1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <stdlib.h> 28 #include <assert.h> 29 #include <errno.h> 30 #include <locale.h> 31 #include <string.h> 32 #include <unistd.h> 33 #include <signal.h> 34 #include <stdio.h> 35 #include <stdio_ext.h> 36 #include <dhcp_hostconf.h> 37 #include <dhcpagent_ipc.h> 38 #include <dhcpagent_util.h> 39 #include <dhcpmsg.h> 40 #include <netinet/dhcp.h> 41 #include <net/route.h> 42 #include <sys/sockio.h> 43 #include <sys/stat.h> 44 #include <stropts.h> 45 #include <fcntl.h> 46 #include <sys/scsi/adapters/iscsi_if.h> 47 48 #include "async.h" 49 #include "agent.h" 50 #include "script_handler.h" 51 #include "util.h" 52 #include "class_id.h" 53 #include "states.h" 54 #include "packet.h" 55 #include "interface.h" 56 #include "defaults.h" 57 58 #ifndef TEXT_DOMAIN 59 #define TEXT_DOMAIN "SYS_TEST" 60 #endif 61 62 iu_timer_id_t inactivity_id; 63 int class_id_len = 0; 64 char *class_id; 65 iu_eh_t *eh; 66 iu_tq_t *tq; 67 pid_t grandparent; 68 int rtsock_fd; 69 70 static boolean_t shutdown_started = B_FALSE; 71 static boolean_t do_adopt = B_FALSE; 72 static unsigned int debug_level = 0; 73 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 74 75 /* 76 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 77 * which states; a non-zero value indicates the command is permitted. 78 * 79 * START is permitted if the state machine is fresh, or if we are in the 80 * process of trying to obtain a lease (as a convenience to save the 81 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 82 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 83 * permitted if the interface is fresh or has an INFORM in progress or 84 * previously done on it -- otherwise a DROP or RELEASE is first required. 85 * PING and STATUS always make sense and thus are always permitted, as is DROP 86 * in order to permit the administrator to always bail out. 87 */ 88 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 89 /* D E P R S S I G */ 90 /* R X I E T T N E */ 91 /* O T N L A A F T */ 92 /* P E G E R T O _ */ 93 /* . N . A T U R T */ 94 /* . D . S . S M A */ 95 /* . . . E . . . G */ 96 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 97 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 98 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 99 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 100 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 101 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 102 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 103 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 104 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 105 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 106 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 107 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 108 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 109 }; 110 111 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 112 #define CMD_CREATE 0x2 /* Command creates an interface */ 113 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 114 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 115 116 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 117 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 118 /* DHCP_EXTEND */ CMD_ISPRIV, 119 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 120 /* DHCP_RELEASE */ CMD_ISPRIV, 121 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 122 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 123 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 124 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 125 }; 126 127 static boolean_t is_iscsi_active(void); 128 129 int 130 main(int argc, char **argv) 131 { 132 boolean_t is_daemon = B_TRUE; 133 boolean_t is_verbose; 134 int ipc_fd; 135 int c; 136 int aware = RTAW_UNDER_IPMP; 137 struct rlimit rl; 138 139 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 140 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 141 142 /* 143 * -l is ignored for compatibility with old agent. 144 */ 145 146 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 147 148 switch (c) { 149 150 case 'a': 151 do_adopt = B_TRUE; 152 grandparent = getpid(); 153 break; 154 155 case 'd': 156 debug_level = strtoul(optarg, NULL, 0); 157 break; 158 159 case 'f': 160 is_daemon = B_FALSE; 161 break; 162 163 case 'v': 164 is_verbose = B_TRUE; 165 break; 166 167 case '?': 168 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 169 "\n", argv[0]); 170 return (EXIT_FAILURE); 171 172 default: 173 break; 174 } 175 } 176 177 (void) setlocale(LC_ALL, ""); 178 (void) textdomain(TEXT_DOMAIN); 179 180 if (geteuid() != 0) { 181 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 182 dhcpmsg(MSG_ERROR, "must be super-user"); 183 dhcpmsg_fini(); 184 return (EXIT_FAILURE); 185 } 186 187 if (is_daemon && daemonize() == 0) { 188 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 189 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 190 dhcpmsg_fini(); 191 return (EXIT_FAILURE); 192 } 193 194 /* 195 * Seed the random number generator, since we're going to need it 196 * to set transaction id's and for exponential backoff. 197 */ 198 srand48(gethrtime() ^ gethostid() ^ getpid()); 199 200 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 201 (void) atexit(dhcpmsg_fini); 202 203 tq = iu_tq_create(); 204 eh = iu_eh_create(); 205 206 if (eh == NULL || tq == NULL) { 207 errno = ENOMEM; 208 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 209 return (EXIT_FAILURE); 210 } 211 212 /* 213 * ignore most signals that could be reasonably generated. 