1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Virtual disk server 29 */ 30 31 32 #include <sys/types.h> 33 #include <sys/conf.h> 34 #include <sys/crc32.h> 35 #include <sys/ddi.h> 36 #include <sys/dkio.h> 37 #include <sys/file.h> 38 #include <sys/fs/hsfs_isospec.h> 39 #include <sys/mdeg.h> 40 #include <sys/mhd.h> 41 #include <sys/modhash.h> 42 #include <sys/note.h> 43 #include <sys/pathname.h> 44 #include <sys/sdt.h> 45 #include <sys/sunddi.h> 46 #include <sys/sunldi.h> 47 #include <sys/sysmacros.h> 48 #include <sys/vio_common.h> 49 #include <sys/vio_util.h> 50 #include <sys/vdsk_mailbox.h> 51 #include <sys/vdsk_common.h> 52 #include <sys/vtoc.h> 53 #include <sys/vfs.h> 54 #include <sys/stat.h> 55 #include <sys/scsi/impl/uscsi.h> 56 #include <sys/ontrap.h> 57 #include <vm/seg_map.h> 58 59 #define ONE_MEGABYTE (1ULL << 20) 60 #define ONE_GIGABYTE (1ULL << 30) 61 #define ONE_TERABYTE (1ULL << 40) 62 63 /* Virtual disk server initialization flags */ 64 #define VDS_LDI 0x01 65 #define VDS_MDEG 0x02 66 67 /* Virtual disk server tunable parameters */ 68 #define VDS_RETRIES 5 69 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 70 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 71 #define VDS_NCHAINS 32 72 73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 74 #define VDS_NAME "virtual-disk-server" 75 76 #define VD_NAME "vd" 77 #define VD_VOLUME_NAME "vdisk" 78 #define VD_ASCIILABEL "Virtual Disk" 79 80 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 81 #define VD_ID_PROP "id" 82 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 83 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 84 #define VD_REG_PROP "reg" 85 86 /* Virtual disk initialization flags */ 87 #define VD_DISK_READY 0x01 88 #define VD_LOCKING 0x02 89 #define VD_LDC 0x04 90 #define VD_DRING 0x08 91 #define VD_SID 0x10 92 #define VD_SEQ_NUM 0x20 93 #define VD_SETUP_ERROR 0x40 94 95 /* Number of backup labels */ 96 #define VD_DSKIMG_NUM_BACKUP 5 97 98 /* Timeout for SCSI I/O */ 99 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 100 101 /* 102 * Default number of threads for the I/O queue. In many cases, we will not 103 * receive more than 8 I/O requests at the same time. However there are 104 * cases (for example during the OS installation) where we can have a lot 105 * more (up to the limit of the DRing size). 106 */ 107 #define VD_IOQ_NTHREADS 8 108 109 /* Maximum number of logical partitions */ 110 #define VD_MAXPART (NDKMAP + 1) 111 112 /* 113 * By Solaris convention, slice/partition 2 represents the entire disk; 114 * unfortunately, this convention does not appear to be codified. 115 */ 116 #define VD_ENTIRE_DISK_SLICE 2 117 118 /* Logical block address for EFI */ 119 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */ 120 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */ 121 122 /* 123 * Flags defining the behavior for flushing asynchronous writes used to 124 * performed some write I/O requests. 125 * 126 * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous 127 * writes. This ensures that data are committed to the backend when the I/O 128 * request reply is sent to the guest domain so this prevents any data to 129 * be lost in case a service domain unexpectedly crashes. 130 * 131 * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another 132 * thread while the request is immediatly marked as completed. In that case, 133 * a guest domain can a receive a reply that its write request is completed 134 * while data haven't been flushed to disk yet. 135 * 136 * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive. 137 */ 138 #define VD_AWFLUSH_IMMEDIATE 0x01 /* immediate flushing */ 139 #define VD_AWFLUSH_DEFER 0x02 /* defer flushing */ 140 #define VD_AWFLUSH_GROUP 0x04 /* group requests before flushing */ 141 142 /* Driver types */ 143 typedef enum vd_driver { 144 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 145 VD_DRIVER_DISK, /* disk driver */ 146 VD_DRIVER_VOLUME /* volume driver */ 147 } vd_driver_t; 148 149 #define VD_DRIVER_NAME_LEN 64 150 151 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 152 153 typedef struct vd_driver_type { 154 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 155 vd_driver_t type; /* driver type (disk or volume) */ 156 } vd_driver_type_t; 157 158 /* 159 * There is no reliable way to determine if a device is representing a disk 160 * or a volume, especially with pseudo devices. So we maintain a list of well 161 * known drivers and the type of device they represent (either a disk or a 162 * volume). 163 * 164 * The list can be extended by adding a "driver-type-list" entry in vds.conf 165 * with the following syntax: 166 * 167 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 168 * 169 * Where: 170 * <driver> is the name of a driver (limited to 64 characters) 171 * <type> is either the string "disk" or "volume" 172 * 173 * Invalid entries in "driver-type-list" will be ignored. 174 * 175 * For example, the following line in vds.conf: 176 * 177 * driver-type-list="foo:disk","bar:volume"; 178 * 179 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 180 * 181 * When a list is defined in vds.conf, it is checked before the built-in list 182 * (vds_driver_types[]) so that any definition from this list can be overriden 183 * using vds.conf. 184 */ 185 vd_driver_type_t vds_driver_types[] = { 186 { "dad", VD_DRIVER_DISK }, /* Solaris */ 187 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 188 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */ 189 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 190 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 191 { "sd", VD_DRIVER_DISK }, /* Solaris */ 192 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 193 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 194 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 195 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 196 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 197 }; 198 199 /* Return a cpp token as a string */ 200 #define STRINGIZE(token) #token 201 202 /* 203 * Print a message prefixed with the current function name to the message log 204 * (and optionally to the console for verbose boots); these macros use cpp's 205 * concatenation of string literals and C99 variable-length-argument-list 206 * macros 207 */ 208 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 209 #define _PRN(format, ...) \ 210 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 211 212 /* Return a pointer to the "i"th vdisk dring element */ 213 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 214 (vd->dring + (i)*vd->descriptor_size)) 215 216 /* Return the virtual disk client's type as a string (for use in messages) */ 217 #define VD_CLIENT(vd) \ 218 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 219 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 220 (((vd)->xfer_mode == 0) ? "null client" : \ 221 "unsupported client"))) 222 223 /* Read disk label from a disk image */ 224 #define VD_DSKIMG_LABEL_READ(vd, labelp) \ 225 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 226 0, sizeof (struct dk_label)) 227 228 /* Write disk label to a disk image */ 229 #define VD_DSKIMG_LABEL_WRITE(vd, labelp) \ 230 vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 231 0, sizeof (struct dk_label)) 232 233 /* Identify if a backend is a disk image */ 234 #define VD_DSKIMG(vd) ((vd)->vdisk_type == VD_DISK_TYPE_DISK && \ 235 ((vd)->file || (vd)->volume)) 236 237 /* Next index in a write queue */ 238 #define VD_WRITE_INDEX_NEXT(vd, id) \ 239 ((((id) + 1) >= vd->dring_len)? 0 : (id) + 1) 240 241 /* Message for disk access rights reset failure */ 242 #define VD_RESET_ACCESS_FAILURE_MSG \ 243 "Fail to reset disk access rights for disk %s" 244 245 /* 246 * Specification of an MD node passed to the MDEG to filter any 247 * 'vport' nodes that do not belong to the specified node. This 248 * template is copied for each vds instance and filled in with 249 * the appropriate 'cfg-handle' value before being passed to the MDEG. 250 */ 251 static mdeg_prop_spec_t vds_prop_template[] = { 252 { MDET_PROP_STR, "name", VDS_NAME }, 253 { MDET_PROP_VAL, "cfg-handle", NULL }, 254 { MDET_LIST_END, NULL, NULL } 255 }; 256 257 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 258 259 /* 260 * Matching criteria passed to the MDEG to register interest 261 * in changes to 'virtual-device-port' nodes identified by their 262 * 'id' property. 