1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/errno.h> 29 #include <sys/param.h> 30 #include <sys/stream.h> 31 #include <sys/kmem.h> 32 #include <sys/conf.h> 33 #include <sys/devops.h> 34 #include <sys/ksynch.h> 35 #include <sys/stat.h> 36 #include <sys/modctl.h> 37 #include <sys/modhash.h> 38 #include <sys/debug.h> 39 #include <sys/ethernet.h> 40 #include <sys/dlpi.h> 41 #include <net/if.h> 42 #include <sys/mac_provider.h> 43 #include <sys/mac_ether.h> 44 #include <sys/ddi.h> 45 #include <sys/sunddi.h> 46 #include <sys/strsun.h> 47 #include <sys/note.h> 48 #include <sys/atomic.h> 49 #include <sys/vnet.h> 50 #include <sys/vlan.h> 51 #include <sys/vnet_mailbox.h> 52 #include <sys/vnet_common.h> 53 #include <sys/dds.h> 54 #include <sys/strsubr.h> 55 #include <sys/taskq.h> 56 57 /* 58 * Function prototypes. 59 */ 60 61 /* DDI entrypoints */ 62 static int vnetdevinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 63 static int vnetattach(dev_info_t *, ddi_attach_cmd_t); 64 static int vnetdetach(dev_info_t *, ddi_detach_cmd_t); 65 66 /* MAC entrypoints */ 67 static int vnet_m_stat(void *, uint_t, uint64_t *); 68 static int vnet_m_start(void *); 69 static void vnet_m_stop(void *); 70 static int vnet_m_promisc(void *, boolean_t); 71 static int vnet_m_multicst(void *, boolean_t, const uint8_t *); 72 static int vnet_m_unicst(void *, const uint8_t *); 73 mblk_t *vnet_m_tx(void *, mblk_t *); 74 static void vnet_m_ioctl(void *arg, queue_t *q, mblk_t *mp); 75 #ifdef VNET_IOC_DEBUG 76 static void vnet_force_link_state(vnet_t *vnetp, queue_t *q, mblk_t *mp); 77 #endif 78 79 /* vnet internal functions */ 80 static int vnet_unattach(vnet_t *vnetp); 81 static int vnet_mac_register(vnet_t *); 82 static int vnet_read_mac_address(vnet_t *vnetp); 83 84 /* Forwarding database (FDB) routines */ 85 static void vnet_fdb_create(vnet_t *vnetp); 86 static void vnet_fdb_destroy(vnet_t *vnetp); 87 static vnet_res_t *vnet_fdbe_find(vnet_t *vnetp, struct ether_addr *addrp); 88 static void vnet_fdbe_find_cb(mod_hash_key_t key, mod_hash_val_t val); 89 void vnet_fdbe_add(vnet_t *vnetp, vnet_res_t *vresp); 90 static void vnet_fdbe_del(vnet_t *vnetp, vnet_res_t *vresp); 91 92 static void vnet_rx_frames_untag(uint16_t pvid, mblk_t **mp); 93 static void vnet_rx(vio_net_handle_t vrh, mblk_t *mp); 94 static void vnet_tx_update(vio_net_handle_t vrh); 95 static void vnet_res_start_task(void *arg); 96 static void vnet_start_resources(vnet_t *vnetp); 97 static void vnet_stop_resources(vnet_t *vnetp); 98 static void vnet_dispatch_res_task(vnet_t *vnetp); 99 static void vnet_res_start_task(void *arg); 100 static void vnet_handle_res_err(vio_net_handle_t vrh, vio_net_err_val_t err); 101 102 /* Exported to vnet_gen */ 103 int vnet_mtu_update(vnet_t *vnetp, uint32_t mtu); 104 void vnet_link_update(vnet_t *vnetp, link_state_t link_state); 105 void vnet_dds_cleanup_hio(vnet_t *vnetp); 106 107 static kstat_t *vnet_hio_setup_kstats(char *ks_mod, char *ks_name, 108 vnet_res_t *vresp); 109 static int vnet_hio_update_kstats(kstat_t *ksp, int rw); 110 static void vnet_hio_get_stats(vnet_res_t *vresp, vnet_hio_stats_t *statsp); 111 static void vnet_hio_destroy_kstats(kstat_t *ksp); 112 113 /* Exported to to vnet_dds */ 114 int vnet_send_dds_msg(vnet_t *vnetp, void *dmsg); 115 116 /* Externs that are imported from vnet_gen */ 117 extern int vgen_init(void *vnetp, uint64_t regprop, dev_info_t *vnetdip, 118 const uint8_t *macaddr, void **vgenhdl); 119 extern void vgen_uninit(void *arg); 120 extern int vgen_dds_tx(void *arg, void *dmsg); 121 extern void vgen_mod_init(void); 122 extern int vgen_mod_cleanup(void); 123 extern void vgen_mod_fini(void); 124 125 /* Externs that are imported from vnet_dds */ 126 extern void vdds_mod_init(void); 127 extern void vdds_mod_fini(void); 128 extern int vdds_init(vnet_t *vnetp); 129 extern void vdds_cleanup(vnet_t *vnetp); 130 extern void vdds_process_dds_msg(vnet_t *vnetp, vio_dds_msg_t *dmsg); 131 extern void vdds_cleanup_hybrid_res(void *arg); 132 extern void vdds_cleanup_hio(vnet_t *vnetp); 133 134 #define DRV_NAME "vnet" 135 #define VNET_FDBE_REFHOLD(p) \ 136 { \ 137 atomic_inc_32(&(p)->refcnt); \ 138 ASSERT((p)->refcnt != 0); \ 139 } 140 141 #define VNET_FDBE_REFRELE(p) \ 142 { \ 143 ASSERT((p)->refcnt != 0); \ 144 atomic_dec_32(&(p)->refcnt); \ 145 } 146 147 #ifdef VNET_IOC_DEBUG 148 #define VNET_M_CALLBACK_FLAGS (MC_IOCTL) 149 #else 150 #define VNET_M_CALLBACK_FLAGS (0) 151 #endif 152 153 static mac_callbacks_t vnet_m_callbacks = { 154 VNET_M_CALLBACK_FLAGS, 155 vnet_m_stat, 156 vnet_m_start, 157 vnet_m_stop, 158 vnet_m_promisc, 159 vnet_m_multicst, 160 vnet_m_unicst, 161 vnet_m_tx, 162 vnet_m_ioctl, 163 NULL, 164 NULL 165 }; 166 167 /* 168 * Linked list of "vnet_t" structures - one per instance. 169 */ 170 static vnet_t *vnet_headp = NULL; 171 static krwlock_t vnet_rw; 172 173 /* Tunables */ 174 uint32_t vnet_ntxds = VNET_NTXDS; /* power of 2 transmit descriptors */ 175 uint32_t vnet_ldcwd_interval = VNET_LDCWD_INTERVAL; /* watchdog freq in msec */ 176 uint32_t vnet_ldcwd_txtimeout = VNET_LDCWD_TXTIMEOUT; /* tx timeout in msec */ 177 uint32_t vnet_ldc_mtu = VNET_LDC_MTU; /* ldc mtu */ 178 179 /* 180 * Set this to non-zero to enable additional internal receive buffer pools 181 * based on the MTU of the device for better performance at the cost of more 182 * memory consumption. This is turned off by default, to use allocb(9F) for 183 * receive buffer allocations of sizes > 2K. 184 */ 185 boolean_t vnet_jumbo_rxpools = B_FALSE; 186 187 /* # of chains in fdb hash table */ 188 uint32_t vnet_fdb_nchains = VNET_NFDB_HASH; 189 190 /* Internal tunables */ 191 uint32_t vnet_ethermtu = 1500; /* mtu of the device */ 192 193 /* 194 * Default vlan id. This is only used internally when the "default-vlan-id" 195 * property is not present in the MD device node. Therefore, this should not be 196 * used as a tunable; if this value is changed, the corresponding variable 197 * should be updated to the same value in vsw and also other vnets connected to 198 * the same vsw. 199 */ 200 uint16_t vnet_default_vlan_id = 1; 201 202 /* delay in usec to wait for all references on a fdb entry to be dropped */ 203 uint32_t vnet_fdbe_refcnt_delay = 10; 204 205 static struct ether_addr etherbroadcastaddr = { 206 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 207 }; 208 209 210 /* 211 * Property names 212 */ 213 static char macaddr_propname[] = "local-mac-address"; 214 215 /* 216 * This is the string displayed by modinfo(1m). 