1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mem.h> 30 #include <fm/fmd_fmri.h> 31 #include <fm/libtopo.h> 32 33 #include <string.h> 34 #include <strings.h> 35 #include <ctype.h> 36 37 #define ISHCUNUM(unum) (strncmp(unum, "hc:/", 4) == 0) 38 39 /* 40 * Given a DIMM or bank unum, mem_unum_burst will break it apart into individual 41 * DIMM names. If it's a DIMM, one name will be returned. If it's a bank, the 42 * unums for the individual DIMMs will be returned. 43 * 44 * Plain J-number DIMM and bank unums are simple. J DIMMs have one J number. J 45 * banks have multiple whitespace-separated J numbers. 46 * 47 * The others are more complex, and consist of a common portion c, a colon, and 48 * a DIMM-specific portion d. DIMMs are of the form "c: d", while banks are of 49 * the form "c: d d ...". The patterns are designed to handle the complex case, 50 * but also handle the simple ones as an afterthought. bd_pat is used to 51 * match specific styles of unum. In bd_pat, the first %n indicates the end of 52 * the common portion ("c" above). The second %n marks the beginning of the 53 * repetitive portion ("d" above). The third %n is used to determine whether or 54 * not the entire pattern matched. bd_reppat is used to match instances of the 55 * repetitive part. 56 * 57 * sscanf is your disturbingly powerful friend. 58 * 59 * The "bd_subst" element of the bank_dimm structure was added for Ontario 60 * in order to accommodate its bank string names. Previously, to convert 61 * from a bank representation <common piece> <dimm1> <dimm2> ... 62 * we concatenated the common piece with each dimm-specific piece in turn, 63 * possibly deleting some characters in between. Ontario is the first 64 * platform which requires that characters be substituted (like a vi s/1/2/) 65 * in place of characters deleted. "bd_subst" represents the character(s) 66 * to be substituted between the common piece and each dimm-specific piece 67 * as part of the bursting. For prior platforms, this value is skipped. 68 * 69 * Example: 70 * input: "MB/CMP0/CH3: R1/D0/J1901 R1/D1/J2001" 71 * outputs: "MB/CMP0/CH3/R1/D0/J1901", "MB/CMP0/CH3/R1/D1/J2001" 72 */ 73 74 typedef struct bank_dimm { 75 const char *bd_pat; 76 const char *bd_reppat; 77 const char *bd_subst; 78 } bank_dimm_t; 79 80 static const bank_dimm_t bank_dimm[] = { 81 { "%n%nJ%*4d%n", " J%*4d%n" }, 82 { "MB/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, 83 { "MB/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, 84 { "C%*d/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, 85 { "C%*d/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, 86 { "Slot %*c: %n%nJ%*4d%n", " J%*4d%n" }, 87 { "%n%nDIMM%*d%n", " DIMM%*d%n" }, 88 { "MB/%nDIMM%*d MB/DIMM%*d: %n%n", " DIMM%*d%n" }, 89 { "MB/%nDIMM%*d:%n%n", " DIMM%*d%n" }, 90 { "MB/CMP%*d/CH%*d%n:%n%n", " R%*d/D%*d/J%*4d%n", "/" }, 91 { "MB/CMP%*d/CH%*d%n%n%n", "/R%*d/D%*d/J%*4d%n" }, 92 { "MB/C%*d/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, 93 { "MB/C%*d/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, 94 { "/MBU_A/MEMB%*d/%n%nMEM%*d%*1c%n", " MEM%*d%*1c%n" }, 95 { "/MBU_B/MEMB%*d/%n%nMEM%*d%*1c%n", " MEM%*d%*1c%n" }, 96 { "/MBU_A/%n%nMEM%*d%*1c%n", " MEM%*d%*1c%n" }, 97 { "/CMU%*2d/%n%nMEM%*2d%*1c%n", " MEM%*2d%*1c%n" }, 98 { "MB/CMP%*d/BR%*d%n:%n%n", " CH%*d/D%*d/J%*4d%n", "/" }, 99 { "%n%nMB/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n", 100 "MB/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n" }, 101 { "%n%nMB/CMP%*d/BR%*d/CH%*d/D%*d%n", "MB/CMP%*d/BR%*d/CH%*d/D%*d%n" }, 102 { "MB/CPU%*d/CMP%*d/BR%*d%n:%n%n", " CH%*d/D%*d/J%*4d%n", "/"}, 103 { "MB/MEM%*d/CMP%*d/BR%*d%n:%n%n", " CH%*d/D%*d/J%*4d%n", "/"}, 104 { "%n%nMB/MEM%*d/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n", 105 "MB/MEM%*d/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n" }, 106 { "%n%nMB/CPU%*d/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n", 107 "MB/CPU%*d/CMP%*d/BR%*d/CH%*d/D%*d/J%*4d%n" }, 108 { "%n%nMB/MEM%*d/CMP%*d/BR%*d/CH%*d/D%*d%n", 109 "MB/MEM%*d/CMP%*d/BR%*d/CH%*d/D%*d%n" }, 110 { "%n%nMB/CPU%*d/CMP%*d/BR%*d/CH%*d/D%*d%n", 111 "MB/CPU%*d/CMP%*d/BR%*d/CH%*d/D%*d%n" }, 112 { NULL } 113 }; 114 115 /* 116 * Burst Serengeti and Starcat-style unums. 117 * A DIMM unum string is expected to be in this form: 118 * "[/N0/]SB12/P0/B0/D2 [J13500]" 119 * A bank unum string is expected to be in this form: 120 * "[/N0/]SB12/P0/B0 [J13500, ...]" 121 */ 122 static int 123 mem_unum_burst_sgsc(const char *pat, char ***dimmsp, size_t *ndimmsp) 124 { 125 char buf[64]; 126 char **dimms; 127 char *base; 128 const char *c; 129 char *copy; 130 size_t copysz; 131 int i; 132 133 /* 134 * No expansion is required for a DIMM unum 135 */ 136 if (strchr(pat, 'D') != NULL) { 137 dimms = fmd_fmri_alloc(sizeof (char *)); 138 dimms[0] = fmd_fmri_strdup(pat); 139 *dimmsp = dimms; 140 *ndimmsp = 1; 141 return (0); 142 } 143 144 /* 145 * strtok is destructive so we need to work with 146 * a copy and keep track of the size allocated. 147 */ 148 copysz = strlen(pat) + 1; 149 copy = fmd_fmri_alloc(copysz); 150 (void) strcpy(copy, pat); 151 152 base = strtok(copy, " "); 153 154 /* There are four DIMMs in a bank */ 155 dimms = fmd_fmri_alloc(sizeof (char *) * 4); 156 157 for (i = 0; i < 4; i++) { 158 (void) snprintf(buf, sizeof (buf), "%s/D%d", base, i); 159 160 if ((c = strtok(NULL, " ")) != NULL) 161 (void) snprintf(buf, sizeof (buf), "%s %s", buf, c); 162 163 dimms[i] = fmd_fmri_strdup(buf); 164 } 165 166 fmd_fmri_free(copy, copysz); 167 168 *dimmsp = dimms; 169 *ndimmsp = 4; 170 return (0); 171 } 172 173 174 /* 175 * Returns 0 (with dimmsp and ndimmsp set) if the unum could be bursted, -1 176 * otherwise. 177 */ 178 static int 179 mem_unum_burst_pattern(const char *pat, char ***dimmsp, size_t *ndimmsp) 180 { 181 const bank_dimm_t *bd; 182 char **dimms = NULL, **newdimms; 183 size_t ndimms = 0; 184 const char *c; 185 186 187 for (bd = bank_dimm; bd->bd_pat != NULL; bd++) { 188 int replace, start, matched; 189 char dimmname[64]; 190 191 replace = start = matched = -1; 192 (void) sscanf(pat, bd->bd_pat, &replace, &start, &matched); 193 if (matched == -1) 194 continue; 195 (void) strlcpy(dimmname, pat, sizeof (dimmname)); 196 if (bd->bd_subst != NULL) { 197 (void) strlcpy(dimmname+replace, bd->bd_subst, 198 sizeof (dimmname) - strlen(bd->bd_subst)); 199 replace += strlen(bd->bd_subst); 200 } 201 202 c = pat + start; 203 while (*c != '\0') { 204 int dimmlen = -1; 205 206 (void) sscanf(c, bd->bd_reppat, &dimmlen); 207 if (dimmlen == -1) 208 break; 209 210 while (*c == ' ') { 211 c++; 212 dimmlen--; 213 } 214 215 if (dimmlen > sizeof (dimmname) - replace) 216 break; 217 218 (void) strlcpy(dimmname + replace, c, dimmlen + 1); 219 220 newdimms = fmd_fmri_alloc(sizeof (char *) * 221 (ndimms + 1)); 222 if (ndimms != 0) { 223 bcopy(dimms, newdimms, sizeof (char *) * 224 ndimms); 225 fmd_fmri_free(dimms, sizeof (char *) * ndimms); 226 } 227 newdimms[ndimms++] = fmd_fmri_strdup(dimmname); 228 dimms = newdimms; 229 230 c += dimmlen; 231 232 if (*c != ' ' && *c != '\0') 233 break; 234 } 235 236 if (*c != '\0') 237 break; 238 239 *dimmsp = dimms; 240 *ndimmsp = ndimms; 241 242 return (0); 243 } 244 245 mem_strarray_free(dimms, ndimms); 246 247 return (fmd_fmri_set_errno(EINVAL)); 248 } 249 250 int 251 mem_unum_burst(const char *pat, char ***dimmsp, size_t *ndimmsp) 252 { 253 const char *platform = fmd_fmri_get_platform(); 254 255 /* 256 * Call mem_unum_burst_sgsc() for Starcat, Serengeti, and 257 * Lightweight 8 platforms. Call mem_unum_burst_pattern() 258 * for all other platforms. 259 */ 260 if (strcmp(platform, "SUNW,Sun-Fire-15000") == 0 || 261 strcmp(platform, "SUNW,Sun-Fire") == 0 || 262 strcmp(platform, "SUNW,Netra-T12") == 0) 263 return (mem_unum_burst_sgsc(pat, dimmsp, ndimmsp)); 264 else 265 return (mem_unum_burst_pattern(pat, dimmsp, ndimmsp)); 266 } 267 268 /* 269 * The unum containership operation is designed to tell the caller whether a 270 * given FMRI contains another. In the case of this plugin, we tell the caller 271 * whether a given memory FMRI (usually a bank) contains another (usually a 272 * DIMM). We do this in one of two ways, depending on the platform. For most 273 * platforms, we can use the bursting routine to generate the list of member 274 * unums from the container unum. Membership can then be determined by 275 * searching the bursted list for the containee's unum. 276 * 277 * Some platforms, however, cannot be bursted, as their bank unums do not 278 * contain all of the information needed to generate the complete list of 279 * member DIMM unums. For these unums, we must make do with a substring 280 * comparison. 281 */ 282 283 static int 284 unum_contains_bypat(const char *erunum, const char *eeunum) 285 { 286 char **ernms, **eenms; 287 size_t nernms, neenms; 288 int i, j, rv = 1; 289 290 if (mem_unum_burst(erunum, &ernms, &nernms) < 0) 291 return (fmd_fmri_set_errno(EINVAL)); 292 if (mem_unum_burst(eeunum, &eenms, &neenms) < 0) { 293 mem_strarray_free(ernms, nernms); 294 return (fmd_fmri_set_errno(EINVAL)); 295 } 296 297 for (i = 0; i < neenms; i++) { 298 for (j = 0; j < nernms; j++) { 299 if (strcmp(eenms[i], ernms[j]) == 0) 300 break; 301 } 302 303 if (j == nernms) { 304 /* 305 * This DIMM was not found in the container. 