263 */ 264 static md_prop_match_t vd_prop_match[] = { 265 { MDET_PROP_VAL, VD_ID_PROP }, 266 { MDET_LIST_END, NULL } 267 }; 268 269 static mdeg_node_match_t vd_match = {"virtual-device-port", 270 vd_prop_match}; 271 272 /* 273 * Options for the VD_BLOCK_DEVICE_OPTS property. 274 */ 275 #define VD_OPT_RDONLY 0x1 /* read-only */ 276 #define VD_OPT_SLICE 0x2 /* single slice */ 277 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 278 279 #define VD_OPTION_NLEN 128 280 281 typedef struct vd_option { 282 char vdo_name[VD_OPTION_NLEN]; 283 uint64_t vdo_value; 284 } vd_option_t; 285 286 vd_option_t vd_bdev_options[] = { 287 { "ro", VD_OPT_RDONLY }, 288 { "slice", VD_OPT_SLICE }, 289 { "excl", VD_OPT_EXCLUSIVE } 290 }; 291 292 /* Debugging macros */ 293 #ifdef DEBUG 294 295 static int vd_msglevel = 0; 296 297 #define PR0 if (vd_msglevel > 0) PRN 298 #define PR1 if (vd_msglevel > 1) PRN 299 #define PR2 if (vd_msglevel > 2) PRN 300 301 #define VD_DUMP_DRING_ELEM(elem) \ 302 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 303 elem->hdr.dstate, \ 304 elem->payload.operation, \ 305 elem->payload.status, \ 306 elem->payload.nbytes, \ 307 elem->payload.addr, \ 308 elem->payload.ncookies); 309 310 char * 311 vd_decode_state(int state) 312 { 313 char *str; 314 315 #define CASE_STATE(_s) case _s: str = #_s; break; 316 317 switch (state) { 318 CASE_STATE(VD_STATE_INIT) 319 CASE_STATE(VD_STATE_VER) 320 CASE_STATE(VD_STATE_ATTR) 321 CASE_STATE(VD_STATE_DRING) 322 CASE_STATE(VD_STATE_RDX) 323 CASE_STATE(VD_STATE_DATA) 324 default: str = "unknown"; break; 325 } 326 327 #undef CASE_STATE 328 329 return (str); 330 } 331 332 void 333 vd_decode_tag(vio_msg_t *msg) 334 { 335 char *tstr, *sstr, *estr; 336 337 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 338 339 switch (msg->tag.vio_msgtype) { 340 CASE_TYPE(VIO_TYPE_CTRL) 341 CASE_TYPE(VIO_TYPE_DATA) 342 CASE_TYPE(VIO_TYPE_ERR) 343 default: tstr = "unknown"; break; 344 } 345 346 #undef CASE_TYPE 347 348 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 349 350 switch (msg->tag.vio_subtype) { 351 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 352 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 353 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 354 default: sstr = "unknown"; break; 355 } 356 357 #undef CASE_SUBTYPE 358 359 #define CASE_ENV(_s) case _s: estr = #_s; break; 360 361 switch (msg->tag.vio_subtype_env) { 362 CASE_ENV(VIO_VER_INFO) 363 CASE_ENV(VIO_ATTR_INFO) 364 CASE_ENV(VIO_DRING_REG) 365 CASE_ENV(VIO_DRING_UNREG) 366 CASE_ENV(VIO_RDX) 367 CASE_ENV(VIO_PKT_DATA) 368 CASE_ENV(VIO_DESC_DATA) 369 CASE_ENV(VIO_DRING_DATA) 370 default: estr = "unknown"; break; 371 } 372 373 #undef CASE_ENV 374 375 PR1("(%x/%x/%x) message : (%s/%s/%s)", 376 msg->tag.vio_msgtype, msg->tag.vio_subtype, 377 msg->tag.vio_subtype_env, tstr, sstr, estr); 378 } 379 380 #else /* !DEBUG */ 381 382 #define PR0(...) 383 #define PR1(...) 384 #define PR2(...) 385 386 #define VD_DUMP_DRING_ELEM(elem) 387 388 #define vd_decode_state(_s) (NULL) 389 #define vd_decode_tag(_s) (NULL) 390 391 #endif /* DEBUG */ 392 393 394 /* 395 * Soft state structure for a vds instance 396 */ 397 typedef struct vds { 398 uint_t initialized; /* driver inst initialization flags */ 399 dev_info_t *dip; /* driver inst devinfo pointer */ 400 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 401 mod_hash_t *vd_table; /* table of virtual disks served */ 402 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 403 mdeg_handle_t mdeg; /* handle for MDEG operations */ 404 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 405 int num_drivers; /* num of extra driver types */ 406 } vds_t; 407 408 /* 409 * Types of descriptor-processing tasks 410 */ 411 typedef enum vd_task_type { 412 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 413 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 414 } vd_task_type_t; 415 416 /* 417 * Structure describing the task for processing a descriptor 418 */ 419 typedef struct vd_task { 420 struct vd *vd; /* vd instance task is for */ 421 vd_task_type_t type; /* type of descriptor task */ 422 int index; /* dring elem index for task */ 423 vio_msg_t *msg; /* VIO message task is for */ 424 size_t msglen; /* length of message content */ 425 vd_dring_payload_t *request; /* request task will perform */ 426 struct buf buf; /* buf(9s) for I/O request */ 427 ldc_mem_handle_t mhdl; /* task memory handle */ 428 int status; /* status of processing task */ 429 int (*completef)(struct vd_task *task); /* completion func ptr */ 430 uint32_t write_index; /* index in the write_queue */ 431 } vd_task_t; 432 433 /* 434 * Soft state structure for a virtual disk instance 435 */ 436 typedef struct vd { 437 uint64_t id; /* vdisk id */ 438 uint_t initialized; /* vdisk initialization flags */ 439 uint64_t operations; /* bitmask of VD_OPs exported */ 440 vio_ver_t version; /* ver negotiated with client */ 441 vds_t *vds; /* server for this vdisk */ 442 ddi_taskq_t *startq; /* queue for I/O start tasks */ 443 ddi_taskq_t *completionq; /* queue for completion tasks */ 444 ddi_taskq_t *ioq; /* queue for I/O */ 445 uint32_t write_index; /* next write index */ 446 buf_t **write_queue; /* queue for async writes */ 447 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 448 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 449 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 450 int open_flags; /* open flags */ 451 uint_t nslices; /* number of slices we export */ 452 size_t vdisk_size; /* number of blocks in vdisk */ 453 size_t vdisk_block_size; /* size of each vdisk block */ 454 vd_disk_type_t vdisk_type; /* slice or entire disk */ 455 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 456 vd_media_t vdisk_media; /* media type of backing dev. */ 457 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 458 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 459 size_t block_size; /* blk size of actual device */ 460 boolean_t volume; /* is vDisk backed by volume */ 461 boolean_t zvol; /* is vDisk backed by a zvol */ 462 boolean_t file; /* is vDisk backed by a file? */ 463 boolean_t scsi; /* is vDisk backed by scsi? */ 464 vnode_t *file_vnode; /* file vnode */ 465 size_t dskimg_size; /* size of disk image */ 466 ddi_devid_t dskimg_devid; /* devid for disk image */ 467 int efi_reserved; /* EFI reserved slice */ 468 caddr_t flabel; /* fake label for slice type */ 469 uint_t flabel_size; /* fake label size */ 470 uint_t flabel_limit; /* limit of the fake label */ 471 struct dk_geom dk_geom; /* synthetic for slice type */ 472 struct extvtoc vtoc; /* synthetic for slice type */ 473 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 474 boolean_t ownership; /* disk ownership status */ 475 ldc_status_t ldc_state; /* LDC connection state */ 476 ldc_handle_t ldc_handle; /* handle for LDC comm */ 477 size_t max_msglen; /* largest LDC message len */ 478 vd_state_t state; /* client handshake state */ 479 uint8_t xfer_mode; /* transfer mode with client */ 480 uint32_t sid; /* client's session ID */ 481 uint64_t seq_num; /* message sequence number */ 482 uint64_t dring_ident; /* identifier of dring */ 483 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 484 uint32_t descriptor_size; /* num bytes in desc */ 485 uint32_t dring_len; /* number of dring elements */ 486 uint8_t dring_mtype; /* dring mem map type */ 487 caddr_t dring; /* address of dring */ 488 caddr_t vio_msgp; /* vio msg staging buffer */ 489 vd_task_t inband_task; /* task for inband descriptor */ 490 vd_task_t *dring_task; /* tasks dring elements */ 491 492 kmutex_t lock; /* protects variables below */ 493 boolean_t enabled; /* is vdisk enabled? */ 494 boolean_t reset_state; /* reset connection state? */ 495 boolean_t reset_ldc; /* reset LDC channel? */ 496 } vd_t; 497 498 /* 499 * Macros to manipulate the fake label (flabel) for single slice disks. 500 * 501 * If we fake a VTOC label then the fake label consists of only one block 502 * containing the VTOC label (struct dk_label). 503 * 504 * If we fake an EFI label then the fake label consists of a blank block 505 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t). 