xref: /titanic_52/usr/src/cmd/format/auto_sense.c (revision 25cf1a301a396c38e8adf52c15f537b80d2483f7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains functions to implement automatic configuration
30  * of scsi disks.
31  */
32 #include "global.h"
33 
34 #include <fcntl.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <strings.h>
38 #include <stdlib.h>
39 #include <ctype.h>
40 
41 #include "misc.h"
42 #include "param.h"
43 #include "ctlr_scsi.h"
44 #include "auto_sense.h"
45 #include "partition.h"
46 #include "label.h"
47 #include "startup.h"
48 #include "analyze.h"
49 #include "io.h"
50 #include "hardware_structs.h"
51 #include "menu_fdisk.h"
52 
53 
54 #define	DISK_NAME_MAX		256
55 
56 extern	int			nctypes;
57 extern	struct	ctlr_type	ctlr_types[];
58 
59 
60 /*
61  * Marker for free hog partition
62  */
63 #define	HOG		(-1)
64 
65 
66 
67 /*
68  * Default partition tables
69  *
70  *	Disk capacity		root	swap	usr
71  *	-------------		----	----	---
72  *	0mb to 64mb		0	0	remainder
73  *	64mb to 180mb		16mb	16mb	remainder
74  *	180mb to 280mb		16mb	32mb	remainder
75  *	280mb to 380mb		24mb	32mb	remainder
76  *	380mb to 600mb		32mb	32mb	remainder
77  *	600mb to 1gb		32mb	64mb	remainder
78  *	1gb to 2gb		64mb	128mb	remainder
79  *	2gb on up		128mb	128mb	remainder
80  */
81 struct part_table {
82 	int	partitions[NDKMAP];
83 };
84 
85 static struct part_table part_table_64mb = {
86 	{ 0,	0,	0,	0,	0,	0,	HOG,	0}
87 };
88 
89 static struct part_table part_table_180mb = {
90 	{ 16,	16,	0,	0,	0,	0,	HOG,	0}
91 };
92 
93 static struct part_table part_table_280mb = {
94 	{ 16,	32,	0,	0,	0,	0,	HOG,	0}
95 };
96 
97 static struct part_table part_table_380mb = {
98 	{ 24,	32,	0,	0,	0,	0,	HOG,	0}
99 };
100 
101 static struct part_table part_table_600mb = {
102 	{ 32,	32,	0,	0,	0,	0,	HOG,	0}
103 };
104 
105 static struct part_table part_table_1gb = {
106 	{ 32,	64,	0,	0,	0,	0,	HOG,	0}
107 };
108 
109 static struct part_table part_table_2gb = {
110 	{ 64,	128,	0,	0,	0,	0,	HOG,	0}
111 };
112 
113 static struct part_table part_table_infinity = {
114 	{ 128,	128,	0,	0,	0,	0,	HOG,	0}
115 };
116 
117 
118 static struct default_partitions {
119 	long			min_capacity;
120 	long			max_capacity;
121 	struct part_table	*part_table;
122 } default_partitions[] = {
123 	{ 0,	64,		&part_table_64mb },	/* 0 to 64 mb */
124 	{ 64,	180,		&part_table_180mb },	/* 64 to 180 mb */
125 	{ 180,	280,		&part_table_280mb },	/* 180 to 280 mb */
126 	{ 280,	380,		&part_table_380mb },	/* 280 to 380 mb */
127 	{ 380,	600,		&part_table_600mb },	/* 380 to 600 mb */
128 	{ 600,	1024,		&part_table_1gb },	/* 600 to 1 gb */
129 	{ 1024,	2048,		&part_table_2gb },	/* 1 to 2 gb */
130 	{ 2048,	INFINITY,	&part_table_infinity },	/* 2 gb on up */
131 };
132 
133 #define	DEFAULT_PARTITION_TABLE_SIZE	\
134 	(sizeof (default_partitions) / sizeof (struct default_partitions))
135 
136 /*
137  * msgs for check()
138  */
139 #define	FORMAT_MSG	"Auto configuration via format.dat"
140 #define	GENERIC_MSG	"Auto configuration via generic SCSI-2"
141 
142 /*
143  * Disks on symbios(Hardwire raid controller) return a fixed number
144  * of heads(64)/cylinders(64) and adjust the cylinders depending
145  * capacity of the configured lun.
146  * In such a case we get number of physical cylinders < 3 which
147  * is the minimum required by solaris(2 reserved + 1 data cylinders).
148  * Hence try to adjust the cylinders by reducing the "nsect/nhead".
149  *
150  */
151 /*
152  * assuming a minimum of 32 block cylinders.
153  */
154 #define	MINIMUM_NO_HEADS	2
155 #define	MINIMUM_NO_SECTORS	16
156 
157 #define	MINIMUM_NO_CYLINDERS	128
158 
159 #if defined(_SUNOS_VTOC_8)
160 
161 /* These are 16-bit fields */
162 #define	MAXIMUM_NO_HEADS	65535
163 #define	MAXIMUM_NO_SECTORS	65535
164 #define	MAXIMUM_NO_CYLINDERS	65535
165 
166 #endif	/* defined(_SUNOS_VTOC_8) */
167 
168 /*
169  * minimum number of cylinders required by Solaris.
170  */
171 #define	SUN_MIN_CYL		3
172 
173 
174 
175 /*
176  * ANSI prototypes for local static functions
177  */
178 static struct disk_type	*generic_disk_sense(
179 				int		fd,
180 				int		can_prompt,
181 				struct dk_label	*label,
182 				struct scsi_inquiry *inquiry,
183 				struct scsi_capacity_16 *capacity,
184 				char		*disk_name);
185 static int		use_existing_disk_type(
186 				int		fd,
187 				int		can_prompt,
188 				struct dk_label	*label,
189 				struct scsi_inquiry *inquiry,
190 				struct disk_type *disk_type,
191 				struct scsi_capacity_16 *capacity);
192 int			build_default_partition(struct dk_label *label,
193 				int ctrl_type);
194 static struct disk_type	*find_scsi_disk_type(
195 				char		*disk_name,
196 				struct dk_label	*label);
197 static struct disk_type	*find_scsi_disk_by_name(
198 				char		*disk_name);
199 static struct ctlr_type	*find_scsi_ctlr_type(void);
200 static struct ctlr_info	*find_scsi_ctlr_info(
201 				struct dk_cinfo	*dkinfo);
202 static struct disk_type	*new_scsi_disk_type(
203 				int		fd,
204 				char		*disk_name,
205 				struct dk_label	*label);
206 static struct disk_info	*find_scsi_disk_info(
207 				struct dk_cinfo	*dkinfo);
208 
209 static struct disk_type *new_direct_disk_type(int fd, char *disk_name,
210     struct dk_label *label);
211 
212 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo);
213 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc);
214 static int auto_label_init(struct dk_label *label);
215 static struct ctlr_type *find_direct_ctlr_type(void);
216 static struct ctlr_info *find_direct_ctlr_info(struct dk_cinfo	*dkinfo);
217 static  struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo);
218 
219 static char		*get_sun_disk_name(
220 				char		*disk_name,
221 				struct scsi_inquiry *inquiry);
222 static char		*get_generic_disk_name(
223 				char		*disk_name,
224 				struct scsi_inquiry *inquiry);
225 static int		force_blocksize(int fd);
226 static int		raw_format(int fd);
227 static char		*strcopy(
228 				char	*dst,
229 				char	*src,
230 				int	n);
231 static	int		adjust_disk_geometry(int capacity, int *cyl,
232 						int *nsect, int *nhead);
233 #if defined(_SUNOS_VTOC_8)
234 static int square_box(
235 			int capacity,
236 			int *dim1, int lim1,
237 			int *dim2, int lim2,
238 			int *dim3, int lim3);
239 #endif	/* defined(_SUNOS_VTOC_8) */
240 
241 
242 /*
243  * We need to get information necessary to construct a *new* efi
244  * label type
245  */
246 struct disk_type *
247 auto_efi_sense(int fd, struct efi_info *label)
248 {
249 
250 	struct dk_gpt	*vtoc;
251 	int		i;
252 
253 	struct disk_type *disk, *dp;
254 	struct disk_info *disk_info;
255 	struct ctlr_info *ctlr;
256 	struct dk_cinfo dkinfo;
257 	struct partition_info *part;
258 
259 	/*
260 	 * get vendor, product, revision and capacity info.
