1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/prom_plat.h> 32 #include <sys/promif.h> 33 #include <sys/vm.h> 34 #include <sys/cpu.h> 35 #include <sys/atomic.h> 36 #include <sys/cpupart.h> 37 #include <sys/disp.h> 38 #include <sys/hypervisor_api.h> 39 #include <sys/traptrace.h> 40 #include <sys/modctl.h> 41 #include <sys/ldoms.h> 42 43 #ifdef TRAPTRACE 44 int mach_htraptrace_enable = 1; 45 #else 46 int mach_htraptrace_enable = 0; 47 #endif 48 int htrap_tr0_inuse = 0; 49 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 50 51 caddr_t mmu_fault_status_area; 52 53 extern void sfmmu_set_tsbs(void); 54 /* 55 * CPU IDLE optimization variables/routines 56 */ 57 static int enable_halt_idle_cpus = 1; 58 59 void 60 setup_trap_table(void) 61 { 62 caddr_t mmfsa_va; 63 extern caddr_t mmu_fault_status_area; 64 mmfsa_va = 65 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 66 67 intr_init(CPU); /* init interrupt request free list */ 68 setwstate(WSTATE_KERN); 69 set_mmfsa_scratchpad(mmfsa_va); 70 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 71 sfmmu_set_tsbs(); 72 } 73 74 void 75 phys_install_has_changed(void) 76 { 77 78 } 79 80 /* 81 * Halt the present CPU until awoken via an interrupt 82 */ 83 static void 84 cpu_halt(void) 85 { 86 cpu_t *cpup = CPU; 87 processorid_t cpun = cpup->cpu_id; 88 cpupart_t *cp = cpup->cpu_part; 89 int hset_update = 1; 90 volatile int *p = &cpup->cpu_disp->disp_nrunnable; 91 uint_t s; 92 93 /* 94 * If this CPU is online, and there's multiple CPUs 95 * in the system, then we should notate our halting 96 * by adding ourselves to the partition's halted CPU 97 * bitmap. This allows other CPUs to find/awaken us when 98 * work becomes available. 99 */ 100 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 101 hset_update = 0; 102 103 /* 104 * Add ourselves to the partition's halted CPUs bitmask 105 * and set our HALTED flag, if necessary. 106 * 107 * When a thread becomes runnable, it is placed on the queue 108 * and then the halted cpuset is checked to determine who 109 * (if anyone) should be awoken. We therefore need to first 110 * add ourselves to the halted cpuset, and then check if there 111 * is any work available. 112 */ 113 if (hset_update) { 114 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 115 membar_producer(); 116 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 117 } 118 119 /* 120 * Check to make sure there's really nothing to do. 121 * Work destined for this CPU may become available after 122 * this check. We'll be notified through the clearing of our 123 * bit in the halted CPU bitmask, and a poke. 124 */ 125 if (disp_anywork()) { 126 if (hset_update) { 127 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 128 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 129 } 130 return; 131 } 132 133 /* 134 * We're on our way to being halted. Wait until something becomes 135 * runnable locally or we are awaken (i.e. removed from the halt set). 136 * Note that the call to hv_cpu_yield() can return even if we have 137 * nothing to do. 138 * 139 * Disable interrupts now, so that we'll awaken immediately 140 * after halting if someone tries to poke us between now and 141 * the time we actually halt. 142 * 143 * We check for the presence of our bit after disabling interrupts. 144 * If it's cleared, we'll return. If the bit is cleared after 145 * we check then the poke will pop us out of the halted state. 146 * Also, if the offlined CPU has been brought back on-line, then 147 * we return as well. 148 * 149 * The ordering of the poke and the clearing of the bit by cpu_wakeup 150 * is important. 151 * cpu_wakeup() must clear, then poke. 152 * cpu_halt() must disable interrupts, then check for the bit. 153 * 154 * The check for anything locally runnable is here for performance 155 * and isn't needed for correctness. disp_nrunnable ought to be 156 * in our cache still, so it's inexpensive to check, and if there 157 * is anything runnable we won't have to wait for the poke. 158 * 159 */ 160 s = disable_vec_intr(); 161 while (*p == 0 && 162 ((hset_update && CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) || 163 (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) { 164 (void) hv_cpu_yield(); 165 enable_vec_intr(s); 166 s = disable_vec_intr(); 167 } 168 169 /* 170 * We're no longer halted 171 */ 172 enable_vec_intr(s); 173 if (hset_update) { 174 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 175 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 176 } 177 } 178 179 /* 180 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 181 * Otherwise, see if other CPUs in the cpu partition are halted and need to 182 * be woken up so that they can steal the thread we placed on this CPU. 183 * This function is only used on MP systems. 