1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/systm.h> 30 #include <sys/archsystm.h> 31 #include <sys/t_lock.h> 32 #include <sys/uadmin.h> 33 #include <sys/panic.h> 34 #include <sys/reboot.h> 35 #include <sys/autoconf.h> 36 #include <sys/machsystm.h> 37 #include <sys/promif.h> 38 #include <sys/membar.h> 39 #include <vm/hat_sfmmu.h> 40 #include <sys/cpu_module.h> 41 #include <sys/cpu_sgnblk_defs.h> 42 #include <sys/intreg.h> 43 #include <sys/consdev.h> 44 #include <sys/kdi_impl.h> 45 #include <sys/traptrace.h> 46 #include <sys/hypervisor_api.h> 47 #include <sys/vmsystm.h> 48 #include <sys/dtrace.h> 49 #include <sys/xc_impl.h> 50 #include <sys/callb.h> 51 #include <sys/mdesc.h> 52 #include <sys/mach_descrip.h> 53 #include <sys/wdt.h> 54 #include <sys/soft_state.h> 55 #include <sys/promimpl.h> 56 #include <sys/hsvc.h> 57 #include <sys/ldoms.h> 58 59 /* 60 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 61 * A value of NULL indicates that this area is not configured. 62 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 63 */ 64 65 caddr_t hvdump_buf_va; 66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 67 static uint64_t hvdump_buf_pa; 68 69 u_longlong_t panic_tick; 70 71 extern u_longlong_t gettick(); 72 static void reboot_machine(char *); 73 static void update_hvdump_buffer(void); 74 75 /* 76 * For xt_sync synchronization. 77 */ 78 extern uint64_t xc_tick_limit; 79 extern uint64_t xc_tick_jump_limit; 80 81 /* 82 * We keep our own copies, used for cache flushing, because we can be called 83 * before cpu_fiximpl(). 84 */ 85 static int kdi_dcache_size; 86 static int kdi_dcache_linesize; 87 static int kdi_icache_size; 88 static int kdi_icache_linesize; 89 90 /* 91 * Assembly support for generic modules in sun4v/ml/mach_xc.s 92 */ 93 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 94 extern void kdi_flush_idcache(int, int, int, int); 95 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 96 97 98 #define BOOT_CMD_MAX_LEN 256 99 #define BOOT_CMD_BASE "boot " 100 101 extern void consconfig_teardown(); 102 103 /* 104 * In an LDoms system we do not save the user's boot args in NVRAM 105 * as is done on legacy systems. Instead, we format and send a 106 * 'reboot-command' variable to the variable service. The contents 107 * of the variable are retrieved by OBP and used verbatim for 108 * the next boot. 109 */ 110 static void 111 store_boot_cmd(char *args) 112 { 113 static char cmd_buf[BOOT_CMD_MAX_LEN]; 114 size_t len; 115 pnode_t node; 116 size_t base_len; 117 size_t args_len; 118 size_t args_max; 119 120 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 121 122 base_len = strlen(BOOT_CMD_BASE); 123 len = base_len + 1; 124 125 if (args != NULL) { 126 args_len = strlen(args); 127 args_max = BOOT_CMD_MAX_LEN - len; 128 129 if (args_len > args_max) { 130 cmn_err(CE_WARN, "Reboot command too long (%ld), " 131 "truncating command arguments", len + args_len); 132 133 args_len = args_max; 134 } 135 136 len += args_len; 137 (void) strncpy(&cmd_buf[base_len], args, args_len); 138 } 139 140 node = prom_optionsnode(); 141 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 142 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 143 cmn_err(CE_WARN, "Unable to store boot command for " 144 "use on reboot"); 145 } 146 147 148 /* 149 * Machine dependent code to reboot. 150 * 151 * "bootstr", when non-null, points to a string to be used as the 152 * argument string when rebooting. 153 * 154 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 155 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 156 * we are in a normal shutdown sequence (interrupts are not blocked, the 157 * system is not panic'ing or being suspended). 158 */ 159 /*ARGSUSED*/ 160 void 161 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 162 { 163 extern void pm_cfb_check_and_powerup(void); 164 165 switch (fcn) { 166 case AD_HALT: 167 case AD_POWEROFF: 168 break; 169 default: 170 if (bootstr == NULL) { 171 switch (fcn) { 172 173 case AD_BOOT: 174 bootstr = ""; 175 break; 176 177 case AD_IBOOT: 178 bootstr = "-a"; 179 break; 180 181 case AD_SBOOT: 182 bootstr = "-s"; 183 break; 184 185 case AD_SIBOOT: 186 bootstr = "-sa"; 187 break; 188 default: 189 cmn_err(CE_WARN, 190 "mdboot: invalid function %d", fcn); 191 bootstr = ""; 192 break; 193 } 194 } 195 196 /* 197 * If LDoms is running, we must save the boot string 198 * before we enter restricted mode. This is possible 199 * only if we are not being called from panic. 200 */ 201 if (domaining_enabled() && invoke_cb) 202 store_boot_cmd(bootstr); 203 204 } 205 206 /* 207 * At a high interrupt level we can't: 208 * 1) bring up the console 209 * or 210 * 2) wait for pending interrupts prior to redistribution 211 * to the current CPU 212 * 213 * so we do them now. 214 */ 215 pm_cfb_check_and_powerup(); 216 217 /* make sure there are no more changes to the device tree */ 218 devtree_freeze(); 219 220 if (invoke_cb) 221 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 222 223 /* 224 * Clear any unresolved UEs from memory. 