xref: /titanic_51/usr/src/uts/sun4v/vm/mach_vm_dep.c (revision b533f56bf95137d3de6666bd923e15ec373ea611)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * UNIX machine dependent virtual memory support.
36  */
37 
38 #include <sys/vm.h>
39 #include <sys/exec.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu_module.h>
42 #include <sys/cpu.h>
43 #include <sys/elf_SPARC.h>
44 #include <sys/archsystm.h>
45 #include <vm/hat_sfmmu.h>
46 #include <sys/memnode.h>
47 #include <sys/mem_cage.h>
48 #include <vm/vm_dep.h>
49 #include <sys/error.h>
50 #include <sys/machsystm.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/stack.h>
53 #include <sys/atomic.h>
54 #include <sys/promif.h>
55 
56 uint_t page_colors = 0;
57 uint_t page_colors_mask = 0;
58 uint_t page_coloring_shift = 0;
59 int consistent_coloring;
60 int update_proc_pgcolorbase_after_fork = 1;
61 
62 uint_t mmu_page_sizes = MMU_PAGE_SIZES;
63 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
64 uint_t mmu_hashcnt = MAX_HASHCNT;
65 uint_t max_mmu_hashcnt = MAX_HASHCNT;
66 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
67 
68 /*
69  * A bitmask of the page sizes supported by hardware based upon szc.
70  * The base pagesize (p_szc == 0) must always be supported by the hardware.
71  */
72 int mmu_exported_pagesize_mask;
73 uint_t mmu_exported_page_sizes;
74 
75 uint_t szc_2_userszc[MMU_PAGE_SIZES];
76 uint_t userszc_2_szc[MMU_PAGE_SIZES];
77 
78 extern uint_t vac_colors_mask;
79 extern int vac_shift;
80 
81 hw_pagesize_t hw_page_array[] = {
82 	{MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
83 	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
84 	    MMU_PAGESIZE64K >> MMU_PAGESHIFT},
85 	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
86 	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
87 	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
88 	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
89 	    MMU_PAGESIZE32M >> MMU_PAGESHIFT},
90 	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
91 	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
92 	{0, 0, 0, 0}
93 };
94 
95 /*
96  * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
97  */
98 int	max_bootlp_tteszc = TTE256M;
99 
100 /*
101  * Maximum and default segment size tunables for user heap, stack, private
102  * and shared anonymous memory, and user text and initialized data.
103  */
104 size_t max_uheap_lpsize = MMU_PAGESIZE64K;
105 size_t default_uheap_lpsize = MMU_PAGESIZE64K;
106 size_t max_ustack_lpsize = MMU_PAGESIZE64K;
107 size_t default_ustack_lpsize = MMU_PAGESIZE64K;
108 size_t max_privmap_lpsize = MMU_PAGESIZE64K;
109 size_t max_uidata_lpsize = MMU_PAGESIZE64K;
110 size_t max_utext_lpsize = MMU_PAGESIZE4M;
111 size_t max_shm_lpsize = MMU_PAGESIZE4M;
112 
113 /*
114  * Contiguous memory allocator data structures and variables.
115  *
116  * The sun4v kernel must provide a means to allocate physically
117  * contiguous, non-relocatable memory. The contig_mem_arena
118  * and contig_mem_slab_arena exist for this purpose. Allocations
119  * that require physically contiguous non-relocatable memory should
120  * be made using contig_mem_alloc() or contig_mem_alloc_align()
121  * which return memory from contig_mem_arena or contig_mem_reloc_arena.
122  * These arenas import memory from the contig_mem_slab_arena one
123  * contiguous chunk at a time.
