xref: /titanic_51/usr/src/uts/sun4v/os/mpo.c (revision 15d9d0b528387242011cdcc6190c9e598cfe3a07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/machsystm.h>
32 #include <sys/machparam.h>
33 #include <sys/cmn_err.h>
34 #include <sys/stat.h>
35 #include <sys/mach_descrip.h>
36 #include <sys/memnode.h>
37 #include <sys/mdesc.h>
38 #include <sys/mpo.h>
39 #include <vm/vm_dep.h>
40 #include <vm/hat_sfmmu.h>
41 #include <sys/promif.h>
42 
43 /*
44  * MPO and the sun4v memory representation
45  * ---------------------------------------
46  *
47  * Latency groups are defined in the sun4v achitecture by memory-latency-group
48  * nodes in the Machine Description, as specified in FWARC/2007/260.  These
49  * tie together cpu nodes and mblock nodes, and contain mask and match
50  * properties that identify the portion of an mblock that belongs to the
51  * lgroup.  Mask and match are defined in the Physical Address (PA) space,
52  * but an mblock defines Real Addresses (RA).  To translate, the mblock
53  * includes the property address-congruence-offset, hereafter referred to as
54  * ra_to_pa.  A real address ra is a member of an lgroup if
55  *
56  *	(ra + mblock.ra_to_pa) & lgroup.mask == lgroup.match
57  *
58  * The MD is traversed, and information on all mblocks is kept in the array
59  * mpo_mblock[].  Information on all CPUs, including which lgroup they map
60  * to, is kept in the array mpo_cpu[].
61  *
62  * This implementation makes (and verifies) the simplifying assumption that
63  * the mask bits are the same for all defined lgroups, and that all 1 bits in
64  * the mask are contiguous.  Thus the number of lgroups is bounded by the
65  * number of possible mask values, and the lgrp_handle_t is defined as the
66  * mask value, shifted right to eliminate the 0 bit positions in mask.  The
67  * masks and values are also referred to as "home bits" in the code.
68  *
69  * A mem_node is defined to be 1:1 with an lgrp_handle_t, thus each lgroup
70  * has exactly 1 mem_node, and plat_pfn_to_mem_node() must find the mblock
71  * containing a pfn, apply the mblock's ra_to_pa adjustment, and extract the
72  * home bits.  This yields the mem_node.
73  *
74  * Interfaces
75  * ----------
76  *
77  * This file exports the following entry points:
78  *
79  * plat_lgrp_init()
80  * plat_build_mem_nodes()
81  * plat_lgrp_cpu_to_hand()
82  * plat_lgrp_latency()
83  * plat_pfn_to_mem_node()
84  *	These implement the usual platform lgroup interfaces.
85  *
86  * plat_rapfn_to_papfn()
87  *	Recover the PA page coloring bits from an RA.
88  *
89  * plat_mem_node_iterator_init()
90  *	Initialize an iterator to efficiently step through pages in a mem_node.
91  *
92  * plat_mem_node_intersect_range()
93  *	Find the intersection with a mem_node.
94  */
95 
96 int	sun4v_mpo_enable = 1;
97 int	sun4v_mpo_debug = 0;
98 char	sun4v_mpo_status[256] = "";
99 
100 /* Save CPU info from the MD and associate CPUs with lgroups */
101 static	struct cpu_md mpo_cpu[NCPU];
102 
103 /* Save lgroup info from the MD */
104 #define	MAX_MD_LGROUPS 32
105 static	struct	lgrp_md mpo_lgroup[MAX_MD_LGROUPS];
106 static	int	n_lgrpnodes = 0;
107 static	int	n_locality_groups = 0;
108 static	int	max_locality_groups = 0;
109 
110 /* Save mblocks from the MD */
111 #define	SMALL_MBLOCKS_COUNT	8
112 static 	struct	mblock_md *mpo_mblock;
113 static	struct 	mblock_md small_mpo_mblocks[SMALL_MBLOCKS_COUNT];
114 static	int	n_mblocks = 0;
115 
116 /* Save mem_node stripes calculate from mblocks and lgroups. */
117 static mem_stripe_t *mem_stripes;
118 static	mem_stripe_t small_mem_stripes[SMALL_MBLOCKS_COUNT * MAX_MEM_NODES];
119 static	int 	mstripesz = 0;
120 static	int	n_mem_stripes = 0;
121 static	pfn_t	mnode_stride;	/* distance between stripes, start to start */
122 static	int	stripe_shift;	/* stride/stripes expressed as a shift */
123 static	pfn_t	mnode_pages;	/* mem_node stripe width */
124 
125 /* Save home mask and shift used to calculate lgrp_handle_t values */
126 static	uint64_t home_mask = 0;
127 static	pfn_t	home_mask_pfn = 0;
128 static	int	home_mask_shift = 0;
129 static	uint_t	home_mask_pfn_shift = 0;
130 
131 /* Save lowest and highest latencies found across all lgroups */
132 static	int	lower_latency = 0;
133 static	int	higher_latency = 0;
134 
135 static	pfn_t	base_ra_to_pa_pfn = 0;	/* ra_to_pa for single mblock memory */
136 
137 static	int	valid_pages(md_t *md, mde_cookie_t cpu0);
138 static	int	unique_home_mem_lg_count(uint64_t mem_lg_homeset);
139 static	int	fix_interleave(void);
140 
141 /* Debug support */
142 #if defined(DEBUG) && !defined(lint)
143 #define	MPO_DEBUG(args...) if (sun4v_mpo_debug) printf(args)
144 #else
145 #define	MPO_DEBUG(...)
146 #endif	/* DEBUG */
147 
148 /* Record status message, viewable from mdb */
149 #define	MPO_STATUS(args...) {						      \
150 	(void) snprintf(sun4v_mpo_status, sizeof (sun4v_mpo_status), args);   \
151 	MPO_DEBUG(sun4v_mpo_status);					      \
152 }
153 
154 /*
155  * Routine to read a uint64_t from a given md
156  */
157 static	int64_t
158 get_int(md_t md, mde_cookie_t node, char *propname, uint64_t *val)
159 {
160 	int err = md_get_prop_val(md, node, propname, val);
161 	return (err);
162 }
163 
164 static int
165 mblock_cmp(const void *a, const void *b)
166 {
167 	struct mblock_md *m1 = (struct mblock_md *)a;
168 	struct mblock_md *m2 = (struct mblock_md *)b;
169 
170 	if (m1->base < m2->base)
171 		return (-1);
172 	else if (m1->base == m2->base)
173 		return (0);
174 	else
175 		return (1);
176 }
177 
178 static void
179 mblock_sort(struct mblock_md *mblocks, int n)
180 {
181 	extern void qsort(void *, size_t, size_t,
182 	    int (*)(const void *, const void *));
183 
184 	qsort(mblocks, n, sizeof (mblocks[0]), mblock_cmp);
185 }
186 
187 static void
188 mpo_update_tunables(void)
189 {
190 	int i, ncpu_min;
191 
192 	/*
193 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
194 	 * this process is currently running on before considering
195 	 *  expanding threads to another lgroup.
