xref: /titanic_51/usr/src/uts/sun4v/os/mpo.c (revision 30a5e8fa1253cb33980ee4514743cf683f584b4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/machsystm.h>
32 #include <sys/machparam.h>
33 #include <sys/cmn_err.h>
34 #include <sys/stat.h>
35 #include <sys/mach_descrip.h>
36 #include <sys/memnode.h>
37 #include <sys/mdesc.h>
38 #include <sys/mpo.h>
39 #include <vm/vm_dep.h>
40 
41 /*
42  * MPO and the sun4v memory representation
43  * ---------------------------------------
44  *
45  * Latency groups are defined in the sun4v achitecture by memory-latency-group
46  * nodes in the Machine Description, as specified in FWARC/2007/260.  These
47  * tie together cpu nodes and mblock nodes, and contain mask and match
48  * properties that identify the portion of an mblock that belongs to the
49  * lgroup.  Mask and match are defined in the Physical Address (PA) space,
50  * but an mblock defines Real Addresses (RA).  To translate, the mblock
51  * includes the property address-congruence-offset, hereafter referred to as
52  * ra_to_pa.  A real address ra is a member of an lgroup if
53  *
54  *	(ra + mblock.ra_to_pa) & lgroup.mask == lgroup.match
55  *
56  * The MD is traversed, and information on all mblocks is kept in the array
57  * mpo_mblock[].  Information on all CPUs, including which lgroup they map
58  * to, is kept in the array mpo_cpu[].
59  *
60  * This implementation makes (and verifies) the simplifying assumption that
61  * the mask bits are the same for all defined lgroups, and that all 1 bits in
62  * the mask are contiguous.  Thus the number of lgroups is bounded by the
63  * number of possible mask values, and the lgrp_handle_t is defined as the
64  * mask value, shifted right to eliminate the 0 bit positions in mask.  The
65  * masks and values are also referred to as "home bits" in the code.
66  *
67  * A mem_node is defined to be 1:1 with an lgrp_handle_t, thus each lgroup
68  * has exactly 1 mem_node, and plat_pfn_to_mem_node() must find the mblock
69  * containing a pfn, apply the mblock's ra_to_pa adjustment, and extract the
70  * home bits.  This yields the mem_node.
71  *
72  * Interfaces
73  * ----------
74  *
75  * This file exports the following entry points:
76  *
77  * plat_lgrp_init()
78  * plat_build_mem_nodes()
79  * plat_lgrp_cpu_to_hand()
80  * plat_lgrp_latency()
81  * plat_pfn_to_mem_node()
82  *	These implement the usual platform lgroup interfaces.
83  *
84  * plat_rapfn_to_papfn()
85  *	Recover the PA page coloring bits from an RA.
86  *
87  * plat_mem_node_iterator_init()
88  *	Initialize an iterator to efficiently step through pages in a mem_node.
89  *
90  * plat_mem_node_intersect_range()
91  *	Find the intersection with a mem_node.
92  */
93 
94 int	sun4v_mpo_enable = 1;
95 int	sun4v_mpo_debug = 0;
96 char	sun4v_mpo_status[256] = "";
97 
98 /* Save CPU info from the MD and associate CPUs with lgroups */
99 static	struct cpu_md mpo_cpu[NCPU];
100 
101 /* Save lgroup info from the MD */
102 #define	MAX_MD_LGROUPS 32
103 static	struct	lgrp_md mpo_lgroup[MAX_MD_LGROUPS];
104 static	int	n_lgrpnodes = 0;
105 static	int	n_locality_groups = 0;
106 static	int	max_locality_groups = 0;
107 
108 /* Save mblocks from the MD */
109 static 	struct	mblock_md mpo_mblock[MPO_MAX_MBLOCKS];
110 static	int	n_mblocks = 0;
111 
112 /* Save mem_node stripes calculate from mblocks and lgroups. */
113 static mem_stripe_t mem_stripes[MAX_MEM_STRIPES];
114 static	int	n_mem_stripes = 0;
115 static	pfn_t	mnode_stride;	/* distance between stripes, start to start */
116 static	int	stripe_shift;	/* stride/stripes expressed as a shift */
117 static	pfn_t	mnode_pages;	/* mem_node stripe width */
118 
119 /* Save home mask and shift used to calculate lgrp_handle_t values */
120 static	uint64_t home_mask = 0;
121 static	pfn_t	home_mask_pfn = 0;
122 static	int	home_mask_shift = 0;
123 static	uint_t	home_mask_pfn_shift = 0;
124 
125 /* Save lowest and highest latencies found across all lgroups */
126 static	int	lower_latency = 0;
127 static	int	higher_latency = 0;
128 
129 static	pfn_t	base_ra_to_pa_pfn = 0;	/* ra_to_pa for single mblock memory */
130 
131 static	int	valid_pages(md_t *md, mde_cookie_t cpu0);
132 static	int	unique_home_mem_lg_count(uint64_t mem_lg_homeset);
133 static	int	fix_interleave(void);
134 
135 /* Debug support */
136 #if defined(DEBUG) && !defined(lint)
137 #define	MPO_DEBUG(args...) if (sun4v_mpo_debug) printf(args)
138 #else
139 #define	MPO_DEBUG(...)
140 #endif	/* DEBUG */
141 
142 /* Record status message, viewable from mdb */
143 #define	MPO_STATUS(args...) {						      \
144 	(void) snprintf(sun4v_mpo_status, sizeof (sun4v_mpo_status), args);   \
145 	MPO_DEBUG(sun4v_mpo_status);					      \
146 }
147 
148 /*
149  * Routine to read a uint64_t from a given md
150  */
151 static	int64_t
152 get_int(md_t md, mde_cookie_t node, char *propname, uint64_t *val)
153 {
154 	int err = md_get_prop_val(md, node, propname, val);
155 	return (err);
156 }
157 
158 static int
159 mblock_cmp(const void *a, const void *b)
160 {
161 	struct mblock_md *m1 = (struct mblock_md *)a;
162 	struct mblock_md *m2 = (struct mblock_md *)b;
163 
164 	if (m1->base < m2->base)
165 		return (-1);
166 	else if (m1->base == m2->base)
167 		return (0);
168 	else
169 		return (1);
170 }
171 
172 static void
173 mblock_sort(struct mblock_md *mblocks, int n)
174 {
175 	extern void qsort(void *, size_t, size_t,
176 	    int (*)(const void *, const void *));
177 
178 	qsort(mblocks, n, sizeof (mblocks[0]), mblock_cmp);
179 }
180 
181 /*
182  *
183  * Traverse the MD to determine:
184  *
185  *  Number of CPU nodes, lgrp_nodes, and mblocks
186  *  Then for each lgrp_node, obtain the appropriate data.