261 	 */
262 	if (get_disk_info(fd, label) == -1) {
263 		return ((struct disk_type *)NULL);
264 	}
265 	/*
266 	 * Now build the default partition table
267 	 */
268 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) {
269 		err_print("efi_alloc_and_init failed. \n");
270 		return ((struct disk_type *)NULL);
271 	}
272 
273 	label->e_parts = vtoc;
274 
275 	for (i = 0; i < min(vtoc->efi_nparts, V_NUMPAR); i++) {
276 		vtoc->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
277 		vtoc->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
278 		vtoc->efi_parts[i].p_start = 0;
279 		vtoc->efi_parts[i].p_size = 0;
280 	}
281 	/*
282 	 * Make constants first
283 	 * and variable partitions later
284 	 */
285 
286 	/* root partition - s0 128 MB */
287 	vtoc->efi_parts[0].p_start = 34;
288 	vtoc->efi_parts[0].p_size = 262144;
289 
290 	/* partition - s1  128 MB */
291 	vtoc->efi_parts[1].p_start = 262178;
292 	vtoc->efi_parts[1].p_size = 262144;
293 
294 	/* partition -s2 is NOT the Backup disk */
295 	vtoc->efi_parts[2].p_tag = V_UNASSIGNED;
296 
297 	/* partition -s6 /usr partition - HOG */
298 	vtoc->efi_parts[6].p_start = 524322;
299 	vtoc->efi_parts[6].p_size = vtoc->efi_last_u_lba - 524322
300 	    - (1024 * 16);
301 
302 	/* efi reserved partition - s9 16K */
303 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba - (1024 * 16);
304 	vtoc->efi_parts[8].p_size = (1024 * 16);
305 	vtoc->efi_parts[8].p_tag = V_RESERVED;
306 	/*
307 	 * Now stick all of it into the disk_type struct
308 	 */
309 
310 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
311 	    if (option_msg && diag_msg) {
312 		err_print("DKIOCINFO failed\n");
313 	    }
314 	    return (NULL);
315 	}
316 	if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT)) {
317 		ctlr = find_direct_ctlr_info(&dkinfo);
318 		disk_info = find_direct_disk_info(&dkinfo);
319 	} else {
320 		ctlr = find_scsi_ctlr_info(&dkinfo);
321 		disk_info = find_scsi_disk_info(&dkinfo);
322 	}
323 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
324 	assert(disk_info->disk_ctlr == ctlr);
325 	dp = ctlr->ctlr_ctype->ctype_dlist;
326 	if (dp == NULL) {
327 		ctlr->ctlr_ctype->ctype_dlist = dp;
328 	} else {
329 		while (dp->dtype_next != NULL) {
330 			dp = dp->dtype_next;
331 		}
332 		dp->dtype_next = disk;
333 	}
334 	disk->dtype_next = NULL;
335 
336 	(void) strlcpy(disk->vendor, label->vendor,
337 		    sizeof (disk->vendor));
338 	(void) strlcpy(disk->product, label->product,
339 		    sizeof (disk->product));
340 	(void) strlcpy(disk->revision, label->revision,
341 		    sizeof (disk->revision));
342 	disk->capacity = label->capacity;
343 
344 	part = (struct partition_info *)
345 	    zalloc(sizeof (struct partition_info));
346 	disk->dtype_plist = part;
347 
348 	part->pinfo_name = alloc_string("default");
349 	part->pinfo_next = NULL;
350 	part->etoc = vtoc;
351 
352 	bzero(disk_info->v_volume, LEN_DKL_VVOL);
353 	disk_info->disk_parts = part;
354 	return (disk);
355 }
356 
357 static int
358 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
359 {
360 	void *data = dk_ioc->dki_data;
361 	int error;
362 
363 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
364 	error = ioctl(fd, cmd, (void *)dk_ioc);
365 	dk_ioc->dki_data = data;
366 
367 	return (error);
368 }
369 
370 static struct ctlr_type *
371 find_direct_ctlr_type()
372 {
373 	struct	mctlr_list	*mlp;
374 
375 	mlp = controlp;
376 
377 	while (mlp != NULL) {
378 		if (mlp->ctlr_type->ctype_ctype == DKC_DIRECT) {
379 			return (mlp->ctlr_type);
380 		}
381 		mlp = mlp->next;
382 	}
383 
384 	impossible("no DIRECT controller type");
385 
386 	return ((struct ctlr_type *)NULL);
387 }
388 
389 static struct ctlr_info *
390 find_direct_ctlr_info(
391 	struct dk_cinfo		*dkinfo)
392 {
393 	struct ctlr_info	*ctlr;
394 
395 	if (dkinfo->dki_ctype != DKC_DIRECT)
396 		return (NULL);
397 
398 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
399 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
400 		    ctlr->ctlr_space == dkinfo->dki_space &&
401 		    ctlr->ctlr_ctype->ctype_ctype == DKC_DIRECT) {
402 			return (ctlr);
403 		}
404 	}
405 
406 	impossible("no DIRECT controller info");
407 	/*NOTREACHED*/
408 }
409 
410 static  struct disk_info *
411 find_direct_disk_info(
412 	struct dk_cinfo		*dkinfo)
413 {
414 	struct disk_info	*disk;
415 	struct dk_cinfo		*dp;
416 
417 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
418 		assert(dkinfo->dki_ctype == DKC_DIRECT);
419 		dp = &disk->disk_dkinfo;
420 		if (dp->dki_ctype == dkinfo->dki_ctype &&
421 		    dp->dki_cnum == dkinfo->dki_cnum &&
422 		    dp->dki_unit == dkinfo->dki_unit &&
423 		    strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
424 			return (disk);
425 		}
426 	}
427 
428 	impossible("No DIRECT disk info instance\n");
429 	/*NOTREACHED*/
430 }
431 
432 /*
433  * To convert EFI to SMI labels, we need to get label geometry.
434  * Unfortunately at this time there is no good way to do so.
435  * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around
436  * it and clear EFI label, do a DKIOCGGEOM and put the EFI label
437  * back on disk.
438  * This routine gets the label geometry and initializes the label
439  * It uses cur_file as opened device.
440  * returns 0 if succeeds or -1 if failed.
441  */
442 static int
443 auto_label_init(struct dk_label *label)
444 {
445 	dk_efi_t	dk_ioc;
446 	dk_efi_t	dk_ioc_back;
447 	efi_gpt_t	*data = NULL;
448 	efi_gpt_t	*databack = NULL;
449 	struct dk_geom	disk_geom;
450 	struct dk_minfo	disk_info;
451 	efi_gpt_t 	*backsigp;
452 	int		fd = cur_file;
453 	int		rval = -1;
454 	int		efisize = EFI_LABEL_SIZE * 2;
455 	int		success = 0;
456 	uint64_t	sig;
457 	uint64_t	backsig;
458 
459 	if ((data = calloc(efisize, 1)) == NULL) {
460 		err_print("auto_label_init: calloc failed\n");
461 		goto auto_label_init_out;
462 	}
463 
464 	dk_ioc.dki_data = data;
465 	dk_ioc.dki_lba = 1;
466 	dk_ioc.dki_length = efisize;
467 
468 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) {
469 		err_print("auto_label_init: GETEFI failed\n");
470 		goto auto_label_init_out;
471 	}
472 
473 	if ((databack = calloc(efisize, 1)) == NULL) {
474 		err_print("auto_label_init calloc2 failed");
475 		goto auto_label_init_out;
476 	}
477 
478 	/* get the LBA size and capacity */
479 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
480 		err_print("auto_label_init: dkiocgmediainfo failed\n");
481 		goto auto_label_init_out;
482 	}
483 
484 	if (disk_info.dki_lbsize == 0) {
485 		if (option_msg && diag_msg) {
486 			err_print("auto_lbal_init: assuming 512 byte"
487 			    "block size");
488 		}
489 		disk_info.dki_lbsize = DEV_BSIZE;
490 	}
491 
492 	if (disk_info.dki_lbsize != DEV_BSIZE) {
493 		err_print("auto_label_init: lbasize is not 512\n");
494 		goto auto_label_init_out;
495 	}
496 
497 	dk_ioc_back.dki_data = databack;
498 
499 	/*
500 	 * back up efi label goes to capacity - 1, we are reading an extra block
501 	 * before the back up label.
502 	 */
503 	dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1;
504 	dk_ioc_back.dki_length = efisize;
505 
506 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) {
507 		err_print("auto_label_init: GETEFI backup failed\n");
508 		goto auto_label_init_out;
509 	}
510 
511 	sig = dk_ioc.dki_data->efi_gpt_Signature;
512 	dk_ioc.dki_data->efi_gpt_Signature = 0x0;
513 
514 	enter_critical();
515 
516 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
517 		err_print("auto_label_init: SETEFI failed\n");
518 		exit_critical();
519 		goto auto_label_init_out;
520 	}
521 
522 	backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + DEV_BSIZE);
523 
524 	backsig = backsigp->efi_gpt_Signature;
525 
526 	backsigp->efi_gpt_Signature = 0;
527 
528 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) {
529 		err_print("auto_label_init: SETEFI backup failed\n");
530 	}
531 
532 	if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0)
533 		err_print("auto_label_init: GGEOM failed\n");
534 	else
535 		success = 1;
536 
537 	dk_ioc.dki_data->efi_gpt_Signature = sig;
538 	backsigp->efi_gpt_Signature = backsig;
539 
540 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) {
541 		err_print("auto_label_init: SETEFI revert backup failed\n");
542 		success = 0;
543 	}
544 
545 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) {
546 		err_print("auto_label_init: SETEFI revert failed\n");
547 		success = 0;
548 	}
549 
550 	exit_critical();
551 
552 	if (success == 0)
553 		goto auto_label_init_out;
554 
555 	ncyl = disk_geom.dkg_ncyl;
556 	acyl = disk_geom.dkg_acyl;
557 	nhead =  disk_geom.dkg_nhead;
558 	nsect = disk_geom.dkg_nsect;
559 	pcyl = ncyl + acyl;
560 
561 	label->dkl_pcyl = pcyl;
562 	label->dkl_ncyl = ncyl;
563 	label->dkl_acyl = acyl;
564 	label->dkl_nhead = nhead;
565 	label->dkl_nsect = nsect;
566 	label->dkl_apc = 0;
567 	label->dkl_intrlv = 1;
568 	label->dkl_rpm = disk_geom.dkg_rpm;
569 
570 	label->dkl_magic = DKL_MAGIC;
571 
572 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
573 	    "%s cyl %d alt %d hd %d sec %d",
574 	    "DEFAULT", ncyl, acyl, nhead, nsect);
575 
576 	rval = 0;
577 #if defined(_FIRMWARE_NEEDS_FDISK)
578 	(void) auto_solaris_part(label);
579 	ncyl = label->dkl_ncyl;
580 
581 #endif	/* defined(_FIRMWARE_NEEDS_FDISK) */
582 
583 	if (!build_default_partition(label, DKC_DIRECT)) {
584 		rval = -1;
585 	}
586 
587 	(void) checksum(label, CK_MAKESUM);
588 
589 
590 auto_label_init_out:
591 	if (data)
592 		free(data);
593 	if (databack)
594 		free(databack);
595 
596 	return (rval);
597 }
598 
599 static struct disk_type *
600 new_direct_disk_type(
601 	int		fd,
602 	char		*disk_name,
603 	struct dk_label	*label)
604 {
605 	struct disk_type	*dp;
606 	struct disk_type	*disk;
607 	struct ctlr_info	*ctlr;
608 	struct dk_cinfo		dkinfo;
609 	struct partition_info	*part = NULL;
610 	struct partition_info	*pt;
611 	struct disk_info	*disk_info;
612 	int			i;
613 
614 	/*
615 	 * Get the disk controller info for this disk
616 	 */
617 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
618 		if (option_msg && diag_msg) {
619 			err_print("DKIOCINFO failed\n");
620 		}
621 		return (NULL);
622 	}
623 
624 	/*
625 	 * Find the ctlr_info for this disk.