506 * 507 */ 508 #define VD_LABEL_VTOC_SIZE \ 509 P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE) 510 511 #define VD_LABEL_EFI_SIZE \ 512 P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + \ 513 sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE) 514 515 #define VD_LABEL_VTOC(vd) \ 516 ((struct dk_label *)(void *)((vd)->flabel)) 517 518 #define VD_LABEL_EFI_GPT(vd) \ 519 ((efi_gpt_t *)(void *)((vd)->flabel + DEV_BSIZE)) 520 #define VD_LABEL_EFI_GPE(vd) \ 521 ((efi_gpe_t *)(void *)((vd)->flabel + DEV_BSIZE + \ 522 sizeof (efi_gpt_t))) 523 524 525 typedef struct vds_operation { 526 char *namep; 527 uint8_t operation; 528 int (*start)(vd_task_t *task); 529 int (*complete)(vd_task_t *task); 530 } vds_operation_t; 531 532 typedef struct vd_ioctl { 533 uint8_t operation; /* vdisk operation */ 534 const char *operation_name; /* vdisk operation name */ 535 size_t nbytes; /* size of operation buffer */ 536 int cmd; /* corresponding ioctl cmd */ 537 const char *cmd_name; /* ioctl cmd name */ 538 void *arg; /* ioctl cmd argument */ 539 /* convert input vd_buf to output ioctl_arg */ 540 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 541 /* convert input ioctl_arg to output vd_buf */ 542 void (*copyout)(void *ioctl_arg, void *vd_buf); 543 /* write is true if the operation writes any data to the backend */ 544 boolean_t write; 545 } vd_ioctl_t; 546 547 /* Define trivial copyin/copyout conversion function flag */ 548 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 549 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 550 551 552 static int vds_ldc_retries = VDS_RETRIES; 553 static int vds_ldc_delay = VDS_LDC_DELAY; 554 static int vds_dev_retries = VDS_RETRIES; 555 static int vds_dev_delay = VDS_DEV_DELAY; 556 static void *vds_state; 557 558 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 559 static int vd_scsi_debug = USCSI_SILENT; 560 561 /* 562 * Number of threads in the taskq handling vdisk I/O. This can be set up to 563 * the size of the DRing which is the maximum number of I/O we can receive 564 * in parallel. Note that using a high number of threads can improve performance 565 * but this is going to consume a lot of resources if there are many vdisks. 566 */ 567 static int vd_ioq_nthreads = VD_IOQ_NTHREADS; 568 569 /* 570 * Tunable to define the behavior for flushing asynchronous writes used to 571 * performed some write I/O requests. The default behavior is to group as 572 * much asynchronous writes as possible and to flush them immediatly. 573 * 574 * If the tunable is set to 0 then explicit flushing is disabled. In that 575 * case, data will be flushed by traditional mechanism (like fsflush) but 576 * this might not happen immediatly. 577 * 578 */ 579 static int vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP; 580 581 /* 582 * Tunable to define the behavior of the service domain if the vdisk server 583 * fails to reset disk exclusive access when a LDC channel is reset. When a 584 * LDC channel is reset the vdisk server will try to reset disk exclusive 585 * access by releasing any SCSI-2 reservation or resetting the disk. If these 586 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 587 * print a warning message. This default behavior can be changed by setting 588 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 589 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 590 * the service domain to panic. In both cases, the reset of the service domain 591 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 592 */ 593 static int vd_reset_access_failure = 0; 594 595 /* 596 * Tunable for backward compatibility. When this variable is set to B_TRUE, 597 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 598 * slice disks whether or not they have the "slice" option set. This is 599 * to provide a simple backward compatibility mechanism when upgrading 600 * the vds driver and using a domain configuration created before the 601 * "slice" option was available. 602 */ 603 static boolean_t vd_volume_force_slice = B_FALSE; 604 605 /* 606 * The label of disk images created with some earlier versions of the virtual 607 * disk software is not entirely correct and have an incorrect v_sanity field 608 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 609 * these images because we are now validating that the disk label (and the 610 * sanity) is correct when a disk image is opened. 611 * 612 * This tunable is set to false to not validate the sanity field and ensure 613 * compatibility. If the tunable is set to true, we will do a strict checking 614 * of the sanity but this can create compatibility problems with old disk 615 * images. 616 */ 617 static boolean_t vd_dskimg_validate_sanity = B_FALSE; 618 619 /* 620 * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings. 621 */ 622 static boolean_t vd_direct_mapped_drings = B_TRUE; 623 624 /* 625 * When a backend is exported as a single-slice disk then we entirely fake 626 * its disk label. So it can be exported either with a VTOC label or with 627 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all 628 * single-slice disks will be exported with a VTOC label; and if it is set 629 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with 630 * an EFI label. 631 * 632 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk 633 * or volume device then it will be exported with the same type of label as 634 * defined on the device. Otherwise if the backend is a file then it will 635 * exported with the disk label type set in the vd_file_slice_label variable. 636 * 637 * Note that if the backend size is greater than 1TB then it will always be 638 * exported with an EFI label no matter what the setting is. 639 */ 640 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK; 641 642 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC; 643 644 /* 645 * Tunable for backward compatibility. If this variable is set to B_TRUE then 646 * single-slice disks are exported as disks with only one slice instead of 647 * faking a complete disk partitioning. 648 */ 649 static boolean_t vd_slice_single_slice = B_FALSE; 650 651 /* 652 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 653 * 654 * Each supported major version should appear only once, paired with (and only 655 * with) its highest supported minor version number (as the protocol requires 656 * supporting all lower minor version numbers as well) 657 */ 658 static const vio_ver_t vds_version[] = {{1, 1}}; 659 static const size_t vds_num_versions = 660 sizeof (vds_version)/sizeof (vds_version[0]); 661 662 static void vd_free_dring_task(vd_t *vdp); 663 static int vd_setup_vd(vd_t *vd); 664 static int vd_setup_single_slice_disk(vd_t *vd); 665 static int vd_setup_slice_image(vd_t *vd); 666 static int vd_setup_disk_image(vd_t *vd); 667 static int vd_backend_check_size(vd_t *vd); 668 static boolean_t vd_enabled(vd_t *vd); 669 static ushort_t vd_lbl2cksum(struct dk_label *label); 670 static int vd_dskimg_validate_geometry(vd_t *vd); 671 static boolean_t vd_dskimg_is_iso_image(vd_t *vd); 672 static void vd_set_exported_operations(vd_t *vd); 673 static void vd_reset_access(vd_t *vd); 674 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 675 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 676 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 677 static void vds_driver_types_free(vds_t *vds); 678 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 679 struct dk_label *label); 680 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 681 struct dk_geom *geom); 682 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom); 683 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc); 684 685 extern int is_pseudo_device(dev_info_t *); 686 687 /* 688 * Function: 689 * vd_get_readable_size 690 * 691 * Description: 692 * Convert a given size in bytes to a human readable format in 693 * kilobytes, megabytes, gigabytes or terabytes. 694 * 695 * Parameters: 696 * full_size - the size to convert in bytes. 697 * size - the converted size. 698 * unit - the unit of the converted size: 'K' (kilobyte), 699 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte). 700 * 701 * Return Code: 702 * none 703 */ 704 static void 705 vd_get_readable_size(size_t full_size, size_t *size, char *unit) 706 { 707 if (full_size < (1ULL << 20)) { 708 *size = full_size >> 10; 709 *unit = 'K'; /* Kilobyte */ 710 } else if (full_size < (1ULL << 30)) { 711 *size = full_size >> 20; 712 *unit = 'M'; /* Megabyte */ 713 } else if (full_size < (1ULL << 40)) { 714 *size = full_size >> 30; 715 *unit = 'G'; /* Gigabyte */ 716 } else { 717 *size = full_size >> 40; 718 *unit = 'T'; /* Terabyte */ 719 } 720 } 721 722 /* 723 * Function: 724 * vd_dskimg_io_params 725 * 726 * Description: 727 * Convert virtual disk I/O parameters (slice, block, length) to 728 * (offset, length) relative to the disk image and according to 729 * the virtual disk partitioning. 