225 */ 226 page_retire_mdboot(); 227 228 /* 229 * stop other cpus which also raise our priority. since there is only 230 * one active cpu after this, and our priority will be too high 231 * for us to be preempted, we're essentially single threaded 232 * from here on out. 233 */ 234 stop_other_cpus(); 235 236 consconfig_teardown(); 237 238 /* 239 * try and reset leaf devices. reset_leaves() should only 240 * be called when there are no other threads that could be 241 * accessing devices 242 */ 243 reset_leaves(); 244 245 watchdog_clear(); 246 247 if (fcn == AD_HALT) { 248 mach_set_soft_state(SIS_TRANSITION, 249 &SOLARIS_SOFT_STATE_HALT_MSG); 250 halt((char *)NULL); 251 } else if (fcn == AD_POWEROFF) { 252 mach_set_soft_state(SIS_TRANSITION, 253 &SOLARIS_SOFT_STATE_POWER_MSG); 254 power_down(NULL); 255 } else { 256 mach_set_soft_state(SIS_TRANSITION, 257 &SOLARIS_SOFT_STATE_REBOOT_MSG); 258 reboot_machine(bootstr); 259 } 260 /* MAYBE REACHED */ 261 } 262 263 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 264 /*ARGSUSED*/ 265 void 266 mdpreboot(int cmd, int fcn, char *bootstr) 267 { 268 } 269 270 /* 271 * Halt the machine and then reboot with the device 272 * and arguments specified in bootstr. 273 */ 274 static void 275 reboot_machine(char *bootstr) 276 { 277 flush_windows(); 278 stop_other_cpus(); /* send stop signal to other CPUs */ 279 prom_printf("rebooting...\n"); 280 /* 281 * For platforms that use CPU signatures, we 282 * need to set the signature block to OS and 283 * the state to exiting for all the processors. 284 */ 285 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 286 prom_reboot(bootstr); 287 /*NOTREACHED*/ 288 } 289 290 /* 291 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 292 * Once in panic_idle() they raise spl, record their location, and spin. 293 */ 294 static void 295 panic_idle(void) 296 { 297 (void) spl7(); 298 299 debug_flush_windows(); 300 (void) setjmp(&curthread->t_pcb); 301 302 CPU->cpu_m.in_prom = 1; 303 membar_stld(); 304 305 for (;;) 306 continue; 307 } 308 309 /* 310 * Force the other CPUs to trap into panic_idle(), and then remove them 311 * from the cpu_ready_set so they will no longer receive cross-calls. 312 */ 313 /*ARGSUSED*/ 314 void 315 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 316 { 317 cpuset_t cps; 318 int i; 319 320 (void) splzs(); 321 CPUSET_ALL_BUT(cps, cp->cpu_id); 322 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 323 324 for (i = 0; i < NCPU; i++) { 325 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 326 int ntries = 0x10000; 327 328 while (!cpu[i]->cpu_m.in_prom && ntries) { 329 DELAY(50); 330 ntries--; 331 } 332 333 if (!cpu[i]->cpu_m.in_prom) 334 printf("panic: failed to stop cpu%d\n", i); 335 336 cpu[i]->cpu_flags &= ~CPU_READY; 337 cpu[i]->cpu_flags |= CPU_QUIESCED; 338 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 339 } 340 } 341 } 342 343 /* 344 * Platform callback following each entry to panicsys(). If we've panicked at 345 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 346 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 347 * was made and so we re-enqueue an interrupt request structure to allow 348 * further level 14 interrupts to be processed once we lower PIL. This allows 349 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 350 */ 351 void 352 panic_enter_hw(int spl) 353 { 354 if (!panic_tick) { 355 panic_tick = gettick(); 356 if (mach_htraptrace_enable) { 357 uint64_t prev_freeze; 358 359 /* there are no possible error codes for this hcall */ 360 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 361 &prev_freeze); 362 } 363 #ifdef TRAPTRACE 364 TRAPTRACE_FREEZE; 365 #endif 366 } 367 368 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 369 370 if (spl == ipltospl(PIL_14)) { 371 uint_t opstate = disable_vec_intr(); 372 373 if (curthread->t_panic_trap != NULL) { 374 tickcmpr_disable(); 375 intr_dequeue_req(PIL_14, cbe_level14_inum); 376 } else { 377 if (!tickcmpr_disabled()) 378 intr_enqueue_req(PIL_14, cbe_level14_inum); 379 /* 380 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 381 * and SOFTINT<16> (STICK_INT) to indicate 382 * that the current level 14 has been serviced. 