124  *
125  * When importing slabs, an attempt is made to allocate a large page
126  * to use as backing. As a result of the non-relocatable requirement,
127  * slabs are allocated from the kernel cage freelists. If the cage does
128  * not contain any free contiguous chunks large enough to satisfy the
129  * slab allocation, the slab size will be downsized and the operation
130  * retried. Large slab sizes are tried first to minimize cage
131  * fragmentation. If the slab allocation is unsuccessful still, the slab
132  * is allocated from outside the kernel cage. This is undesirable because,
133  * until slabs are freed, it results in non-relocatable chunks scattered
134  * throughout physical memory.
135  *
136  * Allocations from the contig_mem_arena are backed by slabs from the
137  * cage. Allocations from the contig_mem_reloc_arena are backed by
138  * slabs allocated outside the cage. Slabs are left share locked while
139  * in use to prevent non-cage slabs from being relocated.
140  *
141  * Since there is no guarantee that large pages will be available in
142  * the kernel cage, contiguous memory is reserved and added to the
143  * contig_mem_arena at boot time, making it available for later
144  * contiguous memory allocations. This reserve will be used to satisfy
145  * contig_mem allocations first and it is only when the reserve is
146  * completely allocated that new slabs will need to be imported.
147  */
148 static	vmem_t		*contig_mem_slab_arena;
149 static	vmem_t		*contig_mem_arena;
150 static	vmem_t		*contig_mem_reloc_arena;
151 static	kmutex_t	contig_mem_lock;
152 #define	CONTIG_MEM_ARENA_QUANTUM	64
153 #define	CONTIG_MEM_SLAB_ARENA_QUANTUM	MMU_PAGESIZE64K
154 
155 /* contig_mem_arena import slab sizes, in decreasing size order */
156 static size_t contig_mem_import_sizes[] = {
157 	MMU_PAGESIZE4M,
158 	MMU_PAGESIZE512K,
159 	MMU_PAGESIZE64K
160 };
161 #define	NUM_IMPORT_SIZES	\
162 	(sizeof (contig_mem_import_sizes) / sizeof (size_t))
163 static size_t contig_mem_import_size_max	= MMU_PAGESIZE4M;
164 size_t contig_mem_slab_size			= MMU_PAGESIZE4M;
165 
166 /* Boot-time allocated buffer to pre-populate the contig_mem_arena */
167 static size_t contig_mem_prealloc_size;
168 static void *contig_mem_prealloc_buf;
169 
170 /*
171  * map_addr_proc() is the routine called when the system is to
172  * choose an address for the user.  We will pick an address
173  * range which is just below the current stack limit.  The
174  * algorithm used for cache consistency on machines with virtual
175  * address caches is such that offset 0 in the vnode is always
176  * on a shm_alignment'ed aligned address.  Unfortunately, this
177  * means that vnodes which are demand paged will not be mapped
178  * cache consistently with the executable images.  When the
179  * cache alignment for a given object is inconsistent, the
180  * lower level code must manage the translations so that this
181  * is not seen here (at the cost of efficiency, of course).
182  *
183  * Every mapping will have a redzone of a single page on either side of
184  * the request. This is done to leave one page unmapped between segments.
185  * This is not required, but it's useful for the user because if their
186  * program strays across a segment boundary, it will catch a fault
187  * immediately making debugging a little easier.  Currently the redzone
188  * is mandatory.
189  *
190  * addrp is a value/result parameter.
191  *	On input it is a hint from the user to be used in a completely
192  *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
193  *	minimal alignment, which must be some "power of two" multiple of
194  *	pagesize.
195  *
196  *	On output it is NULL if no address can be found in the current
197  *	processes address space or else an address that is currently
198  *	not mapped for len bytes with a page of red zone on either side.
199  *	If vacalign is true, then the selected address will obey the alignment
200  *	constraints of a vac machine based on the given off value.
