xref: /titanic_51/usr/src/uts/sun4v/os/error.c (revision 5c88ba20fc79ecf19255b4a04f03d77630b6d0e7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/machsystm.h>
31 #include <sys/cpuvar.h>
32 #include <sys/async.h>
33 #include <sys/ontrap.h>
34 #include <sys/ddifm.h>
35 #include <sys/hypervisor_api.h>
36 #include <sys/errorq.h>
37 #include <sys/promif.h>
38 #include <sys/prom_plat.h>
39 #include <sys/x_call.h>
40 #include <sys/error.h>
41 #include <sys/fm/util.h>
42 #include <sys/ivintr.h>
43 
44 #define	MAX_CE_FLTS		10
45 #define	MAX_ASYNC_FLTS		6
46 
47 errorq_t *ue_queue;			/* queue of uncorrectable errors */
48 errorq_t *ce_queue;			/* queue of correctable errors */
49 
50 /*
51  * Being used by memory test driver.
52  * ce_verbose_memory - covers CEs in DIMMs
53  * ce_verbose_other - covers "others" (ecache, IO, etc.)
54  *
55  * If the value is 0, nothing is logged.
56  * If the value is 1, the error is logged to the log file, but not console.
57  * If the value is 2, the error is logged to the log file and console.
58  */
59 int	ce_verbose_memory = 1;
60 int	ce_verbose_other = 1;
61 
62 int	ce_show_data = 0;
63 int	ce_debug = 0;
64 int	ue_debug = 0;
65 int	reset_debug = 0;
66 
67 /*
68  * Tunables for controlling the handling of asynchronous faults (AFTs). Setting
69  * these to non-default values on a non-DEBUG kernel is NOT supported.
70  */
71 int	aft_verbose = 0;	/* log AFT messages > 1 to log only */
72 int	aft_panic = 0;		/* panic (not reboot) on fatal usermode AFLT */
73 int	aft_testfatal = 0;	/* force all AFTs to panic immediately */
74 
75 /*
76  * Used for vbsc hostshutdown (power-off buton)
77  */
78 int	err_shutdown_triggered = 0;	/* only once */
79 uint_t	err_shutdown_inum = 0;		/* used to pull the trigger */
80 
81 /*
82  * Defined in bus_func.c but initialised in error_init
83  */
84 extern kmutex_t bfd_lock;
85 
86 static uint32_t rq_overflow_count = 0;		/* counter for rq overflow */
87 
88 static void cpu_queue_one_event(errh_async_flt_t *);
89 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t);
90 static void errh_page_settoxic(errh_async_flt_t *, uchar_t);
91 static void errh_page_retire(errh_async_flt_t *);
92 static int errh_error_protected(struct regs *, struct async_flt *, int *);
93 static void errh_rq_full(struct async_flt *);
94 static void ue_drain(void *, struct async_flt *, errorq_elem_t *);
95 static void ce_drain(void *, struct async_flt *, errorq_elem_t *);
96 
97 /*ARGSUSED*/
98 void
99 process_resumable_error(struct regs *rp, uint32_t head_offset,
100     uint32_t tail_offset)
101 {
102 	struct machcpu *mcpup;
103 	struct async_flt *aflt;
104 	errh_async_flt_t errh_flt;
105 	errh_er_t *head_va;
106 
107 	mcpup = &(CPU->cpu_m);
108 
109 	while (head_offset != tail_offset) {
110 		/* kernel buffer starts right after the resumable queue */
111 		head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset +
112 		    CPU_RQ_SIZE);
113 		/* Copy the error report to local buffer */
114 		bzero(&errh_flt, sizeof (errh_async_flt_t));
115 		bcopy((char *)head_va, &(errh_flt.errh_er),
116 		    sizeof (errh_er_t));
117 
118 		/* Increment the queue head */
119 		head_offset += Q_ENTRY_SIZE;
120 		/* Wrap around */
121 		head_offset &= (CPU_RQ_SIZE - 1);
122 
123 		/* set error handle to zero so it can hold new error report */
124 		head_va->ehdl = 0;
125 
126 		switch (errh_flt.errh_er.desc) {
127 		case ERRH_DESC_UCOR_RE:
128 			break;
129 
130 		case ERRH_DESC_WARN_RE:
131 			/*
132 			 * Power-off requested, but handle it one time only.