383 */ 384 wr_clr_softint((1 << PIL_14) | 385 TICK_INT_MASK | STICK_INT_MASK); 386 } 387 388 enable_vec_intr(opstate); 389 } 390 } 391 392 /* 393 * Miscellaneous hardware-specific code to execute after panicstr is set 394 * by the panic code: we also print and record PTL1 panic information here. 395 */ 396 /*ARGSUSED*/ 397 void 398 panic_quiesce_hw(panic_data_t *pdp) 399 { 400 extern uint_t getpstate(void); 401 extern void setpstate(uint_t); 402 403 /* 404 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 405 */ 406 if (!panic_tick) { 407 panic_tick = gettick(); 408 if (mach_htraptrace_enable) { 409 uint64_t prev_freeze; 410 411 /* there are no possible error codes for this hcall */ 412 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 413 &prev_freeze); 414 } 415 #ifdef TRAPTRACE 416 TRAPTRACE_FREEZE; 417 #endif 418 } 419 /* 420 * For Platforms that use CPU signatures, we 421 * need to set the signature block to OS, the state to 422 * exiting, and the substate to panic for all the processors. 423 */ 424 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 425 426 update_hvdump_buffer(); 427 428 /* 429 * Disable further ECC errors from the bus nexus. 430 */ 431 (void) bus_func_invoke(BF_TYPE_ERRDIS); 432 433 /* 434 * Redirect all interrupts to the current CPU. 435 */ 436 intr_redist_all_cpus_shutdown(); 437 438 /* 439 * This call exists solely to support dumps to network 440 * devices after sync from OBP. 441 * 442 * If we came here via the sync callback, then on some 443 * platforms, interrupts may have arrived while we were 444 * stopped in OBP. OBP will arrange for those interrupts to 445 * be redelivered if you say "go", but not if you invoke a 446 * client callback like 'sync'. For some dump devices 447 * (network swap devices), we need interrupts to be 448 * delivered in order to dump, so we have to call the bus 449 * nexus driver to reset the interrupt state machines. 450 */ 451 (void) bus_func_invoke(BF_TYPE_RESINTR); 452 453 setpstate(getpstate() | PSTATE_IE); 454 } 455 456 /* 457 * Platforms that use CPU signatures need to set the signature block to OS and 458 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 459 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 460 * reboot the machine if the dump never completes. 461 */ 462 /*ARGSUSED*/ 463 void 464 panic_dump_hw(int spl) 465 { 466 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 467 } 468 469 /* 470 * for ptl1_panic 471 */ 472 void 473 ptl1_init_cpu(struct cpu *cpu) 474 { 475 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 476 477 /*CONSTCOND*/ 478 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 479 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 480 "stack, sizeof (struct cpu) = %lu", 481 (unsigned long)sizeof (struct cpu)); 482 } 483 484 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 485 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 486 } 487 488 void 489 ptl1_panic_handler(ptl1_state_t *pstate) 490 { 491 static const char *ptl1_reasons[] = { 492 #ifdef PTL1_PANIC_DEBUG 493 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 494 #else 495 "unknown trap", /* PTL1_BAD_DEBUG */ 496 #endif 497 "register window trap", /* PTL1_BAD_WTRAP */ 498 "kernel MMU miss", /* PTL1_BAD_KMISS */ 499 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 500 "ISM MMU miss", /* PTL1_BAD_ISM */ 501 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 502 "kernel trap handler state", /* PTL1_BAD_TRAP */ 503 "floating point trap", /* PTL1_BAD_FPTRAP */ 504 #ifdef DEBUG 505 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 506 #else 507 "unknown trap", /* PTL1_BAD_INTR_VEC */ 508 #endif 509 #ifdef TRAPTRACE 510 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 511 #else 512 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 513 #endif 514 "stack overflow", /* PTL1_BAD_STACK */ 515 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 516 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 517 "CPU ECC error loop", /* PTL1_BAD_ECC */ 518 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 519 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 520 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 521 "unexpected RED mode trap", /* PTL1_BAD_RED */ 522 "return value EINVAL from hcall: "\ 523 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 524 "return value ENOMAP from hcall: "\ 525 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 526 }; 527 528 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 529 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 530 struct panic_trap_info ti = { 0 }; 531 532 /* 533 * Use trap_info for a place holder to call panic_savetrap() and 534 * panic_showtrap() to save and print out ptl1_panic information. 535 */ 536 if (curthread->t_panic_trap == NULL) 537 curthread->t_panic_trap = &ti; 538 539 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 540 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 541 else 542 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 543 } 544 545 void 546 clear_watchdog_on_exit(void) 547 { 548 if (watchdog_enabled && watchdog_activated) { 549 prom_printf("Debugging requested; hardware watchdog " 550 "suspended.