217 */ 218 static char vnet_ident[] = "vnet driver"; 219 extern struct mod_ops mod_driverops; 220 static struct cb_ops cb_vnetops = { 221 nulldev, /* cb_open */ 222 nulldev, /* cb_close */ 223 nodev, /* cb_strategy */ 224 nodev, /* cb_print */ 225 nodev, /* cb_dump */ 226 nodev, /* cb_read */ 227 nodev, /* cb_write */ 228 nodev, /* cb_ioctl */ 229 nodev, /* cb_devmap */ 230 nodev, /* cb_mmap */ 231 nodev, /* cb_segmap */ 232 nochpoll, /* cb_chpoll */ 233 ddi_prop_op, /* cb_prop_op */ 234 NULL, /* cb_stream */ 235 (int)(D_MP) /* cb_flag */ 236 }; 237 238 static struct dev_ops vnetops = { 239 DEVO_REV, /* devo_rev */ 240 0, /* devo_refcnt */ 241 NULL, /* devo_getinfo */ 242 nulldev, /* devo_identify */ 243 nulldev, /* devo_probe */ 244 vnetattach, /* devo_attach */ 245 vnetdetach, /* devo_detach */ 246 nodev, /* devo_reset */ 247 &cb_vnetops, /* devo_cb_ops */ 248 (struct bus_ops *)NULL, /* devo_bus_ops */ 249 NULL, /* devo_power */ 250 ddi_quiesce_not_supported, /* devo_quiesce */ 251 }; 252 253 static struct modldrv modldrv = { 254 &mod_driverops, /* Type of module. This one is a driver */ 255 vnet_ident, /* ID string */ 256 &vnetops /* driver specific ops */ 257 }; 258 259 static struct modlinkage modlinkage = { 260 MODREV_1, (void *)&modldrv, NULL 261 }; 262 263 #ifdef DEBUG 264 265 /* 266 * Print debug messages - set to 0xf to enable all msgs 267 */ 268 int vnet_dbglevel = 0x8; 269 270 static void 271 debug_printf(const char *fname, void *arg, const char *fmt, ...) 272 { 273 char buf[512]; 274 va_list ap; 275 vnet_t *vnetp = (vnet_t *)arg; 276 char *bufp = buf; 277 278 if (vnetp == NULL) { 279 (void) sprintf(bufp, "%s: ", fname); 280 bufp += strlen(bufp); 281 } else { 282 (void) sprintf(bufp, "vnet%d:%s: ", vnetp->instance, fname); 283 bufp += strlen(bufp); 284 } 285 va_start(ap, fmt); 286 (void) vsprintf(bufp, fmt, ap); 287 va_end(ap); 288 cmn_err(CE_CONT, "%s\n", buf); 289 } 290 291 #endif 292 293 /* _init(9E): initialize the loadable module */ 294 int 295 _init(void) 296 { 297 int status; 298 299 DBG1(NULL, "enter\n"); 300 301 mac_init_ops(&vnetops, "vnet"); 302 status = mod_install(&modlinkage); 303 if (status != 0) { 304 mac_fini_ops(&vnetops); 305 } 306 vdds_mod_init(); 307 vgen_mod_init(); 308 DBG1(NULL, "exit(%d)\n", status); 309 return (status); 310 } 311 312 /* _fini(9E): prepare the module for unloading. */ 313 int 314 _fini(void) 315 { 316 int status; 317 318 DBG1(NULL, "enter\n"); 319 320 status = vgen_mod_cleanup(); 321 if (status != 0) 322 return (status); 323 324 status = mod_remove(&modlinkage); 325 if (status != 0) 326 return (status); 327 mac_fini_ops(&vnetops); 328 vgen_mod_fini(); 329 vdds_mod_fini(); 330 331 DBG1(NULL, "exit(%d)\n", status); 332 return (status); 333 } 334 335 /* _info(9E): return information about the loadable module */ 336 int 337 _info(struct modinfo *modinfop) 338 { 339 return (mod_info(&modlinkage, modinfop)); 340 } 341 342 /* 343 * attach(9E): attach a device to the system. 344 * called once for each instance of the device on the system. 345 */ 346 static int 347 vnetattach(dev_info_t *dip, ddi_attach_cmd_t cmd) 348 { 349 vnet_t *vnetp; 350 int status; 351 int instance; 352 uint64_t reg; 353 char qname[TASKQ_NAMELEN]; 354 vnet_attach_progress_t attach_progress; 355 356 attach_progress = AST_init; 357 358 switch (cmd) { 359 case DDI_ATTACH: 360 break; 361 case DDI_RESUME: 362 case DDI_PM_RESUME: 363 default: 364 goto vnet_attach_fail; 365 } 366 367 instance = ddi_get_instance(dip); 368 DBG1(NULL, "instance(%d) enter\n", instance); 369 370 /* allocate vnet_t and mac_t structures */ 371 vnetp = kmem_zalloc(sizeof (vnet_t), KM_SLEEP); 372 vnetp->dip = dip; 373 vnetp->instance = instance; 374 rw_init(&vnetp->vrwlock, NULL, RW_DRIVER, NULL); 375 rw_init(&vnetp->vsw_fp_rw, NULL, RW_DRIVER, NULL); 376 attach_progress |= AST_vnet_alloc; 377 378 status = vdds_init(vnetp); 379 if (status != 0) { 380 goto vnet_attach_fail; 381 } 382 attach_progress |= AST_vdds_init; 383 384 /* setup links to vnet_t from both devinfo and mac_t */ 385 ddi_set_driver_private(dip, (caddr_t)vnetp); 386 387 /* read the mac address */ 388 status = vnet_read_mac_address(vnetp); 389 if (status != DDI_SUCCESS) { 390 goto vnet_attach_fail; 391 } 392 attach_progress |= AST_read_macaddr; 393 394 reg = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 395 DDI_PROP_DONTPASS, "reg", -1); 396 if (reg == -1) { 397 goto vnet_attach_fail; 398 } 399 vnetp->reg = reg; 400 401 vnet_fdb_create(vnetp); 402 attach_progress |= AST_fdbh_alloc; 403 404 (void) snprintf(qname, TASKQ_NAMELEN, "vnet_taskq%d", instance); 405 if ((vnetp->taskqp = ddi_taskq_create(dip, qname, 1, 406 TASKQ_DEFAULTPRI, 0)) == NULL) { 407 cmn_err(CE_WARN, "!vnet%d: Unable to create task queue", 408 instance); 409 goto vnet_attach_fail; 410 } 411 attach_progress |= AST_taskq_create; 412 413 /* add to the list of vnet devices */ 414 WRITE_ENTER(&vnet_rw); 415 vnetp->nextp = vnet_headp; 416 vnet_headp = vnetp; 417 RW_EXIT(&vnet_rw); 418 419 attach_progress |= AST_vnet_list; 420 421 /* 422 * Initialize the generic vnet plugin which provides 423 * communication via sun4v LDC (logical domain channel) based 424 * resources. It will register the LDC resources as and when 425 * they become available. 