730 * 731 * Parameters: 732 * vd - disk on which the operation is performed. 733 * slice - slice to which is the I/O parameters apply. 734 * VD_SLICE_NONE indicates that parameters are 735 * are relative to the entire virtual disk. 736 * blkp - pointer to the starting block relative to the 737 * slice; return the starting block relative to 738 * the disk image. 739 * lenp - pointer to the number of bytes requested; return 740 * the number of bytes that can effectively be used. 741 * 742 * Return Code: 743 * 0 - I/O parameters have been successfully converted; 744 * blkp and lenp point to the converted values. 745 * ENODATA - no data are available for the given I/O parameters; 746 * This occurs if the starting block is past the limit 747 * of the slice. 748 * EINVAL - I/O parameters are invalid. 749 */ 750 static int 751 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp) 752 { 753 size_t blk = *blkp; 754 size_t len = *lenp; 755 size_t offset, maxlen; 756 757 ASSERT(vd->file || VD_DSKIMG(vd)); 758 ASSERT(len > 0); 759 760 /* 761 * If a file is exported as a slice then we don't care about the vtoc. 762 * In that case, the vtoc is a fake mainly to make newfs happy and we 763 * handle any I/O as a raw disk access so that we can have access to the 764 * entire backend. 765 */ 766 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 767 /* raw disk access */ 768 offset = blk * DEV_BSIZE; 769 if (offset >= vd->dskimg_size) { 770 /* offset past the end of the disk */ 771 PR0("offset (0x%lx) >= size (0x%lx)", 772 offset, vd->dskimg_size); 773 return (ENODATA); 774 } 775 maxlen = vd->dskimg_size - offset; 776 } else { 777 ASSERT(slice >= 0 && slice < V_NUMPAR); 778 779 /* 780 * v1.0 vDisk clients depended on the server not verifying 781 * the label of a unformatted disk. This "feature" is 782 * maintained for backward compatibility but all versions 783 * from v1.1 onwards must do the right thing. 784 */ 785 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 786 vio_ver_is_supported(vd->version, 1, 1)) { 787 (void) vd_dskimg_validate_geometry(vd); 788 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 789 PR0("Unknown disk label, can't do I/O " 790 "from slice %d", slice); 791 return (EINVAL); 792 } 793 } 794 795 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 796 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 797 } else { 798 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 799 ASSERT(vd->vdisk_block_size == DEV_BSIZE); 800 } 801 802 if (blk >= vd->slices[slice].nblocks) { 803 /* address past the end of the slice */ 804 PR0("req_addr (0x%lx) >= psize (0x%lx)", 805 blk, vd->slices[slice].nblocks); 806 return (ENODATA); 807 } 808 809 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 810 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 811 } 812 813 /* 814 * If the requested size is greater than the size 815 * of the partition, truncate the read/write. 816 */ 817 if (len > maxlen) { 818 PR0("I/O size truncated to %lu bytes from %lu bytes", 819 maxlen, len); 820 len = maxlen; 821 } 822 823 /* 824 * We have to ensure that we are reading/writing into the mmap 825 * range. If we have a partial disk image (e.g. an image of 826 * s0 instead s2) the system can try to access slices that 827 * are not included into the disk image. 828 */ 829 if ((offset + len) > vd->dskimg_size) { 830 PR0("offset + nbytes (0x%lx + 0x%lx) > " 831 "dskimg_size (0x%lx)", offset, len, vd->dskimg_size); 832 return (EINVAL); 833 } 834 835 *blkp = offset / DEV_BSIZE; 836 *lenp = len; 837 838 return (0); 839 } 840 841 /* 842 * Function: 843 * vd_dskimg_rw 844 * 845 * Description: 846 * Read or write to a disk image. It handles the case where the disk 847 * image is a file or a volume exported as a full disk or a file 848 * exported as single-slice disk. Read or write to volumes exported as 849 * single slice disks are done by directly using the ldi interface. 850 * 851 * Parameters: 852 * vd - disk on which the operation is performed. 853 * slice - slice on which the operation is performed, 854 * VD_SLICE_NONE indicates that the operation 855 * is done using an absolute disk offset. 856 * operation - operation to execute: read (VD_OP_BREAD) or 857 * write (VD_OP_BWRITE). 858 * data - buffer where data are read to or written from. 859 * blk - starting block for the operation. 860 * len - number of bytes to read or write. 861 * 862 * Return Code: 863 * n >= 0 - success, n indicates the number of bytes read 864 * or written. 865 * -1 - error. 866 */ 867 static ssize_t 868 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset, 869 size_t len) 870 { 871 ssize_t resid; 872 struct buf buf; 873 int status; 874 875 ASSERT(vd->file || VD_DSKIMG(vd)); 876 ASSERT(len > 0); 877 878 if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0) 879 return ((status == ENODATA)? 0: -1); 880 881 if (vd->volume) { 882 883 bioinit(&buf); 884 buf.b_flags = B_BUSY | 885 ((operation == VD_OP_BREAD)? B_READ : B_WRITE); 886 buf.b_bcount = len; 887 buf.b_lblkno = offset; 888 buf.b_edev = vd->dev[0]; 889 buf.b_un.b_addr = data; 890 891 /* 892 * We use ldi_strategy() and not ldi_read()/ldi_write() because 893 * the read/write functions of the underlying driver may try to 894 * lock pages of the data buffer, and this requires the data 895 * buffer to be kmem_alloc'ed (and not allocated on the stack). 896 * 897 * Also using ldi_strategy() ensures that writes are immediatly 898 * commited and not cached as this may be the case with 899 * ldi_write() (for example with a ZFS volume). 900 */ 901 if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) { 902 biofini(&buf); 903 return (-1); 904 } 905 906 if (biowait(&buf) != 0) { 907 biofini(&buf); 908 return (-1); 909 } 910 911 resid = buf.b_resid; 912 biofini(&buf); 913 914 ASSERT(resid <= len); 915 return (len - resid); 916 } 917 918 ASSERT(vd->file); 919 920 status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE, 921 vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC, 922 RLIM64_INFINITY, kcred, &resid); 923 924 if (status != 0) 925 return (-1); 926 927 return (len); 928 } 929 930 /* 931 * Function: 932 * vd_build_default_label 933 * 934 * Description: 935 * Return a default label for a given disk size. This is used when the disk 936 * does not have a valid VTOC so that the user can get a valid default 937 * configuration. The default label has all slice sizes set to 0 (except 938 * slice 2 which is the entire disk) to force the user to write a valid 939 * label onto the disk image. 940 * 941 * Parameters: 942 * disk_size - the disk size in bytes 943 * label - the returned default label. 944 * 945 * Return Code: 946 * none. 947 */ 948 static void 949 vd_build_default_label(size_t disk_size, struct dk_label *label) 950 { 951 size_t size; 952 char unit; 953 954 bzero(label, sizeof (struct dk_label)); 955 956 /* 957 * Ideally we would like the cylinder size (nsect * nhead) to be the 958 * same whatever the disk size is. That way the VTOC label could be 959 * easily updated in case the disk size is increased (keeping the 960 * same cylinder size allows to preserve the existing partitioning 961 * when updating the VTOC label). But it is not possible to have 962 * a fixed cylinder size and to cover all disk size. 963 * 964 * So we define different cylinder sizes depending on the disk size. 965 * The cylinder size is chosen so that we don't have too few cylinders 966 * for a small disk image, or so many on a big disk image that you 967 * waste space for backup superblocks or cylinder group structures. 968 * Also we must have a resonable number of cylinders and sectors so 969 * that newfs can run using default values. 970 * 971 * +-----------+--------+---------+--------+ 972 * | disk_size | < 2MB | 2MB-4GB | >= 8GB | 973 * +-----------+--------+---------+--------+ 974 * | nhead | 1 | 1 | 96 | 975 * | nsect | 200 | 600 | 768 | 976 * +-----------+--------+---------+--------+ 977 * 978 * Other parameters are computed from these values: 979 * 980 * pcyl = disk_size / (nhead * nsect * 512) 981 * acyl = (pcyl > 2)? 2 : 0 982 * ncyl = pcyl - acyl 983 * 984 * The maximum number of cylinder is 65535 so this allows to define a 985 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB 986 * which is more than enough to cover the maximum size allowed by the 987 * extended VTOC format (2TB). 