\n"); 551 (void) watchdog_suspend(); 552 } 553 } 554 555 /* 556 * Restore the watchdog timer when returning from a debugger 557 * after a panic or L1-A and resume watchdog pat. 558 */ 559 void 560 restore_watchdog_on_entry() 561 { 562 watchdog_resume(); 563 } 564 565 int 566 kdi_watchdog_disable(void) 567 { 568 watchdog_suspend(); 569 570 return (0); 571 } 572 573 void 574 kdi_watchdog_restore(void) 575 { 576 watchdog_resume(); 577 } 578 579 void 580 mach_dump_buffer_init(void) 581 { 582 uint64_t ret, minsize = 0; 583 584 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 585 hvdump_buf_sz = HVDUMP_SIZE_MAX; 586 587 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 588 if (hvdump_buf_va == NULL) 589 return; 590 591 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 592 593 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 594 &minsize); 595 596 if (ret != H_EOK) { 597 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 598 hvdump_buf_va = NULL; 599 cmn_err(CE_NOTE, "!Error in setting up hvstate" 600 "dump buffer. Error = 0x%lx, size = 0x%lx," 601 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 602 hvdump_buf_pa); 603 604 if (ret == H_EINVAL) { 605 cmn_err(CE_NOTE, "!Buffer size too small." 606 "Available buffer size = 0x%lx," 607 "Minimum buffer size required = 0x%lx", 608 hvdump_buf_sz, minsize); 609 } 610 } 611 } 612 613 614 static void 615 update_hvdump_buffer(void) 616 { 617 uint64_t ret, dummy_val; 618 619 if (hvdump_buf_va == NULL) 620 return; 621 622 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 623 &dummy_val); 624 if (ret != H_EOK) { 625 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 626 "buffer. Error = 0x%lx", ret); 627 } 628 } 629 630 631 static int 632 getintprop(pnode_t node, char *name, int deflt) 633 { 634 int value; 635 636 switch (prom_getproplen(node, name)) { 637 case 0: 638 value = 1; /* boolean properties */ 639 break; 640 641 case sizeof (int): 642 (void) prom_getprop(node, name, (caddr_t)&value); 643 break; 644 645 default: 646 value = deflt; 647 break; 648 } 649 650 return (value); 651 } 652 653 /* 654 * Called by setcpudelay 655 */ 656 void 657 cpu_init_tick_freq(void) 658 { 659 md_t *mdp; 660 mde_cookie_t rootnode; 661 int listsz; 662 mde_cookie_t *listp = NULL; 663 int num_nodes; 664 uint64_t stick_prop; 665 666 if (broken_md_flag) { 667 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 668 return; 669 } 670 671 if ((mdp = md_get_handle()) == NULL) 672 panic("stick_frequency property not found in MD"); 673 674 rootnode = md_root_node(mdp); 675 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 676 677 num_nodes = md_node_count(mdp); 678 679 ASSERT(num_nodes > 0); 680 listsz = num_nodes * sizeof (mde_cookie_t); 681 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 682 683 if (listp == NULL) 684 panic("cannot allocate list for MD properties"); 685 686 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 687 md_find_name(mdp, "fwd"), listp); 688 689 ASSERT(num_nodes == 1); 690 691 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 692 panic("stick_frequency property not found in MD"); 693 694 sys_tick_freq = stick_prop; 695 696 prom_free((caddr_t)listp, listsz); 697 (void) md_fini_handle(mdp); 698 } 699 700 int shipit(int n, uint64_t cpu_list_ra); 701 extern uint64_t xc_tick_limit; 702 extern uint64_t xc_tick_jump_limit; 703 704 #ifdef DEBUG 705 #define SEND_MONDO_STATS 1 706 #endif 707 708 #ifdef SEND_MONDO_STATS 709 uint32_t x_one_stimes[64]; 710 uint32_t x_one_ltimes[16]; 711 uint32_t x_set_stimes[64]; 712 uint32_t x_set_ltimes[16]; 713 uint32_t x_set_cpus[NCPU]; 714 #endif 715 716 void 717 send_one_mondo(int cpuid) 718 { 719 int retries, stat; 720 uint64_t starttick, endtick, tick, lasttick; 721 struct machcpu *mcpup = &(CPU->cpu_m); 722 723 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 724 starttick = lasttick = gettick(); 725 mcpup->cpu_list[0] = (uint16_t)cpuid; 726 stat = shipit(1, mcpup->cpu_list_ra); 727 endtick = starttick + xc_tick_limit; 728 retries = 0; 729 while (stat != H_EOK) { 730 if (stat != H_EWOULDBLOCK) { 731 if (panic_quiesce) 732 return; 733 if (stat == H_ECPUERROR) 734 cmn_err(CE_PANIC, "send_one_mondo: " 735 "cpuid: 0x%x has been marked in " 736 "error", cpuid); 737 else 738 cmn_err(CE_PANIC, "send_one_mondo: " 739 "unexpected hypervisor error 0x%x " 740 "while sending a mondo to cpuid: " 741 "0x%x", stat, cpuid); 742 } 743 tick = gettick(); 744 /* 745 * If there is a big jump between the current tick 746 * count and lasttick, we have probably hit a break 747 * point. Adjust endtick accordingly to avoid panic. 