xref: /titanic_51/usr/src/uts/sun4v/vm/mach_vm_dep.c (revision 3906e0c22bea9bf690c20f62b0575c1b1d0ace2e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 /*
37  * UNIX machine dependent virtual memory support.
38  */
39 
40 #include <sys/vm.h>
41 #include <sys/exec.h>
42 #include <sys/cmn_err.h>
43 #include <sys/cpu_module.h>
44 #include <sys/cpu.h>
45 #include <sys/elf_SPARC.h>
46 #include <sys/archsystm.h>
47 #include <vm/hat_sfmmu.h>
48 #include <sys/memnode.h>
49 #include <sys/mem_cage.h>
50 #include <vm/vm_dep.h>
51 #include <sys/error.h>
52 #include <sys/machsystm.h>
53 #include <vm/seg_kmem.h>
54 
55 uint_t page_colors = 0;
56 uint_t page_colors_mask = 0;
57 uint_t page_coloring_shift = 0;
58 int consistent_coloring;
59 
60 uint_t mmu_page_sizes = MMU_PAGE_SIZES;
61 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
62 uint_t mmu_hashcnt = MAX_HASHCNT;
63 uint_t max_mmu_hashcnt = MAX_HASHCNT;
64 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
65 
66 /*
67  * A bitmask of the page sizes supported by hardware based upon szc.
68  * The base pagesize (p_szc == 0) must always be supported by the hardware.
69  */
70 int mmu_exported_pagesize_mask;
71 uint_t mmu_exported_page_sizes;
72 
73 uint_t szc_2_userszc[MMU_PAGE_SIZES];
74 uint_t userszc_2_szc[MMU_PAGE_SIZES];
75 
76 extern uint_t vac_colors_mask;
77 extern int vac_shift;
78 
79 hw_pagesize_t hw_page_array[] = {
80 	{MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
81 	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
82 	    MMU_PAGESIZE64K >> MMU_PAGESHIFT},
83 	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
84 	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
85 	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
86 	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
87 	    MMU_PAGESIZE32M >> MMU_PAGESHIFT},
88 	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
89 	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
90 	{0, 0, 0, 0}
91 };
92 
93 /*
94  * Enable usage of 64k/4M pages for text and 64k pages for initdata for
95  * all sun4v platforms. These variables can be overwritten by the platmod
96  * or the CPU module. User can also change the setting via /etc/system.
97  */
98 
99 int	use_text_pgsz64k = 1;
100 int	use_text_pgsz4m = 1;
101 int	use_initdata_pgsz64k = 1;
102 
103 /*
104  * disable_text_largepages and disable_initdata_largepages bitmaks reflect
105  * both unconfigured and undesirable page sizes. Current implementation
106  * supports 64K and 4M page sizes for text and only 64K for data. Rest of
107  * the page sizes are not currently supported, hence disabled below. In
108  * future, when support is added for any other page size, it should be
109  * reflected below.
110  *
111  * Note that these bitmask can be set in platform or CPU specific code to
112  * disable page sizes that should not be used. These variables normally
113  * shouldn't be changed via /etc/system.
114  *
115  * These bitmasks are also updated within hat_init to reflect unsupported
116  * page sizes on a sun4v processor per mmu_exported_pagesize_mask global
117  * variable.
118  */
119 
120 int disable_text_largepages =
121 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M) | (1 << TTE2G) |
122 	(1 << TTE16G);
123 int disable_initdata_largepages =
124 	(1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M) | (1 << TTE256M) |
125 	(1 << TTE2G) | (1 << TTE16G);
126 
127 /*
128  * Minimum segment size tunables before 64K or 4M large pages
129  * should be used to map it.
130  */
131 size_t text_pgsz64k_minsize = MMU_PAGESIZE64K;
132 size_t text_pgsz4m_minsize = MMU_PAGESIZE4M;
133 size_t initdata_pgsz64k_minsize = MMU_PAGESIZE64K;
134 
135 size_t max_shm_lpsize = MMU_PAGESIZE4M;
136 
137 /* Auto large page tunables. */
138 int auto_lpg_tlb_threshold = 32;
139 int auto_lpg_minszc = TTE64K;
140 int auto_lpg_maxszc = TTE64K;
141 size_t auto_lpg_heap_default = MMU_PAGESIZE64K;
142 size_t auto_lpg_stack_default = MMU_PAGESIZE64K;
143 size_t auto_lpg_va_default = MMU_PAGESIZE64K;
144 size_t auto_lpg_remap_threshold = 0; /* always remap */
145 /*
146  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
147  * fewer than this many pages.