626 	 */
627 	ctlr = find_direct_ctlr_info(&dkinfo);
628 
629 	/*
630 	 * Allocate a new disk type for the direct controller.
631 	 */
632 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
633 
634 	/*
635 	 * Find the disk_info instance for this disk.
636 	 */
637 	disk_info = find_direct_disk_info(&dkinfo);
638 
639 	/*
640 	 * The controller and the disk should match.
641 	 */
642 	assert(disk_info->disk_ctlr == ctlr);
643 
644 	/*
645 	 * Link the disk into the list of disks
646 	 */
647 	dp = ctlr->ctlr_ctype->ctype_dlist;
648 	if (dp == NULL) {
649 		ctlr->ctlr_ctype->ctype_dlist = dp;
650 	} else {
651 		while (dp->dtype_next != NULL) {
652 			dp = dp->dtype_next;
653 		}
654 		dp->dtype_next = disk;
655 	}
656 	disk->dtype_next = NULL;
657 
658 	/*
659 	 * Allocate and initialize the disk name.
660 	 */
661 	disk->dtype_asciilabel = alloc_string(disk_name);
662 
663 	/*
664 	 * Initialize disk geometry info
665 	 */
666 	disk->dtype_pcyl = label->dkl_pcyl;
667 	disk->dtype_ncyl = label->dkl_ncyl;
668 	disk->dtype_acyl = label->dkl_acyl;
669 	disk->dtype_nhead = label->dkl_nhead;
670 	disk->dtype_nsect = label->dkl_nsect;
671 	disk->dtype_rpm = label->dkl_rpm;
672 
673 	part = (struct partition_info *)
674 		zalloc(sizeof (struct partition_info));
675 	pt = disk->dtype_plist;
676 	if (pt == NULL) {
677 		disk->dtype_plist = part;
678 	} else {
679 		while (pt->pinfo_next != NULL) {
680 			pt = pt->pinfo_next;
681 		}
682 		pt->pinfo_next = part;
683 	}
684 
685 	part->pinfo_next = NULL;
686 
687 	/*
688 	 * Set up the partition name
689 	 */
690 	part->pinfo_name = alloc_string("default");
691 
692 	/*
693 	 * Fill in the partition info from the label
694 	 */
695 	for (i = 0; i < NDKMAP; i++) {
696 
697 #if defined(_SUNOS_VTOC_8)
698 		part->pinfo_map[i] = label->dkl_map[i];
699 
700 #elif defined(_SUNOS_VTOC_16)
701 		part->pinfo_map[i].dkl_cylno =
702 			label->dkl_vtoc.v_part[i].p_start /
703 				((int)(disk->dtype_nhead *
704 					disk->dtype_nsect - apc));
705 		part->pinfo_map[i].dkl_nblk =
706 			label->dkl_vtoc.v_part[i].p_size;
707 #else
708 #error No VTOC format defined.
709 #endif				/* defined(_SUNOS_VTOC_8) */
710 	}
711 
712 	/*
713 	 * Use the VTOC if valid, or install a default
714 	 */
715 	if (label->dkl_vtoc.v_version == V_VERSION) {
716 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
717 			LEN_DKL_VVOL);
718 		part->vtoc = label->dkl_vtoc;
719 	} else {
720 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
721 		set_vtoc_defaults(part);
722 	}
723 
724 	/*
725 	 * Link the disk to the partition map
726 	 */
727 	disk_info->disk_parts = part;
728 
729 	return (disk);
730 }
731 
732 /*
733  * Get a disk type that has label info. This is used to convert
734  * EFI label to SMI label
735  */
736 struct disk_type *
737 auto_direct_get_geom_label(int fd, struct dk_label *label)
738 {
739 	struct disk_type		*disk_type;
740 
741 	if (auto_label_init(label) != 0) {
742 		err_print("auto_direct_get_geom_label: failed to get label"
743 		    "geometry");
744 		return (NULL);
745 	} else {
746 		disk_type = new_direct_disk_type(fd, "DEFAULT", label);
747 		return (disk_type);
748 	}
749 }
750 
751 /*
752  * Auto-sense a scsi disk configuration, ie get the information
753  * necessary to construct a label.  We have two different
754  * ways to auto-sense a scsi disk:
755  *	- format.dat override, via inquiry name
756  *	- generic scsi, via standard mode sense and inquiry
757  * Depending on how and when we are called, and/or
758  * change geometry and reformat.
759  */
760 struct disk_type *
761 auto_sense(
762 	int		fd,
763 	int		can_prompt,
764 	struct dk_label	*label)
765 {
766 	struct scsi_inquiry		inquiry;
767 	struct scsi_capacity_16		capacity;
768 	struct disk_type		*disk_type;
769 	char				disk_name[DISK_NAME_MAX];
770 	int				force_format_dat = 0;
771 	int				force_generic = 0;
772 	u_ioparam_t			ioparam;
773 	int				deflt;
774 
775 	/*
776 	 * First, if expert mode, find out if the user
777 	 * wants to override any of the standard methods.
778 	 */
779 	if (can_prompt && expert_mode) {
780 		deflt = 1;
781 		ioparam.io_charlist = confirm_list;
782 		if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam,
783 				&deflt, DATA_INPUT) == 0) {
784 			force_format_dat = 1;
785 		} else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam,
786 				&deflt, DATA_INPUT) == 0) {
787 			force_generic = 1;
788 		}
789 	}
790 
791 	/*
792 	 * Get the Inquiry data.  If this fails, there's
793 	 * no hope for this disk, so give up.
794 	 */
795 	if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) {
796 		return ((struct disk_type *)NULL);
797 	}
798 	if (option_msg && diag_msg) {
799 		err_print("Product id: ");
800 		print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid));
801 		err_print("\n");
802 	}
803 
804 	/*
805 	 * Get the Read Capacity
806 	 */
807 	if (uscsi_read_capacity(fd, &capacity)) {
808 		return ((struct disk_type *)NULL);
809 	}
810 	if (option_msg && diag_msg) {
811 		err_print("blocks:  %llu (0x%llx)\n",
812 			capacity.sc_capacity, capacity.sc_capacity);
813 		err_print("blksize: %u\n", capacity.sc_lbasize);
814 	}
815 
816 	/*
817 	 * Extract the disk name for the format.dat override
818 	 */
819 	(void) get_sun_disk_name(disk_name, &inquiry);
820 	if (option_msg && diag_msg) {
821 		err_print("disk name:  `%s`\n", disk_name);
822 	}
823 
824 	/*
825 	 * Figure out which method we use for auto sense.
826 	 * If a particular method fails, we fall back to
827 	 * the next possibility.
828 	 */
829 
830 	if (force_generic) {
831 		return (generic_disk_sense(fd, can_prompt, label,
832 			&inquiry, &capacity, disk_name));
833 	}
834 
835 	/*
836 	 * Try for an existing format.dat first
837 	 */
838 	if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) {
839 		if (use_existing_disk_type(fd, can_prompt, label,
840 				&inquiry, disk_type, &capacity)) {
841 			return (disk_type);
842 		}
843 		if (force_format_dat) {
844 			return (NULL);
845 		}
846 	}
847 
848 	/*
849 	 * Otherwise, try using generic SCSI-2 sense and inquiry.
850 	 */
851 
852 	return (generic_disk_sense(fd, can_prompt, label,
853 			&inquiry, &capacity, disk_name));
854 }
855 
856 
857 
858 /*ARGSUSED*/
859 static struct disk_type *
860 generic_disk_sense(
861 	int			fd,
862 	int			can_prompt,
863 	struct dk_label		*label,
864 	struct scsi_inquiry	*inquiry,
865 	struct scsi_capacity_16	*capacity,
866 	char			*disk_name)
867 {
868 	struct disk_type		*disk;
869 	int				pcyl;
870 	int				ncyl;
871 	int				acyl;
872 	int				nhead;
873 	int				nsect;
874 	int				rpm;
875 	long				nblocks;
876 	union {
877 		struct mode_format	page3;
878 		uchar_t			buf3[MAX_MODE_SENSE_SIZE];
879 	} u_page3;
880 	union {
881 		struct mode_geometry	page4;
882 		uchar_t			buf4[MAX_MODE_SENSE_SIZE];
883 	} u_page4;
884 	struct scsi_capacity_16		new_capacity;
885 	struct mode_format		*page3 = &u_page3.page3;
886 	struct mode_geometry		*page4 = &u_page4.page4;
887 	struct scsi_ms_header		header;
888 
889 	/*
890 	 * If the name of this disk appears to be "SUN", use it,
891 	 * otherwise construct a name out of the generic
892 	 * Inquiry info.  If it turns out that we already
893 	 * have a SUN disk type of this name that differs
894 	 * in geometry, we will revert to the generic name
895 	 * anyway.
896 	 */
897 	if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) {
898 		(void) get_generic_disk_name(disk_name, inquiry);
899 	}
900 
901 	/*
902 	 * If the device's block size is not 512, we have to
903 	 * change block size, reformat, and then sense the
904 	 * geometry.  To do this, we must be able to prompt
905 	 * the user.