426 */ 427 status = vgen_init(vnetp, reg, vnetp->dip, 428 (uint8_t *)vnetp->curr_macaddr, &vnetp->vgenhdl); 429 if (status != DDI_SUCCESS) { 430 DERR(vnetp, "vgen_init() failed\n"); 431 goto vnet_attach_fail; 432 } 433 attach_progress |= AST_vgen_init; 434 435 /* register with MAC layer */ 436 status = vnet_mac_register(vnetp); 437 if (status != DDI_SUCCESS) { 438 goto vnet_attach_fail; 439 } 440 vnetp->link_state = LINK_STATE_UNKNOWN; 441 442 attach_progress |= AST_macreg; 443 444 vnetp->attach_progress = attach_progress; 445 446 DBG1(NULL, "instance(%d) exit\n", instance); 447 return (DDI_SUCCESS); 448 449 vnet_attach_fail: 450 vnetp->attach_progress = attach_progress; 451 status = vnet_unattach(vnetp); 452 ASSERT(status == 0); 453 return (DDI_FAILURE); 454 } 455 456 /* 457 * detach(9E): detach a device from the system. 458 */ 459 static int 460 vnetdetach(dev_info_t *dip, ddi_detach_cmd_t cmd) 461 { 462 vnet_t *vnetp; 463 int instance; 464 465 instance = ddi_get_instance(dip); 466 DBG1(NULL, "instance(%d) enter\n", instance); 467 468 vnetp = ddi_get_driver_private(dip); 469 if (vnetp == NULL) { 470 goto vnet_detach_fail; 471 } 472 473 switch (cmd) { 474 case DDI_DETACH: 475 break; 476 case DDI_SUSPEND: 477 case DDI_PM_SUSPEND: 478 default: 479 goto vnet_detach_fail; 480 } 481 482 if (vnet_unattach(vnetp) != 0) { 483 goto vnet_detach_fail; 484 } 485 486 return (DDI_SUCCESS); 487 488 vnet_detach_fail: 489 return (DDI_FAILURE); 490 } 491 492 /* 493 * Common routine to handle vnetattach() failure and vnetdetach(). Note that 494 * the only reason this function could fail is if mac_unregister() fails. 495 * Otherwise, this function must ensure that all resources are freed and return 496 * success. 497 */ 498 static int 499 vnet_unattach(vnet_t *vnetp) 500 { 501 vnet_attach_progress_t attach_progress; 502 503 attach_progress = vnetp->attach_progress; 504 505 /* 506 * Unregister from the gldv3 subsystem. This can fail, in particular 507 * if there are still any open references to this mac device; in which 508 * case we just return failure without continuing to detach further. 509 */ 510 if (attach_progress & AST_macreg) { 511 if (mac_unregister(vnetp->mh) != 0) { 512 return (1); 513 } 514 attach_progress &= ~AST_macreg; 515 } 516 517 /* 518 * Now that we have unregistered from gldv3, we must finish all other 519 * steps and successfully return from this function; otherwise we will 520 * end up leaving the device in a broken/unusable state. 521 * 522 * First, release any hybrid resources assigned to this vnet device. 523 */ 524 if (attach_progress & AST_vdds_init) { 525 vdds_cleanup(vnetp); 526 attach_progress &= ~AST_vdds_init; 527 } 528 529 /* 530 * Uninit vgen. This stops further mdeg callbacks to this vnet 531 * device and/or its ports; and detaches any existing ports. 532 */ 533 if (attach_progress & AST_vgen_init) { 534 vgen_uninit(vnetp->vgenhdl); 535 attach_progress &= ~AST_vgen_init; 536 } 537 538 /* Destroy the taskq. */ 539 if (attach_progress & AST_taskq_create) { 540 ddi_taskq_destroy(vnetp->taskqp); 541 attach_progress &= ~AST_taskq_create; 542 } 543 544 /* Destroy fdb. */ 545 if (attach_progress & AST_fdbh_alloc) { 546 vnet_fdb_destroy(vnetp); 547 attach_progress &= ~AST_fdbh_alloc; 548 } 549 550 /* Remove from the device list */ 551 if (attach_progress & AST_vnet_list) { 552 vnet_t **vnetpp; 553 /* unlink from instance(vnet_t) list */ 554 WRITE_ENTER(&vnet_rw); 555 for (vnetpp = &vnet_headp; *vnetpp; 556 vnetpp = &(*vnetpp)->nextp) { 557 if (*vnetpp == vnetp) { 558 *vnetpp = vnetp->nextp; 559 break; 560 } 561 } 562 RW_EXIT(&vnet_rw); 563 attach_progress &= ~AST_vnet_list; 564 } 565 566 if (attach_progress & AST_vnet_alloc) { 567 rw_destroy(&vnetp->vrwlock); 568 rw_destroy(&vnetp->vsw_fp_rw); 569 attach_progress &= ~AST_vnet_list; 570 KMEM_FREE(vnetp); 571 } 572 573 return (0); 574 } 575 576 /* enable the device for transmit/receive */ 577 static int 578 vnet_m_start(void *arg) 579 { 580 vnet_t *vnetp = arg; 581 582 DBG1(vnetp, "enter\n"); 583 584 WRITE_ENTER(&vnetp->vrwlock); 585 vnetp->flags |= VNET_STARTED; 586 vnet_start_resources(vnetp); 587 RW_EXIT(&vnetp->vrwlock); 588 589 DBG1(vnetp, "exit\n"); 590 return (VNET_SUCCESS); 591 592 } 593 594 /* stop transmit/receive for the device */ 595 static void 596 vnet_m_stop(void *arg) 597 { 598 vnet_t *vnetp = arg; 599 600 DBG1(vnetp, "enter\n"); 601 602 WRITE_ENTER(&vnetp->vrwlock); 603 if (vnetp->flags & VNET_STARTED) { 604 vnet_stop_resources(vnetp); 605 vnetp->flags &= ~VNET_STARTED; 606 } 607 RW_EXIT(&vnetp->vrwlock); 608 609 DBG1(vnetp, "exit\n"); 610 } 611 612 /* set the unicast mac address of the device */ 613 static int 614 vnet_m_unicst(void *arg, const uint8_t *macaddr) 615 { 616 _NOTE(ARGUNUSED(macaddr)) 617 618 vnet_t *vnetp = arg; 619 620 DBG1(vnetp, "enter\n"); 621 /* 622 * NOTE: setting mac address dynamically is not supported. 