214 */ 215 216 (void) signal(SIGTERM, graceful_shutdown); 217 (void) signal(SIGQUIT, graceful_shutdown); 218 (void) signal(SIGPIPE, SIG_IGN); 219 (void) signal(SIGUSR1, SIG_IGN); 220 (void) signal(SIGUSR2, SIG_IGN); 221 (void) signal(SIGINT, SIG_IGN); 222 (void) signal(SIGHUP, SIG_IGN); 223 (void) signal(SIGCHLD, SIG_IGN); 224 225 /* 226 * upon SIGTHAW we need to refresh any non-infinite leases. 227 */ 228 229 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 230 231 class_id = get_class_id(); 232 if (class_id != NULL) 233 class_id_len = strlen(class_id); 234 else 235 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 236 "with no vendor class id"); 237 238 /* 239 * the inactivity timer is enabled any time there are no 240 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 241 * seconds transpire without an interface under DHCP control, 242 * the agent shuts down. 243 */ 244 245 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 246 inactivity_shutdown, NULL); 247 248 /* 249 * max out the number available descriptors, just in case.. 250 */ 251 252 rl.rlim_cur = RLIM_INFINITY; 253 rl.rlim_max = RLIM_INFINITY; 254 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 255 dhcpmsg(MSG_ERR, "setrlimit failed"); 256 257 (void) enable_extended_FILE_stdio(-1, -1); 258 259 /* 260 * Create and bind default IP sockets used to control interfaces and to 261 * catch stray packets. 262 */ 263 264 if (!dhcp_ip_default()) 265 return (EXIT_FAILURE); 266 267 /* 268 * create the ipc channel that the agent will listen for 269 * requests on, and register it with the event handler so that 270 * `accept_event' will be called back. 271 */ 272 273 switch (dhcp_ipc_init(&ipc_fd)) { 274 275 case 0: 276 break; 277 278 case DHCP_IPC_E_BIND: 279 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 280 "%i (agent already running?)", IPPORT_DHCPAGENT); 281 return (EXIT_FAILURE); 282 283 default: 284 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 285 return (EXIT_FAILURE); 286 } 287 288 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 289 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 290 return (EXIT_FAILURE); 291 } 292 293 /* 294 * Create the global routing socket. This is used for monitoring 295 * interface transitions, so that we learn about the kernel's Duplicate 296 * Address Detection status, and for inserting and removing default 297 * routes as learned from DHCP servers. Both v4 and v6 are handed 298 * with this one socket. 299 */ 300 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 301 if (rtsock_fd == -1) { 302 dhcpmsg(MSG_ERR, "cannot open routing socket"); 303 return (EXIT_FAILURE); 304 } 305 306 /* 307 * We're IPMP-aware and can manage IPMP test addresses, so issue 308 * RT_AWARE to get routing socket messages for interfaces under IPMP. 309 */ 310 if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware, 311 sizeof (aware)) == -1) { 312 dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket"); 313 return (EXIT_FAILURE); 314 } 315 316 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 317 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 318 return (EXIT_FAILURE); 319 } 320 321 /* 322 * if the -a (adopt) option was specified, try to adopt the 323 * kernel-managed interface before we start. 324 */ 325 326 if (do_adopt && !dhcp_adopt()) 327 return (EXIT_FAILURE); 328 329 /* 330 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 331 * we're starting operation here, if there are any of those interfaces 332 * lingering around, they're strays, and need to be removed. 333 * 334 * It might be nice to save these addresses off somewhere -- for both 335 * v4 and v6 -- and use them as hints for later negotiation. 336 */ 337 remove_v6_strays(); 338 339 /* 340 * enter the main event loop; this is where all the real work 341 * takes place (through registering events and scheduling timers). 342 * this function only returns when the agent is shutting down. 343 */ 344 345 switch (iu_handle_events(eh, tq)) { 346 347 case -1: 348 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 349 break; 350 351 case DHCP_REASON_INACTIVITY: 352 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 353 break; 354 355 case DHCP_REASON_TERMINATE: 356 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 357 break; 358 359 case DHCP_REASON_SIGNAL: 360 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 361 "down..."); 362 break; 363 } 364 365 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 366 367 iu_eh_destroy(eh); 368 iu_tq_destroy(tq); 369 370 return (EXIT_SUCCESS); 371 } 372 373 /* 374 * drain_script(): event loop callback during shutdown 375 * 376 * input: eh_t *: unused 377 * void *: unused 378 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 379 */ 380 381 /* ARGSUSED */ 382 boolean_t 383 drain_script(iu_eh_t *ehp, void *arg) 384 { 385 if (shutdown_started == B_FALSE) { 386 shutdown_started = B_TRUE; 387 /* 388 * Check if the system is diskless client and/or 389 * there are active iSCSI sessions 390 * 391 * Do not drop the lease, or the system will be 392 * unable to sync(dump) through nfs/iSCSI driver 393 */ 394 if (!do_adopt && !is_iscsi_active()) { 395 nuke_smach_list(); 396 } 397 } 398 return (script_count == 0); 399 } 400 401 /* 402 * accept_event(): accepts a new connection on the ipc socket and registers 403 * to receive its messages with the event handler 404 * 405 * input: iu_eh_t *: unused 406 * int: the file