187  *  For each CPU, determine its home locality and store it.
188  *  For each mblock, retrieve its data and store it.
189  */
190 static	int
191 lgrp_traverse(md_t *md)
192 {
193 	mde_cookie_t root, *cpunodes, *lgrpnodes, *nodes, *mblocknodes;
194 	uint64_t i, j, k, o, n_nodes;
195 	uint64_t n_lgroups = 0;
196 	uint64_t mem_lg_homeset = 0;
197 	int ret_val = 0;
198 	int result = 0;
199 	int n_cpunodes = 0;
200 	int sub_page_fix;
201 
202 	n_nodes = md_node_count(md);
203 
204 	if (n_nodes <= 0) {
205 		MPO_STATUS("lgrp_traverse: No nodes in node count\n");
206 		ret_val = -1;
207 		goto fail;
208 	}
209 
210 	root = md_root_node(md);
211 
212 	if (root == MDE_INVAL_ELEM_COOKIE) {
213 		MPO_STATUS("lgrp_traverse: Root node is missing\n");
214 		ret_val = -1;
215 		goto fail;
216 	}
217 
218 	/*
219 	 * Build the Memory Nodes.  Do this before any possibility of
220 	 * bailing from this routine so we obtain ra_to_pa (needed for page
221 	 * coloring) even when there are no lgroups defined.
222 	 */
223 
224 	n_mblocks = md_alloc_scan_dag(md, root, PROP_LG_MBLOCK,
225 	    "fwd", &mblocknodes);
226 
227 	if (n_mblocks <= 0 || n_mblocks > MPO_MAX_MBLOCKS) {
228 		MPO_STATUS("lgrp_traverse: No mblock "
229 		    "nodes detected in Machine Descriptor\n");
230 		n_mblocks = 0;
231 		ret_val = -1;
232 		goto fail;
233 	}
234 
235 	for (i = 0; i < n_mblocks; i++) {
236 		mpo_mblock[i].node = mblocknodes[i];
237 
238 		/* Without a base or size value we will fail */
239 		result = get_int(md, mblocknodes[i], PROP_LG_BASE,
240 		    &mpo_mblock[i].base);
241 		if (result < 0) {
242 			MPO_STATUS("lgrp_traverse: "
243 			    "PROP_LG_BASE is missing\n");
244 			n_mblocks = 0;
245 			ret_val = -1;
246 			goto fail;
247 		}
248 
249 		result = get_int(md, mblocknodes[i], PROP_LG_SIZE,
250 		    &mpo_mblock[i].size);
251 		if (result < 0) {
252 			MPO_STATUS("lgrp_traverse: "
253 			    "PROP_LG_SIZE is missing\n");
254 			n_mblocks = 0;
255 			ret_val = -1;
256 			goto fail;
257 		}
258 
259 		result = get_int(md, mblocknodes[i],
260 		    PROP_LG_RA_PA_OFFSET, &mpo_mblock[i].ra_to_pa);
261 
262 		/* If we don't have an ra_pa_offset, just set it to 0 */
263 		if (result < 0)
264 			mpo_mblock[i].ra_to_pa = 0;
265 
266 		MPO_DEBUG("mblock[%ld]: base = %lx, size = %lx, "
267 		    "ra_to_pa = %lx\n", i,
268 		    mpo_mblock[i].base,
269 		    mpo_mblock[i].size,
270 		    mpo_mblock[i].ra_to_pa);
271 	}
272 
273 	/* Must sort mblocks by address for mem_node_iterator_init() */
274 	mblock_sort(mpo_mblock, n_mblocks);
275 
276 	base_ra_to_pa_pfn = btop(mpo_mblock[0].ra_to_pa);
277 
278 	/* Page coloring hook is required so we can iterate through mnodes */
279 	if (&page_next_pfn_for_color_cpu == NULL) {
280 		MPO_STATUS("lgrp_traverse: No page coloring support\n");
281 		ret_val = -1;
282 		goto fail;
283 	}
284 
285 	/* Global enable for mpo */
286 	if (sun4v_mpo_enable == 0) {
287 		MPO_STATUS("lgrp_traverse: MPO feature is not enabled\n");
288 		ret_val = -1;
289 		goto fail;
290 	}
291 
292 	n_lgrpnodes = md_alloc_scan_dag(md, root, PROP_LG_MEM_LG,
293 	    "fwd", &lgrpnodes);
294 
295 	if (n_lgrpnodes <= 0 || n_lgrpnodes >= MAX_MD_LGROUPS) {
296 		MPO_STATUS("lgrp_traverse: No Lgroups\n");
297 		ret_val = -1;
298 		goto fail;
299 	}
300 
301 	n_cpunodes = md_alloc_scan_dag(md, root, PROP_LG_CPU, "fwd", &cpunodes);
302 
303 	if (n_cpunodes <= 0 || n_cpunodes > NCPU) {
304 		MPO_STATUS("lgrp_traverse: No CPU nodes detected "
305 		    "in MD\n");
306 		ret_val = -1;
307 		goto fail;
308 	}
309 
310 	MPO_DEBUG("lgrp_traverse: Node Count: %ld\n", n_nodes);
311 	MPO_DEBUG("lgrp_traverse: md: %p\n", md);
312 	MPO_DEBUG("lgrp_traverse: root: %lx\n", root);
313 	MPO_DEBUG("lgrp_traverse: mem_lgs: %d\n", n_lgrpnodes);
314 	MPO_DEBUG("lgrp_traverse: cpus: %d\n", n_cpunodes);
315 	MPO_DEBUG("lgrp_traverse: mblocks: %d\n", n_mblocks);
316 
317 	for (i = 0; i < n_lgrpnodes; i++) {
318 		mpo_lgroup[i].node = lgrpnodes[i];
319 		mpo_lgroup[i].id = i;
320 		mpo_lgroup[i].ncpu = 0;
321 		result = get_int(md, lgrpnodes[i], PROP_LG_MASK,
322 		    &mpo_lgroup[i].addr_mask);
323 		result |= get_int(md, lgrpnodes[i], PROP_LG_MATCH,
324 		    &mpo_lgroup[i].addr_match);
325 
326 		/*
327 		 * If either the mask or match properties are missing, set to 0
328 		 */
329 		if (result < 0) {
330 			mpo_lgroup[i].addr_mask = 0;
331 			mpo_lgroup[i].addr_match = 0;
332 		}
333 
334 		/* Set latency to 0 if property not present */
335 
336 		result = get_int(md, lgrpnodes[i], PROP_LG_LATENCY,
337 		    &mpo_lgroup[i].latency);
338 		if (result < 0)
339 			mpo_lgroup[i].latency = 0;
340 	}
341 
342 	/*
343 	 * Sub-page level interleave is not yet supported.  Check for it,
344 	 * and remove sub-page interleaved lgroups from mpo_lgroup and
345 	 * n_lgrpnodes.  If no lgroups are left, return.