201  */
202 /*ARGSUSED3*/
203 void
204 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
205     caddr_t userlimit, struct proc *p, uint_t flags)
206 {
207 	struct as *as = p->p_as;
208 	caddr_t addr;
209 	caddr_t base;
210 	size_t slen;
211 	uintptr_t align_amount;
212 	int allow_largepage_alignment = 1;
213 
214 	base = p->p_brkbase;
215 	if (userlimit < as->a_userlimit) {
216 		/*
217 		 * This happens when a program wants to map something in
218 		 * a range that's accessible to a program in a smaller
219 		 * address space.  For example, a 64-bit program might
220 		 * be calling mmap32(2) to guarantee that the returned
221 		 * address is below 4Gbytes.
222 		 */
223 		ASSERT(userlimit > base);
224 		slen = userlimit - base;
225 	} else {
226 		slen = p->p_usrstack - base -
227 		    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
228 	}
229 	/* Make len be a multiple of PAGESIZE */
230 	len = (len + PAGEOFFSET) & PAGEMASK;
231 
232 	/*
233 	 *  If the request is larger than the size of a particular
234 	 *  mmu level, then we use that level to map the request.
235 	 *  But this requires that both the virtual and the physical
236 	 *  addresses be aligned with respect to that level, so we
237 	 *  do the virtual bit of nastiness here.
238 	 *
239 	 *  For 32-bit processes, only those which have specified
240 	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
241 	 *  we can potentially waste up to 256MB of the 4G process address
242 	 *  space just for alignment.
243 	 *
244 	 * XXXQ Should iterate trough hw_page_array here to catch
245 	 * all supported pagesizes
246 	 */
247 	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
248 	    ((uintptr_t)*addrp) != 0)) {
249 		allow_largepage_alignment = 0;
250 	}
251 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
252 	    allow_largepage_alignment &&
253 	    (len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
254 		align_amount = MMU_PAGESIZE256M;
255 	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
256 	    allow_largepage_alignment &&
257 	    (len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
258 		align_amount = MMU_PAGESIZE32M;
259 	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
260 		align_amount = MMU_PAGESIZE4M;
261 	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
262 		align_amount = MMU_PAGESIZE512K;
263 	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
264 		align_amount = MMU_PAGESIZE64K;
265 	} else  {
266 		/*
267 		 * Align virtual addresses on a 64K boundary to ensure
268 		 * that ELF shared libraries are mapped with the appropriate
269 		 * alignment constraints by the run-time linker.
270 		 */
271 		align_amount = ELF_SPARC_MAXPGSZ;
272 		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
273 		    ((uintptr_t)*addrp < align_amount))
274 			align_amount = (uintptr_t)*addrp;
275 	}
276 
277 	/*
278 	 * 64-bit processes require 1024K alignment of ELF shared libraries.
279 	 */
280 	if (p->p_model == DATAMODEL_LP64)
281 		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
282 #ifdef VAC
283 	if (vac && vacalign && (align_amount < shm_alignment))
284 		align_amount = shm_alignment;
285 #endif
286 
287 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
288 		align_amount = (uintptr_t)*addrp;
289 	}
290 
291 	ASSERT(ISP2(align_amount));
292 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
293 
294 	/*
295 	 * Look for a large enough hole starting below the stack limit.
296 	 * After finding it, use the upper part.
297 	 */
298 	as_purge(as);
299 	off = off & (align_amount - 1);
300 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
301 	    PAGESIZE, off) == 0) {
302 		caddr_t as_addr;
303 
304 		/*
305 		 * addr is the highest possible address to use since we have
306 		 * a PAGESIZE redzone at the beginning and end.
307 		 */
308 		addr = base + slen - (PAGESIZE + len);
309 		as_addr = addr;
310 		/*
311 		 * Round address DOWN to the alignment amount and
312 		 * add the offset in.
313 		 * If addr is greater than as_addr, len would not be large
314 		 * enough to include the redzone, so we must adjust down
315 		 * by the alignment amount.