descriptor in the iu_eh_t * the connection came in on 407 * (other arguments unused) 408 * output: void 409 */ 410 411 /* ARGSUSED */ 412 static void 413 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 414 { 415 int client_fd; 416 int is_priv; 417 418 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 419 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 420 return; 421 } 422 423 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 424 (void *)is_priv) == -1) { 425 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 426 "for callback"); 427 } 428 } 429 430 /* 431 * ipc_event(): processes incoming ipc requests 432 * 433 * input: iu_eh_t *: unused 434 * int: the file descriptor in the iu_eh_t * the request came in on 435 * short: unused 436 * iu_event_id_t: event ID 437 * void *: indicates whether the request is from a privileged client 438 * output: void 439 */ 440 441 /* ARGSUSED */ 442 static void 443 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 444 { 445 ipc_action_t ia, *iap; 446 dhcp_smach_t *dsmp; 447 int error, is_priv = (int)arg; 448 const char *ifname; 449 boolean_t isv6; 450 451 ipc_action_init(&ia); 452 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 453 DHCP_IPC_REQUEST_WAIT); 454 if (error != DHCP_IPC_SUCCESS) { 455 if (error != DHCP_IPC_E_EOF) { 456 dhcpmsg(MSG_ERROR, 457 "ipc_event: dhcp_ipc_recv_request failed: %s", 458 dhcp_ipc_strerror(error)); 459 } else { 460 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 461 } 462 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 463 ipc_action_finish(dsmp, error); 464 } else { 465 (void) iu_unregister_event(eh, id, NULL); 466 (void) dhcp_ipc_close(fd); 467 } 468 return; 469 } 470 471 /* Fill in temporary ipc_action structure for utility functions */ 472 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 473 ia.ia_fd = fd; 474 ia.ia_eid = id; 475 476 if (ia.ia_cmd >= DHCP_NIPC) { 477 dhcpmsg(MSG_ERROR, 478 "ipc_event: invalid command (%s) attempted on %s", 479 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 480 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 481 return; 482 } 483 484 /* return EPERM for any of the privileged actions */ 485 486 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 487 dhcpmsg(MSG_WARNING, 488 "ipc_event: privileged ipc command (%s) attempted on %s", 489 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 490 send_error_reply(&ia, DHCP_IPC_E_PERM); 491 return; 492 } 493 494 /* 495 * Try to locate the state machine associated with this command. If 496 * the command is DHCP_START or DHCP_INFORM and there isn't a state 497 * machine already, make one (there may already be one from a previous 498 * failed attempt to START or INFORM). Otherwise, verify the reference 499 * is still valid. 500 * 501 * The interface name may be blank. In that case, we look up the 502 * primary interface, and the requested type (v4 or v6) doesn't matter. 503 */ 504 505 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 506 ifname = ia.ia_request->ifname; 507 if (*ifname == '\0') 508 dsmp = primary_smach(isv6); 509 else 510 dsmp = lookup_smach(ifname, isv6); 511 512 if (dsmp != NULL) { 513 /* Note that verify_smach drops a reference */ 514 hold_smach(dsmp); 515 if (!verify_smach(dsmp)) 516 dsmp = NULL; 517 } 518 519 if (dsmp == NULL) { 520 /* 521 * If the user asked for the primary DHCP interface, but there 522 * is none, then report failure. 523 */ 524 if (ifname[0] == '\0') { 525 error = DHCP_IPC_E_NOPRIMARY; 526 527 /* 528 * If there's no interface, and we're starting up, then create 529 * it now, along with a state machine for it. Note that if 530 * insert_smach fails, it discards the LIF reference. 531 */ 532 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 533 dhcp_lif_t *lif; 534 535 lif = attach_lif(ifname, isv6, &error); 536 if (lif != NULL && 537 (dsmp = insert_smach(lif, &error)) != NULL) { 538 /* 539 * Get client ID and set "DHCPRUNNING" flag on 540 * logical interface. (V4 only, because V6 541 * plumbs its own interfaces.) 542 */ 543 error = get_smach_cid(dsmp); 544 if (error == DHCP_IPC_SUCCESS) 545 error = set_lif_dhcp(lif, B_FALSE); 546 if (error != DHCP_IPC_SUCCESS) { 547 remove_smach(dsmp); 548 dsmp = NULL; 549 } 550 } 551 552 /* 553 * Otherwise, this is an operation on an unknown interface. 554 */ 555 } else { 556 error = DHCP_IPC_E_UNKIF; 557 } 558 if (dsmp == NULL) { 559 send_error_reply(&ia, error); 560 return; 561 } 562 } 563 564 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 565 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 566 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 567 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 568 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 569 return; 570 } 571 572 /* 573 * verify that the state machine is in a state which will allow the 574 * command. we do this up front so that we can return an error 575 * *before* needlessly cancelling an in-progress transaction. 