1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/prom_plat.h> 32 #include <sys/promif.h> 33 #include <sys/vm.h> 34 #include <sys/cpu.h> 35 #include <sys/atomic.h> 36 #include <sys/cpupart.h> 37 #include <sys/disp.h> 38 #include <sys/hypervisor_api.h> 39 #include <sys/traptrace.h> 40 #include <sys/modctl.h> 41 #include <sys/ldoms.h> 42 #include <sys/cpu_module.h> 43 #include <sys/mutex_impl.h> 44 #include <vm/vm_dep.h> 45 #include <sys/sdt.h> 46 47 #ifdef TRAPTRACE 48 int mach_htraptrace_enable = 1; 49 #else 50 int mach_htraptrace_enable = 0; 51 #endif 52 int htrap_tr0_inuse = 0; 53 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 54 55 caddr_t mmu_fault_status_area; 56 57 extern void sfmmu_set_tsbs(void); 58 /* 59 * CPU IDLE optimization variables/routines 60 */ 61 static int enable_halt_idle_cpus = 1; 62 63 /* 64 * Defines for the idle_state_transition DTrace probe 65 * 66 * The probe fires when the CPU undergoes an idle state change (e.g. hv yield) 67 * The agument passed is the state to which the CPU is transitioning. 68 * 69 * The states are defined here. 70 */ 71 #define IDLE_STATE_NORMAL 0 72 #define IDLE_STATE_YIELDED 1 73 74 #define SUN4V_CLOCK_TICK_THRESHOLD 64 75 #define SUN4V_CLOCK_TICK_NCPUS 64 76 77 extern int clock_tick_threshold; 78 extern int clock_tick_ncpus; 79 80 void 81 setup_trap_table(void) 82 { 83 caddr_t mmfsa_va; 84 extern caddr_t mmu_fault_status_area; 85 mmfsa_va = 86 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 87 88 intr_init(CPU); /* init interrupt request free list */ 89 setwstate(WSTATE_KERN); 90 set_mmfsa_scratchpad(mmfsa_va); 91 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 92 sfmmu_set_tsbs(); 93 } 94 95 void 96 phys_install_has_changed(void) 97 { 98 99 } 100 101 /* 102 * Halt the present CPU until awoken via an interrupt 103 */ 104 static void 105 cpu_halt(void) 106 { 107 cpu_t *cpup = CPU; 108 processorid_t cpun = cpup->cpu_id; 109 cpupart_t *cp = cpup->cpu_part; 110 int hset_update = 1; 111 volatile int *p = &cpup->cpu_disp->disp_nrunnable; 112 uint_t s; 113 114 /* 115 * If this CPU is online, and there's multiple CPUs 116 * in the system, then we should notate our halting 117 * by adding ourselves to the partition's halted CPU 118 * bitmap. This allows other CPUs to find/awaken us when 119 * work becomes available. 120 */ 121 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 122 hset_update = 0; 123 124 /* 125 * Add ourselves to the partition's halted CPUs bitmask 126 * and set our HALTED flag, if necessary. 127 * 128 * When a thread becomes runnable, it is placed on the queue 129 * and then the halted cpuset is checked to determine who 130 * (if anyone) should be awoken. We therefore need to first 131 * add ourselves to the halted cpuset, and then check if there 132 * is any work available. 133 */ 134 if (hset_update) { 135 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 136 membar_producer(); 137 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 138 } 139 140 /* 141 * Check to make sure there's really nothing to do. 142 * Work destined for this CPU may become available after 143 * this check. We'll be notified through the clearing of our 144 * bit in the halted CPU bitmask, and a poke. 145 */ 146 if (disp_anywork()) { 147 if (hset_update) { 148 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 149 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 150 } 151 return; 152 } 153 154 /* 155 * We're on our way to being halted. Wait until something becomes 156 * runnable locally or we are awaken (i.e. removed from the halt set). 157 * Note that the call to hv_cpu_yield() can return even if we have 158 * nothing to do. 159 * 160 * Disable interrupts now, so that we'll awaken immediately 161 * after halting if someone tries to poke us between now and 162 * the time we actually halt. 163 * 164 * We check for the presence of our bit after disabling interrupts. 165 * If it's cleared, we'll return. If the bit is cleared after 166 * we check then the poke will pop us out of the halted state. 167 * Also, if the offlined CPU has been brought back on-line, then 168 * we return as well. 169 * 170 * The ordering of the poke and the clearing of the bit by cpu_wakeup 171 * is important. 