316 		 */
317 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
318 		addr += (long)off;
319 		if (addr > as_addr) {
320 			addr -= align_amount;
321 		}
322 
323 		ASSERT(addr > base);
324 		ASSERT(addr + len < base + slen);
325 		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
326 		    ((uintptr_t)(off)));
327 		*addrp = addr;
328 
329 	} else {
330 		*addrp = NULL;	/* no more virtual space */
331 	}
332 }
333 
334 /*
335  * Platform-dependent page scrub call.
336  * We call hypervisor to scrub the page.
337  */
338 void
339 pagescrub(page_t *pp, uint_t off, uint_t len)
340 {
341 	uint64_t pa, length;
342 
343 	pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
344 	length = (uint64_t)len;
345 
346 	(void) mem_scrub(pa, length);
347 }
348 
349 void
350 sync_data_memory(caddr_t va, size_t len)
351 {
352 	/* Call memory sync function */
353 	(void) mem_sync(va, len);
354 }
355 
356 size_t
357 mmu_get_kernel_lpsize(size_t lpsize)
358 {
359 	extern int mmu_exported_pagesize_mask;
360 	uint_t tte;
361 
362 	if (lpsize == 0) {
363 		/* no setting for segkmem_lpsize in /etc/system: use default */
364 		if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
365 			lpsize = MMU_PAGESIZE256M;
366 		} else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
367 			lpsize = MMU_PAGESIZE4M;
368 		} else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
369 			lpsize = MMU_PAGESIZE64K;
370 		} else {
371 			lpsize = MMU_PAGESIZE;
372 		}
373 
374 		return (lpsize);
375 	}
376 
377 	for (tte = TTE8K; tte <= TTE256M; tte++) {
378 
379 		if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
380 			continue;
381 
382 		if (lpsize == TTEBYTES(tte))
383 			return (lpsize);
384 	}
385 
386 	lpsize = TTEBYTES(TTE8K);
387 	return (lpsize);
388 }
389 
390 void
391 mmu_init_kcontext()
392 {
393 }
394 
395 /*ARGSUSED*/
396 void
397 mmu_init_kernel_pgsz(struct hat *hat)
398 {
399 }
400 
401 static void *
402 contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
403 {
404 	page_t *ppl;
405 	page_t *rootpp;
406 	caddr_t addr = NULL;
407 	pgcnt_t npages = btopr(size);
408 	page_t **ppa;
409 	int pgflags;
410 	spgcnt_t i = 0;
411 
412 
413 	ASSERT(size <= contig_mem_import_size_max);
414 	ASSERT((size & (size - 1)) == 0);
415 
416 	if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
417 	    NULL, NULL, vmflag)) == NULL) {
418 		return (NULL);
419 	}
420 
421 	/* The address should be slab-size aligned. */
422 	ASSERT(((uintptr_t)addr & (size - 1)) == 0);
423 
424 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
425 		vmem_xfree(vmp, addr, size);
426 		return (NULL);
427 	}
428 
429 	pgflags = PG_EXCL;
430 	if (vmflag & VM_NORELOC)
431 		pgflags |= PG_NORELOC;
432 
433 	ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
434 	    pgflags, &kvseg, addr, NULL);
435 
436 	if (ppl == NULL) {
437 		vmem_xfree(vmp, addr, size);
438 		page_unresv(npages);
439 		return (NULL);
440 	}
441 
442 	rootpp = ppl;
443 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
444 	while (ppl != NULL) {
445 		page_t *pp = ppl;
446 		ppa[i++] = pp;
447 		page_sub(&ppl, pp);
448 		ASSERT(page_iolock_assert(pp));
449 		ASSERT(PAGE_EXCL(pp));
450 		page_io_unlock(pp);
451 	}
452 
453 	/*
454 	 * Load the locked entry.  It's OK to preload the entry into
455 	 * the TSB since we now support large mappings in the kernel TSB.