906 	 */
907 	if (capacity->sc_lbasize != DEV_BSIZE) {
908 		if (!can_prompt) {
909 			return (NULL);
910 		}
911 		if (force_blocksize(fd)) {
912 			goto err;
913 		}
914 
915 		/*
916 		 * Get the capacity again, since this has changed
917 		 */
918 		if (uscsi_read_capacity(fd, &new_capacity)) {
919 			goto err;
920 		}
921 		if (option_msg && diag_msg) {
922 			err_print("blocks:  %llu (0x%llx)\n",
923 				new_capacity.sc_capacity,
924 				    new_capacity.sc_capacity);
925 			err_print("blksize: %u\n", new_capacity.sc_lbasize);
926 		}
927 		capacity = &new_capacity;
928 		if (capacity->sc_lbasize != DEV_BSIZE) {
929 			goto err;
930 		}
931 	}
932 
933 	/*
934 	 * Get current Page 3 - Format Parameters page
935 	 */
936 	if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT,
937 			(caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) {
938 		goto err;
939 	}
940 
941 	/*
942 	 * Get current Page 4 - Drive Geometry page
943 	 */
944 	if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT,
945 			(caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) {
946 		goto err;
947 	}
948 
949 	/*
950 	 * Correct for byte order if necessary
951 	 */
952 	page4->rpm = BE_16(page4->rpm);
953 	page4->step_rate = BE_16(page4->step_rate);
954 	page3->tracks_per_zone = BE_16(page3->tracks_per_zone);
955 	page3->alt_sect_zone = BE_16(page3->alt_sect_zone);
956 	page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone);
957 	page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol);
958 	page3->sect_track = BE_16(page3->sect_track);
959 	page3->data_bytes_sect = BE_16(page3->data_bytes_sect);
960 	page3->interleave = BE_16(page3->interleave);
961 	page3->track_skew = BE_16(page3->track_skew);
962 	page3->cylinder_skew = BE_16(page3->cylinder_skew);
963 
964 
965 	/*
966 	 * Construct a new label out of the sense data,
967 	 * Inquiry and Capacity.
968 	 */
969 	pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) + page4->cyl_lb;
970 	nhead = page4->heads;
971 	nsect = page3->sect_track;
972 	rpm = page4->rpm;
973 
974 	/*
975 	 * If the number of physical cylinders reported is less
976 	 * the SUN_MIN_CYL(3) then try to adjust the geometry so that
977 	 * we have atleast SUN_MIN_CYL cylinders.
978 	 */
979 	if (pcyl < SUN_MIN_CYL) {
980 		if (adjust_disk_geometry((int)(capacity->sc_capacity + 1),
981 		    &pcyl, &nhead, &nsect)) {
982 			goto err;
983 		}
984 	}
985 
986 	/*
987 	 * The sd driver reserves 2 cylinders the backup disk label and
988 	 * the deviceid.  Set the number of data cylinders to pcyl-acyl.
989 	 */
990 	acyl = DK_ACYL;
991 	ncyl = pcyl - acyl;
992 
993 	if (option_msg && diag_msg) {
994 		err_print("Geometry:\n");
995 		err_print("    pcyl:    %d\n", pcyl);
996 		err_print("    ncyl:    %d\n", ncyl);
997 		err_print("    heads:   %d\n", nhead);
998 		err_print("    nsects:  %d\n", nsect);
999 		err_print("    acyl:    %d\n", acyl);
1000 
1001 #if defined(_SUNOS_VTOC_16)
1002 		err_print("    bcyl:    %d\n", bcyl);
1003 #endif			/* defined(_SUNOS_VTOC_16) */
1004 
1005 		err_print("    rpm:     %d\n", rpm);
1006 	}
1007 
1008 	/*
1009 	 * Some drives report 0 for page4->rpm, adjust it to AVG_RPM, 3600.
1010 	 */
1011 	if (rpm < MIN_RPM || rpm > MAX_RPM) {
1012 		err_print("Mode sense page(4) reports rpm value as %d,"
1013 			" adjusting it to %d\n", rpm, AVG_RPM);
1014 		rpm = AVG_RPM;
1015 	}
1016 
1017 	/*
1018 	 * Get the number of blocks from Read Capacity data. Note that
1019 	 * the logical block address range from 0 to capacity->sc_capacity.
1020 	 */
1021 	nblocks = (long)(capacity->sc_capacity + 1);
1022 
1023 	/*
1024 	 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they
1025 	 * have variable number of sectors per track. So adjust nsect.
1026 	 * Also the value is defined as vendor specific, hence check if
1027 	 * it is in a tolerable range. The values (32 and 4 below) are
1028 	 * chosen so that this change below does not generate a different
1029 	 * geometry for currently supported sun disks.
1030 	 */
1031 	if ((nsect <= 0) ||
1032 	    (pcyl * nhead * nsect) < (nblocks - nblocks/32) ||
1033 	    (pcyl * nhead * nsect) > (nblocks + nblocks/4)) {
1034 		err_print("Mode sense page(3) reports nsect value as %d, "
1035 		    "adjusting it to %ld\n", nsect, nblocks / (pcyl * nhead));
1036 		nsect = nblocks / (pcyl * nhead);
1037 	}
1038 
1039 	/*
1040 	 * Some drives report their physical geometry such that
1041 	 * it is greater than the actual capacity.  Adjust the
1042 	 * geometry to allow for this, so we don't run off
1043 	 * the end of the disk.
1044 	 */
1045 	if ((pcyl * nhead * nsect) > nblocks) {
1046 		int	p = pcyl;
1047 		if (option_msg && diag_msg) {
1048 			err_print("Computed capacity (%ld) exceeds actual "
1049 				"disk capacity (%ld)\n",
1050 				(long)(pcyl * nhead * nsect), nblocks);
1051 		}
1052 		do {
1053 			pcyl--;
1054 		} while ((pcyl * nhead * nsect) > nblocks);
1055 
1056 		if (can_prompt && expert_mode && !option_f) {
1057 			/*
1058 			 * Try to adjust nsect instead of pcyl to see if we
1059 			 * can optimize. For compatability reasons do this
1060 			 * only in expert mode (refer to bug 1144812).
1061 			 */
1062 			int	n = nsect;
1063 			do {
1064 				n--;
1065 			} while ((p * nhead * n) > nblocks);
1066 			if ((p * nhead * n) > (pcyl * nhead * nsect)) {
1067 				u_ioparam_t	ioparam;
1068 				int		deflt = 1;
1069 				/*
1070 				 * Ask the user for a choice here.
1071 				 */
1072 				ioparam.io_bounds.lower = 1;
1073 				ioparam.io_bounds.upper = 2;
1074 				err_print("1. Capacity = %d, with pcyl = %d "
1075 					"nhead = %d nsect = %d\n",
1076 					(pcyl * nhead * nsect),
1077 					pcyl, nhead, nsect);
1078 				err_print("2. Capacity = %d, with pcyl = %d "
1079 					"nhead = %d nsect = %d\n",
1080 					(p * nhead * n),
1081 					p, nhead, n);
1082 				if (input(FIO_INT, "Select one of the above "
1083 				    "choices ", ':', &ioparam,
1084 					&deflt, DATA_INPUT) == 2) {
1085 					pcyl = p;
1086 					nsect = n;
1087 				}
1088 			}
1089 		}
1090 	}
1091 
1092 #if defined(_SUNOS_VTOC_8)
1093 	/*
1094 	 * Finally, we need to make sure we don't overflow any of the
1095 	 * fields in our disk label.  To do this we need to `square
1096 	 * the box' so to speak.  We will lose bits here.
1097 	 */
1098 
1099 	if ((pcyl > MAXIMUM_NO_CYLINDERS &&
1100 		((nsect > MAXIMUM_NO_SECTORS) ||
1101 		(nhead > MAXIMUM_NO_HEADS))) ||
1102 		((nsect > MAXIMUM_NO_SECTORS) &&
1103 		(nhead > MAXIMUM_NO_HEADS))) {
1104 		err_print("This disk is too big to label. "
1105 			" You will lose some blocks.\n");
1106 	}
1107 	if ((pcyl > MAXIMUM_NO_CYLINDERS) ||
1108 		(nsect > MAXIMUM_NO_SECTORS) ||
1109 		(nhead > MAXIMUM_NO_HEADS)) {
1110 		u_ioparam_t	ioparam;
1111 		int		order;
1112 		char		msg[256];
1113 
1114 		order = ((ncyl > nhead)<<2) |
1115 			((ncyl > nsect)<<1) |
1116 			(nhead > nsect);
1117 		switch (order) {
1118 		case 0x7: /* ncyl > nhead > nsect */
1119 			nblocks =
1120 				square_box(nblocks,
1121 					&pcyl, MAXIMUM_NO_CYLINDERS,
1122 					&nhead, MAXIMUM_NO_HEADS,
1123 					&nsect, MAXIMUM_NO_SECTORS);
1124 			break;
1125 		case 0x6: /* ncyl > nsect > nhead */
1126 			nblocks =
1127 				square_box(nblocks,
1128 					&pcyl, MAXIMUM_NO_CYLINDERS,
1129 					&nsect, MAXIMUM_NO_SECTORS,
1130 					&nhead, MAXIMUM_NO_HEADS);
1131 			break;
1132 		case 0x4: /* nsect > ncyl > nhead */
1133 			nblocks =
1134 				square_box(nblocks,
1135 					&nsect, MAXIMUM_NO_SECTORS,
1136 					&pcyl, MAXIMUM_NO_CYLINDERS,
1137 					&nhead, MAXIMUM_NO_HEADS);
1138 			break;
1139 		case 0x0: /* nsect > nhead > ncyl */
1140 			nblocks =
1141 				square_box(nblocks,
1142 					&nsect, MAXIMUM_NO_SECTORS,
1143 					&nhead, MAXIMUM_NO_HEADS,
1144 					&pcyl, MAXIMUM_NO_CYLINDERS);
1145 			break;
1146 		case 0x3: /* nhead > ncyl > nsect */
1147 			nblocks =
1148 				square_box(nblocks,
1149 					&nhead, MAXIMUM_NO_HEADS,
1150 					&pcyl, MAXIMUM_NO_CYLINDERS,
1151 					&nsect, MAXIMUM_NO_SECTORS);
1152 			break;
1153 		case 0x1: /* nhead > nsect > ncyl */
1154 			nblocks =
1155 				square_box(nblocks,
1156 					&nhead, MAXIMUM_NO_HEADS,
1157 					&nsect, MAXIMUM_NO_SECTORS,
1158 					&pcyl, MAXIMUM_NO_CYLINDERS);
1159 			break;
1160 		default:
1161 			/* How did we get here? */
1162 			impossible("label overflow adjustment");
1163 
1164 			/* Do something useful */
1165 			nblocks =
1166 				square_box(nblocks,
1167 					&nhead, MAXIMUM_NO_HEADS,
1168 					&nsect, MAXIMUM_NO_SECTORS,
1169 					&pcyl, MAXIMUM_NO_CYLINDERS);
1170 			break;
1171 		}
1172 		if (option_msg && diag_msg &&
1173 		    (capacity->sc_capacity + 1 != nblocks)) {
1174 			err_print("After adjusting geometry you lost"
1175 				" %llu of %lld blocks.\n",
1176 				(capacity->sc_capacity + 1 - nblocks),
1177 				capacity->sc_capacity + 1);
1178 		}
1179 		while (can_prompt && expert_mode && !option_f) {
1180 			int				deflt = 1;
1181 
1182 			/*
1183 			 * Allow user to modify this by hand if desired.