184 */ 185 static void 186 cpu_wakeup(cpu_t *cpu, int bound) 187 { 188 uint_t cpu_found; 189 int result; 190 cpupart_t *cp; 191 192 cp = cpu->cpu_part; 193 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 194 /* 195 * Clear the halted bit for that CPU since it will be 196 * poked in a moment. 197 */ 198 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 199 /* 200 * We may find the current CPU present in the halted cpuset 201 * if we're in the context of an interrupt that occurred 202 * before we had a chance to clear our bit in cpu_halt(). 203 * Poking ourself is obviously unnecessary, since if 204 * we're here, we're not halted. 205 */ 206 if (cpu != CPU) 207 poke_cpu(cpu->cpu_id); 208 return; 209 } else { 210 /* 211 * This cpu isn't halted, but it's idle or undergoing a 212 * context switch. No need to awaken anyone else. 213 */ 214 if (cpu->cpu_thread == cpu->cpu_idle_thread || 215 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 216 return; 217 } 218 219 /* 220 * No need to wake up other CPUs if the thread we just enqueued 221 * is bound. 222 */ 223 if (bound) 224 return; 225 226 /* 227 * See if there's any other halted CPUs. If there are, then 228 * select one, and awaken it. 229 * It's possible that after we find a CPU, somebody else 230 * will awaken it before we get the chance. 231 * In that case, look again. 232 */ 233 do { 234 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 235 if (cpu_found == CPUSET_NOTINSET) 236 return; 237 238 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 239 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 240 } while (result < 0); 241 242 if (cpu_found != CPU->cpu_id) 243 poke_cpu(cpu_found); 244 } 245 246 void 247 mach_cpu_halt_idle() 248 { 249 if (enable_halt_idle_cpus) { 250 idle_cpu = cpu_halt; 251 disp_enq_thread = cpu_wakeup; 252 } 253 } 254 255 int 256 ndata_alloc_mmfsa(struct memlist *ndata) 257 { 258 size_t size; 259 260 size = MMFSA_SIZE * max_ncpus; 261 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 262 if (mmu_fault_status_area == NULL) 263 return (-1); 264 return (0); 265 } 266 267 void 268 mach_memscrub(void) 269 { 270 /* no memscrub support for sun4v for now */ 271 } 272 273 void 274 mach_fpras() 275 { 276 /* no fpras support for sun4v for now */ 277 } 278 279 void 280 mach_hw_copy_limit(void) 281 { 282 /* HW copy limits set by individual CPU module */ 283 } 284 285 /* 286 * We need to enable soft ring functionality on Niagara platform since 287 * one strand can't handle interrupts for a 1Gb NIC. Set the tunable 288 * ip_squeue_soft_ring by default on this platform. We can also set 289 * ip_threads_per_cpu to track number of threads per core. The variables 290 * themselves are defined in space.c and used by IP module 291 */ 292 extern uint_t ip_threads_per_cpu; 293 extern boolean_t ip_squeue_soft_ring; 294 void 295 startup_platform(void) 296 { 297 ip_squeue_soft_ring = B_TRUE; 298 } 299 300 /* 301 * This function sets up hypervisor traptrace buffer 302 * This routine is called by the boot cpu only 303 */ 304 void 305 mach_htraptrace_setup(int cpuid) 306 { 307 TRAP_TRACE_CTL *ctlp; 308 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 309 310 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 311 !htrap_tr0_inuse)) { 312 ctlp = &trap_trace_ctl[cpuid]; 313 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 314 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 315 if (ctlp->d.hvaddr_base == NULL) { 316 ctlp->d.hlimit = 0; 317 ctlp->d.hpaddr_base = NULL; 318 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 319 "traptrace buffer", cpuid); 320 } else { 321 ctlp->d.hlimit = HTRAP_TSIZE; 322 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 