 } 601 602 /* 603 * The parent needs to maintain 3 of its own fd's, plus 2 for 604 * each child (the stdout and stderr pipes). 605 */ 606 maxfd = (maxfd / 2) - 6; /* 6 takes care of temporary */ 607 /* periods of open fds */ 608 if (maxfd < maxrun) 609 maxrun = maxfd; 610 if (maxrun < 4) 611 maxrun = 4; /* sanity check */ 612 613 mntarray = make_mntarray(mntlist, count); 614 615 if (listlength == 0) { 616 if (count == 0) /* not an error, just none found */ 617 return (0); 618 fprintf(stderr, gettext("%s: no valid entries found in %s\n"), 619 myname, mnttab); 620 return (1); 621 } 622 623 /* 624 * Sort the entries based on their mount level only if lofs's are 625 * not present. 626 */ 627 if (lofscnt == 0) { 628 qsort((void *)mntarray, listlength, sizeof (mountent_t *), 629 mcompar); 630 /* 631 * If we do not detect a lofs by now, we never will. 632 */ 633 lofscnt = -1; 634 } 635 /* 636 * Now link them up so that a given pid is easier to find when 637 * we go to clean up after they are done. 638 */ 639 mntll = mntarray[0]; 640 for (ml = mntarray; mp = *ml; /* */) 641 mp->link = *++ml; 642 643 /* 644 * Try to handle interrupts in a reasonable way. 645 */ 646 sigset(SIGHUP, cleanup); 647 sigset(SIGQUIT, cleanup); 648 sigset(SIGINT, cleanup); 649 650 do_umounts(mntarray); /* do the umounts */ 651 return (exitcode); 652 } 653 654 /* 655 * Returns a mountent_t array based on mntlist. If mntlist is NULL, then 656 * it returns all mnttab entries with a few exceptions. Sets the global 657 * variable listlength to the number of entries in the array. 658 */ 659 mountent_t ** 660 make_mntarray(char **mntlist, int count) 661 { 662 mountent_t *mp, **mpp; 663 int ndx; 664 char *cp; 665 666 if (count > 0) 667 listlength = count; 668 669 mpp = (mountent_t **)malloc(sizeof (*mp) * (listlength + 1)); 670 if (mpp == NULL) 671 nomem(); 672 673 if (count == 0) { 674 if (mntll == NULL) { /* no entries? */ 675 listlength = 0; 676 return (NULL); 677 } 678 /* 679 * No mount list specified: take all mnttab mount points 680 * except for a few cases. 681 */ 682 for (ndx = 0, mp = mntll; mp; mp = mp->link) { 683 if (fsstrinlist(mp->ment.mnt_mountp, keeplist)) 684 continue; 685 mp->mlevel = fsgetmlevel(mp->ment.mnt_mountp); 686 if (mp->ment.mnt_fstype && 687 (strcmp(mp->ment.mnt_fstype, MNTTYPE_LOFS) == 0)) 688 lofscnt++; 689 690 mpp[ndx++] = mp; 691 } 692 mpp[ndx] = NULL; 693 listlength = ndx; 694 return (mpp); 695 } 696 697 /* 698 * A list of mount points was specified on the command line. 699 * Build an array out of these. 700 */ 701 for (ndx = 0; count--; ) { 702 cp = *mntlist++; 703 if (realpath(cp, resolve) == NULL) { 704 fprintf(stderr, 705 gettext("%s: warning: can't resolve %s\n"), 706 myname, cp); 707 exitcode = 1; 708 mp = getmntlast(mntll, NULL, cp); /* try anyways */ 709 } else 710 mp = getmntlast(mntll, NULL, resolve); 711 if (mp == NULL) { 712 struct mnttab mnew; 713 /* 714 * Then we've reached the end without finding 715 * what we are looking for, but we still have to 716 * try to umount it: append it to mntarray. 717 */ 718 fprintf(stderr, gettext( 719 "%s: warning: %s not found in %s\n"), 720 myname, resolve, mnttab); 721 exitcode = 1; 722 mntnull(&mnew); 723 mnew.mnt_special = mnew.mnt_mountp = strdup(resolve); 724 if (mnew.mnt_special == NULL) 725 nomem(); 726 mp = new_mountent(&mnew); 727 } 728 if (mp->ment.mnt_fstype && 729 (strcmp(mp->ment.mnt_fstype, MNTTYPE_LOFS) == 0)) 730 lofscnt++; 731 732 mp->mlevel = fsgetmlevel(mp->ment.mnt_mountp); 733 mpp[ndx++] = mp; 734 } 735 mpp[ndx] = NULL; 736 listlength = ndx; 737 return (mpp); 738 } 739 740 /* 741 * Returns the tail of a linked list of all mnttab entries. I.e, it's faster 742 * to return the mnttab in reverse order. 