1184 			 */
1185 			(void) sprintf(msg,
1186 				"\nGeometry: %d heads, %d sectors %d "
1187 				" cylinders result in %d out of %lld blocks.\n"
1188 				"Do you want to modify the device geometry",
1189 				nhead, nsect, pcyl,
1190 				(int)nblocks, capacity->sc_capacity + 1);
1191 
1192 			ioparam.io_charlist = confirm_list;
1193 			if (input(FIO_MSTR, msg, '?', &ioparam,
1194 				&deflt, DATA_INPUT) != 0)
1195 				break;
1196 
1197 			ioparam.io_bounds.lower = MINIMUM_NO_HEADS;
1198 			ioparam.io_bounds.upper = MAXIMUM_NO_HEADS;
1199 			nhead = input(FIO_INT, "Number of heads", ':',
1200 				&ioparam, &nhead, DATA_INPUT);
1201 			ioparam.io_bounds.lower = MINIMUM_NO_SECTORS;
1202 			ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS;
1203 			nsect = input(FIO_INT,
1204 				"Number of sectors per track",
1205 				':', &ioparam, &nsect, DATA_INPUT);
1206 			ioparam.io_bounds.lower = SUN_MIN_CYL;
1207 			ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS;
1208 			pcyl = input(FIO_INT, "Number of cylinders",
1209 				':', &ioparam, &pcyl, DATA_INPUT);
1210 			nblocks = nhead * nsect * pcyl;
1211 			if (nblocks > capacity->sc_capacity + 1) {
1212 				err_print("Warning: %ld blocks exceeds "
1213 					"disk capacity of %lld blocks\n",
1214 					nblocks,
1215 					capacity->sc_capacity + 1);
1216 			}
1217 		}
1218 	}
1219 #endif		/* defined(_SUNOS_VTOC_8) */
1220 
1221 	ncyl = pcyl - acyl;
1222 
1223 	if (option_msg && diag_msg) {
1224 		err_print("\nGeometry after adjusting for capacity:\n");
1225 		err_print("    pcyl:    %d\n", pcyl);
1226 		err_print("    ncyl:    %d\n", ncyl);
1227 		err_print("    heads:   %d\n", nhead);
1228 		err_print("    nsects:  %d\n", nsect);
1229 		err_print("    acyl:    %d\n", acyl);
1230 		err_print("    rpm:     %d\n", rpm);
1231 	}
1232 
1233 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1234 
1235 	label->dkl_magic = DKL_MAGIC;
1236 
1237 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1238 		"%s cyl %d alt %d hd %d sec %d",
1239 		disk_name, ncyl, acyl, nhead, nsect);
1240 
1241 	label->dkl_pcyl = pcyl;
1242 	label->dkl_ncyl = ncyl;
1243 	label->dkl_acyl = acyl;
1244 	label->dkl_nhead = nhead;
1245 	label->dkl_nsect = nsect;
1246 	label->dkl_apc = 0;
1247 	label->dkl_intrlv = 1;
1248 	label->dkl_rpm = rpm;
1249 
1250 #if defined(_FIRMWARE_NEEDS_FDISK)
1251 	(void) auto_solaris_part(label);
1252 	ncyl = label->dkl_ncyl;
1253 #endif		/* defined(_FIRMWARE_NEEDS_FDISK) */
1254 
1255 
1256 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1257 		goto err;
1258 	}
1259 
1260 	(void) checksum(label, CK_MAKESUM);
1261 
1262 	/*
1263 	 * Find an existing disk type defined for this disk.
1264 	 * For this to work, both the name and geometry must
1265 	 * match.  If there is no such type, but there already
1266 	 * is a disk defined with that name, but with a different
1267 	 * geometry, construct a new generic disk name out of
1268 	 * the inquiry information.  Whatever name we're
1269 	 * finally using, if there's no such disk type defined,
1270 	 * build a new disk definition.
1271 	 */
1272 	if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) {
1273 		if (find_scsi_disk_by_name(disk_name) != NULL) {
1274 			char	old_name[DISK_NAME_MAX];
1275 			(void) strcpy(old_name, disk_name);
1276 			(void) get_generic_disk_name(disk_name,
1277 				inquiry);
1278 			if (option_msg && diag_msg) {
1279 				err_print(
1280 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name);
1281 			}
1282 			(void) snprintf(label->dkl_asciilabel,
1283 				sizeof (label->dkl_asciilabel),
1284 				"%s cyl %d alt %d hd %d sec %d",
1285 				disk_name, ncyl, acyl, nhead, nsect);
1286 			(void) checksum(label, CK_MAKESUM);
1287 			disk = find_scsi_disk_type(disk_name, label);
1288 		}
1289 		if (disk == NULL) {
1290 			disk = new_scsi_disk_type(fd, disk_name, label);
1291 			if (disk == NULL)
1292 				goto err;
1293 		}
1294 	}
1295 
1296 	return (disk);
1297 
1298 err:
1299 	if (option_msg && diag_msg) {
1300 		err_print(
1301 		"Configuration via generic SCSI-2 information failed\n");
1302 	}
1303 	return (NULL);
1304 }
1305 
1306 
1307 /*ARGSUSED*/
1308 static int
1309 use_existing_disk_type(
1310 	int			fd,
1311 	int			can_prompt,
1312 	struct dk_label		*label,
1313 	struct scsi_inquiry	*inquiry,
1314 	struct disk_type	*disk_type,
1315 	struct scsi_capacity_16	*capacity)
1316 {
1317 	struct scsi_capacity_16	new_capacity;
1318 	int			pcyl;
1319 	int			acyl;
1320 	int			nhead;
1321 	int			nsect;
1322 	int			rpm;
1323 
1324 	/*
1325 	 * If the device's block size is not 512, we have to
1326 	 * change block size, reformat, and then sense the
1327 	 * geometry.  To do this, we must be able to prompt
1328 	 * the user.
1329 	 */
1330 	if (capacity->sc_lbasize != DEV_BSIZE) {
1331 		if (!can_prompt) {
1332 			return (0);
1333 		}
1334 		if (force_blocksize(fd)) {
1335 			goto err;
1336 		}
1337 
1338 		/*
1339 		 * Get the capacity again, since this has changed
1340 		 */
1341 		if (uscsi_read_capacity(fd, &new_capacity)) {
1342 			goto err;
1343 		}
1344 
1345 		if (option_msg && diag_msg) {
1346 			err_print("blocks:  %llu (0x%llx)\n",
1347 			    new_capacity.sc_capacity,
1348 			    new_capacity.sc_capacity);
1349 			err_print("blksize: %u\n", new_capacity.sc_lbasize);
1350 		}
1351 
1352 		capacity = &new_capacity;
1353 		if (capacity->sc_lbasize != DEV_BSIZE) {
1354 			goto err;
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * Construct a new label out of the format.dat
1360 	 */
1361 	pcyl = disk_type->dtype_pcyl;
1362 	acyl = disk_type->dtype_acyl;
1363 	ncyl = disk_type->dtype_ncyl;
1364 	nhead = disk_type->dtype_nhead;
1365 	nsect = disk_type->dtype_nsect;
1366 	rpm = disk_type->dtype_rpm;
1367 
1368 	if (option_msg && diag_msg) {
1369 		err_print("Format.dat geometry:\n");
1370 		err_print("    pcyl:    %d\n", pcyl);
1371 		err_print("    heads:   %d\n", nhead);
1372 		err_print("    nsects:  %d\n", nsect);
1373 		err_print("    acyl:    %d\n", acyl);
1374 		err_print("    rpm:     %d\n", rpm);
1375 	}
1376 
1377 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1378 
1379 	label->dkl_magic = DKL_MAGIC;
1380 
1381 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1382 		"%s cyl %d alt %d hd %d sec %d",
1383 		disk_type->dtype_asciilabel,
1384 		ncyl, acyl, nhead, nsect);
1385 
1386 	label->dkl_pcyl = pcyl;
1387 	label->dkl_ncyl = ncyl;
1388 	label->dkl_acyl = acyl;
1389 	label->dkl_nhead = nhead;
1390 	label->dkl_nsect = nsect;
1391 	label->dkl_apc = 0;
1392 	label->dkl_intrlv = 1;
1393 	label->dkl_rpm = rpm;
1394 
1395 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1396 		goto err;
1397 	}
1398 
1399 	(void) checksum(label, CK_MAKESUM);
1400 	return (1);
1401 
1402 err:
1403 	if (option_msg && diag_msg) {
1404 		err_print(
1405 			"Configuration via format.dat geometry failed\n");
1406 	}
1407 	return (0);
1408 }
1409 
1410 int
1411 build_default_partition(
1412 	struct dk_label			*label,
1413 	int				ctrl_type)
1414 {
1415 	int				i;
1416 	int				ncyls[NDKMAP];
1417 	int				nblks;
1418 	int				cyl;
1419 	struct dk_vtoc			*vtoc;
1420 	struct part_table		*pt;
1421 	struct default_partitions	*dpt;
1422 	long				capacity;
1423 	int				freecyls;
1424 	int				blks_per_cyl;
1425 	int				ncyl;
1426 
1427 #ifdef lint
1428 	ctrl_type = ctrl_type;
1429 #endif
1430 
1431 	/*
1432 	 * Install a default vtoc
1433 	 */
1434 	vtoc = &label->dkl_vtoc;
1435 	vtoc->v_version = V_VERSION;
1436 	vtoc->v_nparts = NDKMAP;
1437 	vtoc->v_sanity = VTOC_SANE;
1438 
1439 	for (i = 0; i < NDKMAP; i++) {
1440 		vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag;
1441 		vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag;
1442 	}
1443 
1444 	/*
1445 	 * Find a partition that matches this disk.  Capacity
1446 	 * is in integral number of megabytes.