988 */ 989 990 if (disk_size >= 8 * ONE_GIGABYTE) { 991 992 label->dkl_nhead = 96; 993 label->dkl_nsect = 768; 994 995 } else if (disk_size >= 2 * ONE_MEGABYTE) { 996 997 label->dkl_nhead = 1; 998 label->dkl_nsect = 600; 999 1000 } else { 1001 1002 label->dkl_nhead = 1; 1003 label->dkl_nsect = 200; 1004 } 1005 1006 label->dkl_pcyl = disk_size / 1007 (label->dkl_nsect * label->dkl_nhead * DEV_BSIZE); 1008 1009 if (label->dkl_pcyl == 0) 1010 label->dkl_pcyl = 1; 1011 1012 label->dkl_acyl = 0; 1013 1014 if (label->dkl_pcyl > 2) 1015 label->dkl_acyl = 2; 1016 1017 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 1018 label->dkl_write_reinstruct = 0; 1019 label->dkl_read_reinstruct = 0; 1020 label->dkl_rpm = 7200; 1021 label->dkl_apc = 0; 1022 label->dkl_intrlv = 0; 1023 1024 PR0("requested disk size: %ld bytes\n", disk_size); 1025 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 1026 label->dkl_nhead, label->dkl_nsect); 1027 PR0("provided disk size: %ld bytes\n", (uint64_t) 1028 (label->dkl_pcyl * label->dkl_nhead * 1029 label->dkl_nsect * DEV_BSIZE)); 1030 1031 vd_get_readable_size(disk_size, &size, &unit); 1032 1033 /* 1034 * We must have a correct label name otherwise format(1m) will 1035 * not recognized the disk as labeled. 1036 */ 1037 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 1038 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 1039 size, unit, 1040 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 1041 label->dkl_nsect); 1042 1043 /* default VTOC */ 1044 label->dkl_vtoc.v_version = V_EXTVERSION; 1045 label->dkl_vtoc.v_nparts = V_NUMPAR; 1046 label->dkl_vtoc.v_sanity = VTOC_SANE; 1047 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 1048 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 1049 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 1050 label->dkl_nhead * label->dkl_nsect; 1051 label->dkl_magic = DKL_MAGIC; 1052 label->dkl_cksum = vd_lbl2cksum(label); 1053 } 1054 1055 /* 1056 * Function: 1057 * vd_dskimg_set_vtoc 1058 * 1059 * Description: 1060 * Set the vtoc of a disk image by writing the label and backup 1061 * labels into the disk image backend. 1062 * 1063 * Parameters: 1064 * vd - disk on which the operation is performed. 1065 * label - the data to be written. 1066 * 1067 * Return Code: 1068 * 0 - success. 1069 * n > 0 - error, n indicates the errno code. 1070 */ 1071 static int 1072 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label) 1073 { 1074 size_t blk, sec, cyl, head, cnt; 1075 1076 ASSERT(VD_DSKIMG(vd)); 1077 1078 if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) { 1079 PR0("fail to write disk label"); 1080 return (EIO); 1081 } 1082 1083 /* 1084 * Backup labels are on the last alternate cylinder's 1085 * first five odd sectors. 1086 */ 1087 if (label->dkl_acyl == 0) { 1088 PR0("no alternate cylinder, can not store backup labels"); 1089 return (0); 1090 } 1091 1092 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 1093 head = label->dkl_nhead - 1; 1094 1095 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 1096 (head * label->dkl_nsect); 1097 1098 /* 1099 * Write the backup labels. Make sure we don't try to write past 1100 * the last cylinder. 1101 */ 1102 sec = 1; 1103 1104 for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) { 1105 1106 if (sec >= label->dkl_nsect) { 1107 PR0("not enough sector to store all backup labels"); 1108 return (0); 1109 } 1110 1111 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1112 (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) { 1113 PR0("error writing backup label at block %lu\n", 1114 blk + sec); 1115 return (EIO); 1116 } 1117 1118 PR1("wrote backup label at block %lu\n", blk + sec); 1119 1120 sec += 2; 1121 } 1122 1123 return (0); 1124 } 1125 1126 /* 1127 * Function: 1128 * vd_dskimg_get_devid_block 1129 * 1130 * Description: 1131 * Return the block number where the device id is stored. 1132 * 1133 * Parameters: 1134 * vd - disk on which the operation is performed. 1135 * blkp - pointer to the block number 1136 * 1137 * Return Code: 1138 * 0 - success 1139 * ENOSPC - disk has no space to store a device id 1140 */ 1141 static int 1142 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp) 1143 { 1144 diskaddr_t spc, head, cyl; 1145 1146 ASSERT(VD_DSKIMG(vd)); 1147 1148 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 1149 /* 1150 * If no label is defined we don't know where to find 1151 * a device id. 1152 */ 1153 return (ENOSPC); 1154 } 1155 1156 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1157 /* 1158 * For an EFI disk, the devid is at the beginning of 1159 * the reserved slice 1160 */ 1161 if (vd->efi_reserved == -1) { 1162 PR0("EFI disk has no reserved slice"); 1163 return (ENOSPC); 1164 } 1165 1166 *blkp = vd->slices[vd->efi_reserved].start; 1167 return (0); 1168 } 1169 1170 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1171 1172 /* this geometry doesn't allow us to have a devid */ 1173 if (vd->dk_geom.dkg_acyl < 2) { 1174 PR0("not enough alternate cylinder available for devid " 1175 "(acyl=%u)", vd->dk_geom.dkg_acyl); 1176 return (ENOSPC); 1177 } 1178 1179 /* the devid is in on the track next to the last cylinder */ 1180 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 1181 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1182 head = vd->dk_geom.dkg_nhead - 1; 1183 1184 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 1185 (head * vd->dk_geom.dkg_nsect) + 1; 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Return the checksum of a disk block containing an on-disk devid. 1192 */ 1193 static uint_t 1194 vd_dkdevid2cksum(struct dk_devid *dkdevid) 1195 { 1196 uint_t chksum, *ip; 1197 int i; 1198 1199 chksum = 0; 1200 ip = (void *)dkdevid; 1201 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 1202 chksum ^= ip[i]; 1203 1204 return (chksum); 1205 } 1206 1207 /* 1208 * Function: 1209 * vd_dskimg_read_devid 1210 * 1211 * Description: 1212 * Read the device id stored on a disk image. 1213 * 1214 * Parameters: 1215 * vd - disk on which the operation is performed. 1216 * devid - the return address of the device ID. 1217 * 1218 * Return Code: 1219 * 0 - success 1220 * EIO - I/O error while trying to access the disk image 1221 * EINVAL - no valid device id was found 1222 * ENOSPC - disk has no space to store a device id 1223 */ 1224 static int 1225 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid) 1226 { 1227 struct dk_devid *dkdevid; 1228 size_t blk; 1229 uint_t chksum; 1230 int status, sz; 1231 1232 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1233 return (status); 1234 1235 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1236 1237 /* get the devid */ 1238 if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 1239 DEV_BSIZE)) < 0) { 1240 PR0("error reading devid block at %lu", blk); 1241 status = EIO; 1242 goto done; 1243 } 1244 1245 /* validate the revision */ 1246 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1247 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1248 PR0("invalid devid found at block %lu (bad revision)", blk); 1249 status = EINVAL; 1250 goto done; 1251 } 1252 1253 /* compute checksum */ 1254 chksum = vd_dkdevid2cksum(dkdevid); 1255 1256 /* compare the checksums */ 1257 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1258 PR0("invalid devid found at block %lu (bad checksum)", blk); 1259 status = EINVAL; 1260 goto done; 1261 } 1262 1263 /* validate the device id */ 1264 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1265 PR0("invalid devid found at block %lu", blk); 1266 status = EINVAL; 1267 goto done; 1268 } 1269 1270 PR1("devid read at block %lu", blk); 1271 1272 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1273 *devid = kmem_alloc(sz, KM_SLEEP); 1274 bcopy(&dkdevid->dkd_devid, *devid, sz); 1275 1276 done: 1277 kmem_free(dkdevid, DEV_BSIZE); 1278 return (status); 1279 1280 } 1281 1282 /* 1283 * Function: 1284 * vd_dskimg_write_devid 1285 * 1286 * Description: 1287 * Write a device id into disk image. 1288 * 1289 * Parameters: 1290 * vd - disk on which the operation is performed. 1291 * devid - the device ID to store. 