346 	 */
347 
348 	sub_page_fix = fix_interleave();
349 	if (n_lgrpnodes == 0) {
350 		ret_val = -1;
351 		goto fail;
352 	}
353 
354 	/* Ensure that all of the addr_mask values are the same */
355 
356 	for (i = 0; i < n_lgrpnodes; i++) {
357 		if (mpo_lgroup[0].addr_mask != mpo_lgroup[i].addr_mask) {
358 			MPO_STATUS("lgrp_traverse: "
359 			    "addr_mask values are not the same\n");
360 			ret_val = -1;
361 			goto fail;
362 		}
363 	}
364 
365 	/*
366 	 * Ensure that all lgrp nodes see all the mblocks. However, if
367 	 * sub-page interleave is being fixed, they do not, so skip
368 	 * the check.
369 	 */
370 
371 	if (sub_page_fix == 0) {
372 		for (i = 0; i < n_lgrpnodes; i++) {
373 			j = md_alloc_scan_dag(md, mpo_lgroup[i].node,
374 			    PROP_LG_MBLOCK, "fwd", &nodes);
375 			md_free_scan_dag(md, &nodes);
376 			if (j != n_mblocks) {
377 				MPO_STATUS("lgrp_traverse: "
378 				    "sub-page interleave is being fixed\n");
379 				ret_val = -1;
380 				goto fail;
381 			}
382 		}
383 	}
384 
385 	/*
386 	 * Use the address mask from the first lgroup node
387 	 * to establish our home_mask.
388 	 */
389 	home_mask = mpo_lgroup[0].addr_mask;
390 	home_mask_pfn = btop(home_mask);
391 	home_mask_shift = lowbit(home_mask) - 1;
392 	home_mask_pfn_shift = home_mask_shift - PAGESHIFT;
393 	mnode_pages = btop(1ULL << home_mask_shift);
394 
395 	/*
396 	 * How many values are possible in home mask?  Assume the mask
397 	 * bits are contiguous.
398 	 */
399 	max_locality_groups =
400 	    1 << highbit(home_mask_pfn >> home_mask_pfn_shift);
401 
402 	/* Now verify the home mask bits are contiguous */
403 
404 	if (max_locality_groups - 1 != home_mask_pfn >> home_mask_pfn_shift) {
405 		MPO_STATUS("lgrp_traverse: "
406 		    "home mask bits are not contiguous\n");
407 		ret_val = -1;
408 		goto fail;
409 	}
410 
411 	/* Record all of the home bits */
412 
413 	for (i = 0; i < n_lgrpnodes; i++) {
414 		HOMESET_ADD(mem_lg_homeset,
415 		    mpo_lgroup[i].addr_match >> home_mask_shift);
416 	}
417 
418 	/* Count the number different "home"  mem_lg's we've discovered */
419 
420 	n_locality_groups = unique_home_mem_lg_count(mem_lg_homeset);
421 
422 	/* If we have only 1 locality group then we can exit */
423 	if (n_locality_groups == 1) {
424 		MPO_STATUS("lgrp_traverse: n_locality_groups == 1\n");
425 		ret_val = -1;
426 		goto fail;
427 	}
428 
429 	/*
430 	 * Set the latencies.  A CPU's lgroup is defined by the lowest
431 	 * latency found.  All other memory is considered remote, and the
432 	 * remote latency is represented by the highest latency found.
433 	 * Thus hierarchical lgroups, if any, are approximated by a
434 	 * two level scheme.
435 	 *
436 	 * The Solaris MPO framework by convention wants to see latencies
437 	 * in units of nano-sec/10. In the MD, the units are defined to be
438 	 * pico-seconds.
439 	 */
440 
441 	lower_latency = mpo_lgroup[0].latency;
442 	higher_latency = mpo_lgroup[0].latency;
443 
444 	for (i = 1; i < n_lgrpnodes; i++) {
445 		if (mpo_lgroup[i].latency < lower_latency) {
446 			lower_latency = mpo_lgroup[i].latency;
447 		}
448 		if (mpo_lgroup[i].latency > higher_latency) {
449 			higher_latency = mpo_lgroup[i].latency;
450 		}
451 	}
452 	lower_latency /= 10000;
453 	higher_latency /= 10000;
454 
455 	/* Clear our CPU data */
456 
457 	for (i = 0; i < NCPU; i++) {
458 		mpo_cpu[i].home = 0;
459 		mpo_cpu[i].latency = (uint_t)(-1);
460 	}
461 
462 	/* Build the CPU nodes */
463 	for (i = 0; i < n_cpunodes; i++) {
464 
465 		/* Read in the lgroup nodes */
466 
467 		result = get_int(md, cpunodes[i], PROP_LG_CPU_ID, &k);
468 		if (result < 0) {
469 			MPO_STATUS("lgrp_traverse: PROP_LG_CPU_ID missing\n");
470 			ret_val = -1;
471 			goto fail;
472 		}
473 
474 		n_lgroups = md_alloc_scan_dag(md, cpunodes[i], PROP_LG_MEM_LG,
475 		    "fwd", &nodes);
476 		if (n_lgroups <= 0) {
477 			MPO_STATUS("lgrp_traverse: PROP_LG_MEM_LG missing");
478 			ret_val = -1;
479 			goto fail;
480 		}
481 
482 		/*
483 		 * Find the lgroup this cpu belongs to with the lowest latency.