196 	 *
197 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
198 	 *  must be loaded before expanding to it.
199 	 *
200 	 * On sun4v CMT processors, threads share a core pipeline, and
201 	 * at less than 100% utilization, best throughput is obtained by
202 	 * spreading threads across more cores, even if some are in a
203 	 * different lgroup.  Spread threads to a new lgroup if the
204 	 * current group is more than 50% loaded.  Because of virtualization,
205 	 * lgroups may have different numbers of CPUs, but the tunables
206 	 * apply to all lgroups, so find the smallest lgroup and compute
207 	 * 50% loading.
208 	 */
209 
210 	ncpu_min = NCPU;
211 	for (i = 0; i < n_lgrpnodes; i++) {
212 		int ncpu = mpo_lgroup[i].ncpu;
213 		if (ncpu != 0 && ncpu < ncpu_min)
214 			ncpu_min = ncpu;
215 	}
216 	lgrp_expand_proc_thresh = ncpu_min * lgrp_loadavg_max_effect / 2;
217 
218 	/* new home may only be half as loaded as the existing home to use it */
219 	lgrp_expand_proc_diff = lgrp_expand_proc_thresh / 2;
220 
221 	lgrp_loadavg_tolerance = lgrp_loadavg_max_effect;
222 }
223 
224 static mde_cookie_t
225 cpuid_to_cpunode(md_t *md, int cpuid)
226 {
227 	mde_cookie_t    rootnode, foundnode, *cpunodes;
228 	uint64_t	cpuid_prop;
229 	int 	n_cpunodes, i;
230 
231 	if (md == NULL)
232 		return (MDE_INVAL_ELEM_COOKIE);
233 
234 	rootnode = md_root_node(md);
235 	if (rootnode == MDE_INVAL_ELEM_COOKIE)
236 		return (MDE_INVAL_ELEM_COOKIE);
237 
238 	n_cpunodes = md_alloc_scan_dag(md, rootnode, PROP_LG_CPU,
239 	    "fwd", &cpunodes);
240 	if (n_cpunodes <= 0 || n_cpunodes > NCPU)
241 		goto cpuid_fail;
242 
243 	for (i = 0; i < n_cpunodes; i++) {
244 		if (md_get_prop_val(md, cpunodes[i], PROP_LG_CPU_ID,
245 		    &cpuid_prop))
246 			break;
247 		if (cpuid_prop == (uint64_t)cpuid) {
248 			foundnode = cpunodes[i];
249 			md_free_scan_dag(md, &cpunodes);
250 			return (foundnode);
251 		}
252 	}
253 cpuid_fail:
254 	if (n_cpunodes > 0)
255 		md_free_scan_dag(md, &cpunodes);
256 	return (MDE_INVAL_ELEM_COOKIE);
257 }
258 
259 static int
260 mpo_cpu_to_lgroup(md_t *md, mde_cookie_t cpunode)
261 {
262 	mde_cookie_t *nodes;
263 	uint64_t latency, lowest_latency;
264 	uint64_t address_match, lowest_address_match;
265 	int n_lgroups, j, result = 0;
266 
267 	/* Find lgroup nodes reachable from this cpu */
268 	n_lgroups = md_alloc_scan_dag(md, cpunode, PROP_LG_MEM_LG,
269 	    "fwd", &nodes);
270 
271 	lowest_latency = ~(0UL);
272 
273 	/* Find the lgroup node with the smallest latency */
274 	for (j = 0; j < n_lgroups; j++) {
275 		result = get_int(md, nodes[j], PROP_LG_LATENCY,
276 		    &latency);
277 		result |= get_int(md, nodes[j], PROP_LG_MATCH,
278 		    &address_match);
279 		if (result != 0) {
280 			j = -1;
281 			goto to_lgrp_done;
282 		}
283 		if (latency < lowest_latency) {
284 			lowest_latency = latency;
285 			lowest_address_match = address_match;
286 		}
287 	}
288 	for (j = 0; j < n_lgrpnodes; j++) {
289 		if ((mpo_lgroup[j].latency == lowest_latency) &&
290 		    (mpo_lgroup[j].addr_match == lowest_address_match))
291 			break;
292 	}
293 	if (j == n_lgrpnodes)
294 		j = -1;
295 
296 to_lgrp_done:
297 	if (n_lgroups > 0)
298 		md_free_scan_dag(md, &nodes);
299 	return (j);
300 }
301 
302 /* Called when DR'ing in a CPU */
303 void
304 mpo_cpu_add(int cpuid)
305 {
306 	md_t *md;
307 	mde_cookie_t cpunode;
308 
309 	int i;
310 
311 	if (n_lgrpnodes <= 0)
312 		return;
313 
314 	md = md_get_handle();
315 
316 	if (md == NULL)
317 		goto add_fail;
318 
319 	cpunode = cpuid_to_cpunode(md, cpuid);
320 	if (cpunode == MDE_INVAL_ELEM_COOKIE)
321 		goto add_fail;
322 
323 	i = mpo_cpu_to_lgroup(md, cpunode);
324 	if (i == -1)
325 		goto add_fail;
326 
327 	mpo_cpu[cpuid].lgrp_index = i;
328 	mpo_cpu[cpuid].home = mpo_lgroup[i].addr_match >> home_mask_shift;
329 	mpo_lgroup[i].ncpu++;
330 	mpo_update_tunables();
331 	(void) md_fini_handle(md);
332 	return;
333 add_fail:
334 	panic("mpo_cpu_add: Cannot read MD");
335 }
336 
337 /* Called when DR'ing out a CPU */
338 void
339 mpo_cpu_remove(int cpuid)
340 {
341 	int i;
342 
343 	if (n_lgrpnodes <= 0)
344 		return;
345 
346 	i = mpo_cpu[cpuid].lgrp_index;
347 	mpo_lgroup[i].ncpu--;
348 	mpo_cpu[cpuid].home = 0;
349 	mpo_cpu[cpuid].lgrp_index = -1;
350 	mpo_update_tunables();
351 }
352 
353 /*
354  *
355  * Traverse the MD to determine:
356  *
357  *  Number of CPU nodes, lgrp_nodes, and mblocks
358  *  Then for each lgrp_node, obtain the appropriate data.
359  *  For each CPU, determine its home locality and store it.
360  *  For each mblock, retrieve its data and store it.
361  */
362 static	int
363 lgrp_traverse(md_t *md)
364 {
365 	mde_cookie_t root, *cpunodes, *lgrpnodes, *nodes, *mblocknodes;
366 	uint64_t i, j, k, o, n_nodes;
367 	uint64_t mem_lg_homeset = 0;
368 	int ret_val = 0;
369 	int result = 0;
370 	int n_cpunodes = 0;
371 	int sub_page_fix;
372 	int mblocksz = 0;
373 	size_t allocsz;
374 
375 	n_nodes = md_node_count(md);
376 
377 	if (n_nodes <= 0) {
378 		MPO_STATUS("lgrp_traverse: No nodes in node count\n");
379 		ret_val = -1;
380 		goto fail;
381 	}
382 
383 	root = md_root_node(md);
384 
385 	if (root == MDE_INVAL_ELEM_COOKIE) {
386 		MPO_STATUS("lgrp_traverse: Root node is missing\n");
387 		ret_val = -1;
388 		goto fail;
389 	}
390 
391 	/*
392 	 * Build the Memory Nodes.  Do this before any possibility of
393 	 * bailing from this routine so we obtain ra_to_pa (needed for page
394 	 * coloring) even when there are no lgroups defined.