133 			 */
134 			if (!err_shutdown_triggered) {
135 				setsoftint(err_shutdown_inum);
136 				++err_shutdown_triggered;
137 			}
138 			continue;
139 
140 		default:
141 			cmn_err(CE_WARN, "Error Descriptor 0x%llx "
142 			    " invalid in resumable error handler",
143 			    (long long) errh_flt.errh_er.desc);
144 			continue;
145 		}
146 
147 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
148 		aflt->flt_id = gethrtime();
149 		aflt->flt_bus_id = getprocessorid();
150 		aflt->flt_class = CPU_FAULT;
151 		aflt->flt_prot = AFLT_PROT_NONE;
152 		aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK)
153 		    >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV);
154 
155 		if (errh_flt.errh_er.attr & ERRH_ATTR_CPU)
156 			/* If it is an error on other cpu */
157 			aflt->flt_panic = 1;
158 		else
159 			aflt->flt_panic = 0;
160 
161 		/*
162 		 * Handle resumable queue full case.
163 		 */
164 		if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) {
165 			(void) errh_rq_full(aflt);
166 		}
167 
168 		/*
169 		 * Queue the error on ce or ue queue depend on flt_panic.
170 		 * Even if flt_panic is set, the code still keep processing
171 		 * the rest element on rq until the panic starts.
172 		 */
173 		(void) cpu_queue_one_event(&errh_flt);
174 
175 		/*
176 		 * Panic here if aflt->flt_panic has been set.
177 		 * Enqueued errors will be logged as part of the panic flow.
178 		 */
179 		if (aflt->flt_panic) {
180 			fm_panic("Unrecoverable error on another CPU");
181 		}
182 	}
183 }
184 
185 void
186 process_nonresumable_error(struct regs *rp, uint64_t tl,
187     uint32_t head_offset, uint32_t tail_offset)
188 {
189 	struct machcpu *mcpup;
190 	struct async_flt *aflt;
191 	errh_async_flt_t errh_flt;
192 	errh_er_t *head_va;
193 	int trampolined = 0;
194 	int expected = DDI_FM_ERR_UNEXPECTED;
195 	uint64_t exec_mode;
196 
197 	mcpup = &(CPU->cpu_m);
198 
199 	while (head_offset != tail_offset) {
200 		/* kernel buffer starts right after the nonresumable queue */
201 		head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset +
202 		    CPU_NRQ_SIZE);
203 
204 		/* Copy the error report to local buffer */
205 		bzero(&errh_flt, sizeof (errh_async_flt_t));
206 
207 		bcopy((char *)head_va, &(errh_flt.errh_er),
208 		    sizeof (errh_er_t));
209 
210 		/* Increment the queue head */
211 		head_offset += Q_ENTRY_SIZE;
212 		/* Wrap around */
213 		head_offset &= (CPU_NRQ_SIZE - 1);
214 
215 		/* set error handle to zero so it can hold new error report */
216 		head_va->ehdl = 0;
217 
218 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
219 
220 		trampolined = 0;
221 
222 		if (errh_flt.errh_er.attr & ERRH_ATTR_PIO)
223 			aflt->flt_class = BUS_FAULT;
224 		else
225 			aflt->flt_class = CPU_FAULT;
226 
227 		aflt->flt_id = gethrtime();
228 		aflt->flt_bus_id = getprocessorid();
229 		aflt->flt_pc = (caddr_t)rp->r_pc;
230 		exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK)
231 		    >> ERRH_MODE_SHIFT;
232 		aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV ||
233 		    exec_mode == ERRH_MODE_UNKNOWN);
234 		aflt->flt_tl = (uchar_t)tl;
235 		aflt->flt_prot = AFLT_PROT_NONE;
236 		aflt->flt_panic = ((aflt->flt_tl != 0) ||
237 		    (aft_testfatal != 0));
238 
239 		switch (errh_flt.errh_er.desc) {
240 		case ERRH_DESC_PR_NRE:
241 			/*
242 			 * Fall through, precise fault also need to check
243 			 * to see if it was protected.