484 		 * Check all the lgrp nodes connected to this CPU to determine
485 		 * which has the smallest latency.
486 		 */
487 
488 		for (j = 0; j < n_lgroups; j++) {
489 			for (o = 0; o < n_lgrpnodes; o++) {
490 				if (nodes[j] == mpo_lgroup[o].node) {
491 					if (mpo_lgroup[o].latency <
492 					    mpo_cpu[k].latency) {
493 						mpo_cpu[k].home =
494 						    mpo_lgroup[o].addr_match
495 						    >> home_mask_shift;
496 						mpo_cpu[k].latency =
497 						    mpo_lgroup[o].latency;
498 						mpo_lgroup[o].ncpu++;
499 					}
500 				}
501 			}
502 		}
503 		md_free_scan_dag(md, &nodes);
504 	}
505 
506 	/* Validate that no large pages cross mnode boundaries. */
507 	if (valid_pages(md, cpunodes[0]) == 0) {
508 		ret_val = -1;
509 		goto fail;
510 	}
511 
512 fail:
513 	/* MD cookies are no longer valid; ensure they are not used again. */
514 	for (i = 0; i < n_mblocks; i++)
515 		mpo_mblock[i].node = MDE_INVAL_ELEM_COOKIE;
516 	for (i = 0; i < n_lgrpnodes; i++)
517 		mpo_lgroup[i].node = MDE_INVAL_ELEM_COOKIE;
518 
519 	if (n_cpunodes > 0)
520 		md_free_scan_dag(md, &cpunodes);
521 	if (n_lgrpnodes > 0)
522 		md_free_scan_dag(md, &lgrpnodes);
523 	if (n_mblocks > 0)
524 		md_free_scan_dag(md, &mblocknodes);
525 	else
526 		panic("lgrp_traverse: No memory blocks found");
527 
528 	if (ret_val == 0)
529 		MPO_STATUS("MPO feature is enabled.\n");
530 
531 	return (ret_val);
532 }
533 
534 /*
535  *  Determine the number of unique mem_lg's present in our system
536  */
537 static	int
538 unique_home_mem_lg_count(uint64_t mem_lg_homeset)
539 {
540 	int homeid;
541 	int count = 0;
542 
543 	/*
544 	 * Scan the "home" bits of the mem_lgs, count
545 	 * the number that are unique.
546 	 */
547 
548 	for (homeid = 0; homeid < NLGRPS_MAX; homeid++) {
549 		if (MEM_LG_ISMEMBER(mem_lg_homeset, homeid)) {
550 			count++;
551 		}
552 	}
553 
554 	MPO_DEBUG("unique_home_mem_lg_count: homeset %lx\n",
555 	    mem_lg_homeset);
556 	MPO_DEBUG("unique_home_mem_lg_count: count: %d\n", count);
557 
558 	/* Default must be at least one */
559 	if (count == 0)
560 		count = 1;
561 
562 	return (count);
563 }
564 
565 /*
566  * Platform specific lgroup initialization
567  */
568 void
569 plat_lgrp_init(void)
570 {
571 	md_t *md;
572 	int i, rc, ncpu_min;
573 
574 	/* Get the Machine Descriptor handle */
575 
576 	md = md_get_handle();
577 
578 	/* If not, we cannot continue */
579 
580 	if (md == NULL) {
581 		panic("cannot access machine descriptor\n");
582 	} else {
583 		rc = lgrp_traverse(md);
584 		(void) md_fini_handle(md);
585 	}
586 
587 	/*
588 	 * If we can't process the MD for lgroups then at least let the
589 	 * system try to boot.  Assume we have one lgroup so that
590 	 * when plat_build_mem_nodes is called, it will attempt to init
591 	 * an mnode based on the supplied memory segment.
592 	 */
593 
594 	if (rc == -1) {
595 		home_mask_pfn = 0;
596 		max_locality_groups = 1;
597 		n_locality_groups = 1;
598 		return;
599 	}
600 
601 	mem_node_pfn_shift = 0;
602 	mem_node_physalign = 0;
603 
604 	/* Use lgroup-aware TSB allocations */
605 	tsb_lgrp_affinity = 1;
606 
607 	/*
608 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
609 	 * this process is currently running on before considering
610 	 * expanding threads to another lgroup.
611 	 *
612 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
613 	 * must be loaded before expanding to it.
614 	 *
615 	 * On sun4v CMT processors, threads share a core pipeline, and
616 	 * at less than 100% utilization, best throughput is obtained by
617 	 * spreading threads across more cores, even if some are in a
618 	 * different lgroup.  Spread threads to a new lgroup if the
619 	 * current group is more than 50% loaded.  Because of virtualization,
620 	 * lgroups may have different numbers of CPUs, but the tunables
621 	 * apply to all lgroups, so find the smallest lgroup and compute
622 	 * 50% loading.