395 	 */
396 
397 	n_mblocks = md_alloc_scan_dag(md, root, PROP_LG_MBLOCK,
398 	    "fwd", &mblocknodes);
399 
400 	if (n_mblocks <= 0) {
401 		MPO_STATUS("lgrp_traverse: No mblock "
402 		    "nodes detected in Machine Descriptor\n");
403 		n_mblocks = 0;
404 		ret_val = -1;
405 		goto fail;
406 	}
407 	/*
408 	 * If we have a small number of mblocks we will use the space
409 	 * that we preallocated. Otherwise, we will dynamically
410 	 * allocate the space
411 	 */
412 	mblocksz = n_mblocks * sizeof (struct mblock_md);
413 	mstripesz = MAX_MEM_NODES * n_mblocks * sizeof (mem_stripe_t);
414 
415 	if (n_mblocks <= SMALL_MBLOCKS_COUNT) {
416 		mpo_mblock = &small_mpo_mblocks[0];
417 		mem_stripes = &small_mem_stripes[0];
418 	} else {
419 		allocsz = mmu_ptob(mmu_btopr(mblocksz + mstripesz));
420 	/* Ensure that we dont request more space than reserved */
421 		if (allocsz > MPOBUF_SIZE) {
422 			MPO_STATUS("lgrp_traverse: Insufficient space "
423 			    "for mblock structures \n");
424 			ret_val = -1;
425 			n_mblocks = 0;
426 			goto fail;
427 		}
428 		mpo_mblock = (struct mblock_md *)
429 		    prom_alloc((caddr_t)MPOBUF_BASE, allocsz, PAGESIZE);
430 		if (mpo_mblock != (struct mblock_md *)MPOBUF_BASE) {
431 			MPO_STATUS("lgrp_traverse: Cannot allocate space "
432 			    "for mblocks \n");
433 			ret_val = -1;
434 			n_mblocks = 0;
435 			goto fail;
436 		}
437 		mpo_heap32_buf = (caddr_t)MPOBUF_BASE;
438 		mpo_heap32_bufsz = MPOBUF_SIZE;
439 
440 		mem_stripes = (mem_stripe_t *)(mpo_mblock + n_mblocks);
441 	}
442 	for (i = 0; i < n_mblocks; i++) {
443 		mpo_mblock[i].node = mblocknodes[i];
444 
445 		/* Without a base or size value we will fail */
446 		result = get_int(md, mblocknodes[i], PROP_LG_BASE,
447 		    &mpo_mblock[i].base);
448 		if (result < 0) {
449 			MPO_STATUS("lgrp_traverse: "
450 			    "PROP_LG_BASE is missing\n");
451 			n_mblocks = 0;
452 			ret_val = -1;
453 			goto fail;
454 		}
455 
456 		result = get_int(md, mblocknodes[i], PROP_LG_SIZE,
457 		    &mpo_mblock[i].size);
458 		if (result < 0) {
459 			MPO_STATUS("lgrp_traverse: "
460 			    "PROP_LG_SIZE is missing\n");
461 			n_mblocks = 0;
462 			ret_val = -1;
463 			goto fail;
464 		}
465 
466 		result = get_int(md, mblocknodes[i],
467 		    PROP_LG_RA_PA_OFFSET, &mpo_mblock[i].ra_to_pa);
468 
469 		/* If we don't have an ra_pa_offset, just set it to 0 */
470 		if (result < 0)
471 			mpo_mblock[i].ra_to_pa = 0;
472 
473 		MPO_DEBUG("mblock[%ld]: base = %lx, size = %lx, "
474 		    "ra_to_pa = %lx\n", i,
475 		    mpo_mblock[i].base,
476 		    mpo_mblock[i].size,
477 		    mpo_mblock[i].ra_to_pa);
478 	}
479 
480 	/* Must sort mblocks by address for mem_node_iterator_init() */
481 	mblock_sort(mpo_mblock, n_mblocks);
482 
483 	base_ra_to_pa_pfn = btop(mpo_mblock[0].ra_to_pa);
484 
485 	/* Page coloring hook is required so we can iterate through mnodes */
486 	if (&page_next_pfn_for_color_cpu == NULL) {
487 		MPO_STATUS("lgrp_traverse: No page coloring support\n");
488 		ret_val = -1;
489 		goto fail;
490 	}
491 
492 	/* Global enable for mpo */
493 	if (sun4v_mpo_enable == 0) {
494 		MPO_STATUS("lgrp_traverse: MPO feature is not enabled\n");
495 		ret_val = -1;
496 		goto fail;
497 	}
498 
499 	n_lgrpnodes = md_alloc_scan_dag(md, root, PROP_LG_MEM_LG,
500 	    "fwd", &lgrpnodes);
501 
502 	if (n_lgrpnodes <= 0 || n_lgrpnodes >= MAX_MD_LGROUPS) {
503 		MPO_STATUS("lgrp_traverse: No Lgroups\n");
504 		ret_val = -1;
505 		goto fail;
506 	}
507 
508 	n_cpunodes = md_alloc_scan_dag(md, root, PROP_LG_CPU, "fwd", &cpunodes);
509 
510 	if (n_cpunodes <= 0 || n_cpunodes > NCPU) {
511 		MPO_STATUS("lgrp_traverse: No CPU nodes detected "
512 		    "in MD\n");
513 		ret_val = -1;
514 		goto fail;
515 	}
516 
517 	MPO_DEBUG("lgrp_traverse: Node Count: %ld\n", n_nodes);
518 	MPO_DEBUG("lgrp_traverse: md: %p\n", md);
519 	MPO_DEBUG("lgrp_traverse: root: %lx\n", root);
520 	MPO_DEBUG("lgrp_traverse: mem_lgs: %d\n", n_lgrpnodes);
521 	MPO_DEBUG("lgrp_traverse: cpus: %d\n", n_cpunodes);
522 	MPO_DEBUG("lgrp_traverse: mblocks: %d\n", n_mblocks);
523 
524 	for (i = 0; i < n_lgrpnodes; i++) {
525 		mpo_lgroup[i].node = lgrpnodes[i];
526 		mpo_lgroup[i].id = i;
527 		mpo_lgroup[i].ncpu = 0;
528 		result = get_int(md, lgrpnodes[i], PROP_LG_MASK,
529 		    &mpo_lgroup[i].addr_mask);
530 		result |= get_int(md, lgrpnodes[i], PROP_LG_MATCH,
531 		    &mpo_lgroup[i].addr_match);
532 
533 		/*
534 		 * If either the mask or match properties are missing, set to 0
535 		 */
536 		if (result < 0) {
537 			mpo_lgroup[i].addr_mask = 0;
538 			mpo_lgroup[i].addr_match = 0;
539 		}
540 
541 		/* Set latency to 0 if property not present */
542 
543 		result = get_int(md, lgrpnodes[i], PROP_LG_LATENCY,
544 		    &mpo_lgroup[i].latency);
545 		if (result < 0)
546 			mpo_lgroup[i].latency = 0;
547 	}
548 
549 	/*
550 	 * Sub-page level interleave is not yet supported.  Check for it,
551 	 * and remove sub-page interleaved lgroups from mpo_lgroup and
552 	 * n_lgrpnodes.  If no lgroups are left, return.