1292 * 1293 * Return Code: 1294 * 0 - success 1295 * EIO - I/O error while trying to access the disk image 1296 * ENOSPC - disk has no space to store a device id 1297 */ 1298 static int 1299 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid) 1300 { 1301 struct dk_devid *dkdevid; 1302 uint_t chksum; 1303 size_t blk; 1304 int status; 1305 1306 if (devid == NULL) { 1307 /* nothing to write */ 1308 return (0); 1309 } 1310 1311 if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0) 1312 return (status); 1313 1314 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1315 1316 /* set revision */ 1317 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1318 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1319 1320 /* copy devid */ 1321 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1322 1323 /* compute checksum */ 1324 chksum = vd_dkdevid2cksum(dkdevid); 1325 1326 /* set checksum */ 1327 DKD_FORMCHKSUM(chksum, dkdevid); 1328 1329 /* store the devid */ 1330 if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1331 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1332 PR0("Error writing devid block at %lu", blk); 1333 status = EIO; 1334 } else { 1335 PR1("devid written at block %lu", blk); 1336 status = 0; 1337 } 1338 1339 kmem_free(dkdevid, DEV_BSIZE); 1340 return (status); 1341 } 1342 1343 /* 1344 * Function: 1345 * vd_do_scsi_rdwr 1346 * 1347 * Description: 1348 * Read or write to a SCSI disk using an absolute disk offset. 1349 * 1350 * Parameters: 1351 * vd - disk on which the operation is performed. 1352 * operation - operation to execute: read (VD_OP_BREAD) or 1353 * write (VD_OP_BWRITE). 1354 * data - buffer where data are read to or written from. 1355 * blk - starting block for the operation. 1356 * len - number of bytes to read or write. 1357 * 1358 * Return Code: 1359 * 0 - success 1360 * n != 0 - error. 1361 */ 1362 static int 1363 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1364 { 1365 struct uscsi_cmd ucmd; 1366 union scsi_cdb cdb; 1367 int nsectors, nblk; 1368 int max_sectors; 1369 int status, rval; 1370 1371 ASSERT(!vd->file); 1372 ASSERT(!vd->volume); 1373 ASSERT(vd->vdisk_block_size > 0); 1374 1375 max_sectors = vd->max_xfer_sz; 1376 nblk = (len / vd->vdisk_block_size); 1377 1378 if (len % vd->vdisk_block_size != 0) 1379 return (EINVAL); 1380 1381 /* 1382 * Build and execute the uscsi ioctl. We build a group0, group1 1383 * or group4 command as necessary, since some targets 1384 * do not support group1 commands. 1385 */ 1386 while (nblk) { 1387 1388 bzero(&ucmd, sizeof (ucmd)); 1389 bzero(&cdb, sizeof (cdb)); 1390 1391 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1392 1393 /* 1394 * Some of the optical drives on sun4v machines are ATAPI 1395 * devices which use Group 1 Read/Write commands so we need 1396 * to explicitly check a flag which is set when a domain 1397 * is bound. 1398 */ 1399 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1400 FORMG0ADDR(&cdb, blk); 1401 FORMG0COUNT(&cdb, (uchar_t)nsectors); 1402 ucmd.uscsi_cdblen = CDB_GROUP0; 1403 } else if (blk > 0xffffffff) { 1404 FORMG4LONGADDR(&cdb, blk); 1405 FORMG4COUNT(&cdb, nsectors); 1406 ucmd.uscsi_cdblen = CDB_GROUP4; 1407 cdb.scc_cmd |= SCMD_GROUP4; 1408 } else { 1409 FORMG1ADDR(&cdb, blk); 1410 FORMG1COUNT(&cdb, nsectors); 1411 ucmd.uscsi_cdblen = CDB_GROUP1; 1412 cdb.scc_cmd |= SCMD_GROUP1; 1413 } 1414 ucmd.uscsi_cdb = (caddr_t)&cdb; 1415 ucmd.uscsi_bufaddr = data; 1416 ucmd.uscsi_buflen = nsectors * vd->block_size; 1417 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1418 /* 1419 * Set flags so that the command is isolated from normal 1420 * commands and no error message is printed. 1421 */ 1422 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1423 1424 if (operation == VD_OP_BREAD) { 1425 cdb.scc_cmd |= SCMD_READ; 1426 ucmd.uscsi_flags |= USCSI_READ; 1427 } else { 1428 cdb.scc_cmd |= SCMD_WRITE; 1429 } 1430 1431 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1432 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1433 kcred, &rval); 1434 1435 if (status == 0) 1436 status = ucmd.uscsi_status; 1437 1438 if (status != 0) 1439 break; 1440 1441 /* 1442 * Check if partial DMA breakup is required. If so, reduce 1443 * the request size by half and retry the last request. 1444 */ 1445 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1446 max_sectors >>= 1; 1447 if (max_sectors <= 0) { 1448 status = EIO; 1449 break; 1450 } 1451 continue; 1452 } 1453 1454 if (ucmd.uscsi_resid != 0) { 1455 status = EIO; 1456 break; 1457 } 1458 1459 blk += nsectors; 1460 nblk -= nsectors; 1461 data += nsectors * vd->vdisk_block_size; /* SECSIZE */ 1462 } 1463 1464 return (status); 1465 } 1466 1467 /* 1468 * Function: 1469 * vd_scsi_rdwr 1470 * 1471 * Description: 1472 * Wrapper function to read or write to a SCSI disk using an absolute 1473 * disk offset. It checks the blocksize of the underlying device and, 1474 * if necessary, adjusts the buffers accordingly before calling 1475 * vd_do_scsi_rdwr() to do the actual read or write. 1476 * 1477 * Parameters: 1478 * vd - disk on which the operation is performed. 1479 * operation - operation to execute: read (VD_OP_BREAD) or 1480 * write (VD_OP_BWRITE). 1481 * data - buffer where data are read to or written from. 1482 * blk - starting block for the operation. 1483 * len - number of bytes to read or write. 1484 * 1485 * Return Code: 1486 * 0 - success 1487 * n != 0 - error. 1488 */ 1489 static int 1490 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1491 { 1492 int rv; 1493 1494 size_t pblk; /* physical device block number of data on device */ 1495 size_t delta; /* relative offset between pblk and vblk */ 1496 size_t pnblk; /* number of physical blocks to be read from device */ 1497 size_t plen; /* length of data to be read from physical device */ 1498 char *buf; /* buffer area to fit physical device's block size */ 1499 1500 if (vd->block_size == 0) { 1501 /* 1502 * The block size was not available during the attach, 1503 * try to update it now. 1504 */ 1505 if (vd_backend_check_size(vd) != 0) 1506 return (EIO); 1507 } 1508 1509 /* 1510 * If the vdisk block size and the block size of the underlying device 1511 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1512 * to create a buffer large enough to handle the device's block size 1513 * and adjust the block to be read from and the amount of data to 1514 * read to correspond with the device's block size. 1515 */ 1516 if (vd->vdisk_block_size == vd->block_size) 1517 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1518 1519 if (vd->vdisk_block_size > vd->block_size) 1520 return (EINVAL); 1521 1522 /* 1523 * Writing of physical block sizes larger than the virtual block size 1524 * is not supported. This would be added if/when support for guests 1525 * writing to DVDs is implemented. 1526 */ 1527 if (operation == VD_OP_BWRITE) 1528 return (ENOTSUP); 1529 1530 /* BEGIN CSTYLED */ 1531 /* 1532 * Below is a diagram showing the relationship between the physical 1533 * and virtual blocks. If the virtual blocks marked by 'X' below are 1534 * requested, then the physical blocks denoted by 'Y' are read. 1535 * 1536 * vblk 1537 * | vlen 1538 * |<--------------->| 1539 * v v 1540 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1541 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1542 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_block_size 1543 * : : : : 1544 * >:==:< delta : : 1545 * : : : : 1546 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1547 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1548 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->block_size 1549 * ^ ^ 1550 * |<--------------------->| 1551 * | plen 1552 * pblk 1553 */ 1554 /* END CSTYLED */ 1555 pblk = (vblk * vd->vdisk_block_size) / vd->block_size; 1556 delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size); 1557 pnblk = ((delta + vlen - 1) / vd->block_size) + 1; 1558 plen = pnblk * vd->block_size; 1559 1560 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1561 1562 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1563 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1564 bcopy(buf + delta, data, vlen); 1565 1566 kmem_free(buf, sizeof (caddr_t) * plen); 1567 1568 return (rv); 1569 } 1570 1571 /* 1572 * Function: 1573 * vd_slice_flabel_read 1574 * 1575 * Description: 1576 * This function simulates a read operation from the fake label of 1577 * a single-slice disk. 1578 * 1579 * Parameters: 1580 * vd - single-slice disk to read from 1581 * data - buffer where data should be read to 1582 * offset - offset in byte where the read should start 1583 * length - number of bytes to read 1584 * 1585 * Return Code: 1586 * n >= 0 - success, n indicates the number of bytes read 1587 * -1 - error 1588 */ 1589 static ssize_t 1590 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length) 1591 { 1592 size_t n = 0; 1593 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1594 1595 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1596 ASSERT(vd->flabel != NULL); 1597 1598 /* if offset is past the fake label limit there's nothing to read */ 1599 if (offset >= limit) 1600 return (0); 1601 1602 /* data with offset 0 to flabel_size are read from flabel */ 1603 if (offset < vd->flabel_size) { 1604 1605 if (offset + length <= vd->flabel_size) { 1606 bcopy(vd->flabel + offset, data, length); 1607 return (length); 1608 } 1609 1610 n = vd->flabel_size - offset; 1611 bcopy(vd->flabel + offset, data, n); 1612 data += n; 1613 } 1614 1615 /* data with offset from flabel_size to flabel_limit are all zeros */ 1616 if (offset + length <= limit) { 1617 bzero(data, length - n); 1618 return (length); 1619 } 1620 1621 bzero(data, limit - offset - n); 1622 return (limit - offset); 1623 } 1624 1625 /* 1626 * Function: 1627 * vd_slice_flabel_write 1628 * 1629 * Description: 1630 * This function simulates a write operation to the fake label of 1631 * a single-slice disk. Write operations are actually faked and return 1632 * success although the label is never changed. This is mostly to 1633 * simulate a successful label update. 