148  */
149 pgcnt_t auto_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
150 
151 /*
152  * map_addr_proc() is the routine called when the system is to
153  * choose an address for the user.  We will pick an address
154  * range which is just below the current stack limit.  The
155  * algorithm used for cache consistency on machines with virtual
156  * address caches is such that offset 0 in the vnode is always
157  * on a shm_alignment'ed aligned address.  Unfortunately, this
158  * means that vnodes which are demand paged will not be mapped
159  * cache consistently with the executable images.  When the
160  * cache alignment for a given object is inconsistent, the
161  * lower level code must manage the translations so that this
162  * is not seen here (at the cost of efficiency, of course).
163  *
164  * addrp is a value/result parameter.
165  *	On input it is a hint from the user to be used in a completely
166  *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
167  *	minimal alignment.
168  *
169  *	On output it is NULL if no address can be found in the current
170  *	processes address space or else an address that is currently
171  *	not mapped for len bytes with a page of red zone on either side.
172  *	If vacalign is true, then the selected address will obey the alignment
173  *	constraints of a vac machine based on the given off value.
174  */
175 /*ARGSUSED3*/
176 void
177 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
178     caddr_t userlimit, struct proc *p, uint_t flags)
179 {
180 	struct as *as = p->p_as;
181 	caddr_t addr;
182 	caddr_t base;
183 	size_t slen;
184 	uintptr_t align_amount;
185 	int allow_largepage_alignment = 1;
186 
187 	base = p->p_brkbase;
188 	if (userlimit < as->a_userlimit) {
189 		/*
190 		 * This happens when a program wants to map something in
191 		 * a range that's accessible to a program in a smaller
192 		 * address space.  For example, a 64-bit program might
193 		 * be calling mmap32(2) to guarantee that the returned
194 		 * address is below 4Gbytes.
195 		 */
196 		ASSERT(userlimit > base);
197 		slen = userlimit - base;
198 	} else {
199 		slen = p->p_usrstack - base - (((size_t)rctl_enforced_value(
200 		    rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET)
201 		    & PAGEMASK);
202 	}
203 	len = (len + PAGEOFFSET) & PAGEMASK;
204 
205 	/*
206 	 * Redzone for each side of the request. This is done to leave
207 	 * one page unmapped between segments. This is not required, but
208 	 * it's useful for the user because if their program strays across
209 	 * a segment boundary, it will catch a fault immediately making
210 	 * debugging a little easier.
211 	 */
212 	len += (2 * PAGESIZE);
213 
214 	/*
215 	 *  If the request is larger than the size of a particular
216 	 *  mmu level, then we use that level to map the request.
217 	 *  But this requires that both the virtual and the physical
218 	 *  addresses be aligned with respect to that level, so we
219 	 *  do the virtual bit of nastiness here.
220 	 *
221 	 *  For 32-bit processes, only those which have specified
222 	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
223 	 *  we can potentially waste up to 256MB of the 4G process address
224 	 *  space just for alignment.
225 	 *
226 	 * XXXQ Should iterate trough hw_page_array here to catch
227 	 * all supported pagesizes
228 	 */
229 	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
230 	    ((uintptr_t)*addrp) != 0)) {
231 		allow_largepage_alignment = 0;
232 	}
233 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
234 	    allow_largepage_alignment &&
235 		(len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
236 		align_amount = MMU_PAGESIZE256M;
237 	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
238 	    allow_largepage_alignment &&
239 		(len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
240 		align_amount = MMU_PAGESIZE32M;
241 	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
242 		align_amount = MMU_PAGESIZE4M;
243 	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
244 		align_amount = MMU_PAGESIZE512K;
245 	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
246 		align_amount = MMU_PAGESIZE64K;
247 	} else  {
248 		/*
249 		 * Align virtual addresses on a 64K boundary to ensure
250 		 * that ELF shared libraries are mapped with the appropriate
251 		 * alignment constraints by the run-time linker.
252 		 */
253 		align_amount = ELF_SPARC_MAXPGSZ;
254 		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
255 			((uintptr_t)*addrp < align_amount))
256 			align_amount = (uintptr_t)*addrp;
257 	}
258 
259 	/*
260 	 * 64-bit processes require 1024K alignment of ELF shared libraries.