244 			 */
245 
246 		case ERRH_DESC_DEF_NRE:
247 			/*
248 			 * If the trap occurred in privileged mode at TL=0,
249 			 * we need to check to see if we were executing
250 			 * in kernel under on_trap() or t_lofault
251 			 * protection. If so, modify the saved registers
252 			 * so that we return from the trap to the
253 			 * appropriate trampoline routine.
254 			 */
255 			if (aflt->flt_priv == 1 && aflt->flt_tl == 0)
256 				trampolined =
257 				    errh_error_protected(rp, aflt, &expected);
258 
259 			if (!aflt->flt_priv || aflt->flt_prot ==
260 			    AFLT_PROT_COPY) {
261 				aflt->flt_panic |= aft_panic;
262 			} else if (!trampolined &&
263 			    aflt->flt_class != BUS_FAULT) {
264 				aflt->flt_panic = 1;
265 			}
266 
267 			/*
268 			 * If PIO error, we need to query the bus nexus
269 			 * for fatal errors.
270 			 */
271 			if (aflt->flt_class == BUS_FAULT) {
272 				aflt->flt_addr = errh_flt.errh_er.ra;
273 				errh_cpu_run_bus_error_handlers(aflt,
274 				    expected);
275 			}
276 
277 			break;
278 
279 		default:
280 			cmn_err(CE_WARN, "Error Descriptor 0x%llx "
281 			    " invalid in nonresumable error handler",
282 			    (long long) errh_flt.errh_er.desc);
283 			continue;
284 		}
285 
286 		/*
287 		 * Queue the error report for further processing. If
288 		 * flt_panic is set, code still process other errors
289 		 * in the queue until the panic routine stops the
290 		 * kernel.
291 		 */
292 		(void) cpu_queue_one_event(&errh_flt);
293 
294 		/*
295 		 * Panic here if aflt->flt_panic has been set.
296 		 * Enqueued errors will be logged as part of the panic flow.
297 		 */
298 		if (aflt->flt_panic) {
299 			fm_panic("Unrecoverable hardware error");
300 		}
301 
302 		/*
303 		 * If it is a memory error, we turn on the PAGE_IS_TOXIC
304 		 * flag. The page will be retired later and scrubbed when
305 		 * it is freed.
306 		 */
307 		if (errh_flt.errh_er.attr & ERRH_ATTR_MEM)
308 			(void) errh_page_settoxic(&errh_flt, PAGE_IS_TOXIC);
309 
310 		/*
311 		 * If we queued an error and the it was in user mode or
312 		 * protected by t_lofault,
313 		 * set AST flag so the queue will be drained before
314 		 * returning to user mode.
315 		 */
316 		if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
317 			int pcb_flag = 0;
318 
319 			if (aflt->flt_class == CPU_FAULT)
320 				pcb_flag |= ASYNC_HWERR;
321 			else if (aflt->flt_class == BUS_FAULT)
322 				pcb_flag |= ASYNC_BERR;
323 
324 			ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
325 			aston(curthread);
326 		}
327 	}
328 }
329 
330 /*
331  * For PIO errors, this routine calls nexus driver's error
332  * callback routines. If the callback routine returns fatal, and
333  * we are in kernel or unknow mode without any error protection,
334  * we need to turn on the panic flag.
335  */
336 void
337 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
338 {
339 	int status;
340 	ddi_fm_error_t de;
341 
342 	bzero(&de, sizeof (ddi_fm_error_t));
343 
344 	de.fme_version = DDI_FME_VERSION;
345 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
346 	de.fme_flag = expected;
347 	de.fme_bus_specific = (void *)aflt->flt_addr;
348 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
349 
350 	/*
351 	 * If error is protected, it will jump to proper routine
352 	 * to handle the handle; if it is in user level, we just
353 	 * kill the user process; if the driver thinks the error is
354 	 * not fatal, we can drive on. If none of above are true,
355 	 * we panic
356 	 */
357 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) &&
358 	    (status == DDI_FM_FATAL))
359 		aflt->flt_panic = 1;
360 }
361 
362 /*
363  * This routine checks to see if we are under any error protection when
364  * the error happens. If we are under error protection, we unwind to
365  * the protection and indicate fault.