456 	 */
457 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
458 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
459 
460 	ASSERT(i == page_get_pagecnt(ppa[0]->p_szc));
461 	for (--i; i >= 0; --i) {
462 		ASSERT(ppa[i]->p_szc == ppa[0]->p_szc);
463 		ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i);
464 		(void) page_pp_lock(ppa[i], 0, 1);
465 		/*
466 		 * Leave the page share locked. For non-cage pages,
467 		 * this would prevent memory DR if it were supported
468 		 * on sun4v.
469 		 */
470 		page_downgrade(ppa[i]);
471 	}
472 
473 	kmem_free(ppa, npages * sizeof (page_t *));
474 	return (addr);
475 }
476 
477 /*
478  * Allocates a slab by first trying to use the largest slab size
479  * in contig_mem_import_sizes and then falling back to smaller slab
480  * sizes still large enough for the allocation. The sizep argument
481  * is a pointer to the requested size. When a slab is successfully
482  * allocated, the slab size, which must be >= *sizep and <=
483  * contig_mem_import_size_max, is returned in the *sizep argument.
484  * Returns the virtual address of the new slab.
485  */
486 static void *
487 span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
488 {
489 	int i;
490 
491 	ASSERT(*sizep <= contig_mem_import_size_max);
492 
493 	for (i = 0; i < NUM_IMPORT_SIZES; i++) {
494 		size_t page_size = contig_mem_import_sizes[i];
495 
496 		/*
497 		 * Check that the alignment is also less than the
498 		 * import (large page) size. In the case where the
499 		 * alignment is larger than the size, a large page
500 		 * large enough for the allocation is not necessarily
501 		 * physical-address aligned to satisfy the requested
502 		 * alignment. Since alignment is required to be a
503 		 * power-of-2, any large page >= size && >= align will
504 		 * suffice.
505 		 */
506 		if (*sizep <= page_size && align <= page_size) {
507 			void *addr;
508 			addr = contig_mem_span_alloc(vmp, page_size, vmflag);
509 			if (addr == NULL)
510 				continue;
511 			*sizep = page_size;
512 			return (addr);
513 		}
514 		return (NULL);
515 	}
516 
517 	return (NULL);
518 }
519 
520 static void *
521 contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
522 {
523 	return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC));
524 }
525 
526 static void *
527 contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align,
528     int vmflag)
529 {
530 	ASSERT((vmflag & VM_NORELOC) == 0);
531 	return (span_alloc_downsize(vmp, sizep, align, vmflag));
532 }
533 
534 /*
535  * Free a span, which is always exactly one large page.
536  */
537 static void
538 contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
539 {
540 	page_t *pp;
541 	caddr_t addr = inaddr;
542 	caddr_t eaddr;
543 	pgcnt_t npages = btopr(size);
544 	page_t *rootpp = NULL;
545 
546 	ASSERT(size <= contig_mem_import_size_max);
547 	/* All slabs should be size aligned */
548 	ASSERT(((uintptr_t)addr & (size - 1)) == 0);
549 
550 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
551 
552 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
553 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr);
554 		if (pp == NULL) {
555 			panic("contig_mem_span_free: page not found");
556 		}
557 		if (!page_tryupgrade(pp)) {
558 			page_unlock(pp);
559 			pp = page_lookup(&kvp,
560 			    (u_offset_t)(uintptr_t)addr, SE_EXCL);
561 			if (pp == NULL)
562 				panic("contig_mem_span_free: page not found");
563 		}
564 
565 		ASSERT(PAGE_EXCL(pp));
566 		ASSERT(size == page_get_pagesize(pp->p_szc));
567 		ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc);
568 		ASSERT(rootpp == NULL || (page_pptonum(rootpp) +
569 		    (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp)));
570 
571 		page_pp_unlock(pp, 0, 1);
572 
573 		if (rootpp == NULL)
574 			rootpp = pp;
575 	}
576 	page_destroy_pages(rootpp);
577 	page_unresv(npages);
578 
579 	if (vmp != NULL)
580 		vmem_xfree(vmp, inaddr, size);
581 }
582 
583 static void *
584 contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align,
585     int vmflag)
586 {
587 	ASSERT((align & (align - 1)) == 0);
588 	return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag));
589 }
590 
591 /*
592  * contig_mem_alloc, contig_mem_alloc_align
593  *
594  * Caution: contig_mem_alloc and contig_mem_alloc_align should be
595  * used only when physically contiguous non-relocatable memory is
596  * required. Furthermore, use of these allocation routines should be
597  * minimized as well as should the allocation size. As described in the
598  * contig_mem_arena comment block above, slab allocations fall back to
599  * being outside of the cage. Therefore, overuse of these allocation
600  * routines can lead to non-relocatable large pages being allocated
601  * outside the cage. Such pages prevent the allocation of a larger page
602  * occupying overlapping pages. This can impact performance for
603  * applications that utilize e.g. 256M large pages.