748 */ 749 if (tick > (lasttick + xc_tick_jump_limit)) 750 endtick += (tick - lasttick); 751 lasttick = tick; 752 if (tick > endtick) { 753 if (panic_quiesce) 754 return; 755 cmn_err(CE_PANIC, "send mondo timeout " 756 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 757 cpuid, retries, stat); 758 } 759 drv_usecwait(1); 760 stat = shipit(1, mcpup->cpu_list_ra); 761 retries++; 762 } 763 #ifdef SEND_MONDO_STATS 764 { 765 uint64_t n = gettick() - starttick; 766 if (n < 8192) 767 x_one_stimes[n >> 7]++; 768 else if (n < 15*8192) 769 x_one_ltimes[n >> 13]++; 770 else 771 x_one_ltimes[0xf]++; 772 } 773 #endif 774 } 775 776 void 777 send_mondo_set(cpuset_t set) 778 { 779 uint64_t starttick, endtick, tick, lasttick; 780 uint_t largestid, smallestid; 781 int i, j; 782 int ncpuids = 0; 783 int shipped = 0; 784 int retries = 0; 785 struct machcpu *mcpup = &(CPU->cpu_m); 786 787 ASSERT(!CPUSET_ISNULL(set)); 788 CPUSET_BOUNDS(set, smallestid, largestid); 789 if (smallestid == CPUSET_NOTINSET) { 790 return; 791 } 792 793 starttick = lasttick = gettick(); 794 endtick = starttick + xc_tick_limit; 795 796 /* 797 * Assemble CPU list for HV argument. We already know 798 * smallestid and largestid are members of set. 799 */ 800 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 801 if (largestid != smallestid) { 802 for (i = smallestid+1; i <= largestid-1; i++) { 803 if (CPU_IN_SET(set, i)) { 804 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 805 } 806 } 807 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 808 } 809 810 do { 811 int stat; 812 813 stat = shipit(ncpuids, mcpup->cpu_list_ra); 814 if (stat == H_EOK) { 815 shipped += ncpuids; 816 break; 817 } 818 819 /* 820 * Either not all CPU mondos were sent, or an 821 * error occurred. CPUs that were sent mondos 822 * have their CPU IDs overwritten in cpu_list. 823 * Reset cpu_list so that it only holds those 824 * CPU IDs that still need to be sent. 825 */ 826 for (i = 0, j = 0; i < ncpuids; i++) { 827 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 828 shipped++; 829 } else { 830 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 831 } 832 } 833 ncpuids = j; 834 835 /* 836 * Now handle possible errors returned 837 * from hypervisor. 838 */ 839 if (stat == H_ECPUERROR) { 840 int errorcpus; 841 842 if (!panic_quiesce) 843 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 844 845 /* 846 * Remove any CPUs in the error state from 847 * cpu_list. At this point cpu_list only 848 * contains the CPU IDs for mondos not 849 * succesfully sent. 850 */ 851 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 852 uint64_t state = CPU_STATE_INVALID; 853 uint16_t id = mcpup->cpu_list[i]; 854 855 (void) hv_cpu_state(id, &state); 856 if (state == CPU_STATE_ERROR) { 857 if (!panic_quiesce) 858 cmn_err(CE_CONT, "0x%x ", id); 859 errorcpus++; 860 } else if (errorcpus > 0) { 861 mcpup->cpu_list[i - errorcpus] = 862 mcpup->cpu_list[i]; 863 } 864 } 865 ncpuids -= errorcpus; 866 867 if (!panic_quiesce) { 868 if (errorcpus == 0) { 869 cmn_err(CE_CONT, "<none> have been " 870 "marked in error\n"); 871 cmn_err(CE_PANIC, "send_mondo_set: " 872 "hypervisor returned " 873 "H_ECPUERROR but no CPU in " 874 "cpu_list in error state"); 875 } else { 876 cmn_err(CE_CONT, "have been marked in " 877 "error\n"); 878 cmn_err(CE_PANIC, "send_mondo_set: " 879 "CPU(s) in error state"); 880 } 881 } 882 } else if (stat != H_EWOULDBLOCK) { 883 if (panic_quiesce) 884 return; 885 /* 886 * For all other errors, panic. 887 */ 888 cmn_err(CE_CONT, "send_mondo_set: unexpected " 889 "hypervisor error 0x%x while sending a " 890 "mondo to cpuid(s):", stat); 891 for (i = 0; i < ncpuids; i++) { 892 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 893 } 894 cmn_err(CE_CONT, "\n"); 895 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 896 "hypervisor error"); 897 } 898 899 tick = gettick(); 900 /* 901 * If there is a big jump between the current tick 902 * count and lasttick, we have probably hit a break 903 * point. Adjust endtick accordingly to avoid panic. 904 */ 905 if (tick > (lasttick + xc_tick_jump_limit)) 906 endtick += (tick - lasttick); 907 lasttick = tick; 908 if (tick > endtick) { 909 if (panic_quiesce) 910 return; 911 cmn_err(CE_CONT, "send mondo timeout " 912 "[retries: 0x%x] cpuids: ", retries); 913 for (i = 0; i < ncpuids; i++) 914 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 915 cmn_err(CE_CONT, "\n"); 916 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 917 } 918 919 while (gettick() < (tick + sys_clock_mhz)) 920 ; 921 retries++; 922 } while (ncpuids > 0); 923 924 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 925 926 #ifdef SEND_MONDO_STATS 927 { 928 uint64_t n = gettick() - starttick; 929 if (n < 8192) 930 x_set_stimes[n >> 7]++; 931 else if (n < 15*8192) 932 x_set_ltimes[n >> 13]++; 933 else 934 x_set_ltimes[0xf]++; 935 } 936 x_set_cpus[shipped]++; 937 #endif 938 } 939 940 void 941 syncfpu(void) 942 { 943 } 944 945 void 946 sticksync_slave(void) 947 {} 948 949 void 950 sticksync_master(void) 951 {} 952 953 void 954 cpu_init_cache_scrub(void) 955 { 956 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 957 } 958 959 int 960 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 961 { 