1447 	 */
1448 	capacity = (long)(label->dkl_ncyl * label->dkl_nhead *
1449 		label->dkl_nsect) / (long)((1024 * 1024) / DEV_BSIZE);
1450 	dpt = default_partitions;
1451 	for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) {
1452 		if (capacity >= dpt->min_capacity &&
1453 				capacity < dpt->max_capacity) {
1454 			break;
1455 		}
1456 	}
1457 	if (i == DEFAULT_PARTITION_TABLE_SIZE) {
1458 		if (option_msg && diag_msg) {
1459 			err_print("No matching default partition (%ld)\n",
1460 				capacity);
1461 		}
1462 		return (0);
1463 	}
1464 	pt = dpt->part_table;
1465 
1466 	/*
1467 	 * Go through default partition table, finding fixed
1468 	 * sized entries.
1469 	 */
1470 	freecyls = label->dkl_ncyl;
1471 	blks_per_cyl = label->dkl_nhead * label->dkl_nsect;
1472 	for (i = 0; i < NDKMAP; i++) {
1473 		if (pt->partitions[i] == HOG || pt->partitions[i] == 0) {
1474 			ncyls[i] = 0;
1475 		} else {
1476 			/*
1477 			 * Calculate number of cylinders necessary
1478 			 * for specified size, rounding up to
1479 			 * the next greatest integral number of
1480 			 * cylinders.  Always give what they
1481 			 * asked or more, never less.
1482 			 */
1483 			nblks = pt->partitions[i] * ((1024*1024)/DEV_BSIZE);
1484 			nblks += (blks_per_cyl - 1);
1485 			ncyls[i] = nblks / blks_per_cyl;
1486 			freecyls -= ncyls[i];
1487 		}
1488 	}
1489 
1490 	if (freecyls < 0) {
1491 		if (option_msg && diag_msg) {
1492 			for (i = 0; i < NDKMAP; i++) {
1493 				if (ncyls[i] == 0)
1494 					continue;
1495 				err_print("Partition %d: %d cyls\n",
1496 					i, ncyls[i]);
1497 			}
1498 			err_print("Free cylinders exhausted (%d)\n",
1499 				freecyls);
1500 		}
1501 		return (0);
1502 	}
1503 #if defined(i386)
1504 	/*
1505 	 * Set the default boot partition to 1 cylinder
1506 	 */
1507 	ncyls[8] = 1;
1508 	freecyls -= 1;
1509 
1510 	/*
1511 	 * If current disk type is not a SCSI disk,
1512 	 * set the default alternates partition to 2 cylinders
1513 	 */
1514 	if (ctrl_type != DKC_SCSI_CCS) {
1515 		ncyls[9] = 2;
1516 		freecyls -= 2;
1517 	}
1518 #endif			/* defined(i386) */
1519 
1520 	/*
1521 	 * Set the free hog partition to whatever space remains.
1522 	 * It's an error to have more than one HOG partition,
1523 	 * but we don't verify that here.
1524 	 */
1525 	for (i = 0; i < NDKMAP; i++) {
1526 		if (pt->partitions[i] == HOG) {
1527 			assert(ncyls[i] == 0);
1528 			ncyls[i] = freecyls;
1529 			break;
1530 		}
1531 	}
1532 
1533 	/*
1534 	 * Error checking
1535 	 */
1536 	ncyl = 0;
1537 	for (i = 0; i < NDKMAP; i++) {
1538 		ncyl += ncyls[i];
1539 	}
1540 	assert(ncyl == (label->dkl_ncyl));
1541 
1542 	/*
1543 	 * Finally, install the partition in the label.
1544 	 */
1545 	cyl = 0;
1546 
1547 #if defined(_SUNOS_VTOC_16)
1548 	for (i = NDKMAP/2; i < NDKMAP; i++) {
1549 		if (i == 2 || ncyls[i] == 0)
1550 			continue;
1551 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1552 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1553 		cyl += ncyls[i];
1554 	}
1555 	for (i = 0; i < NDKMAP/2; i++) {
1556 
1557 #elif defined(_SUNOS_VTOC_8)
1558 	for (i = 0; i < NDKMAP; i++) {
1559 
1560 #else
1561 #error No VTOC format defined.
1562 #endif				/* defined(_SUNOS_VTOC_16) */
1563 
1564 		if (i == 2 || ncyls[i] == 0) {
1565 #if defined(_SUNOS_VTOC_8)
1566 			if (i != 2) {
1567 				label->dkl_map[i].dkl_cylno = 0;
1568 				label->dkl_map[i].dkl_nblk = 0;
1569 			}
1570 #endif
1571 			continue;
1572 		}
1573 #if defined(_SUNOS_VTOC_8)
1574 		label->dkl_map[i].dkl_cylno = cyl;
1575 		label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl;
1576 #elif defined(_SUNOS_VTOC_16)
1577 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1578 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1579 
1580 #else
1581 #error No VTOC format defined.
1582 #endif				/* defined(_SUNOS_VTOC_8) */
1583 
1584 		cyl += ncyls[i];
1585 	}
1586 
1587 	/*
1588 	 * Set the whole disk partition
1589 	 */
1590 #if defined(_SUNOS_VTOC_8)
1591 	label->dkl_map[2].dkl_cylno = 0;
1592 	label->dkl_map[2].dkl_nblk =
1593 		label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect;
1594 
1595 #elif defined(_SUNOS_VTOC_16)
1596 	label->dkl_vtoc.v_part[2].p_start = 0;
1597 	label->dkl_vtoc.v_part[2].p_size =
1598 		(label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead *
1599 			label->dkl_nsect;
1600 #else
1601 #error No VTOC format defined.
1602 #endif				/* defined(_SUNOS_VTOC_8) */
1603 
1604 
1605 	if (option_msg && diag_msg) {
1606 		float	scaled;
1607 		err_print("\n");
1608 		for (i = 0; i < NDKMAP; i++) {
1609 #if defined(_SUNOS_VTOC_8)
1610 			if (label->dkl_map[i].dkl_nblk == 0)
1611 
1612 #elif defined(_SUNOS_VTOC_16)
1613 			if (label->dkl_vtoc.v_part[i].p_size == 0)
1614 
1615 #else
1616 #error No VTOC format defined.
1617 #endif				/* defined(_SUNOS_VTOC_8) */
1618 
1619 				continue;
1620 			err_print("Partition %d:   ", i);
1621 #if defined(_SUNOS_VTOC_8)
1622 			scaled = bn2mb(label->dkl_map[i].dkl_nblk);
1623 
1624 #elif defined(_SUNOS_VTOC_16)
1625 
1626 			scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size);
1627 #else
1628 #error No VTOC format defined.
1629 #endif				/* defined(_SUNOS_VTOC_8) */
1630 
1631 			if (scaled > 1024.0) {
1632 				err_print("%6.2fGB  ", scaled/1024.0);
1633 			} else {
1634 				err_print("%6.2fMB  ", scaled);
1635 			}
1636 			err_print(" %6d cylinders\n",
1637 #if defined(_SUNOS_VTOC_8)
1638 			    label->dkl_map[i].dkl_nblk/blks_per_cyl);
1639 
1640 #elif defined(_SUNOS_VTOC_16)
1641 			    label->dkl_vtoc.v_part[i].p_size/blks_per_cyl);
1642 
1643 #else
1644 #error No VTOC format defined.
1645 #endif				/* defined(_SUNOS_VTOC_8) */
1646 
1647 		}
1648 		err_print("\n");
1649 	}
1650 
1651 	return (1);
1652 }
1653 
1654 
1655 
1656 /*
1657  * Find an existing scsi disk definition by this name,
1658  * if possible.
1659  */
1660 static struct disk_type *
1661 find_scsi_disk_type(
1662 	char			*disk_name,
1663 	struct dk_label		*label)
1664 {
1665 	struct ctlr_type	*ctlr;
1666 	struct disk_type	*dp;
1667 
1668 	ctlr = find_scsi_ctlr_type();
1669 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1670 	    if (dp->dtype_asciilabel) {
1671 		if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) &&
1672 				dp->dtype_pcyl == label->dkl_pcyl &&
1673 				dp->dtype_ncyl == label->dkl_ncyl &&
1674 				dp->dtype_acyl == label->dkl_acyl &&
1675 				dp->dtype_nhead == label->dkl_nhead &&
1676 				dp->dtype_nsect == label->dkl_nsect) {
1677 			return (dp);
1678 		}
1679 	    }
1680 	}
1681 
1682 	return ((struct disk_type *)NULL);
1683 }
1684 
1685 
1686 /*
1687  * Find an existing scsi disk definition by this name,
1688  * if possible.