604  */
605 
606 /*
607  * Allocates size aligned contiguous memory up to contig_mem_import_size_max.
608  * Size must be a power of 2.
609  */
610 void *
611 contig_mem_alloc(size_t size)
612 {
613 	ASSERT((size & (size - 1)) == 0);
614 	return (contig_mem_alloc_align(size, size));
615 }
616 
617 /*
618  * contig_mem_alloc_align allocates real contiguous memory with the
619  * specified alignment up to contig_mem_import_size_max. The alignment must
620  * be a power of 2 and no greater than contig_mem_import_size_max. We assert
621  * the aligment is a power of 2. For non-debug, vmem_xalloc will panic
622  * for non power of 2 alignments.
623  */
624 void *
625 contig_mem_alloc_align(size_t size, size_t align)
626 {
627 	void *buf;
628 
629 	ASSERT(size <= contig_mem_import_size_max);
630 	ASSERT(align <= contig_mem_import_size_max);
631 	ASSERT((align & (align - 1)) == 0);
632 
633 	if (align < CONTIG_MEM_ARENA_QUANTUM)
634 		align = CONTIG_MEM_ARENA_QUANTUM;
635 
636 	/*
637 	 * We take the lock here to serialize span allocations.
638 	 * We do not lose concurrency for the common case, since
639 	 * allocations that don't require new span allocations
640 	 * are serialized by vmem_xalloc. Serializing span
641 	 * allocations also prevents us from trying to allocate
642 	 * more spans than necessary.
643 	 */
644 	mutex_enter(&contig_mem_lock);
645 
646 	buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0,
647 	    NULL, NULL, VM_NOSLEEP | VM_NORELOC);
648 
649 	if ((buf == NULL) && (size <= MMU_PAGESIZE)) {
650 		mutex_exit(&contig_mem_lock);
651 		return (vmem_xalloc(static_alloc_arena, size, align, 0, 0,
652 		    NULL, NULL, VM_NOSLEEP));
653 	}
654 
655 	if (buf == NULL) {
656 		buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0,
657 		    NULL, NULL, VM_NOSLEEP);
658 	}
659 
660 	mutex_exit(&contig_mem_lock);
661 
662 	return (buf);
663 }
664 
665 void
666 contig_mem_free(void *vaddr, size_t size)
667 {
668 	if (vmem_contains(contig_mem_arena, vaddr, size)) {
669 		vmem_xfree(contig_mem_arena, vaddr, size);
670 	} else if (size > MMU_PAGESIZE) {
671 		vmem_xfree(contig_mem_reloc_arena, vaddr, size);
672 	} else {
673 		vmem_xfree(static_alloc_arena, vaddr, size);
674 	}
675 }
676 
677 /*
678  * We create a set of stacked vmem arenas to enable us to
679  * allocate large >PAGESIZE chucks of contiguous Real Address space.
680  * The vmem_xcreate interface is used to create the contig_mem_arena
681  * allowing the import routine to downsize the requested slab size
682  * and return a smaller slab.