261 	 */
262 	if (p->p_model == DATAMODEL_LP64)
263 		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
264 #ifdef VAC
265 	if (vac && vacalign && (align_amount < shm_alignment))
266 		align_amount = shm_alignment;
267 #endif
268 
269 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
270 		align_amount = (uintptr_t)*addrp;
271 	}
272 	len += align_amount;
273 
274 	/*
275 	 * Look for a large enough hole starting below the stack limit.
276 	 * After finding it, use the upper part.  Addition of PAGESIZE is
277 	 * for the redzone as described above.
278 	 */
279 	as_purge(as);
280 	if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
281 		caddr_t as_addr;
282 
283 		addr = base + slen - len + PAGESIZE;
284 		as_addr = addr;
285 		/*
286 		 * Round address DOWN to the alignment amount,
287 		 * add the offset, and if this address is less
288 		 * than the original address, add alignment amount.
289 		 */
290 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
291 		addr += (long)(off & (align_amount - 1l));
292 		if (addr < as_addr) {
293 			addr += align_amount;
294 		}
295 
296 		ASSERT(addr <= (as_addr + align_amount));
297 		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
298 		    ((uintptr_t)(off & (align_amount - 1l))));
299 		*addrp = addr;
300 
301 	} else {
302 		*addrp = NULL;	/* no more virtual space */
303 	}
304 }
305 
306 /*
307  * Platform-dependent page scrub call.
308  * We call hypervisor to scrub the page.
309  */
310 void
311 pagescrub(page_t *pp, uint_t off, uint_t len)
312 {
313 	uint64_t pa, length;
314 
315 	pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
316 	length = (uint64_t)len;
317 
318 	(void) mem_scrub(pa, length);
319 }
320 
321 void
322 sync_data_memory(caddr_t va, size_t len)
323 {
324 	/* Call memory sync function */
325 	mem_sync(va, len);
326 }
327 
328 size_t
329 mmu_get_kernel_lpsize(size_t lpsize)
330 {
331 	extern int mmu_exported_pagesize_mask;
332 	uint_t tte;
333 
334 	if (lpsize == 0) {
335 		/* no setting for segkmem_lpsize in /etc/system: use default */
336 		if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
337 			lpsize = MMU_PAGESIZE256M;
338 		} else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
339 			lpsize = MMU_PAGESIZE4M;
340 		} else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
341 			lpsize = MMU_PAGESIZE64K;
342 		} else {
343 			lpsize = MMU_PAGESIZE;
344 		}
345 
346 		return (lpsize);
347 	}
348 
349 	for (tte = TTE8K; tte <= TTE256M; tte++) {
350 
351 		if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
352 			continue;
353 
354 		if (lpsize == TTEBYTES(tte))
355 			return (lpsize);
356 	}
357 
358 	lpsize = TTEBYTES(TTE8K);
359 	return (lpsize);
360 }
361 
362 void
363 mmu_init_kcontext()
364 {
365 }
366 
367 /*ARGSUSED*/
368 void
369 mmu_init_kernel_pgsz(struct hat *hat)
370 {
371 }
372 
373 #define	QUANTUM_SIZE	64
374 
375 static	vmem_t	*contig_mem_slab_arena;
376 static	vmem_t	*contig_mem_arena;
377 
378 uint_t contig_mem_slab_size = MMU_PAGESIZE4M;
379 
380 static void *
381 contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
382 {
383 	page_t *ppl;
384 	page_t *rootpp;
385 	caddr_t addr = NULL;
386 	pgcnt_t npages = btopr(size);
387 	page_t **ppa;
388 	int pgflags;
389 	int i = 0;
390 
391 
392 	/*
393 	 * The import request should be at least
394 	 * contig_mem_slab_size because that is the
395 	 * slab arena's quantum. The size can be
396 	 * further restricted since contiguous
397 	 * allocations larger than contig_mem_slab_size
398 	 * are not supported here.