553 	 */
554 
555 	sub_page_fix = fix_interleave();
556 	if (n_lgrpnodes == 0) {
557 		ret_val = -1;
558 		goto fail;
559 	}
560 
561 	/* Ensure that all of the addr_mask values are the same */
562 
563 	for (i = 0; i < n_lgrpnodes; i++) {
564 		if (mpo_lgroup[0].addr_mask != mpo_lgroup[i].addr_mask) {
565 			MPO_STATUS("lgrp_traverse: "
566 			    "addr_mask values are not the same\n");
567 			ret_val = -1;
568 			goto fail;
569 		}
570 	}
571 
572 	/*
573 	 * Ensure that all lgrp nodes see all the mblocks. However, if
574 	 * sub-page interleave is being fixed, they do not, so skip
575 	 * the check.
576 	 */
577 
578 	if (sub_page_fix == 0) {
579 		for (i = 0; i < n_lgrpnodes; i++) {
580 			j = md_alloc_scan_dag(md, mpo_lgroup[i].node,
581 			    PROP_LG_MBLOCK, "fwd", &nodes);
582 			md_free_scan_dag(md, &nodes);
583 			if (j != n_mblocks) {
584 				MPO_STATUS("lgrp_traverse: "
585 				    "sub-page interleave is being fixed\n");
586 				ret_val = -1;
587 				goto fail;
588 			}
589 		}
590 	}
591 
592 	/*
593 	 * Use the address mask from the first lgroup node
594 	 * to establish our home_mask.
595 	 */
596 	home_mask = mpo_lgroup[0].addr_mask;
597 	home_mask_pfn = btop(home_mask);
598 	home_mask_shift = lowbit(home_mask) - 1;
599 	home_mask_pfn_shift = home_mask_shift - PAGESHIFT;
600 	mnode_pages = btop(1ULL << home_mask_shift);
601 
602 	/*
603 	 * How many values are possible in home mask?  Assume the mask
604 	 * bits are contiguous.
605 	 */
606 	max_locality_groups =
607 	    1 << highbit(home_mask_pfn >> home_mask_pfn_shift);
608 
609 	/* Now verify the home mask bits are contiguous */
610 
611 	if (max_locality_groups - 1 != home_mask_pfn >> home_mask_pfn_shift) {
612 		MPO_STATUS("lgrp_traverse: "
613 		    "home mask bits are not contiguous\n");
614 		ret_val = -1;
615 		goto fail;
616 	}
617 
618 	/* Record all of the home bits */
619 
620 	for (i = 0; i < n_lgrpnodes; i++) {
621 		HOMESET_ADD(mem_lg_homeset,
622 		    mpo_lgroup[i].addr_match >> home_mask_shift);
623 	}
624 
625 	/* Count the number different "home"  mem_lg's we've discovered */
626 
627 	n_locality_groups = unique_home_mem_lg_count(mem_lg_homeset);
628 
629 	/* If we have only 1 locality group then we can exit */
630 	if (n_locality_groups == 1) {
631 		MPO_STATUS("lgrp_traverse: n_locality_groups == 1\n");
632 		ret_val = -1;
633 		goto fail;
634 	}
635 
636 	/*
637 	 * Set the latencies.  A CPU's lgroup is defined by the lowest
638 	 * latency found.  All other memory is considered remote, and the
639 	 * remote latency is represented by the highest latency found.
640 	 * Thus hierarchical lgroups, if any, are approximated by a
641 	 * two level scheme.
642 	 *
643 	 * The Solaris MPO framework by convention wants to see latencies
644 	 * in units of nano-sec/10. In the MD, the units are defined to be
645 	 * pico-seconds.
646 	 */
647 
648 	lower_latency = mpo_lgroup[0].latency;
649 	higher_latency = mpo_lgroup[0].latency;
650 
651 	for (i = 1; i < n_lgrpnodes; i++) {
652 		if (mpo_lgroup[i].latency < lower_latency) {
653 			lower_latency = mpo_lgroup[i].latency;
654 		}
655 		if (mpo_lgroup[i].latency > higher_latency) {
656 			higher_latency = mpo_lgroup[i].latency;
657 		}
658 	}
659 	lower_latency /= 10000;
660 	higher_latency /= 10000;
661 
662 	/* Clear our CPU data */
663 
664 	for (i = 0; i < NCPU; i++) {
665 		mpo_cpu[i].home = 0;
666 		mpo_cpu[i].lgrp_index = -1;
667 	}
668 
669 	/* Build the CPU nodes */
670 	for (i = 0; i < n_cpunodes; i++) {
671 
672 		/* Read in the lgroup nodes */
673 		result = get_int(md, cpunodes[i], PROP_LG_CPU_ID, &k);
674 		if (result < 0) {
675 			MPO_STATUS("lgrp_traverse: PROP_LG_CPU_ID missing\n");
676 			ret_val = -1;
677 			goto fail;
678 		}
679 
680 		o = mpo_cpu_to_lgroup(md, cpunodes[i]);
681 		if (o == -1) {
682 			ret_val = -1;
683 			goto fail;
684 		}
685 		mpo_cpu[k].lgrp_index = o;
686 		mpo_cpu[k].home = mpo_lgroup[o].addr_match >> home_mask_shift;
687 		mpo_lgroup[o].ncpu++;
688 	}
689 	/* Validate that no large pages cross mnode boundaries. */
690 	if (valid_pages(md, cpunodes[0]) == 0) {
691 		ret_val = -1;
692 		goto fail;
693 	}
694 
695 fail:
696 	/* MD cookies are no longer valid; ensure they are not used again. */
697 	for (i = 0; i < n_mblocks; i++)
698 		mpo_mblock[i].node = MDE_INVAL_ELEM_COOKIE;
699 	for (i = 0; i < n_lgrpnodes; i++)
700 		mpo_lgroup[i].node = MDE_INVAL_ELEM_COOKIE;
701 
702 	if (n_cpunodes > 0)
703 		md_free_scan_dag(md, &cpunodes);
704 	if (n_lgrpnodes > 0)
705 		md_free_scan_dag(md, &lgrpnodes);
706 	if (n_mblocks > 0)
707 		md_free_scan_dag(md, &mblocknodes);
708 	else
709 		panic("lgrp_traverse: No memory blocks found");
710 
711 	if (ret_val == 0)
712 		MPO_STATUS("MPO feature is enabled.\n");
713 
714 	return (ret_val);
715 }
716 
717 /*
718  *  Determine the number of unique mem_lg's present in our system
719  */
720 static	int
721 unique_home_mem_lg_count(uint64_t mem_lg_homeset)
722 {
723 	int homeid;
724 	int count = 0;
725 
726 	/*
727 	 * Scan the "home" bits of the mem_lgs, count
728 	 * the number that are unique.