172 * cpu_wakeup() must clear, then poke. 173 * cpu_halt() must disable interrupts, then check for the bit. 174 * 175 * The check for anything locally runnable is here for performance 176 * and isn't needed for correctness. disp_nrunnable ought to be 177 * in our cache still, so it's inexpensive to check, and if there 178 * is anything runnable we won't have to wait for the poke. 179 * 180 */ 181 s = disable_vec_intr(); 182 while (*p == 0 && 183 ((hset_update && CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) || 184 (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) { 185 186 DTRACE_PROBE1(idle__state__transition, 187 uint_t, IDLE_STATE_YIELDED); 188 (void) hv_cpu_yield(); 189 DTRACE_PROBE1(idle__state__transition, 190 uint_t, IDLE_STATE_NORMAL); 191 192 enable_vec_intr(s); 193 s = disable_vec_intr(); 194 } 195 196 /* 197 * We're no longer halted 198 */ 199 enable_vec_intr(s); 200 if (hset_update) { 201 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 202 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 203 } 204 } 205 206 /* 207 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 208 * Otherwise, see if other CPUs in the cpu partition are halted and need to 209 * be woken up so that they can steal the thread we placed on this CPU. 210 * This function is only used on MP systems. 211 */ 212 static void 213 cpu_wakeup(cpu_t *cpu, int bound) 214 { 215 uint_t cpu_found; 216 int result; 217 cpupart_t *cp; 218 219 cp = cpu->cpu_part; 220 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 221 /* 222 * Clear the halted bit for that CPU since it will be 223 * poked in a moment. 224 */ 225 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 226 /* 227 * We may find the current CPU present in the halted cpuset 228 * if we're in the context of an interrupt that occurred 229 * before we had a chance to clear our bit in cpu_halt(). 230 * Poking ourself is obviously unnecessary, since if 231 * we're here, we're not halted. 232 */ 233 if (cpu != CPU) 234 poke_cpu(cpu->cpu_id); 235 return; 236 } else { 237 /* 238 * This cpu isn't halted, but it's idle or undergoing a 239 * context switch. No need to awaken anyone else. 240 */ 241 if (cpu->cpu_thread == cpu->cpu_idle_thread || 242 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 243 return; 244 } 245 246 /* 247 * No need to wake up other CPUs if the thread we just enqueued 248 * is bound. 249 */ 250 if (bound) 251 return; 252 253 /* 254 * See if there's any other halted CPUs. If there are, then 255 * select one, and awaken it. 256 * It's possible that after we find a CPU, somebody else 257 * will awaken it before we get the chance. 258 * In that case, look again. 259 */ 260 do { 261 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 262 if (cpu_found == CPUSET_NOTINSET) 263 return; 264 265 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 266 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 267 } while (result < 0); 268 269 if (cpu_found != CPU->cpu_id) 270 poke_cpu(cpu_found); 271 } 272 273 void 274 mach_cpu_halt_idle() 275 { 276 if (enable_halt_idle_cpus) { 277 idle_cpu = cpu_halt; 278 disp_enq_thread = cpu_wakeup; 279 } 280 } 281 282 int 283 ndata_alloc_mmfsa(struct memlist *ndata) 284 { 285 size_t size; 286 287 size = MMFSA_SIZE * max_ncpus; 288 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 289 if (mmu_fault_status_area == NULL) 290 return (-1); 291 return (0); 292 } 293 294 void 295 mach_memscrub(void) 296 { 297 /* no memscrub support for sun4v for now */ 298 } 299 300 void 301 mach_fpras() 302 { 303 /* no fpras support for sun4v for now */ 304 } 305 306 void 307 mach_hw_copy_limit(void) 308 { 309 /* HW copy limits set by individual CPU module */ 310 } 311 312 /* 313 * We need to enable soft ring functionality on Niagara platform since 314 * one strand can't handle interrupts for a 1Gb NIC. Set the tunable 315 * ip_squeue_soft_ring by default on this platform. We can also set 316 * ip_threads_per_cpu to track number of threads per core. The variables 317 * themselves are defined in space.c and used by IP module 318 */ 319 extern uint_t ip_threads_per_cpu; 320 extern boolean_t ip_squeue_soft_ring; 321 void 322 startup_platform(void) 323 { 324 ip_squeue_soft_ring = B_TRUE; 325 if (clock_tick_threshold == 0) 326 clock_tick_threshold = SUN4V_CLOCK_TICK_THRESHOLD; 327 if (clock_tick_ncpus == 0) 328 clock_tick_ncpus = SUN4V_CLOCK_TICK_NCPUS; 329 /* set per-platform constants for mutex_backoff */ 330 mutex_backoff_base = 1; 331 mutex_cap_factor = 4; 332 if (l2_cache_node_count() > 1) { 333 /* VF for example */ 334 mutex_backoff_base = 2; 335 mutex_cap_factor = 16; 336 } 337 } 338 339 /* 340 * This function sets up hypervisor traptrace buffer 341 * This routine is called by the boot cpu only 342 */ 343 void 344 mach_htraptrace_setup(int cpuid) 345 { 346 TRAP_TRACE_CTL *ctlp; 347 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 348 349 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 350 !htrap_tr0_inuse)) { 351 ctlp = &trap_trace_ctl[cpuid]; 352 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 353 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 354 if (ctlp->d.hvaddr_base == NULL) { 355 ctlp->d.hlimit = 0; 356 ctlp->d.hpaddr_base = NULL; 357 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 358 "traptrace buffer", cpuid); 359 } else { 360 ctlp->d.hlimit = HTRAP_TSIZE; 361 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 362 } 363 } 364 } 365 366 /* 367 * This function enables or disables the hypervisor traptracing 368 */ 369 void 370 mach_htraptrace_configure(int cpuid) 371 { 372 uint64_t ret; 373 uint64_t prev_buf, prev_bufsize; 374 uint64_t prev_enable; 375 uint64_t size; 376 TRAP_TRACE_CTL *ctlp; 377 378 ctlp = &trap_trace_ctl[cpuid]; 379 if (mach_htraptrace_enable) { 380 if ((ctlp->d.hvaddr_base != NULL) && 381 ((ctlp->d.hvaddr_base != htrap_tr0) || 382 (!htrap_tr0_inuse))) { 383 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 384 if ((ret == H_EOK) && (prev_bufsize != 0)) { 385 cmn_err(CE_CONT, 386 "!cpu%d: previous HV traptrace buffer of " 387 "size 0x%lx at address 0x%lx", cpuid, 388 prev_bufsize, prev_buf); 389 } 390 391 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 392 ctlp->d.hlimit / 393 (sizeof (struct htrap_trace_record)), &size); 394 if (ret == H_EOK) { 395 ret = hv_ttrace_enable(\ 396 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 397 if (ret != H_EOK) { 398 cmn_err(CE_WARN, 399 "!cpu%d: HV traptracing not " 400 "enabled, ta: 0x%x returned error: " 401 "%ld", cpuid, TTRACE_ENABLE, ret); 402 } else { 403 if (ctlp->d.hvaddr_base == htrap_tr0) 404 htrap_tr0_inuse = 1; 405 } 406 } else { 407 cmn_err(CE_WARN, 408 "!cpu%d: HV traptrace buffer not " 409 "configured, ta: 0x%x returned error: %ld", 410 cpuid, TTRACE_BUF_CONF, ret); 411 } 412 /* 413 * set hvaddr_base to NULL when traptrace buffer 414 * registration fails 415 */ 416 if (ret != H_EOK) { 417 ctlp->d.hvaddr_base = NULL; 418 ctlp->d.hlimit = 0; 419 ctlp->d.hpaddr_base = NULL; 420 } 421 } 422 } else { 423 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 424 if ((ret == H_EOK) && (prev_bufsize != 0)) { 425 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 426 &prev_enable); 427 if (ret == H_EOK) { 428 if (ctlp->d.hvaddr_base == htrap_tr0) 429 htrap_tr0_inuse = 0; 430 ctlp->d.hvaddr_base = NULL; 431 ctlp->d.hlimit = 0; 432 ctlp->d.hpaddr_base = NULL; 433 } else 434 cmn_err(CE_WARN, 435 "!cpu%d: HV traptracing is not disabled, " 436 "ta: 0x%x returned error: %ld", 437 cpuid, TTRACE_ENABLE, ret); 438 } 439 } 440 } 441 442 /* 443 * This function cleans up the hypervisor traptrace buffer 444 */ 445 void 446 mach_htraptrace_cleanup(int cpuid) 447 { 448 if (mach_htraptrace_enable) { 449 TRAP_TRACE_CTL *ctlp; 450 caddr_t httrace_buf_va; 451 452 ASSERT(cpuid < max_ncpus); 453 ctlp = &trap_trace_ctl[cpuid]; 454 httrace_buf_va = ctlp->d.hvaddr_base; 455 if (httrace_buf_va == htrap_tr0) { 456 bzero(httrace_buf_va, HTRAP_TSIZE); 457 } else if (httrace_buf_va != NULL) { 458 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 459 } 460 ctlp->d.hvaddr_base = NULL; 461 ctlp->d.hlimit = 0; 462 ctlp->d.hpaddr_base = NULL; 463 } 464 } 465 466 /* 467 * Load any required machine class (sun4v) specific drivers. 468 */ 469 void 470 load_mach_drivers(void) 471 { 472 /* 473 * We don't want to load these LDOMs-specific 474 * modules if domaining is not supported. Also, 475 * we must be able to run on non-LDOMs firmware. 476 */ 477 if (!domaining_supported()) 478 return; 479 480 /* 481 * Load the core domain services module 482 */ 483 if (modload("misc", "ds") == -1) 484 cmn_err(CE_NOTE, "!'ds' module failed to load"); 485 486 /* 487 * Load the rest of the domain services 488 */ 489 if (modload("misc", "fault_iso") == -1) 490 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 491 492 if (modload("misc", "platsvc") == -1) 493 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 494 495 if (domaining_enabled() && modload("misc", "dr_cpu") == -1) 496 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 497 498 /* 499 * Attempt to attach any virtual device servers. These 500 * drivers must be loaded at start of day so that they 501 * can respond to any updates to the machine description. 502 * 503 * Since it is quite likely that a domain will not support 504 * one or more of these servers, failures are ignored. 505 */ 506 507 /* virtual disk server */ 508 (void) i_ddi_attach_hw_nodes("vds"); 509 510 /* virtual network switch */ 511 (void) i_ddi_attach_hw_nodes("vsw"); 512 513 /* virtual console concentrator */ 514 (void) i_ddi_attach_hw_nodes("vcc"); 515 } 516