962 int ret, watched; 963 964 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 965 ret = dtrace_blksuword32(addr, data, 0); 966 if (watched) 967 watch_enable_addr((void *)addr, 4, S_WRITE); 968 969 return (ret); 970 } 971 972 int 973 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 974 { 975 if (suword32((void *)addr, *data) == -1) 976 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 977 dtrace_flush_sec(addr); 978 979 return (0); 980 } 981 982 /*ARGSUSED*/ 983 void 984 cpu_faulted_enter(struct cpu *cp) 985 { 986 } 987 988 /*ARGSUSED*/ 989 void 990 cpu_faulted_exit(struct cpu *cp) 991 { 992 } 993 994 static int 995 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 996 { 997 int rc, i; 998 999 for (rc = 0, i = 0; i < NCPU; i++) { 1000 if (CPU_IN_SET(cpu_ready_set, i)) 1001 rc += cb(i, arg); 1002 } 1003 1004 return (rc); 1005 } 1006 1007 /* 1008 * Sends a cross-call to a specified processor. The caller assumes 1009 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1010 * debugging). 1011 */ 1012 static int 1013 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1014 uintptr_t arg2) 1015 { 1016 int stat; 1017 struct machcpu *mcpup; 1018 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1019 1020 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1021 1022 /* 1023 * if (idsr_busy()) 1024 * return (KDI_XC_RES_ERR); 1025 */ 1026 1027 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1028 1029 mcpup->cpu_list[0] = (uint16_t)cpuid; 1030 stat = shipit(1, mcpup->cpu_list_ra); 1031 1032 if (stat == 0) 1033 return (KDI_XC_RES_OK); 1034 else 1035 return (KDI_XC_RES_NACK); 1036 } 1037 1038 static void 1039 kdi_tickwait(clock_t nticks) 1040 { 1041 clock_t endtick = gettick() + nticks; 1042 1043 while (gettick() < endtick) 1044 continue; 1045 } 1046 1047 static void 1048 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1049 int icache_linesize) 1050 { 1051 kdi_dcache_size = dcache_size; 1052 kdi_dcache_linesize = dcache_linesize; 1053 kdi_icache_size = icache_size; 1054 kdi_icache_linesize = icache_linesize; 1055 } 1056 1057 /* used directly by kdi_read/write_phys */ 1058 void 1059 kdi_flush_caches(void) 1060 { 1061 /* Not required on sun4v architecture. */ 1062 } 1063 1064 /*ARGSUSED*/ 1065 int 1066 kdi_get_stick(uint64_t *stickp) 1067 { 1068 return (-1); 1069 } 1070 1071 void 1072 cpu_kdi_init(kdi_t *kdi) 1073 { 1074 kdi->kdi_flush_caches = kdi_flush_caches; 1075 kdi->mkdi_cpu_init = kdi_cpu_init; 1076 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1077 kdi->mkdi_xc_one = kdi_xc_one; 1078 kdi->mkdi_tickwait = kdi_tickwait; 1079 kdi->mkdi_get_stick = kdi_get_stick; 1080 } 1081 1082 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1083 static uint64_t soft_state_saved_state = (uint64_t)-1; 1084 static int soft_state_initialized = 0; 1085 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1086 static hsvc_info_t soft_state_hsvc = { 1087 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1088 1089 1090 static void 1091 sun4v_system_claim(void) 1092 { 1093 watchdog_suspend(); 1094 /* 1095 * For "mdb -K", set soft state to debugging 1096 */ 1097 if (soft_state_saved_state == -1) { 1098 mach_get_soft_state(&soft_state_saved_state, 1099 &SOLARIS_SOFT_STATE_SAVED_MSG); 1100 } 1101 /* 1102 * check again as the read above may or may not have worked and if 1103 * it didn't then soft state will still be -1 1104 */ 1105 if (soft_state_saved_state != -1) { 1106 mach_set_soft_state(SIS_TRANSITION, 1107 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1108 } 1109 } 1110 1111 static void 1112 sun4v_system_release(void) 1113 { 1114 watchdog_resume(); 1115 /* 1116 * For "mdb -K", set soft_state state back to original state on exit 1117 */ 1118 if (soft_state_saved_state != -1) { 1119 mach_set_soft_state(soft_state_saved_state, 1120 &SOLARIS_SOFT_STATE_SAVED_MSG); 1121 soft_state_saved_state = -1; 1122 } 1123 } 1124 1125 void 1126 plat_kdi_init(kdi_t *kdi) 1127 { 1128 kdi->pkdi_system_claim = sun4v_system_claim; 1129 kdi->pkdi_system_release = sun4v_system_release; 1130 } 1131 1132 /* 1133 * Routine to return memory information associated 1134 * with a physical address and syndrome. 1135 */ 1136 /* ARGSUSED */ 1137 int 1138 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1139 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1140 int *segsp, int *banksp, int *mcidp) 1141 { 1142 return (ENOTSUP); 1143 } 1144 1145 /* 1146 * This routine returns the size of the kernel's FRU name buffer. 1147 */ 1148 size_t 1149 cpu_get_name_bufsize() 1150 { 1151 return (UNUM_NAMLEN); 1152 } 1153 1154 /* 1155 * This routine is a more generic interface to cpu_get_mem_unum(), 1156 * that may be used by other modules (e.g. mm). 