1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/prom_plat.h> 32 #include <sys/promif.h> 33 #include <sys/vm.h> 34 #include <sys/cpu.h> 35 #include <sys/atomic.h> 36 #include <sys/cpupart.h> 37 #include <sys/disp.h> 38 #include <sys/hypervisor_api.h> 39 #include <sys/traptrace.h> 40 #include <sys/modctl.h> 41 #include <sys/ldoms.h> 42 43 #ifdef TRAPTRACE 44 int mach_htraptrace_enable = 1; 45 #else 46 int mach_htraptrace_enable = 0; 47 #endif 48 int htrap_tr0_inuse = 0; 49 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 50 51 caddr_t mmu_fault_status_area; 52 53 extern void sfmmu_set_tsbs(void); 54 /* 55 * CPU IDLE optimization variables/routines 56 */ 57 static int enable_halt_idle_cpus = 1; 58 59 void 60 setup_trap_table(void) 61 { 62 caddr_t mmfsa_va; 63 extern caddr_t mmu_fault_status_area; 64 mmfsa_va = 65 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 66 67 intr_init(CPU); /* init interrupt request free list */ 68 setwstate(WSTATE_KERN); 69 set_mmfsa_scratchpad(mmfsa_va); 70 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 71 sfmmu_set_tsbs(); 72 } 73 74 void 75 phys_install_has_changed(void) 76 { 77 78 } 79 80 #ifdef N2_IDLE_WORKAROUND 81 /* 82 * Tuneable to control enabling of IDLE loop workaround on Niagara2 1.x parts. 83 * This workaround will be removed before the RR. 84 */ 85 int n2_idle_workaround; 86 #endif 87 88 /* 89 * Halt the present CPU until awoken via an interrupt 90 */ 91 static void 92 cpu_halt(void) 93 { 94 cpu_t *cpup = CPU; 95 processorid_t cpun = cpup->cpu_id; 96 cpupart_t *cp = cpup->cpu_part; 97 int hset_update = 1; 98 volatile int *p = &cpup->cpu_disp->disp_nrunnable; 99 uint_t s; 100 101 /* 102 * If this CPU is online, and there's multiple CPUs 103 * in the system, then we should notate our halting 104 * by adding ourselves to the partition's halted CPU 105 * bitmap. This allows other CPUs to find/awaken us when 106 * work becomes available. 107 */ 108 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 109 hset_update = 0; 110 111 /* 112 * Add ourselves to the partition's halted CPUs bitmask 113 * and set our HALTED flag, if necessary. 114 * 115 * When a thread becomes runnable, it is placed on the queue 116 * and then the halted cpuset is checked to determine who 117 * (if anyone) should be awoken. We therefore need to first 118 * add ourselves to the halted cpuset, and then check if there 119 * is any work available. 120 */ 121 if (hset_update) { 122 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 123 membar_producer(); 124 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 125 } 126 127 /* 128 * Check to make sure there's really nothing to do. 129 * Work destined for this CPU may become available after 130 * this check. We'll be notified through the clearing of our 131 * bit in the halted CPU bitmask, and a poke. 132 */ 133 if (disp_anywork()) { 134 if (hset_update) { 135 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 136 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 137 } 138 return; 139 } 140 141 #ifdef N2_IDLE_WORKAROUND 142 /* 143 * The following workaround for Niagara2, when enabled, forces the 144 * IDLE CPU to wait in a tight loop until something becomes runnable 145 * locally, minimizing the overall CPU usage on an IDLE CPU. 146 */ 147 if (n2_idle_workaround) { 148 while (cpup->cpu_disp->disp_nrunnable == 0) { 149 (void) hv_cpu_yield(); 150 } 151 } 152 #endif 153 154 /* 155 * We're on our way to being halted. Wait until something becomes 156 * runnable locally or we are awaken (i.e. removed from the halt set). 157 * Note that the call to hv_cpu_yield() can return even if we have 158 * nothing to do. 159 * 160 * Disable interrupts now, so that we'll awaken immediately 161 * after halting if someone tries to poke us between now and 162 * the time we actually halt. 163 * 164 * We check for the presence of our bit after disabling interrupts. 165 * If it's cleared, we'll return. If the bit is cleared after 166 * we check then the poke will pop us out of the halted state. 167 * Also, if the offlined CPU has been brought back on-line, then 168 * we return as well. 169 * 170 * The ordering of the poke and the clearing of the bit by cpu_wakeup 171 * is important. 