623 	 */
624 
625 	ncpu_min = NCPU;
626 	for (i = 0; i < n_lgrpnodes; i++) {
627 		int ncpu = mpo_lgroup[i].ncpu;
628 		if (ncpu != 0 && ncpu < ncpu_min)
629 			ncpu_min = ncpu;
630 	}
631 	lgrp_expand_proc_thresh = ncpu_min * lgrp_loadavg_max_effect / 2;
632 
633 	/* new home may only be half as loaded as the existing home to use it */
634 	lgrp_expand_proc_diff = lgrp_expand_proc_thresh / 2;
635 
636 	lgrp_loadavg_tolerance = lgrp_loadavg_max_effect;
637 
638 	/* Require that a home lgroup have some memory to be chosen */
639 	lgrp_mem_free_thresh = 1;
640 
641 	/* Standard home-on-next-touch policy */
642 	lgrp_mem_policy_root = LGRP_MEM_POLICY_NEXT;
643 
644 	/* Disable option to choose root lgroup if all leaf lgroups are busy */
645 	lgrp_load_thresh = UINT32_MAX;
646 }
647 
648 /*
649  *  Helper routine for debugging calls to mem_node_add_slice()
650  */
651 static	void
652 mpo_mem_node_add_slice(pfn_t basepfn, pfn_t endpfn)
653 {
654 #if defined(DEBUG) && !defined(lint)
655 	static int slice_count = 0;
656 
657 	slice_count++;
658 	MPO_DEBUG("mem_add_slice(%d): basepfn: %lx  endpfn: %lx\n",
659 	    slice_count, basepfn, endpfn);
660 #endif
661 	mem_node_add_slice(basepfn, endpfn);
662 }
663 
664 /*
665  *  Helper routine for debugging calls to plat_assign_lgrphand_to_mem_node()
666  */
667 static	void
668 mpo_plat_assign_lgrphand_to_mem_node(lgrp_handle_t plathand, int mnode)
669 {
670 	MPO_DEBUG("plat_assign_to_mem_nodes: lgroup home %ld,"
671 	    "mnode index: %d\n", plathand, mnode);
672 	plat_assign_lgrphand_to_mem_node(plathand, mnode);
673 }
674 
675 /*
676  * plat_build_mem_nodes()
677  *
678  * Define the mem_nodes based on the modified boot memory list,
679  * or based on info read from the MD in plat_lgrp_init().
680  *
681  * When the home mask lies in the middle of the address bits (as it does on
682  * Victoria Falls), then the memory in one mem_node is no longer contiguous;
683  * it is striped across an mblock in a repeating pattern of contiguous memory
684  * followed by a gap.  The stripe width is the size of the contiguous piece.
685  * The stride is the distance from the start of one contiguous piece to the
686  * start of the next.  The gap is thus stride - stripe_width.
687  *
688  * The stripe of an mnode that falls within an mblock is described by the type
689  * mem_stripe_t, and there is one mem_stripe_t per mnode per mblock.  The
690  * mem_stripe_t's are kept in a global array mem_stripes[].  The index into
691  * this array is predetermined.  The mem_stripe_t that describes mnode m
692  * within mpo_mblock[i] is stored at
693  *	 mem_stripes[ m + i * max_locality_groups ]
694  *
695  * max_locality_groups is the total number of possible locality groups,
696  * as defined by the size of the home mask, even if the memory assigned
697  * to the domain is small and does not cover all the lgroups.  Thus some
698  * mem_stripe_t's may be empty.
699  *
700  * The members of mem_stripe_t are:
701  *	physbase: First valid page in mem_node in the corresponding mblock
702  *	physmax: Last valid page in mem_node in mblock
703  *	offset:  The full stripe width starts at physbase - offset.
704  *	    Thus if offset is non-zero, this mem_node starts in the middle
705  *	    of a stripe width, and the second full stripe starts at
706  *	    physbase - offset + stride.  (even though physmax may fall in the
707  *	    middle of a stripe width, we do not save the ending fragment size
708  *	    in this data structure.)
709  *	exists: Set to 1 if the mblock has memory in this mem_node stripe.
710  *
711  *	The stripe width is kept in the global mnode_pages.
712  *	The stride is kept in the global mnode_stride.
713  *	All the above use pfn's as the unit.
714  *
715  * As an example, the memory layout for a domain with 2 mblocks and 4
716  * mem_nodes 0,1,2,3 could look like this:
717  *
718  *	123012301230 ...	012301230123 ...
719  *	  mblock 0		  mblock 1
720  */
721 
722 void
723 plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
724 {
725 	lgrp_handle_t lgrphand, lgrp_start;
726 	int i, mnode, elem;
727 	uint64_t offset, stripe_end, base, len, end, ra_to_pa, stride;
728 	uint64_t stripe, frag, remove;
729 	mem_stripe_t *ms;
730 
731 	/* Check for non-MPO sun4v platforms */
732 
733 	if (n_locality_groups <= 1) {
734 		mpo_plat_assign_lgrphand_to_mem_node((lgrp_handle_t)0, 0);
735 		for (elem = 0; elem < nelems; elem += 2) {
736 			base = list[elem];
737 			len = list[elem+1];
738 
739 			mpo_mem_node_add_slice(btop(base),
740 			    btop(base + len - 1));
741 		}
742 		mem_node_pfn_shift = 0;
743 		mem_node_physalign = 0;
744 		n_mem_stripes = 0;
745 		return;
746 	}
747 
748 	/* Pre-reserve space for plat_assign_lgrphand_to_mem_node */
749 	max_mem_nodes = max_locality_groups;
750 	bzero(mem_stripes, sizeof (mem_stripes));
751 	stripe = ptob(mnode_pages);
752 	stride = max_locality_groups * stripe;
753 
754 	/* Save commonly used values in globals */
755 	mnode_stride = btop(stride);
756 	n_mem_stripes = max_locality_groups * n_mblocks;
757 	stripe_shift = highbit(max_locality_groups) - 1;
758 
759 	for (i = 0; i < n_mblocks; i++) {
760 
761 		base = mpo_mblock[i].base;
762 		end = mpo_mblock[i].base + mpo_mblock[i].size;
763 		ra_to_pa = mpo_mblock[i].ra_to_pa;
764 		mpo_mblock[i].base_pfn = btop(base);
765 		mpo_mblock[i].end_pfn = btop(end - 1);
766 
767 		/* Find the offset from the prev stripe boundary in PA space. */
768 		offset = (base + ra_to_pa) & (stripe - 1);
769 
770 		/* Set the next stripe boundary. */
771 		stripe_end = base - offset + stripe;
772 
773 		lgrp_start = (((base + ra_to_pa) & home_mask) >>
774 		    home_mask_shift);
775 		lgrphand = lgrp_start;
776 
777 		/*
778 		 * Loop over all lgroups covered by the mblock, creating a
779 		 * stripe for each.  Stop when lgrp_start is visited again.
780 		 */
781 		do {
782 			/* mblock may not span all lgroups */
783 			if (base >= end)
784 				break;
785 
786 			mnode = lgrphand;
787 			ASSERT(mnode < max_mem_nodes);
788 
789 			/*
790 			 * Calculate the size of the fragment that does not
791 			 * belong to the mnode in the last partial stride.