366  */
367 static int
368 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected)
369 {
370 	int trampolined = 0;
371 	ddi_acc_hdl_t *hp;
372 
373 	if (curthread->t_ontrap != NULL) {
374 		on_trap_data_t *otp = curthread->t_ontrap;
375 
376 		if (otp->ot_prot & OT_DATA_EC) {
377 			aflt->flt_prot = AFLT_PROT_EC;
378 			otp->ot_trap |= OT_DATA_EC;
379 			rp->r_pc = otp->ot_trampoline;
380 			rp->r_npc = rp->r_pc +4;
381 			trampolined = 1;
382 		}
383 
384 		if (otp->ot_prot & OT_DATA_ACCESS) {
385 			aflt->flt_prot = AFLT_PROT_ACCESS;
386 			otp->ot_trap |= OT_DATA_ACCESS;
387 			rp->r_pc = otp->ot_trampoline;
388 			rp->r_npc = rp->r_pc + 4;
389 			trampolined = 1;
390 			/*
391 			 * for peek and caut_gets
392 			 * errors are expected
393 			 */
394 			hp = (ddi_acc_hdl_t *)otp->ot_handle;
395 			if (!hp)
396 				*expected = DDI_FM_ERR_PEEK;
397 			else if (hp->ah_acc.devacc_attr_access ==
398 			    DDI_CAUTIOUS_ACC)
399 				*expected = DDI_FM_ERR_EXPECTED;
400 		}
401 	} else if (curthread->t_lofault) {
402 		aflt->flt_prot = AFLT_PROT_COPY;
403 		rp->r_g1 = EFAULT;
404 		rp->r_pc = curthread->t_lofault;
405 		rp->r_npc = rp->r_pc + 4;
406 		trampolined = 1;
407 	}
408 
409 	return (trampolined);
410 }
411 
412 /*
413  * Queue one event.
414  */
415 static void
416 cpu_queue_one_event(errh_async_flt_t *errh_fltp)
417 {
418 	struct async_flt *aflt = (struct async_flt *)errh_fltp;
419 	errorq_t *eqp;
420 
421 	if (aflt->flt_panic)
422 		eqp = ue_queue;
423 	else
424 		eqp = ce_queue;
425 
426 	errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t),
427 	    aflt->flt_panic);
428 }
429 
430 /*
431  * The cpu_async_log_err() function is called by the ce/ue_drain() function to
432  * handle logging for CPU events that are dequeued.  As such, it can be invoked
433  * from softint context, from AST processing in the trap() flow, or from the
434  * panic flow.  We decode the CPU-specific data, and log appropriate messages.
435  */
436 void
437 cpu_async_log_err(void *flt)
438 {
439 	errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt;
440 	errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er;
441 
442 	switch (errh_erp->desc) {
443 	case ERRH_DESC_UCOR_RE:
444 		if (errh_erp->attr & ERRH_ATTR_MEM) {
445 			/*
446 			 * Turn on the PAGE_IS_TOXIC flag. The page will be
447 			 * scrubbed when it is freed.
448 			 */
449 			(void) errh_page_settoxic(errh_fltp, PAGE_IS_TOXIC);
450 		}
451 
452 		break;
453 
454 	case ERRH_DESC_PR_NRE:
455 	case ERRH_DESC_DEF_NRE:
456 		if (errh_erp->attr & ERRH_ATTR_MEM) {
457 			/*
458 			 * For non-resumable memory error, retire
459 			 * the page here.
460 			 */
461 			errh_page_retire(errh_fltp);
462 
463 			/*
464 			 * If we are going to panic, scrub the page first
465 			 */
466 			if (errh_fltp->cmn_asyncflt.flt_panic)
467 				mem_scrub(errh_fltp->errh_er.ra,
468 				    errh_fltp->errh_er.sz);
469 		}
470 		break;
471 
472 	default:
473 		break;
474 	}
475 }
476 
477 /*
478  * Called from ce_drain().