729 	 */
730 
731 	for (homeid = 0; homeid < NLGRPS_MAX; homeid++) {
732 		if (MEM_LG_ISMEMBER(mem_lg_homeset, homeid)) {
733 			count++;
734 		}
735 	}
736 
737 	MPO_DEBUG("unique_home_mem_lg_count: homeset %lx\n",
738 	    mem_lg_homeset);
739 	MPO_DEBUG("unique_home_mem_lg_count: count: %d\n", count);
740 
741 	/* Default must be at least one */
742 	if (count == 0)
743 		count = 1;
744 
745 	return (count);
746 }
747 
748 /*
749  * Platform specific lgroup initialization
750  */
751 void
752 plat_lgrp_init(void)
753 {
754 	md_t *md;
755 	int rc;
756 
757 	/* Get the Machine Descriptor handle */
758 
759 	md = md_get_handle();
760 
761 	/* If not, we cannot continue */
762 
763 	if (md == NULL) {
764 		panic("cannot access machine descriptor\n");
765 	} else {
766 		rc = lgrp_traverse(md);
767 		(void) md_fini_handle(md);
768 	}
769 
770 	/*
771 	 * If we can't process the MD for lgroups then at least let the
772 	 * system try to boot.  Assume we have one lgroup so that
773 	 * when plat_build_mem_nodes is called, it will attempt to init
774 	 * an mnode based on the supplied memory segment.
775 	 */
776 
777 	if (rc == -1) {
778 		home_mask_pfn = 0;
779 		max_locality_groups = 1;
780 		n_locality_groups = 1;
781 		return;
782 	}
783 
784 	mem_node_pfn_shift = 0;
785 	mem_node_physalign = 0;
786 
787 	/* Use lgroup-aware TSB allocations */
788 	tsb_lgrp_affinity = 1;
789 
790 	/* Require that a home lgroup have some memory to be chosen */
791 	lgrp_mem_free_thresh = 1;
792 
793 	/* Standard home-on-next-touch policy */
794 	lgrp_mem_policy_root = LGRP_MEM_POLICY_NEXT;
795 
796 	/* Disable option to choose root lgroup if all leaf lgroups are busy */
797 	lgrp_load_thresh = UINT32_MAX;
798 
799 	mpo_update_tunables();
800 }
801 
802 /*
803  *  Helper routine for debugging calls to mem_node_add_slice()
804  */
805 static	void
806 mpo_mem_node_add_slice(pfn_t basepfn, pfn_t endpfn)
807 {
808 #if defined(DEBUG) && !defined(lint)
809 	static int slice_count = 0;
810 
811 	slice_count++;
812 	MPO_DEBUG("mem_add_slice(%d): basepfn: %lx  endpfn: %lx\n",
813 	    slice_count, basepfn, endpfn);
814 #endif
815 	mem_node_add_slice(basepfn, endpfn);
816 }
817 
818 /*
819  *  Helper routine for debugging calls to plat_assign_lgrphand_to_mem_node()
820  */
821 static	void
822 mpo_plat_assign_lgrphand_to_mem_node(lgrp_handle_t plathand, int mnode)
823 {
824 	MPO_DEBUG("plat_assign_to_mem_nodes: lgroup home %ld,"
825 	    "mnode index: %d\n", plathand, mnode);
826 	plat_assign_lgrphand_to_mem_node(plathand, mnode);
827 }
828 
829 /*
830  * plat_build_mem_nodes()
831  *
832  * Define the mem_nodes based on the modified boot memory list,
833  * or based on info read from the MD in plat_lgrp_init().
834  *
835  * When the home mask lies in the middle of the address bits (as it does on
836  * Victoria Falls), then the memory in one mem_node is no longer contiguous;
837  * it is striped across an mblock in a repeating pattern of contiguous memory
838  * followed by a gap.  The stripe width is the size of the contiguous piece.
839  * The stride is the distance from the start of one contiguous piece to the
840  * start of the next.  The gap is thus stride - stripe_width.
841  *
842  * The stripe of an mnode that falls within an mblock is described by the type
843  * mem_stripe_t, and there is one mem_stripe_t per mnode per mblock.  The
844  * mem_stripe_t's are kept in a global array mem_stripes[].  The index into
845  * this array is predetermined.  The mem_stripe_t that describes mnode m
846  * within mpo_mblock[i] is stored at
847  *	 mem_stripes[ m + i * max_locality_groups ]
848  *
849  * max_locality_groups is the total number of possible locality groups,
850  * as defined by the size of the home mask, even if the memory assigned
851  * to the domain is small and does not cover all the lgroups.  Thus some
852  * mem_stripe_t's may be empty.
853  *
854  * The members of mem_stripe_t are:
855  *	physbase: First valid page in mem_node in the corresponding mblock
856  *	physmax: Last valid page in mem_node in mblock
857  *	offset:  The full stripe width starts at physbase - offset.
858  *	    Thus if offset is non-zero, this mem_node starts in the middle
859  *	    of a stripe width, and the second full stripe starts at
860  *	    physbase - offset + stride.  (even though physmax may fall in the
861  *	    middle of a stripe width, we do not save the ending fragment size
862  *	    in this data structure.)
863  *	exists: Set to 1 if the mblock has memory in this mem_node stripe.
864  *
865  *	The stripe width is kept in the global mnode_pages.
866  *	The stride is kept in the global mnode_stride.
867  *	All the above use pfn's as the unit.
868  *
869  * As an example, the memory layout for a domain with 2 mblocks and 4
870  * mem_nodes 0,1,2,3 could look like this:
871  *
872  *	123012301230 ...	012301230123 ...