792 			 */
793 			frag = (end - (base - offset)) & (stride - 1);
794 			if (frag == 0) {
795 				/* remove the gap */
796 				remove = stride - stripe;
797 			} else if (frag < stripe) {
798 				/* fragment fits in stripe; keep it all */
799 				remove = 0;
800 			} else {
801 				/* fragment is large; trim after whole stripe */
802 				remove = frag - stripe;
803 			}
804 
805 			ms = &mem_stripes[i * max_locality_groups + mnode];
806 			ms->physbase = btop(base);
807 			ms->physmax = btop(end - 1 - remove);
808 			ms->offset = btop(offset);
809 			ms->exists = 1;
810 
811 			mpo_plat_assign_lgrphand_to_mem_node(lgrphand, mnode);
812 			mpo_mem_node_add_slice(ms->physbase, ms->physmax);
813 
814 			base = stripe_end;
815 			stripe_end += stripe;
816 			offset = 0;
817 			lgrphand = (((base + ra_to_pa) & home_mask) >>
818 			    home_mask_shift);
819 		} while (lgrphand != lgrp_start);
820 	}
821 
822 	/*
823 	 * Indicate to vm_pagelist that the hpm_counters array
824 	 * should be shared because the ranges overlap.
825 	 */
826 	if (max_mem_nodes > 1) {
827 		interleaved_mnodes = 1;
828 	}
829 }
830 
831 /*
832  * Return the locality group value for the supplied processor
833  */
834 lgrp_handle_t
835 plat_lgrp_cpu_to_hand(processorid_t id)
836 {
837 	if (n_locality_groups > 1) {
838 		return ((lgrp_handle_t)mpo_cpu[(int)id].home);
839 	} else {
840 		return ((lgrp_handle_t)0); /* Default */
841 	}
842 }
843 
844 int
845 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
846 {
847 	/*
848 	 * Return min remote latency when there are more than two lgroups
849 	 * (root and child) and getting latency between two different lgroups
850 	 * or root is involved.
851 	 */
852 	if (lgrp_optimizations() && (from != to ||
853 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) {
854 		return ((int)higher_latency);
855 	} else {
856 		return ((int)lower_latency);
857 	}
858 }
859 
860 int
861 plat_pfn_to_mem_node(pfn_t pfn)
862 {
863 	int i, mnode;
864 	pfn_t ra_to_pa_pfn;
865 	struct mblock_md *mb;
866 
867 	if (n_locality_groups <= 1)
868 		return (0);
869 
870 	/*
871 	 * The mnode is defined to be 1:1 with the lgroup handle, which
872 	 * is taken from from the home bits.  Find the mblock in which
873 	 * the pfn falls to get the ra_to_pa adjustment, and extract
874 	 * the home bits.
875 	 */
876 	mb = &mpo_mblock[0];
877 	for (i = 0; i < n_mblocks; i++) {
878 		if (pfn >= mb->base_pfn && pfn <= mb->end_pfn) {
879 			ra_to_pa_pfn = btop(mb->ra_to_pa);
880 			mnode = (((pfn + ra_to_pa_pfn) & home_mask_pfn) >>
881 			    home_mask_pfn_shift);
882 			ASSERT(mnode < max_mem_nodes);
883 			return (mnode);
884 		}
885 		mb++;
886 	}
887 
888 	panic("plat_pfn_to_mem_node() failed to find mblock: pfn=%lx\n", pfn);
889 	return (pfn);
890 }
891 
892 /*
893  * plat_rapfn_to_papfn
894  *
895  * Convert a pfn in RA space to a pfn in PA space, in which the page coloring
896  * and home mask bits are correct.  The upper bits do not necessarily
897  * match the actual PA, however.
898  */
899 pfn_t
900 plat_rapfn_to_papfn(pfn_t pfn)
901 {
902 	int i;
903 	pfn_t ra_to_pa_pfn;
904 	struct mblock_md *mb;
905 
906 	ASSERT(n_mblocks > 0);
907 	if (n_mblocks == 1)
908 		return (pfn + base_ra_to_pa_pfn);
909 
910 	/*
911 	 * Find the mblock in which the pfn falls
912 	 * in order to get the ra_to_pa adjustment.
913 	 */
914 	for (mb = &mpo_mblock[0], i = 0; i < n_mblocks; i++, mb++) {
915 		if (pfn <= mb->end_pfn && pfn >= mb->base_pfn) {
916 			ra_to_pa_pfn = btop(mb->ra_to_pa);
917 			return (pfn + ra_to_pa_pfn);
918 		}
919 	}
920 
921 	panic("plat_rapfn_to_papfn() failed to find mblock: pfn=%lx\n", pfn);
922 	return (pfn);
923 }
924 
925 /*
926  * plat_mem_node_iterator_init()
927  *	Initialize cookie to iterate over pfn's in an mnode.  There is
928  *	no additional iterator function.  The caller uses the info from
929  *	the iterator structure directly.
930  *
931  *	pfn: starting pfn.
932  * 	mnode: desired mnode.
933  *	init: set to 1 for full init, 0 for continuation
934  *
935  *	Returns the appropriate starting pfn for the iteration
936  *	the same as the input pfn if it falls in an mblock.
937  *	Returns the (pfn_t)-1 value if the input pfn lies past
938  *	the last valid mnode pfn.
939  */
940 pfn_t
941 plat_mem_node_iterator_init(pfn_t pfn, int mnode,
942     mem_node_iterator_t *it, int init)
943 {
944 	int i;
945 	struct mblock_md *mblock;
946 	pfn_t base, end;
947 
948 	ASSERT(it != NULL);
949 	ASSERT(mnode >= 0 && mnode < max_mem_nodes);
950 	ASSERT(n_mblocks > 0);
951 
952 	if (init) {
953 		it->mi_last_mblock = 0;
954 		it->mi_init = 1;
955 	}
956 
957 	/* Check if mpo is not enabled and we only have one mblock */
958 	if (n_locality_groups == 1 && n_mblocks == 1) {
959 		it->mi_mnode = mnode;
960 		it->mi_ra_to_pa = base_ra_to_pa_pfn;
961 		it->mi_mnode_pfn_mask = 0;
962 		it->mi_mnode_pfn_shift = 0;
963 		it->mi_mnode_mask = 0;
964 		it->mi_mblock_base = mem_node_config[mnode].physbase;
965 		it->mi_mblock_end = mem_node_config[mnode].physmax;
966 		if (pfn < it->mi_mblock_base)
967 			pfn = it->mi_mblock_base;
968 		else if (pfn > it->mi_mblock_end)
969 			pfn = (pfn_t)-1;
970 		return (pfn);
971 	}
972 
973 	/*
974 	 * Find mblock that contains pfn, or first mblock after pfn,
975 	 * else pfn is out of bounds, so use the last mblock.