479  */
480 void
481 cpu_ce_log_err(struct async_flt *aflt)
482 {
483 	switch (aflt->flt_class) {
484 	case CPU_FAULT:
485 		cpu_async_log_err(aflt);
486 		break;
487 
488 	case BUS_FAULT:
489 		cpu_async_log_err(aflt);
490 		break;
491 
492 	default:
493 		break;
494 	}
495 }
496 
497 /*
498  * Called from ue_drain().
499  */
500 void
501 cpu_ue_log_err(struct async_flt *aflt)
502 {
503 	switch (aflt->flt_class) {
504 	case CPU_FAULT:
505 		cpu_async_log_err(aflt);
506 		break;
507 
508 	case BUS_FAULT:
509 		cpu_async_log_err(aflt);
510 		break;
511 
512 	default:
513 		break;
514 	}
515 }
516 
517 /*
518  * Turn on flag on the error memory region.
519  */
520 static void
521 errh_page_settoxic(errh_async_flt_t *errh_fltp, uchar_t flag)
522 {
523 	page_t *pp;
524 	uint64_t flt_real_addr_start = errh_fltp->errh_er.ra;
525 	uint64_t flt_real_addr_end = flt_real_addr_start +
526 	    errh_fltp->errh_er.sz - 1;
527 	int64_t current_addr;
528 
529 	if (errh_fltp->errh_er.sz == 0)
530 		return;
531 
532 	for (current_addr = flt_real_addr_start;
533 	    current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) {
534 		pp = page_numtopp_nolock((pfn_t)
535 		    (current_addr >> MMU_PAGESHIFT));
536 
537 		if (pp != NULL) {
538 			page_settoxic(pp, flag);
539 		}
540 	}
541 }
542 
543 /*
544  * Retire the page(s) indicated in the error report.
545  */
546 static void
547 errh_page_retire(errh_async_flt_t *errh_fltp)
548 {
549 	page_t *pp;
550 	uint64_t flt_real_addr_start = errh_fltp->errh_er.ra;
551 	uint64_t flt_real_addr_end = flt_real_addr_start +
552 	    errh_fltp->errh_er.sz - 1;
553 	int64_t current_addr;
554 
555 	if (errh_fltp->errh_er.sz == 0)
556 		return;
557 
558 	for (current_addr = flt_real_addr_start;
559 	    current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) {
560 		pp = page_numtopp_nolock((pfn_t)
561 		    (current_addr >> MMU_PAGESHIFT));
562 
563 		if (pp != NULL) {
564 			(void) page_retire(pp, PAGE_IS_TOXIC);
565 		}
566 	}
567 }
568 
569 void
570 mem_scrub(uint64_t paddr, uint64_t len)
571 {
572 	uint64_t pa, length, scrubbed_len;
573 
574 	pa = paddr;
575 	length = len;
576 	scrubbed_len = 0;
577 
578 	while (length > 0) {
579 		if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK)
580 			break;
581 
582 		pa += scrubbed_len;
583 		length -= scrubbed_len;
584 	}
585 }
586 
587 void
588 mem_sync(caddr_t va, size_t len)
589 {
590 	uint64_t pa, length, flushed;
591 
592 	pa = va_to_pa((caddr_t)va);
593 
594 	if (pa == (uint64_t)-1)
595 		return;
596 
597 	length = len;
598 	flushed = 0;
599 
600 	while (length > 0) {
601 		if (hv_mem_sync(pa, length, &flushed) != H_EOK)
602 			break;
603 
604 		pa += flushed;
605 		length -= flushed;
606 	}
607 }
608 
609 /*
610  * If resumable queue is full, we need to check if any cpu is in
611  * error state. If not, we drive on. If yes, we need to panic. The
612  * hypervisor call hv_cpu_state() is being used for checking the
613  * cpu state.