172 * cpu_wakeup() must clear, then poke. 173 * cpu_halt() must disable interrupts, then check for the bit. 174 * 175 * The check for anything locally runnable is here for performance 176 * and isn't needed for correctness. disp_nrunnable ought to be 177 * in our cache still, so it's inexpensive to check, and if there 178 * is anything runnable we won't have to wait for the poke. 179 * 180 */ 181 s = disable_vec_intr(); 182 while (*p == 0 && 183 ((hset_update && CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) || 184 (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) { 185 (void) hv_cpu_yield(); 186 enable_vec_intr(s); 187 s = disable_vec_intr(); 188 } 189 190 /* 191 * We're no longer halted 192 */ 193 enable_vec_intr(s); 194 if (hset_update) { 195 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 196 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 197 } 198 } 199 200 /* 201 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 202 * Otherwise, see if other CPUs in the cpu partition are halted and need to 203 * be woken up so that they can steal the thread we placed on this CPU. 204 * This function is only used on MP systems. 205 */ 206 static void 207 cpu_wakeup(cpu_t *cpu, int bound) 208 { 209 uint_t cpu_found; 210 int result; 211 cpupart_t *cp; 212 213 cp = cpu->cpu_part; 214 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 215 /* 216 * Clear the halted bit for that CPU since it will be 217 * poked in a moment. 218 */ 219 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 220 /* 221 * We may find the current CPU present in the halted cpuset 222 * if we're in the context of an interrupt that occurred 223 * before we had a chance to clear our bit in cpu_halt(). 224 * Poking ourself is obviously unnecessary, since if 225 * we're here, we're not halted. 226 */ 227 if (cpu != CPU) 228 poke_cpu(cpu->cpu_id); 229 return; 230 } else { 231 /* 232 * This cpu isn't halted, but it's idle or undergoing a 233 * context switch. No need to awaken anyone else. 234 */ 235 if (cpu->cpu_thread == cpu->cpu_idle_thread || 236 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 237 return; 238 } 239 240 /* 241 * No need to wake up other CPUs if the thread we just enqueued 242 * is bound. 243 */ 244 if (bound) 245 return; 246 247 /* 248 * See if there's any other halted CPUs. If there are, then 249 * select one, and awaken it. 250 * It's possible that after we find a CPU, somebody else 251 * will awaken it before we get the chance. 252 * In that case, look again. 253 */ 254 do { 255 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 256 if (cpu_found == CPUSET_NOTINSET) 257 return; 258 259 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 260 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 261 } while (result < 0); 262 263 if (cpu_found != CPU->cpu_id) 264 poke_cpu(cpu_found); 265 } 266 267 void 268 mach_cpu_halt_idle() 269 { 270 if (enable_halt_idle_cpus) { 271 idle_cpu = cpu_halt; 272 disp_enq_thread = cpu_wakeup; 273 } 274 } 275 276 int 277 ndata_alloc_mmfsa(struct memlist *ndata) 278 { 279 size_t size; 280 281 size = MMFSA_SIZE * max_ncpus; 282 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 283 if (mmu_fault_status_area == NULL) 284 return (-1); 285 return (0); 286 } 287 288 void 289 mach_memscrub(void) 290 { 291 /* no memscrub support for sun4v for now */ 292 } 293 294 void 295 mach_fpras() 296 { 297 /* no fpras support for sun4v for now */ 298 } 299 300 void 301 mach_hw_copy_limit(void) 302 { 303 /* HW copy limits set by individual CPU module */ 304 } 305 306 /* 307 * We need to enable soft ring functionality on Niagara platform since 308 * one strand can't handle interrupts for a 1Gb NIC. Set the tunable 309 * ip_squeue_soft_ring by default on this platform. We can also set 310 * ip_threads_per_cpu to track number of threads per core. The variables 311 * themselves are defined in space.c and used by IP module 312 */ 313 extern uint_t ip_threads_per_cpu; 314 extern boolean_t ip_squeue_soft_ring; 315 void 316 startup_platform(void) 317 { 318 ip_squeue_soft_ring = B_TRUE; 319 } 320 321 /* 322 * This function sets up hypervisor traptrace buffer 323 * This routine is called by the boot cpu only 324 */ 325 void 326 mach_htraptrace_setup(int cpuid) 327 { 328 TRAP_TRACE_CTL *ctlp; 329 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 330 331 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 332 !htrap_tr0_inuse)) { 333 ctlp = &trap_trace_ctl[cpuid]; 334 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 335 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 336 if (ctlp->d.hvaddr_base == NULL) { 337 ctlp->d.hlimit = 0; 338 ctlp->d.hpaddr_base = NULL; 339 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 340 "traptrace buffer", cpuid); 341 } else { 342 ctlp->d.hlimit = HTRAP_TSIZE; 343 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 344 } 345 } 346 } 347 348 /* 349 * This function enables or disables the hypervisor traptracing 350 */ 351 void 352 mach_htraptrace_configure(int cpuid) 353 { 354 uint64_t ret; 355 uint64_t prev_buf, prev_bufsize; 356 uint64_t prev_enable; 357 uint64_t size; 358 TRAP_TRACE_CTL *ctlp; 359 360 ctlp = &trap_trace_ctl[cpuid]; 361 if (mach_htraptrace_enable) { 362 if ((ctlp->d.hvaddr_base != NULL) && 363 ((ctlp->d.hvaddr_base != htrap_tr0) || 364 (!htrap_tr0_inuse))) { 365 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 366 if ((ret == H_EOK) && (prev_bufsize != 0)) { 367 cmn_err(CE_CONT, 368 "!cpu%d: previous HV traptrace buffer of " 369 "size 0x%lx at address 0x%lx", cpuid, 370 prev_bufsize, prev_buf); 371 } 372 373 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 374 ctlp->d.hlimit / 375 (sizeof (struct htrap_trace_record)), &size); 376 if (ret == H_EOK) { 377 ret = hv_ttrace_enable(\ 378 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 379 if (ret != H_EOK) { 380 cmn_err(CE_WARN, 381 "!cpu%d: HV traptracing not " 382 "enabled, ta: 0x%x returned error: " 383 "%ld", cpuid, TTRACE_ENABLE, ret); 384 } else { 385 if (ctlp->d.hvaddr_base == htrap_tr0) 386 htrap_tr0_inuse = 1; 387 } 388 } else { 389 cmn_err(CE_WARN, 390 "!cpu%d: HV traptrace buffer not " 391 "configured, ta: 0x%x returned error: %ld", 392 cpuid, TTRACE_BUF_CONF, ret); 393 } 394 /* 395 * set hvaddr_base to NULL when traptrace buffer 396 * registration fails 397 */ 398 if (ret != H_EOK) { 399 ctlp->d.hvaddr_base = NULL; 400 ctlp->d.hlimit = 0; 401 ctlp->d.hpaddr_base = NULL; 402 } 403 } 404 } else { 405 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 406 if ((ret == H_EOK) && (prev_bufsize != 0)) { 407 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 408 &prev_enable); 409 if (ret == H_EOK) { 410 if (ctlp->d.hvaddr_base == htrap_tr0) 411 htrap_tr0_inuse = 0; 412 ctlp->d.hvaddr_base = NULL; 413 ctlp->d.hlimit = 0; 414 ctlp->d.hpaddr_base = NULL; 415 } else 416 cmn_err(CE_WARN, 417 "!cpu%d: HV traptracing is not disabled, " 418 "ta: 0x%x returned error: %ld", 419 cpuid, TTRACE_ENABLE, ret); 420 } 421 } 422 } 423 424 /* 425 * This function cleans up the hypervisor traptrace buffer 426 */ 427 void 428 mach_htraptrace_cleanup(int cpuid) 429 { 430 if (mach_htraptrace_enable) { 431 TRAP_TRACE_CTL *ctlp; 432 caddr_t httrace_buf_va; 433 434 ASSERT(cpuid < max_ncpus); 435 ctlp = &trap_trace_ctl[cpuid]; 436 httrace_buf_va = ctlp->d.hvaddr_base; 437 if (httrace_buf_va == htrap_tr0) { 438 bzero(httrace_buf_va, HTRAP_TSIZE); 439 } else if (httrace_buf_va != NULL) { 440 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 441 } 442 ctlp->d.hvaddr_base = NULL; 443 ctlp->d.hlimit = 0; 444 ctlp->d.hpaddr_base = NULL; 445 } 446 } 447 448 /* 449 * Load any required machine class (sun4v) specific drivers. 450 */ 451 void 452 load_mach_drivers(void) 453 { 454 /* 455 * We don't want to load these LDOMs-specific 456 * modules if domaining is not supported. Also, 457 * we must be able to run on non-LDOMs firmware. 458 */ 459 if (!(domaining_capabilities & DOMAINING_SUPPORTED)) 460 return; 461 462 /* 463 * Load the core domain services module 464 */ 465 if (modload("misc", "ds") == -1) 466 cmn_err(CE_NOTE, "!'ds' module failed to load"); 467 468 /* 469 * Load the rest of the domain services 470 */ 471 if (modload("misc", "fault_iso") == -1) 472 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 473 474 if (modload("misc", "platsvc") == -1) 475 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 476 477 if ((domaining_capabilities & DOMAINING_ENABLED) && 478 modload("misc", "dr_cpu") == -1) 479 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 480 481 /* 482 * Attempt to attach any virtual device servers. These 483 * drivers must be loaded at start of day so that they 484 * can respond to any updates to the machine description. 485 * 486 * Since it is quite likely that a domain will not support 487 * one or more of these servers, failures are ignored. 488 */ 489 490 /* virtual disk server */ 491 (void) i_ddi_attach_hw_nodes("vds"); 492 493 /* virtual network switch */ 494 (void) i_ddi_attach_hw_nodes("vsw"); 495 496 /* virtual console concentrator */ 497 (void) i_ddi_attach_hw_nodes("vcc"); 498 } 499