1689  */
1690 static struct disk_type *
1691 find_scsi_disk_by_name(
1692 	char			*disk_name)
1693 {
1694 	struct ctlr_type	*ctlr;
1695 	struct disk_type	*dp;
1696 
1697 	ctlr = find_scsi_ctlr_type();
1698 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1699 	    if (dp->dtype_asciilabel) {
1700 		if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) {
1701 			return (dp);
1702 		}
1703 	    }
1704 	}
1705 
1706 	return ((struct disk_type *)NULL);
1707 }
1708 
1709 
1710 /*
1711  * Return a pointer to the ctlr_type structure for SCSI
1712  * disks.  This list is built into the program, so there's
1713  * no chance of not being able to find it, unless someone
1714  * totally mangles the code.
1715  */
1716 static struct ctlr_type *
1717 find_scsi_ctlr_type()
1718 {
1719 	struct	mctlr_list	*mlp;
1720 
1721 	mlp = controlp;
1722 
1723 	while (mlp != NULL) {
1724 		if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) {
1725 			return (mlp->ctlr_type);
1726 		}
1727 	mlp = mlp->next;
1728 	}
1729 
1730 	impossible("no SCSI controller type");
1731 
1732 	return ((struct ctlr_type *)NULL);
1733 }
1734 
1735 
1736 
1737 /*
1738  * Return a pointer to the scsi ctlr_info structure.  This
1739  * structure is allocated the first time format sees a
1740  * disk on this controller, so it must be present.
1741  */
1742 static struct ctlr_info *
1743 find_scsi_ctlr_info(
1744 	struct dk_cinfo		*dkinfo)
1745 {
1746 	struct ctlr_info	*ctlr;
1747 
1748 	if (dkinfo->dki_ctype != DKC_SCSI_CCS) {
1749 		return (NULL);
1750 	}
1751 
1752 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
1753 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
1754 			ctlr->ctlr_space == dkinfo->dki_space &&
1755 				ctlr->ctlr_ctype->ctype_ctype ==
1756 					DKC_SCSI_CCS) {
1757 			return (ctlr);
1758 		}
1759 	}
1760 
1761 	impossible("no SCSI controller info");
1762 
1763 	return ((struct ctlr_info *)NULL);
1764 }
1765 
1766 
1767 
1768 static struct disk_type *
1769 new_scsi_disk_type(
1770 	int		fd,
1771 	char		*disk_name,
1772 	struct dk_label	*label)
1773 {
1774 	struct disk_type	*dp;
1775 	struct disk_type	*disk;
1776 	struct ctlr_info	*ctlr;
1777 	struct dk_cinfo		dkinfo;
1778 	struct partition_info	*part;
1779 	struct partition_info	*pt;
1780 	struct disk_info	*disk_info;
1781 	int			i;
1782 
1783 	/*
1784 	 * Get the disk controller info for this disk
1785 	 */
1786 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
1787 		if (option_msg && diag_msg) {
1788 			err_print("DKIOCINFO failed\n");
1789 		}
1790 		return (NULL);
1791 	}
1792 
1793 	/*
1794 	 * Find the ctlr_info for this disk.
1795 	 */
1796 	ctlr = find_scsi_ctlr_info(&dkinfo);
1797 
1798 	/*
1799 	 * Allocate a new disk type for the SCSI controller.
1800 	 */
1801 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
1802 
1803 	/*
1804 	 * Find the disk_info instance for this disk.
1805 	 */
1806 	disk_info = find_scsi_disk_info(&dkinfo);
1807 
1808 	/*
1809 	 * The controller and the disk should match.
1810 	 */
1811 	assert(disk_info->disk_ctlr == ctlr);
1812 
1813 	/*
1814 	 * Link the disk into the list of disks
1815 	 */
1816 	dp = ctlr->ctlr_ctype->ctype_dlist;
1817 	if (dp == NULL) {
1818 		ctlr->ctlr_ctype->ctype_dlist = dp;
1819 	} else {
1820 		while (dp->dtype_next != NULL) {
1821 			dp = dp->dtype_next;
1822 		}
1823 		dp->dtype_next = disk;
1824 	}
1825 	disk->dtype_next = NULL;
1826 
1827 	/*
1828 	 * Allocate and initialize the disk name.
1829 	 */
1830 	disk->dtype_asciilabel = alloc_string(disk_name);
1831 
1832 	/*
1833 	 * Initialize disk geometry info
1834 	 */
1835 	disk->dtype_pcyl = label->dkl_pcyl;
1836 	disk->dtype_ncyl = label->dkl_ncyl;
1837 	disk->dtype_acyl = label->dkl_acyl;
1838 	disk->dtype_nhead = label->dkl_nhead;
1839 	disk->dtype_nsect = label->dkl_nsect;
1840 	disk->dtype_rpm = label->dkl_rpm;
1841 
1842 	/*
1843 	 * Attempt to match the partition map in the label
1844 	 * with a know partition for this disk type.
1845 	 */
1846 	for (part = disk->dtype_plist; part; part = part->pinfo_next) {
1847 		if (parts_match(label, part)) {
1848 			break;
1849 		}
1850 	}
1851 
1852 	/*
1853 	 * If no match was made, we need to create a partition
1854 	 * map for this disk.
1855 	 */
1856 	if (part == NULL) {
1857 		part = (struct partition_info *)
1858 			zalloc(sizeof (struct partition_info));
1859 		pt = disk->dtype_plist;
1860 		if (pt == NULL) {
1861 			disk->dtype_plist = part;
1862 		} else {
1863 			while (pt->pinfo_next != NULL) {
1864 				pt = pt->pinfo_next;
1865 			}
1866 			pt->pinfo_next = part;
1867 		}
1868 		part->pinfo_next = NULL;
1869 
1870 		/*
1871 		 * Set up the partition name
1872 		 */
1873 		part->pinfo_name = alloc_string("default");
1874 
1875 		/*
1876 		 * Fill in the partition info from the label
1877 		 */
1878 		for (i = 0; i < NDKMAP; i++) {
1879 
1880 #if defined(_SUNOS_VTOC_8)
1881 			part->pinfo_map[i] = label->dkl_map[i];
1882 
1883 #elif defined(_SUNOS_VTOC_16)
1884 			part->pinfo_map[i].dkl_cylno =
1885 				label->dkl_vtoc.v_part[i].p_start /
1886 					((int)(disk->dtype_nhead *
1887 						disk->dtype_nsect - apc));
1888 			part->pinfo_map[i].dkl_nblk =
1889 				label->dkl_vtoc.v_part[i].p_size;
1890 #else
1891 #error No VTOC format defined.
1892 #endif				/* defined(_SUNOS_VTOC_8) */
1893 
1894 		}
1895 	}
1896 
1897 
1898 	/*
1899 	 * Use the VTOC if valid, or install a default
1900 	 */
1901 	if (label->dkl_vtoc.v_version == V_VERSION) {
1902 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
1903 			LEN_DKL_VVOL);
1904 		part->vtoc = label->dkl_vtoc;
1905 	} else {
1906 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
1907 		set_vtoc_defaults(part);
1908 	}
1909 
1910 	/*
1911 	 * Link the disk to the partition map
1912 	 */
1913 	disk_info->disk_parts = part;
1914 
1915 	return (disk);
1916 }
1917 
1918 
1919 /*
1920  * Delete a disk type from disk type list.
1921  */
1922 int
1923 delete_disk_type(
1924 		struct disk_type *disk_type)
1925 {
1926 	struct ctlr_type	*ctlr;
1927 	struct disk_type	*dp, *disk;
1928 
1929 	if (cur_ctype->ctype_ctype == DKC_DIRECT)
1930 		ctlr = find_direct_ctlr_type();
1931 	else
1932 		ctlr = find_scsi_ctlr_type();
1933 	if (ctlr == NULL || ctlr->ctype_dlist == NULL) {
1934 		return (-1);
1935 	}
1936 
1937 	disk = ctlr->ctype_dlist;
1938 	if (disk == disk_type) {
1939 		ctlr->ctype_dlist = disk->dtype_next;
1940 		if (cur_label == L_TYPE_EFI)
1941 			free(disk->dtype_plist->etoc);
1942 		free(disk->dtype_plist);
1943 		free(disk);
1944 		return (0);
1945 	} else {
1946 		for (dp = disk->dtype_next; dp != NULL;
1947 		    disk = disk->dtype_next, dp = dp->dtype_next) {
1948 			if (dp == disk_type) {
1949 				disk->dtype_next = dp->dtype_next;
1950 				if (cur_label == L_TYPE_EFI)
1951 					free(dp->dtype_plist->etoc);
1952 				free(dp->dtype_plist);
1953 				free(dp);
1954 				return (0);
1955 			}
1956 		}
1957 		return (-1);
1958 	}
1959 }
1960 
1961 
1962 static struct disk_info *
1963 find_scsi_disk_info(
1964 	struct dk_cinfo		*dkinfo)
1965 {
1966 	struct disk_info	*disk;
1967 	struct dk_cinfo		*dp;
1968 
1969 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
1970 		assert(dkinfo->dki_ctype == DKC_SCSI_CCS);
1971 		dp = &disk->disk_dkinfo;
1972 		if (dp->dki_ctype == dkinfo->dki_ctype &&
1973 			dp->dki_cnum == dkinfo->dki_cnum &&
1974 			dp->dki_unit == dkinfo->dki_unit &&
1975 			strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
1976 			return (disk);
1977 		}
1978 	}
1979 
1980 	impossible("No SCSI disk info instance\n");
1981 
1982 	return ((struct disk_info *)NULL);
1983 }
1984 
1985 
1986 static char *
1987 get_sun_disk_name(
1988 	char			*disk_name,
1989 	struct scsi_inquiry	*inquiry)
1990 {
1991 	/*
1992 	 * Extract the sun name of the disk
1993 	 */
1994 	(void) memset(disk_name, 0, DISK_NAME_MAX);
1995 	(void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7);
1996 
1997 	return (disk_name);
1998 }
1999 
2000 
2001 static char *
2002 get_generic_disk_name(
2003 	char			*disk_name,
2004 	struct scsi_inquiry	*inquiry)
2005 {
2006 	char	*p;
2007 
2008 	(void) memset(disk_name, 0, DISK_NAME_MAX);
2009 	p = strcopy(disk_name, inquiry->inq_vid,
2010 		sizeof (inquiry->inq_vid));
2011 	*p++ = '-';
2012 	p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid));
2013 	*p++ = '-';
2014 	p = strcopy(p, inquiry->inq_revision,
2015 		sizeof (inquiry->inq_revision));
2016 
2017 	return (disk_name);
2018 }
2019 
2020 
2021 
2022 static int
2023 force_blocksize(
2024 	int	fd)
2025 {
2026 	union {
2027 		struct mode_format	page3;
2028 		uchar_t			buf3[MAX_MODE_SENSE_SIZE];
2029 	} u_page3;
2030 	struct mode_format		*page3 = &u_page3.page3;
2031 	struct scsi_ms_header		header;
2032 
2033 	if (check("\
2034 Must reformat device to 512-byte blocksize.  Continue") == 0) {
2035 
2036 		/*
2037 		 * Get current Page 3 - Format Parameters page
2038 		 */
2039 		if (uscsi_mode_sense(fd, DAD_MODE_FORMAT,
2040 			MODE_SENSE_PC_CURRENT, (caddr_t)&u_page3,
2041 			MAX_MODE_SENSE_SIZE, &header)) {
2042 			goto err;
2043 		}
2044 
2045 		/*
2046 		 * Make our changes to the geometry
2047 		 */
2048 		header.mode_header.length = 0;
2049 		header.mode_header.device_specific = 0;
2050 		page3->mode_page.ps = 0;
2051 		page3->data_bytes_sect = DEV_BSIZE;
2052 
2053 		/*
2054 		 * make sure that logical block size is of
2055 		 * DEV_BSIZE.