614  */
615 static void
616 errh_rq_full(struct async_flt *afltp)
617 {
618 	processorid_t who;
619 	uint64_t cpu_state;
620 	uint64_t retval;
621 
622 	for (who = 0; who < NCPU; who++)
623 		if (CPU_IN_SET(cpu_ready_set, who)) {
624 			retval = hv_cpu_state(who, &cpu_state);
625 			if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) {
626 				afltp->flt_panic = 1;
627 				break;
628 			}
629 		}
630 }
631 
632 /*
633  * Return processor specific async error structure
634  * size used.
635  */
636 int
637 cpu_aflt_size(void)
638 {
639 	return (sizeof (errh_async_flt_t));
640 }
641 
642 #define	SZ_TO_ETRS_SHIFT	6
643 
644 /*
645  * Message print out when resumable queue is overflown
646  */
647 /*ARGSUSED*/
648 void
649 rq_overflow(struct regs *rp, uint64_t head_offset,
650     uint64_t tail_offset)
651 {
652 	rq_overflow_count++;
653 }
654 
655 /*
656  * Handler to process a fatal error.  This routine can be called from a
657  * softint, called from trap()'s AST handling, or called from the panic flow.
658  */
659 /*ARGSUSED*/
660 static void
661 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
662 {
663 	cpu_ue_log_err(aflt);
664 }
665 
666 /*
667  * Handler to process a correctable error.  This routine can be called from a
668  * softint.  We just call the CPU module's logging routine.
669  */
670 /*ARGSUSED*/
671 static void
672 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
673 {
674 	cpu_ce_log_err(aflt);
675 }
676 
677 /*
678  * Handler to process vbsc hostshutdown (power-off button).
679  */
680 static int
681 err_shutdown_softintr()
682 {
683 	cmn_err(CE_WARN, "Power-off requested, system will now shutdown.");
684 	do_shutdown();
685 
686 	/*
687 	 * just in case do_shutdown() fails
688 	 */
689 	(void) timeout((void(*)(void *))power_down, NULL, 100 * hz);
690 	return (DDI_INTR_CLAIMED);
691 }
692 
693 /*
694  * Allocate error queue sizes based on max_ncpus.  max_ncpus is set just
695  * after ncpunode has been determined.  ncpus is set in start_other_cpus
696  * which is called after error_init() but may change dynamically.
697  */
698 void
699 error_init(void)
700 {
701 	char tmp_name[MAXSYSNAME];
702 	pnode_t node;
703 	size_t size = cpu_aflt_size();
704 
705 	/*
706 	 * Initialize the correctable and uncorrectable error queues.
707 	 */
708 	ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL,
709 	    MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL);
710 
711 	ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL,
712 	    MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0);
713 
714 	if (ue_queue == NULL || ce_queue == NULL)
715 		panic("failed to create required system error queue");
716 
717 	/*
718 	 * Setup interrupt handler for power-off button.
719 	 */
720 	err_shutdown_inum = add_softintr(PIL_9,
721 	    (softintrfunc)err_shutdown_softintr, NULL);
722 
723 	/*
724 	 * Initialize the busfunc list mutex.  This must be a PIL_15 spin lock
725 	 * because we will need to acquire it from cpu_async_error().
726 	 */
727 	mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15);
728 
729 	node = prom_rootnode();
730 	if ((node == OBP_NONODE) || (node == OBP_BADNODE)) {
731 		cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node);
732 		return;
733 	}
734 
735 	if (((size = prom_getproplen(node, "reset-reason")) != -1) &&
736 	    (size <= MAXSYSNAME) &&
737 	    (prom_getprop(node, "reset-reason", tmp_name) != -1)) {
738 		if (reset_debug) {
739 			cmn_err(CE_CONT, "System booting after %s\n", tmp_name);
740 		} else if (strncmp(tmp_name, "FATAL", 5) == 0) {
741 			cmn_err(CE_CONT,
742 			    "System booting after fatal error %s\n", tmp_name);
743 		}
744 	}
745 }
746 
747 /*
748  * Nonresumable queue is full, panic here
749  */
750 /*ARGSUSED*/
751 void
752 nrq_overflow(struct regs *rp)
753 {
754 	fm_panic("Nonresumable queue full");
755 }
756