576 */ 577 578 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 579 dhcpmsg(MSG_DEBUG, 580 "in state %s; not allowing %s command on %s", 581 dhcp_state_to_string(dsmp->dsm_state), 582 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 583 send_error_reply(&ia, 584 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 585 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 586 return; 587 } 588 589 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 590 dhcp_state_to_string(dsmp->dsm_state), 591 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 592 593 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 594 make_primary(dsmp); 595 596 /* 597 * The current design dictates that there can be only one outstanding 598 * transaction per state machine -- this simplifies the code 599 * considerably and also fits well with RFCs 2131 and 3315. It is 600 * worth classifying the different DHCP commands into synchronous 601 * (those which we will handle now and reply to immediately) and 602 * asynchronous (those which require transactions and will be completed 603 * at an indeterminate time in the future): 604 * 605 * DROP: removes the agent's management of a state machine. 606 * asynchronous as the script program may be invoked. 607 * 608 * PING: checks to see if the agent has a named state machine. 609 * synchronous, since no packets need to be sent 610 * to the DHCP server. 611 * 612 * STATUS: returns information about a state machine. 613 * synchronous, since no packets need to be sent 614 * to the DHCP server. 615 * 616 * RELEASE: releases the agent's management of a state machine 617 * and brings the associated interfaces down. asynchronous 618 * as the script program may be invoked. 619 * 620 * EXTEND: renews a lease. asynchronous, since the agent 621 * needs to wait for an ACK, etc. 622 * 623 * START: starts DHCP on a named state machine. asynchronous since 624 * the agent needs to wait for OFFERs, ACKs, etc. 625 * 626 * INFORM: obtains configuration parameters for the system using 627 * externally configured interface. asynchronous, since the 628 * agent needs to wait for an ACK. 629 * 630 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 631 * asynchronous. Notice also that asynchronous commands may occur from 632 * within the agent -- for instance, the agent will need to do implicit 633 * EXTENDs to extend the lease. In order to make the code simpler, the 634 * following rules apply for asynchronous commands: 635 * 636 * There can only be one asynchronous command at a time per state 637 * machine. The current asynchronous command is managed by the async_* 638 * api: async_start(), async_finish(), and async_cancel(). 639 * async_start() starts management of a new asynchronous command on an 640 * state machine, which should only be done after async_cancel() to 641 * terminate a previous command. When the command is completed, 642 * async_finish() should be called. 643 * 644 * Asynchronous commands started by a user command have an associated 645 * ipc_action which provides the agent with information for how to get 646 * in touch with the user command when the action completes. These 647 * ipc_action records also have an associated timeout which may be 648 * infinite. ipc_action_start() should be called when starting an 649 * asynchronous command requested by a user, which sets up the timer 650 * and keeps track of the ipc information (file descriptor, request 651 * type). When the asynchronous command completes, ipc_action_finish() 652 * should be called to return a command status code to the user and 653 * close the ipc connection). If the command does not complete before 654 * the timer fires, ipc_action_timeout() is called which closes the ipc 655 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 656 * independent of ipc_action_timeout(), ipc_action_finish() should be 657 * called. 658 * 659 * on a case-by-case basis, here is what happens (per state machine): 660 * 661 * o When an asynchronous command is requested, then 662 * async_cancel() is called to terminate any non-user 663 * action in progress. If there's a user action running, 664 * the user command is sent DHCP_IPC_E_PEND. 665 * 666 * o otherwise, the the transaction is started with 667 * async_start(). if the transaction is on behalf 668 * of a user, ipc_action_start() is called to keep 669 * track of the ipc information and set up the 670 * ipc_action timer. 671 * 672 * o if the command completes normally and before a 673 * timeout fires, then async_finish() is called. 674 * if there was an associated ipc_action, 675 * ipc_action_finish() is called to complete it. 676 * 677 * o if the command fails before a timeout fires, then 678 * async_finish() is called, and the state machine is 679 * is returned to a known state based on the command. 680 * if there was an associated ipc_action, 681 * ipc_action_finish() is called to complete it. 682 * 683 * o if the ipc_action timer fires before command 684 * completion, then DHCP_IPC_E_TIMEOUT is returned to 685 * the user. however, the transaction continues to 686 * be carried out asynchronously. 687 */ 688 689 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 690 /* 691 * Only immediate commands (ping, status, get_tag) need to 692 * worry about freeing ia through one of the reply functions 693 * before returning. 694 */ 695 iap = &ia; 696 } else { 697 /* 698 * if shutdown request has been received, send back an error. 699 */ 700 if (shutdown_started) { 701 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 702 return; 703 } 704 705 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 706 send_error_reply(&ia, DHCP_IPC_E_PEND); 707 return; 708 } 709 710 if (!ipc_action_start(dsmp, &ia)) { 711 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 712 "failed for %s", dsmp->dsm_name); 713 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 714 return; 715 } 716 717 /* Action structure consumed by above function */ 718 iap = &dsmp->dsm_ia; 719 } 720 721 switch (iap->ia_cmd) { 722 723 case DHCP_DROP: 724 if (dsmp->dsm_droprelease) 725 break; 726 dsmp->dsm_droprelease = B_TRUE; 727 728 /* 729 * Ensure that a timer associated with the existing state 730 * doesn't pop while we're waiting for the script to complete. 