1157 */ 1158 /* ARGSUSED */ 1159 int 1160 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1161 char *buf, int buflen, int *lenp) 1162 { 1163 return (ENOTSUP); 1164 } 1165 1166 /* ARGSUSED */ 1167 int 1168 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1169 { 1170 return (ENOTSUP); 1171 } 1172 1173 /* ARGSUSED */ 1174 int 1175 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1176 { 1177 return (ENOTSUP); 1178 } 1179 1180 /* 1181 * xt_sync - wait for previous x-traps to finish 1182 */ 1183 void 1184 xt_sync(cpuset_t cpuset) 1185 { 1186 union { 1187 uint8_t volatile byte[NCPU]; 1188 uint64_t volatile xword[NCPU / 8]; 1189 } cpu_sync; 1190 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1191 uint_t largestid, smallestid; 1192 int i, j; 1193 1194 kpreempt_disable(); 1195 CPUSET_DEL(cpuset, CPU->cpu_id); 1196 CPUSET_AND(cpuset, cpu_ready_set); 1197 1198 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1199 if (smallestid == CPUSET_NOTINSET) 1200 goto out; 1201 1202 /* 1203 * Sun4v uses a queue for receiving mondos. Successful 1204 * transmission of a mondo only indicates that the mondo 1205 * has been written into the queue. 1206 * 1207 * We use an array of bytes to let each cpu to signal back 1208 * to the cross trap sender that the cross trap has been 1209 * executed. Set the byte to 1 before sending the cross trap 1210 * and wait until other cpus reset it to 0. 1211 */ 1212 bzero((void *)&cpu_sync, NCPU); 1213 cpu_sync.byte[smallestid] = 1; 1214 if (largestid != smallestid) { 1215 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1216 if (CPU_IN_SET(cpuset, i)) 1217 cpu_sync.byte[i] = 1; 1218 cpu_sync.byte[largestid] = 1; 1219 } 1220 1221 /* 1222 * To help debug xt_sync panic, each mondo is uniquely identified 1223 * by passing the tick value, traptrace_id as the second mondo 1224 * argument to xt_some which is logged in CPU's mondo queue, 1225 * traptrace buffer and the panic message. 1226 */ 1227 traptrace_id = gettick(); 1228 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1229 (uint64_t)cpu_sync.byte, traptrace_id); 1230 1231 starttick = lasttick = gettick(); 1232 endtick = starttick + xc_tick_limit; 1233 1234 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1235 while (cpu_sync.xword[i] != 0) { 1236 tick = gettick(); 1237 /* 1238 * If there is a big jump between the current tick 1239 * count and lasttick, we have probably hit a break 1240 * point. Adjust endtick accordingly to avoid panic. 1241 */ 1242 if (tick > (lasttick + xc_tick_jump_limit)) { 1243 endtick += (tick - lasttick); 1244 } 1245 lasttick = tick; 1246 if (tick > endtick) { 1247 if (panic_quiesce) 1248 goto out; 1249 cmn_err(CE_CONT, "Cross trap sync timeout: " 1250 "at cpu_sync.xword[%d]: 0x%lx " 1251 "cpu_sync.byte: 0x%lx " 1252 "starttick: 0x%lx endtick: 0x%lx " 1253 "traptrace_id = 0x%lx\n", 1254 i, cpu_sync.xword[i], 1255 (uint64_t)cpu_sync.byte, 1256 starttick, endtick, traptrace_id); 1257 cmn_err(CE_CONT, "CPUIDs:"); 1258 for (j = (i * 8); j <= largestid; j++) { 1259 if (cpu_sync.byte[j] != 0) 1260 cmn_err(CE_CONT, " 0x%x", j); 1261 } 1262 cmn_err(CE_PANIC, "xt_sync: timeout"); 1263 } 1264 } 1265 } 1266 1267 out: 1268 kpreempt_enable(); 1269 } 1270 1271 /* 1272 * Recalculate the values of the cross-call timeout variables based 1273 * on the value of the 'inter-cpu-latency' property of the platform node. 1274 * The property sets the number of nanosec to wait for a cross-call 1275 * to be acknowledged. Other timeout variables are derived from it. 1276 * 1277 * N.B. This implementation is aware of the internals of xc_init() 1278 * and updates many of the same variables. 1279 */ 1280 void 1281 recalc_xc_timeouts(void) 1282 { 1283 typedef union { 1284 uint64_t whole; 1285 struct { 1286 uint_t high; 1287 uint_t low; 1288 } half; 1289 } u_number; 1290 1291 /* See x_call.c for descriptions of these extern variables. */ 1292 extern uint64_t xc_tick_limit_scale; 1293 extern uint64_t xc_mondo_time_limit; 1294 extern uint64_t xc_func_time_limit; 1295 extern uint64_t xc_scale; 1296 extern uint64_t xc_mondo_multiplier; 1297 extern uint_t nsec_shift; 1298 1299 /* Temp versions of the target variables */ 1300 uint64_t tick_limit; 1301 uint64_t tick_jump_limit; 1302 uint64_t mondo_time_limit; 1303 uint64_t func_time_limit; 1304 uint64_t scale; 1305 1306 uint64_t latency; /* nanoseconds */ 1307 uint64_t maxfreq; 1308 uint64_t tick_limit_save = xc_tick_limit; 1309 uint_t tick_scale; 1310 uint64_t top; 1311 uint64_t bottom; 1312 u_number tk; 1313 1314 md_t *mdp; 1315 int nrnode; 1316 mde_cookie_t *platlist; 1317 1318 /* 1319 * Look up the 'inter-cpu-latency' (optional) property in the 1320 * platform node of the MD. The units are nanoseconds. 