743 * Sets listlength to the number of entries in the list. 744 * Returns NULL if none are found. 745 */ 746 mountent_t * 747 getmntall() 748 { 749 FILE *fp; 750 mountent_t *mtail; 751 int cnt = 0, ret; 752 struct mnttab mget; 753 754 if ((fp = fopen(mnttab, "r")) == NULL) { 755 fprintf(stderr, gettext("%s: warning cannot open %s\n"), 756 myname, mnttab); 757 return (0); 758 } 759 mtail = NULL; 760 761 while ((ret = getmntent(fp, &mget)) != -1) { 762 mountent_t *mp; 763 764 if (ret > 0) { 765 mnterror(ret); 766 continue; 767 } 768 769 mp = new_mountent(&mget); 770 mp->link = mtail; 771 mtail = mp; 772 cnt++; 773 } 774 fclose(fp); 775 if (mtail == NULL) { 776 listlength = 0; 777 return (NULL); 778 } 779 listlength = cnt; 780 return (mtail); 781 } 782 783 void 784 do_umounts(mountent_t **mntarray) 785 { 786 mountent_t *mp, *mpprev, **ml = mntarray; 787 int cnt = listlength; 788 789 /* 790 * Main loop for the forked children: 791 */ 792 for (mpprev = *ml; mp = *ml; mpprev = mp, ml++, cnt--) { 793 pid_t pid; 794 795 /* 796 * Check to see if we cross a mount level: e.g., 797 * /a/b/c -> /a/b. If so, we need to wait for all current 798 * umounts to finish before umounting the rest. 799 * 800 * Also, we unmount serially as long as there are lofs's 801 * to mount to avoid improper umount ordering. 802 */ 803 if (mp->mlevel < mpprev->mlevel || lofscnt > 0) 804 while (nrun > 0 && (dowait() != -1)) 805 ; 806 807 if (lofscnt == 0) { 808 /* 809 * We can now go to parallel umounting. 810 */ 811 qsort((void *)ml, cnt, sizeof (mountent_t *), mcompar); 812 mp = *ml; /* possible first entry */ 813 lofscnt--; /* so we don't do this again */ 814 } 815 816 while (setup_iopipe(mp) == -1 && (dowait() != -1)) 817 ; 818 819 while (nrun >= maxrun && (dowait() != -1)) /* throttle */ 820 ; 821 822 #ifdef CACHEFS_BUG 823 /* 824 * If this is the back file system, then let cachefs/umount 825 * unmount it. 826 */ 827 if (strstr(mp->ment.mnt_mountp, BACKMNT_NAME)) 828 continue; 829 830 831 if (mp->ment.mnt_fstype && 832 (strcmp(mp->ment.mnt_fstype, "cachefs") == 0)) { 833 while (cachefs_running && (dowait() != -1)) 834 ; 835 cachefs_running = 1; 836 } 837 #endif 838 839 if ((pid = fork()) == -1) { 840 perror("fork"); 841 cleanup(-1); 842 /* not reached */ 843 } 844 #ifdef DEBUG 845 if (dflg && pid > 0) { 846 fprintf(stderr, "parent %d: umounting %d %s\n", 847 getpid(), pid, mp->ment.mnt_mountp); 848 } 849 #endif 850 if (pid == 0) { /* child */ 851 signal(SIGHUP, SIG_IGN); 852 signal(SIGQUIT, SIG_IGN); 853 signal(SIGINT, SIG_IGN); 854 setup_output(mp); 855 doexec(&mp->ment); 856 perror("exec"); 857 exit(1); 858 } 859 860 /* parent */ 861 (void) close(mp->sopipe[WRPIPE]); 862 (void) close(mp->sepipe[WRPIPE]); 863 mp->pid = pid; 864 nrun++; 865 } 866 cleanup(0); 867 } 868 869 /* 870 * cleanup the existing children and exit with an error 871 * if asig != 0. 872 */ 873 void 874 cleanup(int asig) 875 { 876 /* 877 * Let the stragglers finish. 878 */ 879 while (nrun > 0 && (dowait() != -1)) 880 ; 881 if (asig != 0) 882 exit(1); 883 } 884 885 886 /* 887 * Waits for 1 child to die. 888 * 889 * Returns -1 if no children are left to wait for. 890 * Returns 0 if a child died without an error. 891 * Returns 1 if a child died with an error. 892 * Sets the global exitcode if an error occurred. 