1634 * 1635 * Parameters: 1636 * vd - single-slice disk to write to 1637 * data - buffer where data should be written from 1638 * offset - offset in byte where the write should start 1639 * length - number of bytes to written 1640 * 1641 * Return Code: 1642 * n >= 0 - success, n indicates the number of bytes written 1643 * -1 - error 1644 */ 1645 static ssize_t 1646 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length) 1647 { 1648 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1649 struct dk_label *label; 1650 struct dk_geom geom; 1651 struct extvtoc vtoc; 1652 1653 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1654 ASSERT(vd->flabel != NULL); 1655 1656 if (offset >= limit) 1657 return (0); 1658 1659 /* 1660 * If this is a request to overwrite the VTOC disk label, check that 1661 * the new label is similar to the previous one and return that the 1662 * write was successful, but note that nothing is actually overwritten. 1663 */ 1664 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1665 offset == 0 && length == DEV_BSIZE) { 1666 label = (void *)data; 1667 1668 /* check that this is a valid label */ 1669 if (label->dkl_magic != DKL_MAGIC || 1670 label->dkl_cksum != vd_lbl2cksum(label)) 1671 return (-1); 1672 1673 /* check the vtoc and geometry */ 1674 vd_label_to_vtocgeom(label, &vtoc, &geom); 1675 if (vd_slice_geom_isvalid(vd, &geom) && 1676 vd_slice_vtoc_isvalid(vd, &vtoc)) 1677 return (length); 1678 } 1679 1680 /* fail any other write */ 1681 return (-1); 1682 } 1683 1684 /* 1685 * Function: 1686 * vd_slice_fake_rdwr 1687 * 1688 * Description: 1689 * This function simulates a raw read or write operation to a single-slice 1690 * disk. It only handles the faked part of the operation i.e. I/Os to 1691 * blocks which have no mapping with the vdisk backend (I/Os to the 1692 * beginning and to the end of the vdisk). 1693 * 1694 * The function returns 0 is the operation is completed and it has been 1695 * entirely handled as a fake read or write. In that case, lengthp points 1696 * to the number of bytes not read or written. Values returned by datap 1697 * and blkp are undefined. 1698 * 1699 * If the fake operation has succeeded but the read or write is not 1700 * complete (i.e. the read/write operation extends beyond the blocks 1701 * we fake) then the function returns EAGAIN and datap, blkp and lengthp 1702 * pointers points to the parameters for completing the operation. 1703 * 1704 * In case of an error, for example if the slice is empty or parameters 1705 * are invalid, then the function returns a non-zero value different 1706 * from EAGAIN. In that case, the returned values of datap, blkp and 1707 * lengthp are undefined. 1708 * 1709 * Parameters: 1710 * vd - single-slice disk on which the operation is performed 1711 * slice - slice on which the operation is performed, 1712 * VD_SLICE_NONE indicates that the operation 1713 * is done using an absolute disk offset. 1714 * operation - operation to execute: read (VD_OP_BREAD) or 1715 * write (VD_OP_BWRITE). 1716 * datap - pointer to the buffer where data are read to 1717 * or written from. Return the pointer where remaining 1718 * data have to be read to or written from. 1719 * blkp - pointer to the starting block for the operation. 1720 * Return the starting block relative to the vdisk 1721 * backend for the remaining operation. 1722 * lengthp - pointer to the number of bytes to read or write. 1723 * This should be a multiple of DEV_BSIZE. Return the 1724 * remaining number of bytes to read or write. 1725 * 1726 * Return Code: 1727 * 0 - read/write operation is completed 1728 * EAGAIN - read/write operation is not completed 1729 * other values - error 1730 */ 1731 static int 1732 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap, 1733 size_t *blkp, size_t *lengthp) 1734 { 1735 struct dk_label *label; 1736 caddr_t data; 1737 size_t blk, length, csize; 1738 size_t ablk, asize, aoff, alen; 1739 ssize_t n; 1740 int sec, status; 1741 1742 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1743 ASSERT(slice != 0); 1744 1745 data = *datap; 1746 blk = *blkp; 1747 length = *lengthp; 1748 1749 /* 1750 * If this is not a raw I/O or an I/O from a full disk slice then 1751 * this is an I/O to/from an empty slice. 1752 */ 1753 if (slice != VD_SLICE_NONE && 1754 (slice != VD_ENTIRE_DISK_SLICE || 1755 vd->vdisk_label != VD_DISK_LABEL_VTOC) && 1756 (slice != VD_EFI_WD_SLICE || 1757 vd->vdisk_label != VD_DISK_LABEL_EFI)) { 1758 return (EIO); 1759 } 1760 1761 if (length % DEV_BSIZE != 0) 1762 return (EINVAL); 1763 1764 /* handle any I/O with the fake label */ 1765 if (operation == VD_OP_BWRITE) 1766 n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length); 1767 else 1768 n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length); 1769 1770 if (n == -1) 1771 return (EINVAL); 1772 1773 ASSERT(n % DEV_BSIZE == 0); 1774 1775 /* adjust I/O arguments */ 1776 data += n; 1777 blk += n / DEV_BSIZE; 1778 length -= n; 1779 1780 /* check if there's something else to process */ 1781 if (length == 0) { 1782 status = 0; 1783 goto done; 1784 } 1785 1786 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1787 slice == VD_ENTIRE_DISK_SLICE) { 1788 status = EAGAIN; 1789 goto done; 1790 } 1791 1792 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1793 asize = EFI_MIN_RESV_SIZE + 33; 1794 ablk = vd->vdisk_size - asize; 1795 } else { 1796 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1797 ASSERT(vd->dk_geom.dkg_apc == 0); 1798 1799 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1800 ablk = vd->dk_geom.dkg_ncyl * csize; 1801 asize = vd->dk_geom.dkg_acyl * csize; 1802 } 1803 1804 alen = length / DEV_BSIZE; 1805 aoff = blk; 1806 1807 /* if we have reached the last block then the I/O is completed */ 1808 if (aoff == ablk + asize) { 1809 status = 0; 1810 goto done; 1811 } 1812 1813 /* if we are past the last block then return an error */ 1814 if (aoff > ablk + asize) 1815 return (EIO); 1816 1817 /* check if there is any I/O to end of the disk */ 1818 if (aoff + alen < ablk) { 1819 status = EAGAIN; 1820 goto done; 1821 } 1822 1823 /* we don't allow any write to the end of the disk */ 1824 if (operation == VD_OP_BWRITE) 1825 return (EIO); 1826 1827 if (aoff < ablk) { 1828 alen -= (ablk - aoff); 1829 aoff = ablk; 1830 } 1831 1832 if (aoff + alen > ablk + asize) { 1833 alen = ablk + asize - aoff; 1834 } 1835 1836 alen *= DEV_BSIZE; 1837 1838 if (operation == VD_OP_BREAD) { 1839 bzero(data + (aoff - blk) * DEV_BSIZE, alen); 1840 1841 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 1842 /* check if we read backup labels */ 1843 label = VD_LABEL_VTOC(vd); 1844 ablk += (label->dkl_acyl - 1) * csize + 1845 (label->dkl_nhead - 1) * label->dkl_nsect; 1846 1847 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) { 1848 1849 if (ablk + sec >= blk && 1850 ablk + sec < blk + (length / DEV_BSIZE)) { 1851 bcopy(label, data + 1852 (ablk + sec - blk) * DEV_BSIZE, 1853 sizeof (struct dk_label)); 1854 } 1855 } 1856 } 1857 } 1858 1859 length -= alen; 1860 1861 status = (length == 0)? 0: EAGAIN; 1862 1863 done: 1864 ASSERT(length == 0 || blk >= vd->flabel_limit); 1865 1866 /* 1867 * Return the parameters for the remaining I/O. The starting block is 1868 * adjusted so that it is relative to the vdisk backend. 