683  */
684 void
685 contig_mem_init(void)
686 {
687 	mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL);
688 
689 	contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0,
690 	    CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper,
691 	    vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN);
692 
693 	contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0,
694 	    CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc,
695 	    contig_mem_span_free, contig_mem_slab_arena, 0,
696 	    VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
697 
698 	contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0,
699 	    CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc,
700 	    contig_mem_span_free, contig_mem_slab_arena, 0,
701 	    VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
702 
703 	if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena,
704 	    contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP)
705 	    == NULL) {
706 		cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena");
707 	}
708 }
709 
710 /*
711  * In calculating how much memory to pre-allocate, we include a small
712  * amount per-CPU to account for per-CPU buffers in line with measured
713  * values for different size systems. contig_mem_prealloc_base_size is
714  * a cpu specific amount to be pre-allocated before considering per-CPU
715  * requirements and memory size. We always pre-allocate a minimum amount
716  * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum
717  * of contig_mem_prealloc_base_size and a small percentage of physical
718  * memory to prevent allocating too much on smaller systems.
719  * contig_mem_prealloc_base_size is global, allowing for the CPU module
720  * to increase its value if necessary.
721  */
722 #define	PREALLOC_PER_CPU	(256 * 1024)		/* 256K */
723 #define	PREALLOC_PERCENT	(4)			/* 4% */
724 #define	PREALLOC_MIN		(16 * 1024 * 1024)	/* 16M */
725 size_t contig_mem_prealloc_base_size = 0;
726 
727 /*
728  * Called at boot-time allowing pre-allocation of contiguous memory.
729  * The argument 'alloc_base' is the requested base address for the
730  * allocation and originates in startup_memlist.
731  */
732 caddr_t
733 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
734 {
735 	caddr_t	chunkp;
736 
737 	contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) +
738 	    contig_mem_prealloc_base_size,
739 	    (ptob(npages) * PREALLOC_PERCENT) / 100);
740 	contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN);
741 	contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size,
742 	    MMU_PAGESIZE4M);
743 
744 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M);
745 	if (prom_alloc(alloc_base, contig_mem_prealloc_size,
746 	    MMU_PAGESIZE4M) != alloc_base) {
747 
748 		/*
749 		 * Failed.  This may mean the physical memory has holes in it
750 		 * and it will be more difficult to get large contiguous
751 		 * pieces of memory.  Since we only guarantee contiguous
752 		 * pieces of memory contig_mem_import_size_max or smaller,
753 		 * loop, getting contig_mem_import_size_max at a time, until
754 		 * failure or contig_mem_prealloc_size is reached.
755 		 */
756 		for (chunkp = alloc_base;
757 		    (chunkp - alloc_base) < contig_mem_prealloc_size;
758 		    chunkp += contig_mem_import_size_max) {
759 
760 			if (prom_alloc(chunkp, contig_mem_import_size_max,
761 			    MMU_PAGESIZE4M) != chunkp) {
762 				break;
763 			}
764 		}
765 		contig_mem_prealloc_size = chunkp - alloc_base;
766 		ASSERT(contig_mem_prealloc_size != 0);
767 	}
768 
769 	if (contig_mem_prealloc_size != 0) {
770 		contig_mem_prealloc_buf = alloc_base;
771 	} else {
772 		contig_mem_prealloc_buf = NULL;
773 	}
774 	alloc_base += contig_mem_prealloc_size;
775 
776 	return (alloc_base);
777 }
778 
779 static uint_t sp_color_stride = 16;
780 static uint_t sp_color_mask = 0x1f;
781 static uint_t sp_current_color = (uint_t)-1;
782 
783 size_t
784 exec_get_spslew(void)
785 {
786 	uint_t spcolor = atomic_inc_32_nv(&sp_current_color);
787 	return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride)));
788 }
789