873  *	  mblock 0		  mblock 1
874  */
875 
876 void
877 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
878 {
879 	lgrp_handle_t lgrphand, lgrp_start;
880 	int i, mnode, elem;
881 	uint64_t offset, stripe_end, base, len, end, ra_to_pa, stride;
882 	uint64_t stripe, frag, remove;
883 	mem_stripe_t *ms;
884 
885 	/* Pre-reserve space for plat_assign_lgrphand_to_mem_node */
886 	max_mem_nodes = max_locality_groups;
887 
888 	/* Check for non-MPO sun4v platforms */
889 	if (n_locality_groups <= 1) {
890 		mpo_plat_assign_lgrphand_to_mem_node(LGRP_DEFAULT_HANDLE, 0);
891 		for (elem = 0; elem < nelems; list++, elem++) {
892 			base = list->addr;
893 			len = list->size;
894 
895 			mpo_mem_node_add_slice(btop(base),
896 			    btop(base + len - 1));
897 		}
898 		mem_node_pfn_shift = 0;
899 		mem_node_physalign = 0;
900 		n_mem_stripes = 0;
901 		if (n_mblocks == 1)
902 			return;
903 	}
904 
905 	bzero(mem_stripes, mstripesz);
906 	stripe = ptob(mnode_pages);
907 	stride = max_locality_groups * stripe;
908 
909 	/* Save commonly used values in globals */
910 	mnode_stride = btop(stride);
911 	n_mem_stripes = max_locality_groups * n_mblocks;
912 	stripe_shift = highbit(max_locality_groups) - 1;
913 
914 	for (i = 0; i < n_mblocks; i++) {
915 		mpo_mblock[i].mnode_mask = (mnodeset_t)0;
916 		base = mpo_mblock[i].base;
917 		end = mpo_mblock[i].base + mpo_mblock[i].size;
918 		ra_to_pa = mpo_mblock[i].ra_to_pa;
919 		mpo_mblock[i].base_pfn = btop(base);
920 		mpo_mblock[i].end_pfn = btop(end - 1);
921 
922 		/* Find the offset from the prev stripe boundary in PA space. */
923 		offset = (base + ra_to_pa) & (stripe - 1);
924 
925 		/* Set the next stripe boundary. */
926 		stripe_end = base - offset + stripe;
927 
928 		lgrp_start = (((base + ra_to_pa) & home_mask) >>
929 		    home_mask_shift);
930 		lgrphand = lgrp_start;
931 
932 		/*
933 		 * Loop over all lgroups covered by the mblock, creating a
934 		 * stripe for each.  Stop when lgrp_start is visited again.
935 		 */
936 		do {
937 			/* mblock may not span all lgroups */
938 			if (base >= end)
939 				break;
940 
941 			mnode = lgrphand;
942 			ASSERT(mnode < max_mem_nodes);
943 			mpo_mblock[i].mnode_mask |= (mnodeset_t)1 << mnode;
944 
945 			/*
946 			 * Calculate the size of the fragment that does not
947 			 * belong to the mnode in the last partial stride.
948 			 */
949 			frag = (end - (base - offset)) & (stride - 1);
950 			if (frag == 0) {
951 				/* remove the gap */
952 				remove = stride - stripe;
953 			} else if (frag < stripe) {
954 				/* fragment fits in stripe; keep it all */
955 				remove = 0;
956 			} else {
957 				/* fragment is large; trim after whole stripe */
958 				remove = frag - stripe;
959 			}
960 
961 			ms = &mem_stripes[i * max_locality_groups + mnode];
962 			ms->physbase = btop(base);
963 			ms->physmax = btop(end - 1 - remove);
964 			ms->offset = btop(offset);
965 			ms->exists = 1;
966 
967 			/*
968 			 * If we have only 1 lgroup and multiple mblocks,
969 			 * then we have already established our lgrp handle
970 			 * to mem_node and mem_node_config values above.
971 			 */
972 			if (n_locality_groups > 1) {
973 				mpo_plat_assign_lgrphand_to_mem_node(lgrphand,
974 				    mnode);
975 				mpo_mem_node_add_slice(ms->physbase,
976 				    ms->physmax);
977 			}
978 			base = stripe_end;
979 			stripe_end += stripe;
980 			offset = 0;
981 			lgrphand = (((base + ra_to_pa) & home_mask) >>
982 			    home_mask_shift);
983 		} while (lgrphand != lgrp_start);
984 	}
985 
986 	/*
987 	 * Indicate to vm_pagelist that the hpm_counters array
988 	 * should be shared because the ranges overlap.
989 	 */
990 	if (max_mem_nodes > 1) {
991 		interleaved_mnodes = 1;
992 	}
993 }
994 
995 /*
996  * Return the locality group value for the supplied processor
997  */
998 lgrp_handle_t
999 plat_lgrp_cpu_to_hand(processorid_t id)
1000 {
1001 	if (n_locality_groups > 1) {
1002 		return ((lgrp_handle_t)mpo_cpu[(int)id].home);
1003 	} else {
1004 		return ((lgrp_handle_t)LGRP_DEFAULT_HANDLE); /* Default */
1005 	}
1006 }
1007 
1008 int
1009 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
1010 {
1011 	/*
1012 	 * Return min remote latency when there are more than two lgroups
1013 	 * (root and child) and getting latency between two different lgroups
1014 	 * or root is involved.
1015 	 */
1016 	if (lgrp_optimizations() && (from != to ||
1017 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) {
1018 		return ((int)higher_latency);
1019 	} else {
1020 		return ((int)lower_latency);
1021 	}
1022 }
1023 
1024 int
1025 plat_pfn_to_mem_node(pfn_t pfn)
1026 {
1027 	int i, mnode;
1028 	pfn_t ra_to_pa_pfn;
1029 	struct mblock_md *mb;
1030 
1031 	if (n_locality_groups <= 1)
1032 		return (0);
1033 
1034 	/*
1035 	 * The mnode is defined to be 1:1 with the lgroup handle, which
1036 	 * is taken from from the home bits.  Find the mblock in which
1037 	 * the pfn falls to get the ra_to_pa adjustment, and extract
1038 	 * the home bits.
1039 	 */
1040 	mb = &mpo_mblock[0];
1041 	for (i = 0; i < n_mblocks; i++) {
1042 		if (pfn >= mb->base_pfn && pfn <= mb->end_pfn) {
1043 			ra_to_pa_pfn = btop(mb->ra_to_pa);
1044 			mnode = (((pfn + ra_to_pa_pfn) & home_mask_pfn) >>
1045 			    home_mask_pfn_shift);
1046 			ASSERT(mnode < max_mem_nodes);
1047 			return (mnode);
1048 		}
1049 		mb++;
1050 	}
1051 
1052 	panic("plat_pfn_to_mem_node() failed to find mblock: pfn=%lx\n", pfn);
1053 	return (pfn);
1054 }
1055 
1056 /*
1057  * plat_rapfn_to_papfn
1058  *
1059  * Convert a pfn in RA space to a pfn in PA space, in which the page coloring
1060  * and home mask bits are correct.  The upper bits do not necessarily
1061  * match the actual PA, however.
1062  */
1063 pfn_t
1064 plat_rapfn_to_papfn(pfn_t pfn)
1065 {
1066 	int i;
1067 	pfn_t ra_to_pa_pfn;
1068 	struct mblock_md *mb;
1069 
1070 	ASSERT(n_mblocks > 0);
1071 	if (n_mblocks == 1)
1072 		return (pfn + base_ra_to_pa_pfn);
1073 
1074 	/*
1075 	 * Find the mblock in which the pfn falls
1076 	 * in order to get the ra_to_pa adjustment.
1077 	 */
1078 	for (mb = &mpo_mblock[0], i = 0; i < n_mblocks; i++, mb++) {
1079 		if (pfn <= mb->end_pfn && pfn >= mb->base_pfn) {
1080 			ra_to_pa_pfn = btop(mb->ra_to_pa);
1081 			return (pfn + ra_to_pa_pfn);
1082 		}
1083 	}
1084 
1085 	panic("plat_rapfn_to_papfn() failed to find mblock: pfn=%lx\n", pfn);
1086 	return (pfn);
1087 }
1088 
1089 /*
1090  * plat_mem_node_iterator_init()
1091  *	Initialize cookie to iterate over pfn's in an mnode.  There is
1092  *	no additional iterator function.  The caller uses the info from
1093  *	the iterator structure directly.