323 } 324 } 325 } 326 327 /* 328 * This function enables or disables the hypervisor traptracing 329 */ 330 void 331 mach_htraptrace_configure(int cpuid) 332 { 333 uint64_t ret; 334 uint64_t prev_buf, prev_bufsize; 335 uint64_t prev_enable; 336 uint64_t size; 337 TRAP_TRACE_CTL *ctlp; 338 339 ctlp = &trap_trace_ctl[cpuid]; 340 if (mach_htraptrace_enable) { 341 if ((ctlp->d.hvaddr_base != NULL) && 342 ((ctlp->d.hvaddr_base != htrap_tr0) || 343 (!htrap_tr0_inuse))) { 344 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 345 if ((ret == H_EOK) && (prev_bufsize != 0)) { 346 cmn_err(CE_CONT, 347 "!cpu%d: previous HV traptrace buffer of " 348 "size 0x%lx at address 0x%lx", cpuid, 349 prev_bufsize, prev_buf); 350 } 351 352 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 353 ctlp->d.hlimit / 354 (sizeof (struct htrap_trace_record)), &size); 355 if (ret == H_EOK) { 356 ret = hv_ttrace_enable(\ 357 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 358 if (ret != H_EOK) { 359 cmn_err(CE_WARN, 360 "!cpu%d: HV traptracing not " 361 "enabled, ta: 0x%x returned error: " 362 "%ld", cpuid, TTRACE_ENABLE, ret); 363 } else { 364 if (ctlp->d.hvaddr_base == htrap_tr0) 365 htrap_tr0_inuse = 1; 366 } 367 } else { 368 cmn_err(CE_WARN, 369 "!cpu%d: HV traptrace buffer not " 370 "configured, ta: 0x%x returned error: %ld", 371 cpuid, TTRACE_BUF_CONF, ret); 372 } 373 /* 374 * set hvaddr_base to NULL when traptrace buffer 375 * registration fails 376 */ 377 if (ret != H_EOK) { 378 ctlp->d.hvaddr_base = NULL; 379 ctlp->d.hlimit = 0; 380 ctlp->d.hpaddr_base = NULL; 381 } 382 } 383 } else { 384 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 385 if ((ret == H_EOK) && (prev_bufsize != 0)) { 386 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 387 &prev_enable); 388 if (ret == H_EOK) { 389 if (ctlp->d.hvaddr_base == htrap_tr0) 390 htrap_tr0_inuse = 0; 391 ctlp->d.hvaddr_base = NULL; 392 ctlp->d.hlimit = 0; 393 ctlp->d.hpaddr_base = NULL; 394 } else 395 cmn_err(CE_WARN, 396 "!cpu%d: HV traptracing is not disabled, " 397 "ta: 0x%x returned error: %ld", 398 cpuid, TTRACE_ENABLE, ret); 399 } 400 } 401 } 402 403 /* 404 * This function cleans up the hypervisor traptrace buffer 405 */ 406 void 407 mach_htraptrace_cleanup(int cpuid) 408 { 409 if (mach_htraptrace_enable) { 410 TRAP_TRACE_CTL *ctlp; 411 caddr_t httrace_buf_va; 412 413 ASSERT(cpuid < max_ncpus); 414 ctlp = &trap_trace_ctl[cpuid]; 415 httrace_buf_va = ctlp->d.hvaddr_base; 416 if (httrace_buf_va == htrap_tr0) { 417 bzero(httrace_buf_va, HTRAP_TSIZE); 418 } else if (httrace_buf_va != NULL) { 419 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 420 } 421 ctlp->d.hvaddr_base = NULL; 422 ctlp->d.hlimit = 0; 423 ctlp->d.hpaddr_base = NULL; 424 } 425 } 426 427 /* 428 * Load any required machine class (sun4v) specific drivers. 429 */ 430 void 431 load_mach_drivers(void) 432 { 433 /* 434 * We don't want to load these LDOMs-specific 435 * modules if domaining is not supported. Also, 436 * we must be able to run on non-LDOMs firmware. 437 */ 438 if (!(domaining_capabilities & DOMAINING_SUPPORTED)) 439 return; 440 441 /* 442 * Load the core domain services module 443 */ 444 if (modload("misc", "ds") == -1) 445 cmn_err(CE_NOTE, "!'ds' module failed to load"); 446 447 /* 448 * Load the rest of the domain services 449 */ 450 if (modload("misc", "fault_iso") == -1) 451 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 452 453 if (modload("misc", "platsvc") == -1) 454 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 455 456 if ((domaining_capabilities & DOMAINING_ENABLED) && 457 modload("misc", "dr_cpu") == -1) 458 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 459 460 /* 461 * Attempt to attach any virtual device servers. These 462 * drivers must be loaded at start of day so that they 463 * can respond to any updates to the machine description. 464 * 465 * Since it is quite likely that a domain will not support 466 * one or more of these servers, failures are ignored. 467 */ 468 469 /* virtual disk server */ 470 (void) i_ddi_attach_hw_nodes("vds"); 471 472 /* virtual network switch */ 473 (void) i_ddi_attach_hw_nodes("vsw"); 474 475 /* virtual console concentrator */ 476 (void) i_ddi_attach_hw_nodes("vcc"); 477 } 478