306 */ 307 rv = 0; 308 break; 309 } 310 } 311 312 mem_strarray_free(ernms, nernms); 313 mem_strarray_free(eenms, neenms); 314 315 return (rv); 316 } 317 318 static int 319 unum_strip_one_jnum(const char *unum, uint_t *endp) 320 { 321 char *c; 322 int i; 323 324 if ((c = strrchr(unum, 'J')) == NULL) 325 return (0); 326 327 while (c > unum && isspace(c[-1])) 328 c--; 329 330 (void) sscanf(c, " J%*[0-9] %n", &i); 331 if (i == 0 || (uintptr_t)(c - unum) + i != strlen(unum)) 332 return (0); 333 334 *endp = (uint_t)(c - unum); 335 return (1); 336 } 337 338 339 static int 340 unum_contains_bysubstr(const char *erunum, const char *eeunum) 341 { 342 uint_t erlen, eelen; 343 int nojnumstrip = 0; 344 345 /* 346 * This comparison method is only known to work on specific types of 347 * unums. Check for those types here. 348 */ 349 if ((strncmp(erunum, "/N", 2) != 0 && strncmp(erunum, "/IO", 3) != 0 && 350 strncmp(erunum, "/SB", 3) != 0) || 351 (strncmp(eeunum, "/N", 2) != 0 && strncmp(eeunum, "/IO", 3) != 0 && 352 strncmp(eeunum, "/SB", 3) != 0)) { 353 if (ISHCUNUM(erunum) && ISHCUNUM(eeunum)) { 354 nojnumstrip = 1; 355 erlen = strlen(erunum); 356 eelen = strlen(eeunum); 357 } else { 358 return (fmd_fmri_set_errno(EINVAL)); 359 } 360 } 361 362 if (!nojnumstrip) { 363 erlen = unum_strip_one_jnum(erunum, &erlen) ? 364 erlen : strlen(erunum); 365 eelen = unum_strip_one_jnum(eeunum, &eelen) ? 366 eelen : strlen(eeunum); 367 } 368 369 return (strncmp(erunum, eeunum, MIN(erlen, eelen)) == 0); 370 } 371 372 typedef int unum_cmptor_f(const char *, const char *); 373 374 static unum_cmptor_f *const unum_cmptors[] = { 375 unum_contains_bypat, 376 unum_contains_bysubstr 377 }; 378 379 int 380 mem_unum_contains(const char *erunum, const char *eeunum) 381 { 382 static int cmptor = 0; 383 int rc; 384 385 while (isspace(*erunum)) 386 erunum++; 387 while (isspace(*eeunum)) 388 eeunum++; 389 390 if ((rc = unum_cmptors[cmptor](erunum, eeunum)) >= 0) 391 return (rc); 392 393 if ((rc = unum_cmptors[cmptor == 0](erunum, eeunum)) >= 0) { 394 /* 395 * We succeeded with the non-default comparator. Change the 396 * default so we use the correct one next time. 397 */ 398 cmptor = (cmptor == 0); 399 } 400 401 return (rc); 402 } 403 404 /* 405 * If an asru has a unum string that is an hc path string then return 406 * a new nvl (to be freed by the caller) that is a duplicate of the 407 * original but with an additional member of a reconstituted hc fmri. 408 */ 409 int 410 mem_unum_rewrite(nvlist_t *nvl, nvlist_t **rnvl) 411 { 412 int err; 413 char *unumstr; 414 nvlist_t *unum; 415 struct topo_hdl *thp; 416 417 if (nvlist_lookup_string(nvl, FM_FMRI_MEM_UNUM, &unumstr) != 0 || 418 !ISHCUNUM(unumstr)) 419 return (0); 420 421 if ((thp = fmd_fmri_topo_hold(TOPO_VERSION)) == NULL) 422 return (EINVAL); 423 424 if (topo_fmri_str2nvl(thp, unumstr, &unum, &err) != 0) { 425 fmd_fmri_topo_rele(thp); 426 return (EINVAL); 427 } 428 429 fmd_fmri_topo_rele(thp); 430 431 if ((err = nvlist_dup(nvl, rnvl, 0)) != 0) { 432 nvlist_free(unum); 433 return (err); 434 } 435 436 err = nvlist_add_nvlist(*rnvl, FM_FMRI_MEM_UNUM "-fmri", unum); 437 nvlist_free(unum); 438 439 if (err != 0) 440 nvlist_free(*rnvl); 441 442 return (err); 443 } 444