731 * (If so, chaos can result -- e.g., a timer causes us to end 732 * up in dhcp_selecting() would start acquiring a new lease on 733 * dsmp while our DHCP_DROP dismantling is ongoing.) 734 */ 735 cancel_smach_timers(dsmp); 736 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 737 dhcp_drop, NULL, NULL); 738 break; /* not an immediate function */ 739 740 case DHCP_EXTEND: 741 (void) dhcp_extending(dsmp); 742 break; 743 744 case DHCP_GET_TAG: { 745 dhcp_optnum_t optnum; 746 void *opt = NULL; 747 uint_t optlen; 748 boolean_t did_alloc = B_FALSE; 749 PKT_LIST *ack = dsmp->dsm_ack; 750 751 /* 752 * verify the request makes sense. 753 */ 754 755 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 756 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 757 send_error_reply(iap, DHCP_IPC_E_PROTO); 758 break; 759 } 760 761 (void) memcpy(&optnum, iap->ia_request->buffer, 762 sizeof (dhcp_optnum_t)); 763 764 load_option: 765 switch (optnum.category) { 766 767 case DSYM_SITE: /* FALLTHRU */ 768 case DSYM_STANDARD: 769 if (isv6) { 770 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 771 NULL); 772 } else { 773 if (optnum.code <= DHCP_LAST_OPT) 774 opt = ack->opts[optnum.code]; 775 } 776 break; 777 778 case DSYM_VENDOR: 779 if (isv6) { 780 dhcpv6_option_t *d6o; 781 uint32_t ent; 782 783 /* 784 * Look through vendor options to find our 785 * enterprise number. 786 */ 787 d6o = NULL; 788 for (;;) { 789 d6o = dhcpv6_pkt_option(ack, d6o, 790 DHCPV6_OPT_VENDOR_OPT, &optlen); 791 if (d6o == NULL) 792 break; 793 optlen -= sizeof (*d6o); 794 if (optlen < sizeof (ent)) 795 continue; 796 (void) memcpy(&ent, d6o + 1, 797 sizeof (ent)); 798 if (ntohl(ent) != DHCPV6_SUN_ENT) 799 continue; 800 break; 801 } 802 if (d6o != NULL) { 803 /* 804 * Now find the requested vendor option 805 * within the vendor options block. 806 */ 807 opt = dhcpv6_find_option( 808 (char *)(d6o + 1) + sizeof (ent), 809 optlen - sizeof (ent), NULL, 810 optnum.code, NULL); 811 } 812 } else { 813 /* 814 * the test against VS_OPTION_START is broken 815 * up into two tests to avoid compiler warnings 816 * under intel. 817 */ 818 if ((optnum.code > VS_OPTION_START || 819 optnum.code == VS_OPTION_START) && 820 optnum.code <= VS_OPTION_END) 821 opt = ack->vs[optnum.code]; 822 } 823 break; 824 825 case DSYM_FIELD: 826 if (isv6) { 827 dhcpv6_message_t *d6m = 828 (dhcpv6_message_t *)ack->pkt; 829 dhcpv6_option_t *d6o; 830 831 /* Validate the packet field the user wants */ 832 optlen = optnum.code + optnum.size; 833 if (d6m->d6m_msg_type == 834 DHCPV6_MSG_RELAY_FORW || 835 d6m->d6m_msg_type == 836 DHCPV6_MSG_RELAY_REPL) { 837 if (optlen > sizeof (dhcpv6_relay_t)) 838 break; 839 } else { 840 if (optlen > sizeof (*d6m)) 841 break; 842 } 843 844 opt = malloc(sizeof (*d6o) + optnum.size); 845 if (opt != NULL) { 846 d6o = opt; 847 d6o->d6o_code = htons(optnum.code); 848 d6o->d6o_len = htons(optnum.size); 849 (void) memcpy(d6o + 1, (caddr_t)d6m + 850 optnum.code, optnum.size); 851 } 852 } else { 853 if (optnum.code + optnum.size > sizeof (PKT)) 854 break; 855 856 /* 857 * + 2 to account for option code and length 858 * byte 859 */ 860 opt = malloc(optnum.size + 2); 861 if (opt != NULL) { 862 DHCP_OPT *v4opt = opt; 863 864 v4opt->len = optnum.size; 865 v4opt->code = optnum.code; 866 (void) memcpy(v4opt->value, 867 (caddr_t)ack->pkt + optnum.code, 868 optnum.size); 869 } 870 } 871 872 if (opt == NULL) { 873 send_error_reply(iap, DHCP_IPC_E_MEMORY); 874 return; 875 } 876 did_alloc = B_TRUE; 877 break; 878 879 default: 880 send_error_reply(iap, DHCP_IPC_E_PROTO); 881 return; 882 } 883 884 /* 885 * return the option payload, if there was one. the "+ 2" 886 * accounts for the option code number and length byte. 887 */ 888 889 if (opt != NULL) { 890 if (isv6) { 891 dhcpv6_option_t d6ov; 892 893 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 894 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 895 } else { 896 optlen = ((DHCP_OPT *)opt)->len + 2; 897 } 898 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 899 900 if (did_alloc) 901 free(opt); 902 break; 903 } else if (ack != dsmp->dsm_orig_ack) { 904 /* 905 * There wasn't any definition for the option in the 906 * current ack, so now retry with the original ack if 907 * the original ack is not the current ack. 908 */ 909 ack = dsmp->dsm_orig_ack; 910 goto load_option; 911 } 912 913 /* 914 * note that an "okay" response is returned either in 915 * the case of an unknown option or a known option 916 * with no payload. this is okay (for now) since 917 * dhcpinfo checks whether an option is valid before 918 * ever performing ipc with the agent. 919 */ 920 921 send_ok_reply(iap); 922 break; 923 } 924 925 case DHCP_INFORM: 926 dhcp_inform(dsmp); 927 /* next destination: dhcp_acknak() */ 928 break; /* not an immediate function */ 929 930 case DHCP_PING: 931 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 932 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 933 else 934 send_ok_reply(iap); 935 break; 936 937 case DHCP_RELEASE: 938 if (dsmp->dsm_droprelease) 939 break; 940 dsmp->dsm_droprelease = B_TRUE; 941 cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */ 942 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 943 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 944 break; /* not an immediate function */ 945 946 case DHCP_START: { 947 PKT_LIST *ack, *oack; 948 PKT_LIST *plp[2]; 949 950 deprecate_leases(dsmp); 951 952 /* 953 * if we have a valid hostconf lying around, then jump 954 * into INIT_REBOOT. if it fails, we'll end up going 955 * through the whole selecting() procedure again. 