1094  *
1095  *	pfn: starting pfn.
1096  * 	mnode: desired mnode.
1097  *	init: set to 1 for full init, 0 for continuation
1098  *
1099  *	Returns the appropriate starting pfn for the iteration
1100  *	the same as the input pfn if it falls in an mblock.
1101  *	Returns the (pfn_t)-1 value if the input pfn lies past
1102  *	the last valid mnode pfn.
1103  */
1104 pfn_t
1105 plat_mem_node_iterator_init(pfn_t pfn, int mnode,
1106     mem_node_iterator_t *it, int init)
1107 {
1108 	int i;
1109 	struct mblock_md *mblock;
1110 	pfn_t base, end;
1111 
1112 	ASSERT(it != NULL);
1113 	ASSERT(mnode >= 0 && mnode < max_mem_nodes);
1114 	ASSERT(n_mblocks > 0);
1115 
1116 	if (init) {
1117 		it->mi_last_mblock = 0;
1118 		it->mi_init = 1;
1119 	}
1120 
1121 	/* Check if mpo is not enabled and we only have one mblock */
1122 	if (n_locality_groups == 1 && n_mblocks == 1) {
1123 		it->mi_mnode = mnode;
1124 		it->mi_ra_to_pa = base_ra_to_pa_pfn;
1125 		it->mi_mnode_pfn_mask = 0;
1126 		it->mi_mnode_pfn_shift = 0;
1127 		it->mi_mnode_mask = 0;
1128 		it->mi_mblock_base = mem_node_config[mnode].physbase;
1129 		it->mi_mblock_end = mem_node_config[mnode].physmax;
1130 		if (pfn < it->mi_mblock_base)
1131 			pfn = it->mi_mblock_base;
1132 		else if (pfn > it->mi_mblock_end)
1133 			pfn = (pfn_t)-1;
1134 		return (pfn);
1135 	}
1136 
1137 	/*
1138 	 * Find mblock that contains pfn, or first mblock after pfn,
1139 	 * else pfn is out of bounds, so use the last mblock.
1140 	 * mblocks are sorted in ascending address order.
1141 	 */
1142 	ASSERT(it->mi_last_mblock < n_mblocks);
1143 	ASSERT(init == 1 || pfn > mpo_mblock[it->mi_last_mblock].end_pfn);
1144 	i = init ? 0 : it->mi_last_mblock + 1;
1145 	if (i == n_mblocks)
1146 		return ((pfn_t)-1);
1147 
1148 	for (; i < n_mblocks; i++) {
1149 		if ((mpo_mblock[i].mnode_mask & ((mnodeset_t)1 << mnode)) &&
1150 		    (pfn <= mpo_mblock[i].end_pfn))
1151 			break;
1152 	}
1153 	if (i == n_mblocks) {
1154 		it->mi_last_mblock = i - 1;
1155 		return ((pfn_t)-1);
1156 	}
1157 	it->mi_last_mblock = i;
1158 
1159 	/*
1160 	 * Memory stripes are defined if there is more than one locality
1161 	 * group, so use the stripe bounds.  Otherwise use mblock bounds.
1162 	 */
1163 	mblock = &mpo_mblock[i];
1164 	if (n_mem_stripes > 0) {
1165 		mem_stripe_t *ms =
1166 		    &mem_stripes[i * max_locality_groups + mnode];
1167 		base = ms->physbase;
1168 		end = ms->physmax;
1169 	} else {
1170 		ASSERT(mnode == 0);
1171 		base = mblock->base_pfn;
1172 		end = mblock->end_pfn;
1173 	}
1174 
1175 	it->mi_mnode = mnode;
1176 	it->mi_ra_to_pa = btop(mblock->ra_to_pa);
1177 	it->mi_mblock_base = base;
1178 	it->mi_mblock_end = end;
1179 	it->mi_mnode_pfn_mask = home_mask_pfn;	/* is 0 for non-MPO case */
1180 	it->mi_mnode_pfn_shift = home_mask_pfn_shift;
1181 	it->mi_mnode_mask = max_locality_groups - 1;
1182 	if (pfn < base)
1183 		pfn = base;
1184 	else if (pfn > end)
1185 		pfn = (pfn_t)-1;
1186 	return (pfn);
1187 }
1188 
1189 /*
1190  * plat_mem_node_intersect_range()
1191  *
1192  * Find the intersection between a memnode and a range of pfn's.
1193  */
1194 void
1195 plat_mem_node_intersect_range(pfn_t test_base, pgcnt_t test_len,
1196     int mnode, pgcnt_t *npages_out)
1197 {
1198 	pfn_t offset, len, hole, base, end, test_end, frag;
1199 	pfn_t nearest;
1200 	mem_stripe_t *ms;
1201 	int i, npages;
1202 
1203 	*npages_out = 0;
1204 
1205 	if (!mem_node_config[mnode].exists || test_len == 0)
1206 		return;
1207 
1208 	base = mem_node_config[mnode].physbase;
1209 	end = mem_node_config[mnode].physmax;
1210 
1211 	test_end = test_base + test_len - 1;
1212 	if (end < test_base || base > test_end)
1213 		return;
1214 
1215 	if (n_locality_groups == 1) {
1216 		*npages_out = MIN(test_end, end) - MAX(test_base, base) + 1;
1217 		return;
1218 	}
1219 
1220 	hole = mnode_stride - mnode_pages;
1221 	npages = 0;
1222 
1223 	/*
1224 	 * Iterate over all the stripes for this mnode (one per mblock),
1225 	 * find the intersection with each, and accumulate the intersections.
1226 	 *
1227 	 * Determing the intersection with a stripe is tricky.  If base or end
1228 	 * fall outside the mem_node bounds, round them to physbase/physmax of
1229 	 * mem_node.  If base or end fall in a gap, round them to start of
1230 	 * nearest stripe.  If they fall within a stripe, keep base or end,
1231 	 * but calculate the fragment size that should be excluded from the
1232 	 * stripe.  Calculate how many strides fall in the adjusted range,
1233 	 * multiply by stripe width, and add the start and end fragments.
1234 	 */
1235 
1236 	for (i = mnode; i < n_mem_stripes; i += max_locality_groups) {
1237 		ms = &mem_stripes[i];
1238 		if (ms->exists &&
1239 		    test_base <= (end = ms->physmax) &&
1240 		    test_end >= (base = ms->physbase)) {
1241 
1242 			offset = ms->offset;
1243 
1244 			if (test_base > base) {
1245 				/* Round test_base to next multiple of stride */
1246 				len = P2ROUNDUP(test_base - (base - offset),
1247 				    mnode_stride);
1248 				nearest = base - offset + len;
1249 				/*
1250 				 * Compute distance from test_base to the
1251 				 * stride boundary to see if test_base falls
1252 				 * in the stripe or in the hole.