623 */ 624 DBG1(vnetp, "exit\n"); 625 626 return (VNET_FAILURE); 627 } 628 629 /* enable/disable a multicast address */ 630 static int 631 vnet_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 632 { 633 _NOTE(ARGUNUSED(add, mca)) 634 635 vnet_t *vnetp = arg; 636 vnet_res_t *vresp; 637 mac_register_t *macp; 638 mac_callbacks_t *cbp; 639 int rv = VNET_SUCCESS; 640 641 DBG1(vnetp, "enter\n"); 642 643 READ_ENTER(&vnetp->vrwlock); 644 for (vresp = vnetp->vres_list; vresp != NULL; vresp = vresp->nextp) { 645 if (vresp->type == VIO_NET_RES_LDC_SERVICE) { 646 macp = &vresp->macreg; 647 cbp = macp->m_callbacks; 648 rv = cbp->mc_multicst(macp->m_driver, add, mca); 649 } 650 } 651 RW_EXIT(&vnetp->vrwlock); 652 653 DBG1(vnetp, "exit(%d)\n", rv); 654 return (rv); 655 } 656 657 /* set or clear promiscuous mode on the device */ 658 static int 659 vnet_m_promisc(void *arg, boolean_t on) 660 { 661 _NOTE(ARGUNUSED(on)) 662 663 vnet_t *vnetp = arg; 664 DBG1(vnetp, "enter\n"); 665 /* 666 * NOTE: setting promiscuous mode is not supported, just return success. 667 */ 668 DBG1(vnetp, "exit\n"); 669 return (VNET_SUCCESS); 670 } 671 672 /* 673 * Transmit a chain of packets. This function provides switching functionality 674 * based on the destination mac address to reach other guests (within ldoms) or 675 * external hosts. 676 */ 677 mblk_t * 678 vnet_m_tx(void *arg, mblk_t *mp) 679 { 680 vnet_t *vnetp; 681 vnet_res_t *vresp; 682 mblk_t *next; 683 mblk_t *resid_mp; 684 mac_register_t *macp; 685 struct ether_header *ehp; 686 boolean_t is_unicast; 687 boolean_t is_pvid; /* non-default pvid ? */ 688 boolean_t hres; /* Hybrid resource ? */ 689 690 vnetp = (vnet_t *)arg; 691 DBG1(vnetp, "enter\n"); 692 ASSERT(mp != NULL); 693 694 is_pvid = (vnetp->pvid != vnetp->default_vlan_id) ? B_TRUE : B_FALSE; 695 696 while (mp != NULL) { 697 698 next = mp->b_next; 699 mp->b_next = NULL; 700 701 /* 702 * Find fdb entry for the destination 703 * and hold a reference to it. 704 */ 705 ehp = (struct ether_header *)mp->b_rptr; 706 vresp = vnet_fdbe_find(vnetp, &ehp->ether_dhost); 707 if (vresp != NULL) { 708 709 /* 710 * Destination found in FDB. 711 * The destination is a vnet device within ldoms 712 * and directly reachable, invoke the tx function 713 * in the fdb entry. 714 */ 715 macp = &vresp->macreg; 716 resid_mp = macp->m_callbacks->mc_tx(macp->m_driver, mp); 717 718 /* tx done; now release ref on fdb entry */ 719 VNET_FDBE_REFRELE(vresp); 720 721 if (resid_mp != NULL) { 722 /* m_tx failed */ 723 mp->b_next = next; 724 break; 725 } 726 } else { 727 is_unicast = !(IS_BROADCAST(ehp) || 728 (IS_MULTICAST(ehp))); 729 /* 730 * Destination is not in FDB. 731 * If the destination is broadcast or multicast, 732 * then forward the packet to vswitch. 733 * If a Hybrid resource avilable, then send the 734 * unicast packet via hybrid resource, otherwise 735 * forward it to vswitch. 736 */ 737 READ_ENTER(&vnetp->vsw_fp_rw); 738 739 if ((is_unicast) && (vnetp->hio_fp != NULL)) { 740 vresp = vnetp->hio_fp; 741 hres = B_TRUE; 742 } else { 743 vresp = vnetp->vsw_fp; 744 hres = B_FALSE; 745 } 746 if (vresp == NULL) { 747 /* 748 * no fdb entry to vsw? drop the packet. 749 */ 750 RW_EXIT(&vnetp->vsw_fp_rw); 751 freemsg(mp); 752 mp = next; 753 continue; 754 } 755 756 /* ref hold the fdb entry to vsw */ 757 VNET_FDBE_REFHOLD(vresp); 758 759 RW_EXIT(&vnetp->vsw_fp_rw); 760 761 /* 762 * In the case of a hybrid resource we need to insert 763 * the tag for the pvid case here; unlike packets that 764 * are destined to a vnet/vsw in which case the vgen 765 * layer does the tagging before sending it over ldc. 766 */ 767 if (hres == B_TRUE) { 768 /* 769 * Determine if the frame being transmitted 770 * over the hybrid resource is untagged. If so, 771 * insert the tag before transmitting. 772 */ 773 if (is_pvid == B_TRUE && 774 ehp->ether_type != htons(ETHERTYPE_VLAN)) { 775 776 mp = vnet_vlan_insert_tag(mp, 777 vnetp->pvid); 778 if (mp == NULL) { 779 VNET_FDBE_REFRELE(vresp); 780 mp = next; 781 continue; 782 } 783 784 } 785 } 786 787 macp = &vresp->macreg; 788 resid_mp = macp->m_callbacks->mc_tx(macp->m_driver, mp); 789 790 /* tx done; now release ref on fdb entry */ 791 VNET_FDBE_REFRELE(vresp); 792 793 if (resid_mp != NULL) { 794 /* m_tx failed */ 795 mp->b_next = next; 796 break; 797 } 798 } 799 800 mp = next; 801 } 802 803 DBG1(vnetp, "exit\n"); 804 return (mp); 805 } 806 807 /* get statistics from the device */ 808 int 809 vnet_m_stat(void *arg, uint_t stat, uint64_t *val) 810 { 811 vnet_t *vnetp = arg; 812 vnet_res_t *vresp; 813 mac_register_t *macp; 814 mac_callbacks_t *cbp; 815 uint64_t val_total = 0; 816 817 DBG1(vnetp, "enter\n"); 818 819 /* 820 * get the specified statistic from each transport and return the 821 * aggregate val. This obviously only works for counters. 822 */ 823 if ((IS_MAC_STAT(stat) && !MAC_STAT_ISACOUNTER(stat)) || 824 (IS_MACTYPE_STAT(stat) && !ETHER_STAT_ISACOUNTER(stat))) { 825 return (ENOTSUP); 826 } 827 828 READ_ENTER(&vnetp->vrwlock); 829 for (vresp = vnetp->vres_list; vresp != NULL; vresp = vresp->nextp) { 830 macp = &vresp->macreg; 831 cbp = macp->m_callbacks; 832 if (cbp->mc_getstat(macp->m_driver, stat, val) == 0) 833 val_total += *val; 834 } 835 RW_EXIT(&vnetp->vrwlock); 836 837 *val = val_total; 838 839 DBG1(vnetp, "exit\n"); 840 return (0); 841 } 842 843 /* wrapper function for mac_register() */ 844 static int 845 vnet_mac_register(vnet_t *vnetp) 846 { 847 mac_register_t *macp; 848 int err; 849 850 if ((macp = mac_alloc(MAC_VERSION)) == NULL) 851 return (DDI_FAILURE); 852 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 853 macp->m_driver = vnetp; 854 macp->m_dip = vnetp->dip; 855 macp->m_src_addr = vnetp->curr_macaddr; 856 macp->m_callbacks = &vnet_m_callbacks; 857 macp->m_min_sdu = 0; 858 macp->m_max_sdu = vnetp->mtu; 859 macp->m_margin = VLAN_TAGSZ; 860 861 /* 862 * Finally, we're ready to register ourselves with the MAC layer 863 * interface; if this succeeds, we're all ready to start() 864 */ 865 err = mac_register(macp, &vnetp->mh); 866 mac_free(macp); 