976 	 * mblocks are sorted in ascending address order.
977 	 */
978 	ASSERT(it->mi_last_mblock < n_mblocks);
979 	ASSERT(init == 1 || pfn > mpo_mblock[it->mi_last_mblock].end_pfn);
980 	i = init ? 0 : it->mi_last_mblock + 1;
981 	if (i == n_mblocks)
982 		return ((pfn_t)-1);
983 
984 	for (; i < n_mblocks; i++) {
985 		if (pfn <= mpo_mblock[i].end_pfn)
986 			break;
987 	}
988 	if (i == n_mblocks) {
989 		it->mi_last_mblock = i - 1;
990 		return ((pfn_t)-1);
991 	}
992 	it->mi_last_mblock = i;
993 
994 	/*
995 	 * Memory stripes are defined if there is more than one locality
996 	 * group, so use the stripe bounds.  Otherwise use mblock bounds.
997 	 */
998 	mblock = &mpo_mblock[i];
999 	if (n_mem_stripes > 0) {
1000 		mem_stripe_t *ms =
1001 		    &mem_stripes[i * max_locality_groups + mnode];
1002 		base = ms->physbase;
1003 		end = ms->physmax;
1004 	} else {
1005 		ASSERT(mnode == 0);
1006 		base = mblock->base_pfn;
1007 		end = mblock->end_pfn;
1008 	}
1009 
1010 	it->mi_mnode = mnode;
1011 	it->mi_ra_to_pa = btop(mblock->ra_to_pa);
1012 	it->mi_mblock_base = base;
1013 	it->mi_mblock_end = end;
1014 	it->mi_mnode_pfn_mask = home_mask_pfn;	/* is 0 for non-MPO case */
1015 	it->mi_mnode_pfn_shift = home_mask_pfn_shift;
1016 	it->mi_mnode_mask = max_locality_groups - 1;
1017 	if (pfn < base)
1018 		pfn = base;
1019 	else if (pfn > end)
1020 		pfn = (pfn_t)-1;
1021 	return (pfn);
1022 }
1023 
1024 /*
1025  * plat_mem_node_intersect_range()
1026  *
1027  * Find the intersection between a memnode and a range of pfn's.
1028  */
1029 void
1030 plat_mem_node_intersect_range(pfn_t test_base, pgcnt_t test_len,
1031     int mnode, pgcnt_t *npages_out)
1032 {
1033 	pfn_t offset, len, hole, base, end, test_end, frag;
1034 	pfn_t nearest;
1035 	mem_stripe_t *ms;
1036 	int i, npages;
1037 
1038 	*npages_out = 0;
1039 
1040 	if (!mem_node_config[mnode].exists || test_len == 0)
1041 		return;
1042 
1043 	base = mem_node_config[mnode].physbase;
1044 	end = mem_node_config[mnode].physmax;
1045 
1046 	test_end = test_base + test_len - 1;
1047 	if (end < test_base || base > test_end)
1048 		return;
1049 
1050 	if (n_locality_groups == 1) {
1051 		*npages_out = MIN(test_end, end) - MAX(test_base, base) + 1;
1052 		return;
1053 	}
1054 
1055 	hole = mnode_stride - mnode_pages;
1056 	npages = 0;
1057 
1058 	/*
1059 	 * Iterate over all the stripes for this mnode (one per mblock),
1060 	 * find the intersection with each, and accumulate the intersections.
1061 	 *
1062 	 * Determing the intersection with a stripe is tricky.  If base or end
1063 	 * fall outside the mem_node bounds, round them to physbase/physmax of
1064 	 * mem_node.  If base or end fall in a gap, round them to start of
1065 	 * nearest stripe.  If they fall within a stripe, keep base or end,
1066 	 * but calculate the fragment size that should be excluded from the
1067 	 * stripe.  Calculate how many strides fall in the adjusted range,
1068 	 * multiply by stripe width, and add the start and end fragments.
1069 	 */
1070 
1071 	for (i = mnode; i < n_mem_stripes; i += max_locality_groups) {
1072 		ms = &mem_stripes[i];
1073 		if (ms->exists &&
1074 		    test_base <= (end = ms->physmax) &&
1075 		    test_end >= (base = ms->physbase)) {
1076 
1077 			offset = ms->offset;
1078 
1079 			if (test_base > base) {
1080 				/* Round test_base to next multiple of stride */
1081 				len = P2ROUNDUP(test_base - (base - offset),
1082 				    mnode_stride);
1083 				nearest = base - offset + len;
1084 				/*
1085 				 * Compute distance from test_base to the
1086 				 * stride boundary to see if test_base falls
1087 				 * in the stripe or in the hole.
1088 				 */
1089 				if (nearest - test_base > hole) {
1090 					/*
1091 					 * test_base lies in stripe,
1092 					 * and offset should be excluded.
1093 					 */
1094 					offset = test_base -
1095 					    (nearest - mnode_stride);
1096 					base = test_base;
1097 				} else {
1098 					/* round up to next stripe start */
1099 					offset = 0;
1100 					base = nearest;
1101 					if (base > end)
1102 						continue;
1103 				}
1104 
1105 			}
1106 
1107 			if (test_end < end)
1108 				end = test_end;
1109 			end++;		/* adjust to an exclusive bound */
1110 
1111 			/* Round end to next multiple of stride */
1112 			len = P2ROUNDUP(end - (base - offset), mnode_stride);
1113 			nearest = (base - offset) + len;
1114 			if (nearest - end <= hole) {
1115 				/* end falls in hole, use entire last stripe */
1116 				frag = 0;
1117 			} else {
1118 				/* end falls in stripe, compute fragment */
1119 				frag = nearest - hole - end;
1120 			}
1121 
1122 			len = (len >> stripe_shift) - offset - frag;
1123 			npages += len;
1124 		}
1125 	}
1126 
1127 	*npages_out = npages;
1128 }
1129 
1130 /*
1131  * valid_pages()
1132  *
1133  * Return 1 if pages are valid and do not cross mnode boundaries
1134  * (which would break page free list assumptions), and 0 otherwise.