2056 		 */
2057 		header.block_descriptor.blksize_hi = (DEV_BSIZE >> 16);
2058 		header.block_descriptor.blksize_mid = (DEV_BSIZE >> 8);
2059 		header.block_descriptor.blksize_lo = (char)(DEV_BSIZE);
2060 		/*
2061 		 * Select current Page 3 - Format Parameters page
2062 		 */
2063 		if (uscsi_mode_select(fd, DAD_MODE_FORMAT,
2064 			MODE_SELECT_PF, (caddr_t)&u_page3,
2065 			MODESENSE_PAGE_LEN(&u_page3), &header)) {
2066 			goto err;
2067 		}
2068 
2069 		/*
2070 		 * Now reformat the device
2071 		 */
2072 		if (raw_format(fd)) {
2073 			goto err;
2074 		}
2075 		return (0);
2076 	}
2077 
2078 err:
2079 	if (option_msg && diag_msg) {
2080 		err_print(
2081 			"Reformat device to 512-byte blocksize failed\n");
2082 	}
2083 	return (1);
2084 }
2085 
2086 static int
2087 raw_format(
2088 	int	fd)
2089 {
2090 	union scsi_cdb			cdb;
2091 	struct uscsi_cmd		ucmd;
2092 	struct scsi_defect_hdr		defect_hdr;
2093 
2094 	(void) memset((char *)&ucmd, 0, sizeof (ucmd));
2095 	(void) memset((char *)&cdb, 0, sizeof (union scsi_cdb));
2096 	(void) memset((char *)&defect_hdr, 0, sizeof (defect_hdr));
2097 	cdb.scc_cmd = SCMD_FORMAT;
2098 	ucmd.uscsi_cdb = (caddr_t)&cdb;
2099 	ucmd.uscsi_cdblen = CDB_GROUP0;
2100 	ucmd.uscsi_bufaddr = (caddr_t)&defect_hdr;
2101 	ucmd.uscsi_buflen = sizeof (defect_hdr);
2102 	cdb.cdb_opaque[1] = FPB_DATA;
2103 
2104 	/*
2105 	 * Issue the format ioctl
2106 	 */
2107 	fmt_print("Formatting...\n");
2108 	(void) fflush(stdout);
2109 	if (uscsi_cmd(fd, &ucmd,
2110 		(option_msg && diag_msg) ? F_NORMAL : F_SILENT)) {
2111 		return (1);
2112 	}
2113 	return (0);
2114 }
2115 
2116 /*
2117  * Copy a string of characters from src to dst, for at
2118  * most n bytes.  Strip all leading and trailing spaces,
2119  * and stop if there are any non-printable characters.
2120  * Return ptr to the next character to be filled.
2121  */
2122 static char *
2123 strcopy(
2124 	char	*dst,
2125 	char	*src,
2126 	int	n)
2127 {
2128 	int	i;
2129 
2130 	while (*src == ' ' && n > 0) {
2131 		src++;
2132 		n--;
2133 	}
2134 
2135 	for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) {
2136 		if (*src == ' ') {
2137 			i++;
2138 		} else {
2139 			while (i-- > 0)
2140 				*dst++ = ' ';
2141 			*dst++ = *src;
2142 		}
2143 	}
2144 
2145 	*dst = 0;
2146 	return (dst);
2147 }
2148 
2149 /*
2150  * adjust disk geometry.
2151  * This is used when disk reports a disk geometry page having
2152  * no of physical cylinders is < 3 which is the minimum required
2153  * by Solaris (2 for storing labels and at least one as a data
2154  * cylinder )
2155  */
2156 int
2157 adjust_disk_geometry(int capacity, int *cyl, int *nhead, int *nsect)
2158 {
2159 	int	lcyl = *cyl;
2160 	int	lnhead = *nhead;
2161 	int	lnsect = *nsect;
2162 
2163 	assert(lcyl < SUN_MIN_CYL);
2164 
2165 	/*
2166 	 * reduce nsect by 2 for each iteration  and re-calculate
2167 	 * the number of cylinders.
2168 	 */
2169 	while (lnsect > MINIMUM_NO_SECTORS &&
2170 			lcyl < MINIMUM_NO_CYLINDERS) {
2171 		/*
2172 		 * make sure that we do not go below MINIMUM_NO_SECTORS.
2173 		 */
2174 		lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2);
2175 		lcyl   = (capacity) / (lnhead * lnsect);
2176 	}
2177 	/*
2178 	 * If the geometry still does not satisfy
2179 	 * MINIMUM_NO_CYLINDERS then try to reduce the
2180 	 * no of heads.
2181 	 */
2182 	while (lnhead > MINIMUM_NO_HEADS &&
2183 			(lcyl < MINIMUM_NO_CYLINDERS)) {
2184 		lnhead = max(MINIMUM_NO_HEADS, lnhead / 2);
2185 		lcyl =  (capacity) / (lnhead * lnsect);
2186 	}
2187 	/*
2188 	 * now we should have atleast SUN_MIN_CYL cylinders.
2189 	 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS
2190 	 * and MINIMUM_NO_HEADS then return error.
2191 	 */
2192 	if (lcyl < SUN_MIN_CYL)
2193 		return (1);
2194 	else {
2195 		*cyl = lcyl;
2196 		*nhead = lnhead;
2197 		*nsect = lnsect;
2198 		return (0);
2199 	}
2200 }
2201 
2202 #if defined(_SUNOS_VTOC_8)
2203 /*
2204  * Reduce the size of one dimention below a specified
2205  * limit with a minimum loss of volume.  Dimenstions are
2206  * assumed to be passed in form the largest value (the one
2207  * that needs to be reduced) to the smallest value.  The
2208  * values will be twiddled until they are all less than or
2209  * equal to their limit.  Returns the number in the new geometry.
2210  */
2211 static int
2212 square_box(
2213 		int capacity,
2214 		int *dim1, int lim1,
2215 		int *dim2, int lim2,
2216 		int *dim3, int lim3)
2217 {
2218 	int	i;
2219 
2220 	/*
2221 	 * Although the routine should work with any ordering of
2222 	 * parameters, it's most efficient if they are passed in
2223 	 * in decreasing magnitude.
2224 	 */
2225 	assert(*dim1 >= *dim2);
2226 	assert(*dim2 >= *dim3);
2227 
2228 	/*
2229 	 * This is done in a very arbitrary manner.  We could try to
2230 	 * find better values but I can't come up with a method that
2231 	 * would run in a reasonable amount of time.  That could take
2232 	 * approximately 65535 * 65535 iterations of a dozen flops each
2233 	 * or well over 4G flops.
2234 	 *
2235 	 * First:
2236 	 *
2237 	 * Let's see how far we can go with bitshifts w/o losing
2238 	 * any blocks.
2239 	 */
2240 
2241 	for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++);
2242 	if (i) {
2243 		*dim1 = ((*dim1)>>i);
2244 		*dim3 = ((*dim3)<<i);
2245 	}
2246 
2247 	if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) {
2248 		double 	d[4];
2249 
2250 		/*
2251 		 * Second:
2252 		 *
2253 		 * Set the highest value at its limit then calculate errors,
2254 		 * adjusting the 2nd highest value (we get better resolution
2255 		 * that way).
2256 		 */
2257 		d[1] = lim1;
2258 		d[3] = *dim3;
2259 		d[2] = (double)capacity/(d[1]*d[3]);
2260 
2261 		/*
2262 		 * If we overflowed the middle term, set it to its limit and
2263 		 * chose a new low term.
2264 		 */
2265 		if (d[2] > lim2) {
2266 			d[2] = lim2;
2267 			d[3] = (double)capacity/(d[1]*d[2]);
2268 		}
2269 		/*
2270 		 * Convert to integers.
2271 		 */
2272 		*dim1 = (int)d[1];
2273 		*dim2 = (int)d[2];
2274 		*dim3 = (int)d[3];
2275 	}
2276 	/*
2277 	 * Fixup any other possible problems.
2278 	 * If this happens, we need a new disklabel format.
2279 	 */
2280 	if (*dim1 > lim1) *dim1 = lim1;
2281 	if (*dim2 > lim2) *dim2 = lim2;
2282 	if (*dim3 > lim3) *dim3 = lim3;
2283 	return (*dim1 * *dim2 * *dim3);
2284 }
2285 #endif /* defined(_SUNOS_VTOC_8) */
2286