867 return (err == 0 ? DDI_SUCCESS : DDI_FAILURE); 868 } 869 870 /* read the mac address of the device */ 871 static int 872 vnet_read_mac_address(vnet_t *vnetp) 873 { 874 uchar_t *macaddr; 875 uint32_t size; 876 int rv; 877 878 rv = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, vnetp->dip, 879 DDI_PROP_DONTPASS, macaddr_propname, &macaddr, &size); 880 if ((rv != DDI_PROP_SUCCESS) || (size != ETHERADDRL)) { 881 DWARN(vnetp, "prop_lookup failed(%s) err(%d)\n", 882 macaddr_propname, rv); 883 return (DDI_FAILURE); 884 } 885 bcopy(macaddr, (caddr_t)vnetp->vendor_addr, ETHERADDRL); 886 bcopy(macaddr, (caddr_t)vnetp->curr_macaddr, ETHERADDRL); 887 ddi_prop_free(macaddr); 888 889 return (DDI_SUCCESS); 890 } 891 892 static void 893 vnet_fdb_create(vnet_t *vnetp) 894 { 895 char hashname[MAXNAMELEN]; 896 897 (void) snprintf(hashname, MAXNAMELEN, "vnet%d-fdbhash", 898 vnetp->instance); 899 vnetp->fdb_nchains = vnet_fdb_nchains; 900 vnetp->fdb_hashp = mod_hash_create_ptrhash(hashname, vnetp->fdb_nchains, 901 mod_hash_null_valdtor, sizeof (void *)); 902 } 903 904 static void 905 vnet_fdb_destroy(vnet_t *vnetp) 906 { 907 /* destroy fdb-hash-table */ 908 if (vnetp->fdb_hashp != NULL) { 909 mod_hash_destroy_hash(vnetp->fdb_hashp); 910 vnetp->fdb_hashp = NULL; 911 vnetp->fdb_nchains = 0; 912 } 913 } 914 915 /* 916 * Add an entry into the fdb. 917 */ 918 void 919 vnet_fdbe_add(vnet_t *vnetp, vnet_res_t *vresp) 920 { 921 uint64_t addr = 0; 922 int rv; 923 924 KEY_HASH(addr, vresp->rem_macaddr); 925 926 /* 927 * If the entry being added corresponds to LDC_SERVICE resource, 928 * that is, vswitch connection, it is added to the hash and also 929 * the entry is cached, an additional reference count reflects 930 * this. The HYBRID resource is not added to the hash, but only 931 * cached, as it is only used for sending out packets for unknown 932 * unicast destinations. 933 */ 934 (vresp->type == VIO_NET_RES_LDC_SERVICE) ? 935 (vresp->refcnt = 1) : (vresp->refcnt = 0); 936 937 /* 938 * Note: duplicate keys will be rejected by mod_hash. 939 */ 940 if (vresp->type != VIO_NET_RES_HYBRID) { 941 rv = mod_hash_insert(vnetp->fdb_hashp, (mod_hash_key_t)addr, 942 (mod_hash_val_t)vresp); 943 if (rv != 0) { 944 DWARN(vnetp, "Duplicate macaddr key(%lx)\n", addr); 945 return; 946 } 947 } 948 949 if (vresp->type == VIO_NET_RES_LDC_SERVICE) { 950 /* Cache the fdb entry to vsw-port */ 951 WRITE_ENTER(&vnetp->vsw_fp_rw); 952 if (vnetp->vsw_fp == NULL) 953 vnetp->vsw_fp = vresp; 954 RW_EXIT(&vnetp->vsw_fp_rw); 955 } else if (vresp->type == VIO_NET_RES_HYBRID) { 956 /* Cache the fdb entry to hybrid resource */ 957 WRITE_ENTER(&vnetp->vsw_fp_rw); 958 if (vnetp->hio_fp == NULL) 959 vnetp->hio_fp = vresp; 960 RW_EXIT(&vnetp->vsw_fp_rw); 961 } 962 } 963 964 /* 965 * Remove an entry from fdb. 966 */ 967 static void 968 vnet_fdbe_del(vnet_t *vnetp, vnet_res_t *vresp) 969 { 970 uint64_t addr = 0; 971 int rv; 972 uint32_t refcnt; 973 vnet_res_t *tmp; 974 975 KEY_HASH(addr, vresp->rem_macaddr); 976 977 /* 978 * Remove the entry from fdb hash table. 979 * This prevents further references to this fdb entry. 980 */ 981 if (vresp->type != VIO_NET_RES_HYBRID) { 982 rv = mod_hash_remove(vnetp->fdb_hashp, (mod_hash_key_t)addr, 983 (mod_hash_val_t *)&tmp); 984 if (rv != 0) { 985 /* 986 * As the resources are added to the hash only 987 * after they are started, this can occur if 988 * a resource unregisters before it is ever started. 989 */ 990 return; 991 } 992 } 993 994 if (vresp->type == VIO_NET_RES_LDC_SERVICE) { 995 WRITE_ENTER(&vnetp->vsw_fp_rw); 996 997 ASSERT(tmp == vnetp->vsw_fp); 998 vnetp->vsw_fp = NULL; 999 1000 RW_EXIT(&vnetp->vsw_fp_rw); 1001 } else if (vresp->type == VIO_NET_RES_HYBRID) { 1002 WRITE_ENTER(&vnetp->vsw_fp_rw); 1003 1004 vnetp->hio_fp = NULL; 1005 1006 RW_EXIT(&vnetp->vsw_fp_rw); 1007 } 1008 1009 /* 1010 * If there are threads already ref holding before the entry was 1011 * removed from hash table, then wait for ref count to drop to zero. 1012 */ 1013 (vresp->type == VIO_NET_RES_LDC_SERVICE) ? 1014 (refcnt = 1) : (refcnt = 0); 1015 while (vresp->refcnt > refcnt) { 1016 delay(drv_usectohz(vnet_fdbe_refcnt_delay)); 1017 } 1018 } 1019 1020 /* 1021 * Search fdb for a given mac address. If an entry is found, hold 1022 * a reference to it and return the entry; else returns NULL. 1023 */ 1024 static vnet_res_t * 1025 vnet_fdbe_find(vnet_t *vnetp, struct ether_addr *addrp) 1026 { 1027 uint64_t key = 0; 1028 vnet_res_t *vresp; 1029 int rv; 1030 1031 KEY_HASH(key, addrp->ether_addr_octet); 1032 1033 rv = mod_hash_find_cb(vnetp->fdb_hashp, (mod_hash_key_t)key, 1034 (mod_hash_val_t *)&vresp, vnet_fdbe_find_cb); 1035 1036 if (rv != 0) 1037 return (NULL); 1038 1039 return (vresp); 1040 } 1041 1042 /* 1043 * Callback function provided to mod_hash_find_cb(). After finding the fdb 1044 * entry corresponding to the key (macaddr), this callback will be invoked by 1045 * mod_hash_find_cb() to atomically increment the reference count on the fdb 1046 * entry before returning the found entry. 1047 */ 1048 static void 1049 vnet_fdbe_find_cb(mod_hash_key_t key, mod_hash_val_t val) 1050 { 1051 _NOTE(ARGUNUSED(key)) 1052 VNET_FDBE_REFHOLD((vnet_res_t *)val); 1053 } 1054 1055 /* 1056 * Frames received that are tagged with the pvid of the vnet device must be 1057 * untagged before sending up the stack. This function walks the chain of rx 1058 * frames, untags any such frames and returns the updated chain. 