956 */ 957 958 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 959 ack = error > 0 ? plp[0] : NULL; 960 oack = error > 1 ? plp[1] : NULL; 961 962 /* 963 * If the allocation of the old ack fails, that's fine; 964 * continue without it. 965 */ 966 if (oack == NULL) 967 oack = ack; 968 969 /* 970 * As long as we've allocated something, start using it. 971 */ 972 if (ack != NULL) { 973 dsmp->dsm_orig_ack = oack; 974 dsmp->dsm_ack = ack; 975 dhcp_init_reboot(dsmp); 976 /* next destination: dhcp_acknak() */ 977 break; 978 } 979 980 /* 981 * if not debugging, wait for a few seconds before 982 * going into SELECTING. 983 */ 984 985 if (debug_level == 0 && set_start_timer(dsmp)) { 986 /* next destination: dhcp_start() */ 987 break; 988 } else { 989 dhcp_selecting(dsmp); 990 /* next destination: dhcp_requesting() */ 991 break; 992 } 993 } 994 995 case DHCP_STATUS: { 996 dhcp_status_t status; 997 dhcp_lease_t *dlp; 998 999 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 1000 1001 /* 1002 * We return information on just the first lease as being 1003 * representative of the lot. A better status mechanism is 1004 * needed. 1005 */ 1006 dlp = dsmp->dsm_leases; 1007 1008 if (dlp == NULL || 1009 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 1010 status.if_t1 = DHCP_PERM; 1011 status.if_t2 = DHCP_PERM; 1012 status.if_lease = DHCP_PERM; 1013 } else { 1014 status.if_t1 = status.if_began + 1015 dlp->dl_t1.dt_start; 1016 status.if_t2 = status.if_began + 1017 dlp->dl_t2.dt_start; 1018 status.if_lease = status.if_began + 1019 dlp->dl_lifs->lif_expire.dt_start; 1020 } 1021 1022 status.version = DHCP_STATUS_VER; 1023 status.if_state = dsmp->dsm_state; 1024 status.if_dflags = dsmp->dsm_dflags; 1025 status.if_sent = dsmp->dsm_sent; 1026 status.if_recv = dsmp->dsm_received; 1027 status.if_bad_offers = dsmp->dsm_bad_offers; 1028 1029 (void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ); 1030 1031 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 1032 sizeof (dhcp_status_t)); 1033 break; 1034 } 1035 } 1036 } 1037 1038 /* 1039 * check_rtm_addr(): determine if routing socket message matches interface 1040 * address 1041 * 1042 * input: const struct if_msghdr *: pointer to routing socket message 1043 * int: routing socket message length 1044 * boolean_t: set to B_TRUE if IPv6 1045 * const in6_addr_t *: pointer to IP address 1046 * output: boolean_t: B_TRUE if address is a match 1047 */ 1048 1049 static boolean_t 1050 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1051 const in6_addr_t *addr) 1052 { 1053 const char *cp, *lim; 1054 uint_t flag; 1055 const struct sockaddr *sa; 1056 1057 if (!(ifam->ifam_addrs & RTA_IFA)) 1058 return (B_FALSE); 1059 1060 cp = (const char *)(ifam + 1); 1061 lim = (const char *)ifam + msglen; 1062 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1063 if (ifam->ifam_addrs & flag) { 1064 /* LINTED: alignment */ 1065 sa = (const struct sockaddr *)cp; 1066 if ((const char *)(sa + 1) > lim) 1067 return (B_FALSE); 1068 switch (sa->sa_family) { 1069 case AF_INET: 1070 cp += sizeof (struct sockaddr_in); 1071 break; 1072 case AF_LINK: 1073 cp += sizeof (struct sockaddr_dl); 1074 break; 1075 case AF_INET6: 1076 cp += sizeof (struct sockaddr_in6); 1077 break; 1078 default: 1079 cp += sizeof (struct sockaddr); 1080 break; 1081 } 1082 } 1083 } 1084 if (isv6) { 1085 const struct sockaddr_in6 *sin6; 1086 1087 /* LINTED: alignment */ 1088 sin6 = (const struct sockaddr_in6 *)cp; 1089 if ((const char *)(sin6 + 1) > lim) 1090 return (B_FALSE); 1091 if (sin6->sin6_family != AF_INET6) 1092 return (B_FALSE); 1093 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1094 } else { 1095 const struct sockaddr_in *sinp; 1096 ipaddr_t v4addr; 1097 1098 /* LINTED: alignment */ 1099 sinp = (const struct sockaddr_in *)cp; 1100 if ((const char *)(sinp + 1) > lim) 1101 return (B_FALSE); 1102 if (sinp->sin_family != AF_INET) 1103 return (B_FALSE); 1104 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1105 return (sinp->sin_addr.s_addr == v4addr); 1106 } 1107 } 1108 1109 /* 1110 * is_rtm_v6(): determine if routing socket message is IPv6 1111 * 1112 * input: struct ifa_msghdr *: pointer to routing socket message 1113 * int: message length 1114 * output: boolean_t 1115 */ 1116 1117 static boolean_t 1118 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1119 { 1120 const char *cp, *lim; 1121 uint_t flag; 1122 const struct sockaddr *sa; 1123 1124 cp = (const char *)(ifam + 1); 1125 lim = (const char *)ifam + msglen; 1126 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1127 /* LINTED: alignment */ 1128 sa = (const struct sockaddr *)cp; 1129 if ((const char *)(sa + 1) > lim) 1130 return (B_FALSE); 1131 switch (sa->sa_family) { 1132 case AF_INET: 1133 return (B_FALSE); 1134 case AF_LINK: 1135 cp += sizeof (struct sockaddr_dl); 1136 break; 1137 case AF_INET6: 1138 return (B_TRUE); 1139 default: 1140 cp += sizeof (struct sockaddr); 1141 break; 1142 } 1143 } 1144 return (B_FALSE); 1145 } 1146 1147 /* 1148 * check_lif(): check the state of a given logical interface and its DHCP 1149 * lease. We've been told by the routing socket that the 1150 * corresponding ifIndex has changed. This may mean that DAD has 1151 * completed or failed. 