1321 */ 1322 if ((mdp = md_get_handle()) == NULL) { 1323 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1324 "Unable to initialize machine description"); 1325 return; 1326 } 1327 1328 nrnode = md_alloc_scan_dag(mdp, 1329 md_root_node(mdp), "platform", "fwd", &platlist); 1330 1331 ASSERT(nrnode == 1); 1332 if (nrnode < 1) { 1333 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1334 goto done; 1335 } 1336 1337 if (md_get_prop_val(mdp, platlist[0], 1338 "inter-cpu-latency", &latency) == -1) 1339 goto done; 1340 1341 /* 1342 * clock.h defines an assembly-language macro 1343 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1344 * units to nanoseconds. Since the inter-cpu-latency 1345 * units are nanoseconds and the xc_* variables require 1346 * %stick units, we need the inverse of that function. 1347 * The trick is to perform the calculation without 1348 * floating point, but also without integer truncation 1349 * or overflow. To understand the calculation below, 1350 * please read the discussion of the macro in clock.h. 1351 * Since this new code will be invoked infrequently, 1352 * we can afford to implement it in C. 1353 * 1354 * tick_scale is the reciprocal of nsec_scale which is 1355 * calculated at startup in setcpudelay(). The calc 1356 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1357 * except we use tick_scale instead of nsec_scale and 1358 * C instead of assembler. 1359 */ 1360 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1361 << (32 - nsec_shift)) / NANOSEC); 1362 1363 tk.whole = latency; 1364 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1365 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1366 tick_limit = top + bottom; 1367 1368 1369 /* 1370 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1371 * and used it to derive some of the timeout variables that we 1372 * recalculate below. We can back into the original value by 1373 * using the inverse of one of those calculations. 1374 */ 1375 maxfreq = xc_mondo_time_limit / xc_scale; 1376 1377 /* 1378 * Don't allow the new timeout (xc_tick_limit) to fall below 1379 * the system tick frequency (stick). Allowing the timeout 1380 * to be set more tightly than this empirically determined 1381 * value may cause panics. 1382 */ 1383 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1384 1385 tick_jump_limit = tick_limit / 32; 1386 tick_limit *= xc_tick_limit_scale; 1387 1388 /* 1389 * Recalculate xc_scale since it is used in a callback function 1390 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1391 * Make the change in xc_scale proportional to the change in 1392 * xc_tick_limit. 1393 */ 1394 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1395 if (scale == 0) 1396 scale = 1; 1397 1398 mondo_time_limit = maxfreq * scale; 1399 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1400 1401 /* 1402 * Don't modify the timeouts if nothing has changed. Else, 1403 * stuff the variables with the freshly calculated (temp) 1404 * variables. This minimizes the window where the set of 1405 * values could be inconsistent. 1406 */ 1407 if (tick_limit != xc_tick_limit) { 1408 xc_tick_limit = tick_limit; 1409 xc_tick_jump_limit = tick_jump_limit; 1410 xc_scale = scale; 1411 xc_mondo_time_limit = mondo_time_limit; 1412 xc_func_time_limit = func_time_limit; 1413 /* 1414 * Force the new values to be used for future cross 1415 * calls. This is necessary only when we increase 1416 * the timeouts. 1417 */ 1418 if (tick_limit > tick_limit_save) { 1419 cpuset_t cpuset = cpu_ready_set; 1420 1421 xt_sync(cpuset); 1422 } 1423 } 1424 1425 done: 1426 if (nrnode > 0) 1427 md_free_scan_dag(mdp, &platlist); 1428 (void) md_fini_handle(mdp); 1429 } 1430 1431 void 1432 mach_soft_state_init(void) 1433 { 1434 int i; 1435 uint64_t ra; 1436 1437 /* 1438 * Try to register soft_state api. If it fails, soft_state api has not 1439 * been implemented in the firmware, so do not bother to setup 1440 * soft_state in the kernel. 1441 */ 1442 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1443 return; 1444 } 1445 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1446 ASSERT(strlen((const char *)(void *) 1447 soft_state_message_strings + i) < SSM_SIZE); 1448 if ((ra = va_to_pa( 1449 (void *)(soft_state_message_strings + i))) == -1ll) { 1450 return; 1451 } 1452 soft_state_message_ra[i] = ra; 1453 } 1454 /* 1455 * Tell OBP that we are supporting Guest State 1456 */ 1457 prom_sun4v_soft_state_supported(); 1458 soft_state_initialized = 1; 1459 } 1460 1461 void 1462 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1463 { 1464 uint64_t rc; 1465 1466 if (soft_state_initialized && *string_ra) { 1467 rc = hv_soft_state_set(state, *string_ra); 1468 if (rc != H_EOK) { 1469 cmn_err(CE_WARN, 1470 "hv_soft_state_set returned %ld\n", rc); 1471 } 1472 } 1473 } 1474 1475 void 1476 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1477 { 1478 uint64_t rc; 1479 1480 if (soft_state_initialized && *string_ra) { 1481 rc = hv_soft_state_get(*string_ra, state); 1482 if (rc != H_EOK) { 1483 cmn_err(CE_WARN, 1484 "hv_soft_state_get returned %ld\n", rc); 1485 *state = -1; 1486 } 1487 } 1488 } 1489