1059 * 1060 * Arguments: 1061 * pvid: pvid of the vnet device for which packets are being received 1062 * mp: head of pkt chain to be validated and untagged 1063 * 1064 * Returns: 1065 * mp: head of updated chain of packets 1066 */ 1067 static void 1068 vnet_rx_frames_untag(uint16_t pvid, mblk_t **mp) 1069 { 1070 struct ether_vlan_header *evhp; 1071 mblk_t *bp; 1072 mblk_t *bpt; 1073 mblk_t *bph; 1074 mblk_t *bpn; 1075 1076 bpn = bph = bpt = NULL; 1077 1078 for (bp = *mp; bp != NULL; bp = bpn) { 1079 1080 bpn = bp->b_next; 1081 bp->b_next = bp->b_prev = NULL; 1082 1083 evhp = (struct ether_vlan_header *)bp->b_rptr; 1084 1085 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN && 1086 VLAN_ID(ntohs(evhp->ether_tci)) == pvid) { 1087 1088 bp = vnet_vlan_remove_tag(bp); 1089 if (bp == NULL) { 1090 continue; 1091 } 1092 1093 } 1094 1095 /* build a chain of processed packets */ 1096 if (bph == NULL) { 1097 bph = bpt = bp; 1098 } else { 1099 bpt->b_next = bp; 1100 bpt = bp; 1101 } 1102 1103 } 1104 1105 *mp = bph; 1106 } 1107 1108 static void 1109 vnet_rx(vio_net_handle_t vrh, mblk_t *mp) 1110 { 1111 vnet_res_t *vresp = (vnet_res_t *)vrh; 1112 vnet_t *vnetp = vresp->vnetp; 1113 1114 if ((vnetp == NULL) || (vnetp->mh == 0)) { 1115 freemsgchain(mp); 1116 return; 1117 } 1118 1119 /* 1120 * Packets received over a hybrid resource need additional processing 1121 * to remove the tag, for the pvid case. The underlying resource is 1122 * not aware of the vnet's pvid and thus packets are received with the 1123 * vlan tag in the header; unlike packets that are received over a ldc 1124 * channel in which case the peer vnet/vsw would have already removed 1125 * the tag. 1126 */ 1127 if (vresp->type == VIO_NET_RES_HYBRID && 1128 vnetp->pvid != vnetp->default_vlan_id) { 1129 1130 vnet_rx_frames_untag(vnetp->pvid, &mp); 1131 if (mp == NULL) { 1132 return; 1133 } 1134 } 1135 1136 mac_rx(vnetp->mh, NULL, mp); 1137 } 1138 1139 void 1140 vnet_tx_update(vio_net_handle_t vrh) 1141 { 1142 vnet_res_t *vresp = (vnet_res_t *)vrh; 1143 vnet_t *vnetp = vresp->vnetp; 1144 1145 if ((vnetp != NULL) && (vnetp->mh != NULL)) { 1146 mac_tx_update(vnetp->mh); 1147 } 1148 } 1149 1150 /* 1151 * Update the new mtu of vnet into the mac layer. First check if the device has 1152 * been plumbed and if so fail the mtu update. Returns 0 on success. 1153 */ 1154 int 1155 vnet_mtu_update(vnet_t *vnetp, uint32_t mtu) 1156 { 1157 int rv; 1158 1159 if (vnetp == NULL || vnetp->mh == NULL) { 1160 return (EINVAL); 1161 } 1162 1163 WRITE_ENTER(&vnetp->vrwlock); 1164 1165 if (vnetp->flags & VNET_STARTED) { 1166 RW_EXIT(&vnetp->vrwlock); 1167 cmn_err(CE_NOTE, "!vnet%d: Unable to process mtu " 1168 "update as the device is plumbed\n", 1169 vnetp->instance); 1170 return (EBUSY); 1171 } 1172 1173 /* update mtu in the mac layer */ 1174 rv = mac_maxsdu_update(vnetp->mh, mtu); 1175 if (rv != 0) { 1176 RW_EXIT(&vnetp->vrwlock); 1177 cmn_err(CE_NOTE, 1178 "!vnet%d: Unable to update mtu with mac layer\n", 1179 vnetp->instance); 1180 return (EIO); 1181 } 1182 1183 vnetp->mtu = mtu; 1184 1185 RW_EXIT(&vnetp->vrwlock); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Update the link state of vnet to the mac layer. 1192 */ 1193 void 1194 vnet_link_update(vnet_t *vnetp, link_state_t link_state) 1195 { 1196 if (vnetp == NULL || vnetp->mh == NULL) { 1197 return; 1198 } 1199 1200 WRITE_ENTER(&vnetp->vrwlock); 1201 if (vnetp->link_state == link_state) { 1202 RW_EXIT(&vnetp->vrwlock); 1203 return; 1204 } 1205 vnetp->link_state = link_state; 1206 RW_EXIT(&vnetp->vrwlock); 1207 1208 mac_link_update(vnetp->mh, link_state); 1209 } 1210 1211 /* 1212 * vio_net_resource_reg -- An interface called to register a resource 1213 * with vnet. 1214 * macp -- a GLDv3 mac_register that has all the details of 1215 * a resource and its callbacks etc. 1216 * type -- resource type. 1217 * local_macaddr -- resource's MAC address. This is used to 1218 * associate a resource with a corresponding vnet. 1219 * remote_macaddr -- remote side MAC address. This is ignored for 1220 * the Hybrid resources. 1221 * vhp -- A handle returned to the caller. 1222 * vcb -- A set of callbacks provided to the callers. 1223 */ 1224 int vio_net_resource_reg(mac_register_t *macp, vio_net_res_type_t type, 1225 ether_addr_t local_macaddr, ether_addr_t rem_macaddr, vio_net_handle_t *vhp, 1226 vio_net_callbacks_t *vcb) 1227 { 1228 vnet_t *vnetp; 1229 vnet_res_t *vresp; 1230 1231 vresp = kmem_zalloc(sizeof (vnet_res_t), KM_SLEEP); 1232 ether_copy(local_macaddr, vresp->local_macaddr); 1233 ether_copy(rem_macaddr, vresp->rem_macaddr); 1234 vresp->type = type; 1235 bcopy(macp, &vresp->macreg, sizeof (mac_register_t)); 1236 1237 DBG1(NULL, "Resource Registerig type=0%X\n", type); 1238 1239 READ_ENTER(&vnet_rw); 1240 vnetp = vnet_headp; 1241 while (vnetp != NULL) { 1242 if (VNET_MATCH_RES(vresp, vnetp)) { 1243 vresp->vnetp = vnetp; 1244 1245 /* Setup kstats for hio resource */ 1246 if (vresp->type == VIO_NET_RES_HYBRID) { 1247 vresp->ksp = vnet_hio_setup_kstats(DRV_NAME, 1248 "hio", vresp); 1249 if (vresp->ksp == NULL) { 1250 cmn_err(CE_NOTE, "!vnet%d: Cannot " 1251 "create kstats for hio resource", 1252 vnetp->instance); 1253 } 1254 } 1255 1256 WRITE_ENTER(&vnetp->vrwlock); 1257 vresp->nextp = vnetp->vres_list; 1258 vnetp->vres_list = vresp; 1259 RW_EXIT(&vnetp->vrwlock); 1260 break; 1261 } 1262 vnetp = vnetp->nextp; 1263 } 1264 RW_EXIT(&vnet_rw); 1265 if (vresp->vnetp == NULL) { 1266 DWARN(NULL, "No vnet instance"); 1267 kmem_free(vresp, sizeof (vnet_res_t)); 1268 return (ENXIO); 1269 } 1270 1271 *vhp = vresp; 1272 vcb->vio_net_rx_cb = vnet_rx; 1273 vcb->vio_net_tx_update = vnet_tx_update; 1274 vcb->vio_net_report_err = vnet_handle_res_err; 1275 1276 /* Dispatch a task to start resources */ 1277 vnet_dispatch_res_task(vnetp); 1278 return (0); 1279 } 1280 1281 /* 1282 * vio_net_resource_unreg -- An interface to unregister a resource. 