1152 * 1153 * input: dhcp_lif_t *: pointer to the LIF 1154 * const struct ifa_msghdr *: routing socket message 1155 * int: size of routing socket message 1156 * output: boolean_t: B_TRUE if DAD has completed on this interface 1157 */ 1158 1159 static boolean_t 1160 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1161 { 1162 boolean_t isv6, dad_wait, unplumb; 1163 int fd; 1164 struct lifreq lifr; 1165 1166 isv6 = lif->lif_pif->pif_isv6; 1167 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1168 1169 /* 1170 * Get the real (64 bit) logical interface flags. Note that the 1171 * routing socket message has flags, but these are just the lower 32 1172 * bits. 1173 */ 1174 unplumb = B_FALSE; 1175 (void) memset(&lifr, 0, sizeof (lifr)); 1176 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1177 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1178 /* 1179 * Failing to retrieve flags means that the interface is gone. 1180 * It hasn't failed to verify with DAD, but we still have to 1181 * give up on it. 1182 */ 1183 lifr.lifr_flags = 0; 1184 if (errno == ENXIO) { 1185 lif->lif_plumbed = B_FALSE; 1186 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1187 lif->lif_name); 1188 if (!isv6) 1189 discard_default_routes(lif->lif_smachs); 1190 } else { 1191 dhcpmsg(MSG_ERR, 1192 "unable to retrieve interface flags on %s", 1193 lif->lif_name); 1194 } 1195 unplumb = B_TRUE; 1196 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1197 /* 1198 * If the message is not about this logical interface, 1199 * then just ignore it. 1200 */ 1201 return (B_FALSE); 1202 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1203 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1204 lif->lif_name); 1205 lif_mark_decline(lif, "duplicate address"); 1206 close_ip_lif(lif); 1207 (void) open_ip_lif(lif, INADDR_ANY, B_TRUE); 1208 } 1209 1210 dad_wait = lif->lif_dad_wait; 1211 if (dad_wait) { 1212 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1213 lif->lif_name); 1214 lif->lif_dad_wait = B_FALSE; 1215 } 1216 1217 if (unplumb) 1218 unplumb_lif(lif); 1219 1220 return (dad_wait); 1221 } 1222 1223 /* 1224 * check_main_lif(): check the state of a main logical interface for a state 1225 * machine. This is used only for DHCPv6. 1226 * 1227 * input: dhcp_smach_t *: pointer to the state machine 1228 * const struct ifa_msghdr *: routing socket message 1229 * int: size of routing socket message 1230 * output: boolean_t: B_TRUE if LIF is ok. 1231 */ 1232 1233 static boolean_t 1234 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1235 { 1236 dhcp_lif_t *lif = dsmp->dsm_lif; 1237 struct lifreq lifr; 1238 1239 /* 1240 * Get the real (64 bit) logical interface flags. Note that the 1241 * routing socket message has flags, but these are just the lower 32 1242 * bits. 1243 */ 1244 (void) memset(&lifr, 0, sizeof (lifr)); 1245 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1246 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1247 /* 1248 * Failing to retrieve flags means that the interface is gone. 1249 * Our state machine is now trash. 1250 */ 1251 if (errno == ENXIO) { 1252 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1253 lif->lif_name); 1254 } else { 1255 dhcpmsg(MSG_ERR, 1256 "unable to retrieve interface flags on %s", 1257 lif->lif_name); 1258 } 1259 return (B_FALSE); 1260 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1261 /* 1262 * If the message is not about this logical interface, 1263 * then just ignore it. 1264 */ 1265 return (B_TRUE); 1266 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1267 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1268 lif->lif_name); 1269 return (B_FALSE); 1270 } else { 1271 return (B_TRUE); 1272 } 1273 } 1274 1275 /* 1276 * process_link_up_down(): check the state of a physical interface for up/down 1277 * transitions; must go through INIT_REBOOT state if 1278 * the link flaps. 1279 * 1280 * input: dhcp_pif_t *: pointer to the physical interface to check 1281 * const struct if_msghdr *: routing socket message 1282 * output: none 1283 */ 1284 1285 static void 1286 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1287 { 1288 struct lifreq lifr; 1289 boolean_t isv6; 1290 int fd; 1291 1292 /* 1293 * If the message implies no change of flags, then we're done; no need 1294 * to check further. Note that if we have multiple state machines on a 1295 * single physical interface, this test keeps us from issuing an ioctl 1296 * for each one. 1297 */ 1298 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1299 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1300 return; 1301 1302 /* 1303 * We don't know what the real interface flags are, because the 1304 * if_index number is only 16 bits; we must go ask. 1305 */ 1306 isv6 = pif->pif_isv6; 1307 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1308 (void) memset(&lifr, 0, sizeof (lifr)); 1309 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1310 1311 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1312 !(lifr.lifr_flags & IFF_RUNNING)) { 1313 /* 1314 * If we've lost the interface or it has gone down, then 1315 * nothing special to do; just turn off the running flag. 1316 */ 1317 pif_status(pif, B_FALSE); 1318 } else { 1319 /* 1320 * Interface has come back up: go through verification process. 1321 */ 1322 pif_status(pif, B_TRUE); 1323 } 1324 } 1325 1326 /* 1327 * rtsock_event(): fetches routing socket messages and updates internal 1328 * interface state based on those messages. 