1135  */
1136 
1137 #define	MNODE(pa)	\
1138 	((btop(pa) & home_mask_pfn) >> home_mask_pfn_shift)
1139 
1140 static int
1141 valid_pages(md_t *md, mde_cookie_t cpu0)
1142 {
1143 	int i, max_szc;
1144 	uint64_t last_page_base, szc_mask;
1145 	uint64_t max_page_len, max_coalesce_len;
1146 	struct mblock_md *mb = mpo_mblock;
1147 
1148 	/*
1149 	 * Find the smaller of the largest page possible and supported.
1150 	 * mmu_exported_pagesize_mask is not yet initialized, so read
1151 	 * it from the MD.  Apply minimal fixups in case of broken MDs
1152 	 * to get a sane mask.
1153 	 */
1154 
1155 	if (md_get_prop_val(md, cpu0, "mmu-page-size-list", &szc_mask))
1156 		szc_mask = 0;
1157 	szc_mask |=  (1 << TTE4M);	/* largest in sun4v default support */
1158 	max_szc = highbit(szc_mask) - 1;
1159 	if (max_szc > TTE256M)
1160 		max_szc = TTE256M;
1161 	max_page_len = TTEBYTES(max_szc);
1162 
1163 	/*
1164 	 * Page coalescing code coalesces all sizes up to 256M on sun4v, even
1165 	 * if mmu-page-size-list does not contain it, so 256M pages must fall
1166 	 * within one mnode to use MPO.
1167 	 */
1168 	max_coalesce_len = TTEBYTES(TTE256M);
1169 	ASSERT(max_coalesce_len >= max_page_len);
1170 
1171 	if (ptob(mnode_pages) < max_coalesce_len) {
1172 		MPO_STATUS("Page too large; MPO disabled: page = %lx, "
1173 		    "mnode slice = %lx\n", max_coalesce_len, ptob(mnode_pages));
1174 		return (0);
1175 	}
1176 
1177 	for (i = 0; i < n_mblocks; i++) {
1178 		uint64_t base = mb->base;
1179 		uint64_t end = mb->base + mb->size - 1;
1180 		uint64_t ra_to_pa = mb->ra_to_pa;
1181 
1182 		/*
1183 		 * If mblock is smaller than the max page size, then
1184 		 * RA = PA mod MAXPAGE is not guaranteed, but it must
1185 		 * not span mnodes.
1186 		 */
1187 		if (mb->size < max_page_len) {
1188 			if (MNODE(base + ra_to_pa) != MNODE(end + ra_to_pa)) {
1189 				MPO_STATUS("Small mblock spans mnodes; "
1190 				    "MPO disabled: base = %lx, end = %lx, "
1191 				    "ra2pa = %lx\n", base, end, ra_to_pa);
1192 				return (0);
1193 			}
1194 		} else {
1195 			/* Verify RA = PA mod MAXPAGE, using coalesce size */
1196 			uint64_t pa_base = base + ra_to_pa;
1197 			if ((base & (max_coalesce_len - 1)) !=
1198 			    (pa_base & (max_coalesce_len - 1))) {
1199 				MPO_STATUS("bad page alignment; MPO disabled: "
1200 				    "ra = %lx, pa = %lx, pagelen = %lx\n",
1201 				    base, pa_base, max_coalesce_len);
1202 				return (0);
1203 			}
1204 		}
1205 
1206 		/*
1207 		 * Find start of last large page in mblock in RA space.
1208 		 * If page extends into the next mblock, verify the
1209 		 * mnode does not change.
1210 		 */
1211 		last_page_base = P2ALIGN(end, max_coalesce_len);
1212 		if (i + 1 < n_mblocks &&
1213 		    last_page_base + max_coalesce_len > mb[1].base &&
1214 		    MNODE(last_page_base + ra_to_pa) !=
1215 		    MNODE(mb[1].base + mb[1].ra_to_pa)) {
1216 			MPO_STATUS("Large page spans mblocks; MPO disabled: "
1217 			    "end = %lx, ra2pa = %lx, base = %lx, ra2pa = %lx, "
1218 			    "pagelen = %lx\n", end, ra_to_pa, mb[1].base,
1219 			    mb[1].ra_to_pa, max_coalesce_len);
1220 			return (0);
1221 		}
1222 
1223 		mb++;
1224 	}
1225 	return (1);
1226 }
1227 
1228 
1229 /*
1230  * fix_interleave() - Find lgroups with sub-page sized memory interleave,
1231  * if any, and remove them.  This yields a config where the "coarse
1232  * grained" lgroups cover all of memory, even though part of that memory
1233  * is fine grain interleaved and does not deliver a purely local memory
1234  * latency.
1235  *
1236  * This function reads and modifies the globals:
1237  *	mpo_lgroup[], n_lgrpnodes
1238  *
1239  * Returns 1 if lgroup nodes were removed, 0 otherwise.
1240  */
1241 
1242 static int
1243 fix_interleave(void)
1244 {
1245 	int i, j;
1246 	uint64_t mask = 0;
1247 
1248 	j = 0;
1249 	for (i = 0; i < n_lgrpnodes; i++) {
1250 		if ((mpo_lgroup[i].addr_mask & PAGEOFFSET) != 0) {
1251 			/* remove this lgroup */
1252 			mask = mpo_lgroup[i].addr_mask;
1253 		} else {
1254 			mpo_lgroup[j++] = mpo_lgroup[i];
1255 		}
1256 	}
1257 	n_lgrpnodes = j;
1258 
1259 	if (mask != 0)
1260 		MPO_STATUS("sub-page interleave %lx found; "
1261 		    "removing lgroup.\n", mask);
1262 
1263 	return (mask != 0);
1264 }
1265