1283 */ 1284 void 1285 vio_net_resource_unreg(vio_net_handle_t vhp) 1286 { 1287 vnet_res_t *vresp = (vnet_res_t *)vhp; 1288 vnet_t *vnetp = vresp->vnetp; 1289 vnet_res_t *vrp; 1290 kstat_t *ksp = NULL; 1291 1292 DBG1(NULL, "Resource Registerig hdl=0x%p", vhp); 1293 1294 ASSERT(vnetp != NULL); 1295 vnet_fdbe_del(vnetp, vresp); 1296 1297 WRITE_ENTER(&vnetp->vrwlock); 1298 if (vresp == vnetp->vres_list) { 1299 vnetp->vres_list = vresp->nextp; 1300 } else { 1301 vrp = vnetp->vres_list; 1302 while (vrp->nextp != NULL) { 1303 if (vrp->nextp == vresp) { 1304 vrp->nextp = vresp->nextp; 1305 break; 1306 } 1307 vrp = vrp->nextp; 1308 } 1309 } 1310 1311 ksp = vresp->ksp; 1312 vresp->ksp = NULL; 1313 1314 vresp->vnetp = NULL; 1315 vresp->nextp = NULL; 1316 RW_EXIT(&vnetp->vrwlock); 1317 vnet_hio_destroy_kstats(ksp); 1318 KMEM_FREE(vresp); 1319 } 1320 1321 /* 1322 * vnet_dds_rx -- an interface called by vgen to DDS messages. 1323 */ 1324 void 1325 vnet_dds_rx(void *arg, void *dmsg) 1326 { 1327 vnet_t *vnetp = arg; 1328 vdds_process_dds_msg(vnetp, dmsg); 1329 } 1330 1331 /* 1332 * vnet_send_dds_msg -- An interface provided to DDS to send 1333 * DDS messages. This simply sends meessages via vgen. 1334 */ 1335 int 1336 vnet_send_dds_msg(vnet_t *vnetp, void *dmsg) 1337 { 1338 int rv; 1339 1340 if (vnetp->vgenhdl != NULL) { 1341 rv = vgen_dds_tx(vnetp->vgenhdl, dmsg); 1342 } 1343 return (rv); 1344 } 1345 1346 /* 1347 * vnet_cleanup_hio -- an interface called by vgen to cleanup hio resources. 1348 */ 1349 void 1350 vnet_dds_cleanup_hio(vnet_t *vnetp) 1351 { 1352 vdds_cleanup_hio(vnetp); 1353 } 1354 1355 /* 1356 * vnet_handle_res_err -- A callback function called by a resource 1357 * to report an error. For example, vgen can call to report 1358 * an LDC down/reset event. This will trigger cleanup of associated 1359 * Hybrid resource. 1360 */ 1361 /* ARGSUSED */ 1362 static void 1363 vnet_handle_res_err(vio_net_handle_t vrh, vio_net_err_val_t err) 1364 { 1365 vnet_res_t *vresp = (vnet_res_t *)vrh; 1366 vnet_t *vnetp = vresp->vnetp; 1367 1368 if (vnetp == NULL) { 1369 return; 1370 } 1371 if ((vresp->type != VIO_NET_RES_LDC_SERVICE) && 1372 (vresp->type != VIO_NET_RES_HYBRID)) { 1373 return; 1374 } 1375 1376 vdds_cleanup_hio(vnetp); 1377 } 1378 1379 /* 1380 * vnet_dispatch_res_task -- A function to dispatch tasks start resources. 1381 */ 1382 static void 1383 vnet_dispatch_res_task(vnet_t *vnetp) 1384 { 1385 int rv; 1386 1387 WRITE_ENTER(&vnetp->vrwlock); 1388 if (vnetp->flags & VNET_STARTED) { 1389 rv = ddi_taskq_dispatch(vnetp->taskqp, vnet_res_start_task, 1390 vnetp, DDI_NOSLEEP); 1391 if (rv != DDI_SUCCESS) { 1392 cmn_err(CE_WARN, 1393 "vnet%d:Can't dispatch start resource task", 1394 vnetp->instance); 1395 } 1396 } 1397 RW_EXIT(&vnetp->vrwlock); 1398 } 1399 1400 /* 1401 * vnet_res_start_task -- A taskq callback function that starts a resource. 1402 */ 1403 static void 1404 vnet_res_start_task(void *arg) 1405 { 1406 vnet_t *vnetp = arg; 1407 1408 WRITE_ENTER(&vnetp->vrwlock); 1409 if (vnetp->flags & VNET_STARTED) { 1410 vnet_start_resources(vnetp); 1411 } 1412 RW_EXIT(&vnetp->vrwlock); 1413 } 1414 1415 /* 1416 * vnet_start_resources -- starts all resources associated with 1417 * a vnet. 1418 */ 1419 static void 1420 vnet_start_resources(vnet_t *vnetp) 1421 { 1422 mac_register_t *macp; 1423 mac_callbacks_t *cbp; 1424 vnet_res_t *vresp; 1425 int rv; 1426 1427 DBG1(vnetp, "enter\n"); 1428 1429 for (vresp = vnetp->vres_list; vresp != NULL; vresp = vresp->nextp) { 1430 /* skip if it is already started */ 1431 if (vresp->flags & VNET_STARTED) { 1432 continue; 1433 } 1434 macp = &vresp->macreg; 1435 cbp = macp->m_callbacks; 1436 rv = cbp->mc_start(macp->m_driver); 1437 if (rv == 0) { 1438 /* 1439 * Successfully started the resource, so now 1440 * add it to the fdb. 1441 */ 1442 vresp->flags |= VNET_STARTED; 1443 vnet_fdbe_add(vnetp, vresp); 1444 } 1445 } 1446 1447 DBG1(vnetp, "exit\n"); 1448 1449 } 1450 1451 /* 1452 * vnet_stop_resources -- stop all resources associated with a vnet. 1453 */ 1454 static void 1455 vnet_stop_resources(vnet_t *vnetp) 1456 { 1457 vnet_res_t *vresp; 1458 vnet_res_t *nvresp; 1459 mac_register_t *macp; 1460 mac_callbacks_t *cbp; 1461 1462 DBG1(vnetp, "enter\n"); 1463 1464 for (vresp = vnetp->vres_list; vresp != NULL; ) { 1465 nvresp = vresp->nextp; 1466 if (vresp->flags & VNET_STARTED) { 1467 macp = &vresp->macreg; 1468 cbp = macp->m_callbacks; 1469 cbp->mc_stop(macp->m_driver); 1470 vresp->flags &= ~VNET_STARTED; 1471 } 1472 vresp = nvresp; 1473 } 1474 DBG1(vnetp, "exit\n"); 1475 } 1476 1477 /* 1478 * Setup kstats for the HIO statistics. 1479 * NOTE: the synchronization for the statistics is the 1480 * responsibility of the caller. 1481 */ 1482 kstat_t * 1483 vnet_hio_setup_kstats(char *ks_mod, char *ks_name, vnet_res_t *vresp) 1484 { 1485 kstat_t *ksp; 1486 vnet_t *vnetp = vresp->vnetp; 1487 vnet_hio_kstats_t *hiokp; 1488 size_t size; 1489 1490 ASSERT(vnetp != NULL); 1491 size = sizeof (vnet_hio_kstats_t) / sizeof (kstat_named_t); 1492 ksp = kstat_create(ks_mod, vnetp->instance, ks_name, "net", 1493 KSTAT_TYPE_NAMED, size, 0); 1494 if (ksp == NULL) { 1495 return (NULL); 1496 } 1497 1498 hiokp = (vnet_hio_kstats_t *)ksp->ks_data; 1499 kstat_named_init(&hiokp->ipackets, "ipackets", 1500 KSTAT_DATA_ULONG); 1501 kstat_named_init(&hiokp->ierrors, "ierrors", 1502 KSTAT_DATA_ULONG); 1503 kstat_named_init(&hiokp->opackets, "opackets", 1504 KSTAT_DATA_ULONG); 1505 kstat_named_init(&hiokp->oerrors, "oerrors", 1506 KSTAT_DATA_ULONG); 1507 1508 1509 /* MIB II kstat variables */ 1510 kstat_named_init(&hiokp->rbytes, "rbytes", 1511 KSTAT_DATA_ULONG); 1512 kstat_named_init(&hiokp->obytes, "obytes", 1513 KSTAT_DATA_ULONG); 1514 kstat_named_init(&hiokp->multircv, "multircv", 1515 KSTAT_DATA_ULONG); 1516 kstat_named_init(&hiokp->multixmt, "multixmt", 1517 KSTAT_DATA_ULONG); 1518 kstat_named_init(&hiokp->brdcstrcv, "brdcstrcv", 1519 KSTAT_DATA_ULONG); 1520 kstat_named_init(&hiokp->brdcstxmt, "brdcstxmt", 1521 KSTAT_DATA_ULONG); 1522 kstat_named_init(&hiokp->norcvbuf, "norcvbuf", 1523 KSTAT_DATA_ULONG); 1524 kstat_named_init(&hiokp->noxmtbuf, "noxmtbuf", 1525 KSTAT_DATA_ULONG); 1526 1527 ksp->ks_update = vnet_hio_update_kstats; 1528 ksp->ks_private = (void *)vresp; 1529 kstat_install(ksp); 1530 return (ksp); 1531 } 1532 1533 /* 1534 * Destroy kstats. 