1329 * 1330 * input: iu_eh_t *: unused 1331 * int: the routing socket file descriptor 1332 * (other arguments unused) 1333 * output: void 1334 */ 1335 1336 /* ARGSUSED */ 1337 static void 1338 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1339 { 1340 dhcp_smach_t *dsmp, *dsmnext; 1341 union { 1342 struct ifa_msghdr ifam; 1343 struct if_msghdr ifm; 1344 char buf[1024]; 1345 } msg; 1346 uint16_t ifindex; 1347 int msglen; 1348 boolean_t isv6; 1349 1350 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1351 return; 1352 1353 /* Note that the routing socket interface index is just 16 bits */ 1354 if (msg.ifm.ifm_type == RTM_IFINFO) { 1355 ifindex = msg.ifm.ifm_index; 1356 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1357 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1358 msg.ifam.ifam_type == RTM_NEWADDR) { 1359 ifindex = msg.ifam.ifam_index; 1360 isv6 = is_rtm_v6(&msg.ifam, msglen); 1361 } else { 1362 return; 1363 } 1364 1365 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1366 dsmp != NULL; dsmp = dsmnext) { 1367 DHCPSTATE oldstate; 1368 boolean_t lif_finished; 1369 boolean_t lease_removed; 1370 dhcp_lease_t *dlp, *dlnext; 1371 1372 /* 1373 * Note that script_start can call dhcp_drop directly, and 1374 * that will do release_smach. 1375 */ 1376 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1377 oldstate = dsmp->dsm_state; 1378 1379 /* 1380 * Ignore state machines that are currently processing drop or 1381 * release; there is nothing more we can do for them. 1382 */ 1383 if (dsmp->dsm_droprelease) 1384 continue; 1385 1386 /* 1387 * Look for link up/down notifications. These occur on a 1388 * physical interface basis. 1389 */ 1390 if (msg.ifm.ifm_type == RTM_IFINFO) { 1391 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1392 continue; 1393 } 1394 1395 /* 1396 * Since we cannot trust the flags reported by the routing 1397 * socket (they're just 32 bits -- and thus never include 1398 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1399 * bits and also doesn't reflect the alias in use), we get 1400 * flags on all matching interfaces, and go by that. 1401 */ 1402 lif_finished = B_FALSE; 1403 lease_removed = B_FALSE; 1404 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1405 dhcp_lif_t *lif, *lifnext; 1406 uint_t nlifs = dlp->dl_nlifs; 1407 1408 dlnext = dlp->dl_next; 1409 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1410 lif = lifnext, nlifs--) { 1411 lifnext = lif->lif_next; 1412 if (check_lif(lif, &msg.ifam, msglen)) { 1413 dsmp->dsm_lif_wait--; 1414 lif_finished = B_TRUE; 1415 } 1416 } 1417 if (dlp->dl_nlifs == 0) { 1418 remove_lease(dlp); 1419 lease_removed = B_TRUE; 1420 } 1421 } 1422 1423 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1424 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1425 dsmp->dsm_droprelease = B_TRUE; 1426 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : 1427 EVENT_DROP, dhcp_drop, NULL, NULL); 1428 continue; 1429 } 1430 1431 /* 1432 * Ignore this state machine if nothing interesting has 1433 * happened. 1434 */ 1435 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1436 (dsmp->dsm_leases != NULL || !lease_removed)) 1437 continue; 1438 1439 /* 1440 * If we're still waiting for DAD to complete on some of the 1441 * configured LIFs, then don't send a response. 1442 */ 1443 if (dsmp->dsm_lif_wait != 0) { 1444 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1445 "LIFs waiting on DAD", dsmp->dsm_name, 1446 dsmp->dsm_lif_wait); 1447 continue; 1448 } 1449 1450 /* 1451 * If we have some failed LIFs, then handle them now. We'll 1452 * remove them from the list. Any leases that become empty are 1453 * also removed as part of the decline-generation process. 1454 */ 1455 if (dsmp->dsm_lif_down != 0) 1456 send_declines(dsmp); 1457 1458 if (dsmp->dsm_leases == NULL) { 1459 dsmp->dsm_bad_offers++; 1460 /* 1461 * For DHCPv6, we'll process the restart once we're 1462 * done sending Decline messages, because these are 1463 * supposed to be acknowledged. With DHCPv4, there's 1464 * no acknowledgment for a DECLINE, so after sending 1465 * it, we just restart right away. 1466 */ 1467 if (!dsmp->dsm_isv6) { 1468 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1469 "LIFs left", dsmp->dsm_name); 1470 dhcp_restart(dsmp); 1471 } 1472 } else { 1473 /* 1474 * If we're now up on at least some of the leases and 1475 * we were waiting for that, then kick off the rest of 1476 * configuration. Lease validation and DAD are done. 1477 */ 1478 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1479 "on %s in %s state", dsmp->dsm_name, 1480 dhcp_state_to_string(oldstate)); 1481 if (oldstate == PRE_BOUND || 1482 oldstate == ADOPTING) 1483 dhcp_bound_complete(dsmp); 1484 if (oldstate == ADOPTING) 1485 dhcp_adopt_complete(dsmp); 1486 } 1487 } 1488 } 1489 1490 /* 1491 * check_cmd_allowed(): check whether the requested command is allowed in the 1492 * state specified. 1493 * 1494 * input: DHCPSTATE: current state 1495 * dhcp_ipc_type_t: requested command 1496 * output: boolean_t: B_TRUE if command is allowed in this state 1497 */ 1498 1499 boolean_t 1500 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1501 { 1502 return (ipc_cmd_allowed[state][cmd] != 0); 1503 } 1504 1505 static boolean_t 1506 is_iscsi_active(void) 1507 { 1508 int fd; 1509 int active = 0; 1510 1511 if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) { 1512 if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0) 1513 active = 0; 1514 (void) close(fd); 1515 } 1516 1517 return (active != 0); 1518 } 1519