1253 				 */
1254 				if (nearest - test_base > hole) {
1255 					/*
1256 					 * test_base lies in stripe,
1257 					 * and offset should be excluded.
1258 					 */
1259 					offset = test_base -
1260 					    (nearest - mnode_stride);
1261 					base = test_base;
1262 				} else {
1263 					/* round up to next stripe start */
1264 					offset = 0;
1265 					base = nearest;
1266 					if (base > end)
1267 						continue;
1268 				}
1269 
1270 			}
1271 
1272 			if (test_end < end)
1273 				end = test_end;
1274 			end++;		/* adjust to an exclusive bound */
1275 
1276 			/* Round end to next multiple of stride */
1277 			len = P2ROUNDUP(end - (base - offset), mnode_stride);
1278 			nearest = (base - offset) + len;
1279 			if (nearest - end <= hole) {
1280 				/* end falls in hole, use entire last stripe */
1281 				frag = 0;
1282 			} else {
1283 				/* end falls in stripe, compute fragment */
1284 				frag = nearest - hole - end;
1285 			}
1286 
1287 			len = (len >> stripe_shift) - offset - frag;
1288 			npages += len;
1289 		}
1290 	}
1291 
1292 	*npages_out = npages;
1293 }
1294 
1295 /*
1296  * valid_pages()
1297  *
1298  * Return 1 if pages are valid and do not cross mnode boundaries
1299  * (which would break page free list assumptions), and 0 otherwise.
1300  */
1301 
1302 #define	MNODE(pa)	\
1303 	((btop(pa) & home_mask_pfn) >> home_mask_pfn_shift)
1304 
1305 static int
1306 valid_pages(md_t *md, mde_cookie_t cpu0)
1307 {
1308 	int i, max_szc;
1309 	uint64_t last_page_base, szc_mask;
1310 	uint64_t max_page_len, max_coalesce_len;
1311 	struct mblock_md *mb = mpo_mblock;
1312 
1313 	/*
1314 	 * Find the smaller of the largest page possible and supported.
1315 	 * mmu_exported_pagesize_mask is not yet initialized, so read
1316 	 * it from the MD.  Apply minimal fixups in case of broken MDs
1317 	 * to get a sane mask.
1318 	 */
1319 
1320 	if (md_get_prop_val(md, cpu0, "mmu-page-size-list", &szc_mask))
1321 		szc_mask = 0;
1322 	szc_mask |=  (1 << TTE4M);	/* largest in sun4v default support */
1323 	max_szc = highbit(szc_mask) - 1;
1324 	if (max_szc > TTE256M)
1325 		max_szc = TTE256M;
1326 	max_page_len = TTEBYTES(max_szc);
1327 
1328 	/*
1329 	 * Page coalescing code coalesces all sizes up to 256M on sun4v, even
1330 	 * if mmu-page-size-list does not contain it, so 256M pages must fall
1331 	 * within one mnode to use MPO.
1332 	 */
1333 	max_coalesce_len = TTEBYTES(TTE256M);
1334 	ASSERT(max_coalesce_len >= max_page_len);
1335 
1336 	if (ptob(mnode_pages) < max_coalesce_len) {
1337 		MPO_STATUS("Page too large; MPO disabled: page = %lx, "
1338 		    "mnode slice = %lx\n", max_coalesce_len, ptob(mnode_pages));
1339 		return (0);
1340 	}
1341 
1342 	for (i = 0; i < n_mblocks; i++) {
1343 		uint64_t base = mb->base;
1344 		uint64_t end = mb->base + mb->size - 1;
1345 		uint64_t ra_to_pa = mb->ra_to_pa;
1346 
1347 		/*
1348 		 * If mblock is smaller than the max page size, then
1349 		 * RA = PA mod MAXPAGE is not guaranteed, but it must
1350 		 * not span mnodes.
1351 		 */
1352 		if (mb->size < max_page_len) {
1353 			if (MNODE(base + ra_to_pa) != MNODE(end + ra_to_pa)) {
1354 				MPO_STATUS("Small mblock spans mnodes; "
1355 				    "MPO disabled: base = %lx, end = %lx, "
1356 				    "ra2pa = %lx\n", base, end, ra_to_pa);
1357 				return (0);
1358 			}
1359 		} else {
1360 			/* Verify RA = PA mod MAXPAGE, using coalesce size */
1361 			uint64_t pa_base = base + ra_to_pa;
1362 			if ((base & (max_coalesce_len - 1)) !=
1363 			    (pa_base & (max_coalesce_len - 1))) {
1364 				MPO_STATUS("bad page alignment; MPO disabled: "
1365 				    "ra = %lx, pa = %lx, pagelen = %lx\n",
1366 				    base, pa_base, max_coalesce_len);
1367 				return (0);
1368 			}
1369 		}
1370 
1371 		/*
1372 		 * Find start of last large page in mblock in RA space.
1373 		 * If page extends into the next mblock, verify the
1374 		 * mnode does not change.
1375 		 */
1376 		last_page_base = P2ALIGN(end, max_coalesce_len);
1377 		if (i + 1 < n_mblocks &&
1378 		    last_page_base + max_coalesce_len > mb[1].base &&
1379 		    MNODE(last_page_base + ra_to_pa) !=
1380 		    MNODE(mb[1].base + mb[1].ra_to_pa)) {
1381 			MPO_STATUS("Large page spans mblocks; MPO disabled: "
1382 			    "end = %lx, ra2pa = %lx, base = %lx, ra2pa = %lx, "
1383 			    "pagelen = %lx\n", end, ra_to_pa, mb[1].base,
1384 			    mb[1].ra_to_pa, max_coalesce_len);
1385 			return (0);
1386 		}
1387 
1388 		mb++;
1389 	}
1390 	return (1);
1391 }
1392 
1393 
1394 /*
1395  * fix_interleave() - Find lgroups with sub-page sized memory interleave,
1396  * if any, and remove them.  This yields a config where the "coarse
1397  * grained" lgroups cover all of memory, even though part of that memory
1398  * is fine grain interleaved and does not deliver a purely local memory
1399  * latency.
1400  *
1401  * This function reads and modifies the globals:
1402  *	mpo_lgroup[], n_lgrpnodes
1403  *
1404  * Returns 1 if lgroup nodes were removed, 0 otherwise.
1405  */
1406 
1407 static int
1408 fix_interleave(void)
1409 {
1410 	int i, j;
1411 	uint64_t mask = 0;
1412 
1413 	j = 0;
1414 	for (i = 0; i < n_lgrpnodes; i++) {
1415 		if ((mpo_lgroup[i].addr_mask & PAGEOFFSET) != 0) {
1416 			/* remove this lgroup */
1417 			mask = mpo_lgroup[i].addr_mask;
1418 		} else {
1419 			mpo_lgroup[j++] = mpo_lgroup[i];
1420 		}
1421 	}
1422 	n_lgrpnodes = j;
1423 
1424 	if (mask != 0)
1425 		MPO_STATUS("sub-page interleave %lx found; "
1426 		    "removing lgroup.\n", mask);
1427 
1428 	return (mask != 0);
1429 }
1430