399 	 */
400 	ASSERT(size == contig_mem_slab_size);
401 
402 	if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
403 	    NULL, NULL, vmflag)) == NULL) {
404 		return (NULL);
405 	}
406 
407 	/* The address should be slab-size aligned. */
408 	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
409 
410 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
411 		vmem_xfree(vmp, addr, size);
412 		return (NULL);
413 	}
414 
415 	pgflags = PG_EXCL;
416 	if ((vmflag & VM_NOSLEEP) == 0)
417 		pgflags |= PG_WAIT;
418 	if (vmflag & VM_PANIC)
419 		pgflags |= PG_PANIC;
420 	if (vmflag & VM_PUSHPAGE)
421 		pgflags |= PG_PUSHPAGE;
422 
423 	ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
424 	    pgflags, &kvseg, addr, NULL);
425 
426 	if (ppl == NULL) {
427 		vmem_xfree(vmp, addr, size);
428 		page_unresv(npages);
429 		return (NULL);
430 	}
431 
432 	rootpp = ppl;
433 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
434 	while (ppl != NULL) {
435 		page_t *pp = ppl;
436 		ppa[i++] = pp;
437 		page_sub(&ppl, pp);
438 		ASSERT(page_iolock_assert(pp));
439 		page_io_unlock(pp);
440 	}
441 
442 	/*
443 	 * Load the locked entry.  It's OK to preload the entry into
444 	 * the TSB since we now support large mappings in the kernel TSB.
445 	 */
446 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
447 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
448 
449 	for (--i; i >= 0; --i) {
450 		(void) page_pp_lock(ppa[i], 0, 1);
451 		page_unlock(ppa[i]);
452 	}
453 
454 	kmem_free(ppa, npages * sizeof (page_t *));
455 	return (addr);
456 }
457 
458 void
459 contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
460 {
461 	page_t *pp;
462 	caddr_t addr = inaddr;
463 	caddr_t eaddr;
464 	pgcnt_t npages = btopr(size);
465 	pgcnt_t pgs_left = npages;
466 	page_t *rootpp = NULL;
467 
468 	ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
469 
470 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
471 
472 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
473 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
474 		if (pp == NULL)
475 			panic("contig_mem_span_free: page not found");
476 
477 		ASSERT(PAGE_EXCL(pp));
478 		page_pp_unlock(pp, 0, 1);
479 
480 		if (rootpp == NULL)
481 			rootpp = pp;
482 		if (--pgs_left == 0) {
483 			/*
484 			 * similar logic to segspt_free_pages, but we know we
485 			 * have one large page.
486 			 */
487 			page_destroy_pages(rootpp);
488 		}
489 	}
490 	page_unresv(npages);
491 
492 	if (vmp != NULL)
493 		vmem_xfree(vmp, inaddr, size);
494 }
495 
496 static void *
497 contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
498 {
499 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
500 }
501 
502 /*
503  * conting_mem_alloc_align allocates real contiguous memory with the specified
504  * alignment upto contig_mem_slab_size. The alignment must be a power of 2.
505  */
506 void *
507 contig_mem_alloc_align(size_t size, size_t align)
508 {
509 	ASSERT(align <= contig_mem_slab_size);
510 
511 	if ((align & (align - 1)) != 0)
512 		return (NULL);
513 
514 	return (vmem_xalloc(contig_mem_arena, size, align, 0, 0,
515 	    NULL, NULL, VM_NOSLEEP));
516 }
517 
518 /*
519  * Allocates size aligned contiguous memory upto contig_mem_slab_size.
520  * Size must be a power of 2.
521  */
522 void *
523 contig_mem_alloc(size_t size)
524 {
525 	ASSERT((size & (size - 1)) == 0);
526 	return (contig_mem_alloc_align(size, size));
527 }
528 
529 void
530 contig_mem_free(void *vaddr, size_t size)
531 {
532 	vmem_xfree(contig_mem_arena, vaddr, size);
533 }
534 
535 /*
536  * We create a set of stacked vmem arenas to enable us to
537  * allocate large >PAGESIZE chucks of contiguous Real Address space
538  * This is  what the Dynamics TSB support does for TSBs.
539  * The contig_mem_arena import functions are exactly the same as the
540  * TSB kmem_default arena import functions.
541  */
542 void
543 contig_mem_init(void)
544 {
545 
546 	contig_mem_slab_arena = vmem_create("contig_mem_slab_arena", NULL, 0,
547 	    contig_mem_slab_size, contig_vmem_xalloc_aligned_wrapper,
548 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
549 
550 	contig_mem_arena = vmem_create("contig_mem_arena", NULL, 0,
551 	    QUANTUM_SIZE, contig_mem_span_alloc, contig_mem_span_free,
552 	    contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT);
553 
554 }
555