1535 */ 1536 static void 1537 vnet_hio_destroy_kstats(kstat_t *ksp) 1538 { 1539 if (ksp != NULL) 1540 kstat_delete(ksp); 1541 } 1542 1543 /* 1544 * Update the kstats. 1545 */ 1546 static int 1547 vnet_hio_update_kstats(kstat_t *ksp, int rw) 1548 { 1549 vnet_t *vnetp; 1550 vnet_res_t *vresp; 1551 vnet_hio_stats_t statsp; 1552 vnet_hio_kstats_t *hiokp; 1553 1554 vresp = (vnet_res_t *)ksp->ks_private; 1555 vnetp = vresp->vnetp; 1556 1557 bzero(&statsp, sizeof (vnet_hio_stats_t)); 1558 1559 READ_ENTER(&vnetp->vsw_fp_rw); 1560 if (vnetp->hio_fp == NULL) { 1561 /* not using hio resources, just return */ 1562 RW_EXIT(&vnetp->vsw_fp_rw); 1563 return (0); 1564 } 1565 VNET_FDBE_REFHOLD(vnetp->hio_fp); 1566 RW_EXIT(&vnetp->vsw_fp_rw); 1567 vnet_hio_get_stats(vnetp->hio_fp, &statsp); 1568 VNET_FDBE_REFRELE(vnetp->hio_fp); 1569 1570 hiokp = (vnet_hio_kstats_t *)ksp->ks_data; 1571 1572 if (rw == KSTAT_READ) { 1573 /* Link Input/Output stats */ 1574 hiokp->ipackets.value.ul = (uint32_t)statsp.ipackets; 1575 hiokp->ipackets64.value.ull = statsp.ipackets; 1576 hiokp->ierrors.value.ul = statsp.ierrors; 1577 hiokp->opackets.value.ul = (uint32_t)statsp.opackets; 1578 hiokp->opackets64.value.ull = statsp.opackets; 1579 hiokp->oerrors.value.ul = statsp.oerrors; 1580 1581 /* MIB II kstat variables */ 1582 hiokp->rbytes.value.ul = (uint32_t)statsp.rbytes; 1583 hiokp->rbytes64.value.ull = statsp.rbytes; 1584 hiokp->obytes.value.ul = (uint32_t)statsp.obytes; 1585 hiokp->obytes64.value.ull = statsp.obytes; 1586 hiokp->multircv.value.ul = statsp.multircv; 1587 hiokp->multixmt.value.ul = statsp.multixmt; 1588 hiokp->brdcstrcv.value.ul = statsp.brdcstrcv; 1589 hiokp->brdcstxmt.value.ul = statsp.brdcstxmt; 1590 hiokp->norcvbuf.value.ul = statsp.norcvbuf; 1591 hiokp->noxmtbuf.value.ul = statsp.noxmtbuf; 1592 } else { 1593 return (EACCES); 1594 } 1595 1596 return (0); 1597 } 1598 1599 static void 1600 vnet_hio_get_stats(vnet_res_t *vresp, vnet_hio_stats_t *statsp) 1601 { 1602 mac_register_t *macp; 1603 mac_callbacks_t *cbp; 1604 uint64_t val; 1605 int stat; 1606 1607 /* 1608 * get the specified statistics from the underlying nxge. 1609 */ 1610 macp = &vresp->macreg; 1611 cbp = macp->m_callbacks; 1612 for (stat = MAC_STAT_MIN; stat < MAC_STAT_OVERFLOWS; stat++) { 1613 if (cbp->mc_getstat(macp->m_driver, stat, &val) == 0) { 1614 switch (stat) { 1615 case MAC_STAT_IPACKETS: 1616 statsp->ipackets = val; 1617 break; 1618 1619 case MAC_STAT_IERRORS: 1620 statsp->ierrors = val; 1621 break; 1622 1623 case MAC_STAT_OPACKETS: 1624 statsp->opackets = val; 1625 break; 1626 1627 case MAC_STAT_OERRORS: 1628 statsp->oerrors = val; 1629 break; 1630 1631 case MAC_STAT_RBYTES: 1632 statsp->rbytes = val; 1633 break; 1634 1635 case MAC_STAT_OBYTES: 1636 statsp->obytes = val; 1637 break; 1638 1639 case MAC_STAT_MULTIRCV: 1640 statsp->multircv = val; 1641 break; 1642 1643 case MAC_STAT_MULTIXMT: 1644 statsp->multixmt = val; 1645 break; 1646 1647 case MAC_STAT_BRDCSTRCV: 1648 statsp->brdcstrcv = val; 1649 break; 1650 1651 case MAC_STAT_BRDCSTXMT: 1652 statsp->brdcstxmt = val; 1653 break; 1654 1655 case MAC_STAT_NOXMTBUF: 1656 statsp->noxmtbuf = val; 1657 break; 1658 1659 case MAC_STAT_NORCVBUF: 1660 statsp->norcvbuf = val; 1661 break; 1662 1663 default: 1664 /* 1665 * parameters not interested. 1666 */ 1667 break; 1668 } 1669 } 1670 } 1671 } 1672 1673 #ifdef VNET_IOC_DEBUG 1674 1675 /* 1676 * The ioctl entry point is used only for debugging for now. The ioctl commands 1677 * can be used to force the link state of the channel connected to vsw. 1678 */ 1679 static void 1680 vnet_m_ioctl(void *arg, queue_t *q, mblk_t *mp) 1681 { 1682 struct iocblk *iocp; 1683 vnet_t *vnetp; 1684 1685 iocp = (struct iocblk *)(uintptr_t)mp->b_rptr; 1686 iocp->ioc_error = 0; 1687 vnetp = (vnet_t *)arg; 1688 1689 if (vnetp == NULL) { 1690 miocnak(q, mp, 0, EINVAL); 1691 return; 1692 } 1693 1694 switch (iocp->ioc_cmd) { 1695 1696 case VNET_FORCE_LINK_DOWN: 1697 case VNET_FORCE_LINK_UP: 1698 vnet_force_link_state(vnetp, q, mp); 1699 break; 1700 1701 default: 1702 iocp->ioc_error = EINVAL; 1703 miocnak(q, mp, 0, iocp->ioc_error); 1704 break; 1705 1706 } 1707 } 1708 1709 static void 1710 vnet_force_link_state(vnet_t *vnetp, queue_t *q, mblk_t *mp) 1711 { 1712 mac_register_t *macp; 1713 mac_callbacks_t *cbp; 1714 vnet_res_t *vresp; 1715 1716 READ_ENTER(&vnetp->vsw_fp_rw); 1717 1718 vresp = vnetp->vsw_fp; 1719 if (vresp == NULL) { 1720 RW_EXIT(&vnetp->vsw_fp_rw); 1721 return; 1722 } 1723 1724 macp = &vresp->macreg; 1725 cbp = macp->m_callbacks; 1726 cbp->mc_ioctl(macp->m_driver, q, mp); 1727 1728 RW_EXIT(&vnetp->vsw_fp_rw); 1729 } 1730 1731 #else 1732 1733 static void 1734 vnet_m_ioctl(void *arg, queue_t *q, mblk_t *mp) 1735 { 1736 vnet_t *vnetp; 1737 1738 vnetp = (vnet_t *)arg; 1739 1740 if (vnetp == NULL) { 1741 miocnak(q, mp, 0, EINVAL); 1742 return; 1743 } 1744 1745 /* ioctl support only for debugging */ 1746 miocnak(q, mp, 0, ENOTSUP); 1747 } 1748 1749 #endif 1750