893 */ 894 int 895 dowait() 896 { 897 int wstat, child, ret; 898 mountent_t *mp, *prevp; 899 900 if ((child = wait(&wstat)) == -1) 901 return (-1); 902 903 if (WIFEXITED(wstat)) /* this should always be true */ 904 ret = WEXITSTATUS(wstat); 905 else 906 ret = 1; /* assume some kind of error */ 907 nrun--; 908 if (ret) 909 exitcode = 1; 910 911 /* 912 * Find our child so we can process its std output, if any. 913 * This search gets smaller and smaller as children are cleaned 914 * up. 915 */ 916 for (prevp = NULL, mp = mntll; mp; mp = mp->link) { 917 if (mp->pid != child) { 918 prevp = mp; 919 continue; 920 } 921 /* 922 * Found: let's remove it from this list. 923 */ 924 if (prevp) { 925 prevp->link = mp->link; 926 mp->link = NULL; 927 } 928 break; 929 } 930 931 if (mp == NULL) { 932 /* 933 * This should never happen. 934 */ 935 #ifdef DEBUG 936 fprintf(stderr, gettext( 937 "%s: unknown child %d\n"), myname, child); 938 #endif 939 exitcode = 1; 940 return (1); 941 } 942 doio(mp); /* Any output? */ 943 944 if (mp->ment.mnt_fstype && 945 (strcmp(mp->ment.mnt_fstype, MNTTYPE_LOFS) == 0)) 946 lofscnt--; 947 948 #ifdef CACHEFS_BUG 949 if (mp->ment.mnt_fstype && 950 (strcmp(mp->ment.mnt_fstype, "cachefs") == 0)) 951 cachefs_running = 0; 952 #endif 953 954 return (ret); 955 } 956 957 static const mountent_t zmount = { 0 }; 958 959 mountent_t * 960 new_mountent(struct mnttab *ment) 961 { 962 mountent_t *new; 963 964 new = (mountent_t *)malloc(sizeof (*new)); 965 if (new == NULL) 966 nomem(); 967 968 *new = zmount; 969 if (ment->mnt_special && 970 (new->ment.mnt_special = strdup(ment->mnt_special)) == NULL) 971 nomem(); 972 if (ment->mnt_mountp && 973 (new->ment.mnt_mountp = strdup(ment->mnt_mountp)) == NULL) 974 nomem(); 975 if (ment->mnt_fstype && 976 (new->ment.mnt_fstype = strdup(ment->mnt_fstype)) == NULL) 977 nomem(); 978 return (new); 979 } 980 981 982 /* 983 * Sort in descending order of "mount level". For example, /a/b/c is 984 * placed before /a/b . 985 */ 986 int 987 mcompar(const void *a, const void *b) 988 { 989 mountent_t *a1, *b1; 990 991 a1 = *(mountent_t **)a; 992 b1 = *(mountent_t **)b; 993 return (b1->mlevel - a1->mlevel); 994 } 995 996 /* 997 * The purpose of this routine is to form stdout and stderr 998 * pipes for the children's output. The parent then reads and writes it 999 * out it serially in order to ensure that the output is 1000 * not garbled. 1001 */ 1002 1003 int 1004 setup_iopipe(mountent_t *mp) 1005 { 1006 /* 1007 * Make a stdout and stderr pipe. This should never fail. 1008 */ 1009 if (pipe(mp->sopipe) == -1) 1010 return (-1); 1011 if (pipe(mp->sepipe) == -1) { 1012 (void) close(mp->sopipe[RDPIPE]); 1013 (void) close(mp->sopipe[WRPIPE]); 1014 return (-1); 1015 } 1016 /* 1017 * Don't block on an empty pipe. 1018 */ 1019 (void) fcntl(mp->sopipe[RDPIPE], F_SETFL, O_NDELAY|O_NONBLOCK); 1020 (void) fcntl(mp->sepipe[RDPIPE], F_SETFL, O_NDELAY|O_NONBLOCK); 1021 return (0); 1022 } 1023 1024 /* 1025 * Called by a child to attach its stdout and stderr to the write side of 1026 * the pipes. 1027 */ 1028 void 1029 setup_output(mountent_t *mp) 1030 { 1031 (void) close(fileno(stdout)); 1032 (void) dup(mp->sopipe[WRPIPE]); 1033 (void) close(mp->sopipe[WRPIPE]); 1034 1035 (void) close(fileno(stderr)); 1036 (void) dup(mp->sepipe[WRPIPE]); 1037 (void) close(mp->sepipe[WRPIPE]); 1038 } 1039 1040 /* 1041 * Parent uses this to print any stdout or stderr output issued by 1042 * the child. 1043 */ 1044 static void 1045 doio(mountent_t *mp) 1046 { 1047 int bytes; 1048 1049 while ((bytes = read(mp->sepipe[RDPIPE], ibuf, sizeof (ibuf))) > 0) 1050 write(fileno(stderr), ibuf, bytes); 1051 while ((bytes = read(mp->sopipe[RDPIPE], ibuf, sizeof (ibuf))) > 0) 1052 write(fileno(stdout), ibuf, bytes); 1053 1054 (void) close(mp->sopipe[RDPIPE]); 1055 (void) close(mp->sepipe[RDPIPE]); 1056 } 1057 1058 void 1059 nomem() 1060 { 1061 fprintf(stderr, gettext("%s: out of memory\n"), myname); 1062 /* 1063 * Let the stragglers finish. 1064 */ 1065 while (nrun > 0 && (dowait() != -1)) 1066 ; 1067 exit(1); 1068 } 1069