1869 */ 1870 *datap = data; 1871 *blkp = blk - vd->flabel_limit; 1872 *lengthp = length; 1873 1874 return (status); 1875 } 1876 1877 static int 1878 vd_flush_write(vd_t *vd) 1879 { 1880 int status, rval; 1881 1882 if (vd->file) { 1883 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 1884 } else { 1885 status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE, 1886 NULL, vd->open_flags | FKIOCTL, kcred, &rval); 1887 } 1888 1889 return (status); 1890 } 1891 1892 static void 1893 vd_bio_task(void *arg) 1894 { 1895 struct buf *buf = (struct buf *)arg; 1896 vd_task_t *task = (vd_task_t *)buf->b_private; 1897 vd_t *vd = task->vd; 1898 ssize_t resid; 1899 int status; 1900 1901 if (vd->zvol) { 1902 1903 status = ldi_strategy(vd->ldi_handle[0], buf); 1904 1905 } else { 1906 1907 ASSERT(vd->file); 1908 1909 status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE, 1910 vd->file_vnode, buf->b_un.b_addr, buf->b_bcount, 1911 buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0, 1912 RLIM64_INFINITY, kcred, &resid); 1913 1914 if (status == 0) { 1915 buf->b_resid = resid; 1916 biodone(buf); 1917 return; 1918 } 1919 } 1920 1921 if (status != 0) { 1922 bioerror(buf, status); 1923 biodone(buf); 1924 } 1925 } 1926 1927 /* 1928 * We define our own biodone function so that buffers used for 1929 * asynchronous writes are not released when biodone() is called. 1930 */ 1931 static int 1932 vd_biodone(struct buf *bp) 1933 { 1934 ASSERT((bp->b_flags & B_DONE) == 0); 1935 ASSERT(SEMA_HELD(&bp->b_sem)); 1936 1937 bp->b_flags |= B_DONE; 1938 sema_v(&bp->b_io); 1939 1940 return (0); 1941 } 1942 1943 /* 1944 * Return Values 1945 * EINPROGRESS - operation was successfully started 1946 * EIO - encountered LDC (aka. task error) 1947 * 0 - operation completed successfully 1948 * 1949 * Side Effect 1950 * sets request->status = <disk operation status> 1951 */ 1952 static int 1953 vd_start_bio(vd_task_t *task) 1954 { 1955 int rv, status = 0; 1956 vd_t *vd = task->vd; 1957 vd_dring_payload_t *request = task->request; 1958 struct buf *buf = &task->buf; 1959 uint8_t mtype; 1960 int slice; 1961 char *bufaddr = 0; 1962 size_t buflen; 1963 size_t offset, length, nbytes; 1964 1965 ASSERT(vd != NULL); 1966 ASSERT(request != NULL); 1967 1968 slice = request->slice; 1969 1970 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1971 ASSERT((request->operation == VD_OP_BREAD) || 1972 (request->operation == VD_OP_BWRITE)); 1973 1974 if (request->nbytes == 0) { 1975 /* no service for trivial requests */ 1976 request->status = EINVAL; 1977 return (0); 1978 } 1979 1980 PR1("%s %lu bytes at block %lu", 1981 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1982 request->nbytes, request->addr); 1983 1984 /* 1985 * We have to check the open flags because the functions processing 1986 * the read/write request will not do it. 1987 */ 1988 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 1989 PR0("write fails because backend is opened read-only"); 1990 request->nbytes = 0; 1991 request->status = EROFS; 1992 return (0); 1993 } 1994 1995 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 1996 1997 /* Map memory exported by client */ 1998 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 1999 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 2000 &bufaddr, NULL); 2001 if (status != 0) { 2002 PR0("ldc_mem_map() returned err %d ", status); 2003 return (EIO); 2004 } 2005 2006 /* 2007 * The buffer size has to be 8-byte aligned, so the client should have 2008 * sent a buffer which size is roundup to the next 8-byte aligned value. 2009 */ 2010 buflen = P2ROUNDUP(request->nbytes, 8); 2011 2012 status = ldc_mem_acquire(task->mhdl, 0, buflen); 2013 if (status != 0) { 2014 (void) ldc_mem_unmap(task->mhdl); 2015 PR0("ldc_mem_acquire() returned err %d ", status); 2016 return (EIO); 2017 } 2018 2019 offset = request->addr; 2020 nbytes = request->nbytes; 2021 length = nbytes; 2022 2023 /* default number of byte returned by the I/O */ 2024 request->nbytes = 0; 2025 2026 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 2027 2028 if (slice != 0) { 2029 /* handle any fake I/O */ 2030 rv = vd_slice_fake_rdwr(vd, slice, request->operation, 2031 &bufaddr, &offset, &length); 2032 2033 /* record the number of bytes from the fake I/O */ 2034 request->nbytes = nbytes - length; 2035 2036 if (rv == 0) { 2037 request->status = 0; 2038 goto io_done; 2039 } 2040 2041 if (rv != EAGAIN) { 2042 request->nbytes = 0; 2043 request->status = EIO; 2044 goto io_done; 2045 } 2046 2047 /* 2048 * If we return with EAGAIN then this means that there 2049 * are still data to read or write. 2050 */ 2051 ASSERT(length != 0); 2052 2053 /* 2054 * We need to continue the I/O from the slice backend to 2055 * complete the request. The variables bufaddr, offset 2056 * and length have been adjusted to have the right 2057 * information to do the remaining I/O from the backend. 2058 * The backend is entirely mapped to slice 0 so we just 2059 * have to complete the I/O from that slice. 2060 */ 2061 slice = 0; 2062 } 2063 2064 } else if (vd->volume || vd->file) { 2065 2066 rv = vd_dskimg_io_params(vd, slice, &offset, &length); 2067 if (rv != 0) { 2068 request->status = (rv == ENODATA)? 0: EIO; 2069 goto io_done; 2070 } 2071 slice = 0; 2072 2073 } else if (slice == VD_SLICE_NONE) { 2074 2075 /* 2076 * This is not a disk image so it is a real disk. We 2077 * assume that the underlying device driver supports 2078 * USCSICMD ioctls. This is the case of all SCSI devices 2079 * (sd, ssd...). 2080 * 2081 * In the future if we have non-SCSI disks we would need 2082 * to invoke the appropriate function to do I/O using an 2083 * absolute disk offset (for example using DIOCTL_RWCMD 2084 * for IDE disks). 2085 */ 2086 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset, 2087 length); 2088 if (rv != 0) { 2089 request->status = EIO; 2090 } else { 2091 request->nbytes = length; 2092 request->status = 0; 2093 } 2094 goto io_done; 2095 } 2096 2097 /* Start the block I/O */ 2098 bioinit(buf); 2099 buf->b_flags = B_BUSY; 2100 buf->b_bcount = length; 2101 buf->b_lblkno = offset; 2102 buf->b_bufsize = buflen; 2103 buf->b_edev = vd->dev[slice]; 2104 buf->b_un.b_addr = bufaddr; 2105 buf->b_iodone = vd_biodone; 2106 2107 if (vd->file || vd->zvol) { 2108 /* 2109 * I/O to a file are dispatched to an I/O queue, so that several 2110 * I/Os can be processed in parallel. We also do that for ZFS 2111 * volumes because the ZFS volume strategy() function will only 2112 * return after the I/O is completed (instead of just starting 2113 * the I/O). 2114 */ 2115 2116 if (request->operation == VD_OP_BREAD) { 2117 buf->b_flags |= B_READ; 2118 } else { 2119 /* 2120 * For ZFS volumes and files, we do an asynchronous 2121 * write and we will wait for the completion of the 2122 * write in vd_complete_bio() by flushing the volume 2123 * or file. 2124 * 2125 * This done for performance reasons, so that we can 2126 * group together several write requests into a single 2127 * flush operation. 2128 */ 2129 buf->b_flags |= B_WRITE | B_ASYNC; 2130 2131 /* 2132 * We keep track of the write so that we can group 2133 * requests when flushing. The write queue has the 2134 * same number of slots as the dring so this prevents 2135 * the write queue from wrapping and overwriting 2136 * existing entries: if the write queue gets full 2137 * then that means that the dring is full so we stop 2138 * receiving new requests until an existing request 2139 * is processed, removed from the write queue and 2140 * then from the dring. 2141 */ 2142 task->write_index = vd->write_index; 2143 vd->write_queue[task->write_index] = buf; 2144 vd->write_index = 2145 VD_WRITE_INDEX_NEXT(vd, vd->write_index); 2146 } 2147 2148 buf->b_private = task; 2149 2150 ASSERT(vd->ioq != NULL); 2151 2152 request->status = 0; 2153 (void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf, 2154 DDI_SLEEP); 2155 2156 } else { 2157 2158 if (request->operation == VD_OP_BREAD) { 2159 buf->b_flags |= B_READ; 2160 } else { 2161 buf->b_flags |= B_WRITE; 2162 } 2163 2164 request->status = ldi_strategy(vd->ldi_handle[slice], buf); 2165 } 2166 2167 /* 2168 * This is to indicate to the caller that the request 2169 * needs to be finished by vd_complete_bio() by calling 2170 * biowait() there and waiting for that to return before 2171 * triggering the notification of the vDisk client. 2172 * 2173 * This is necessary when writing to real disks as 2174 * otherwise calls to ldi_strategy() would be serialized 2175 * behind the calls to biowait() and performance would 2176 * suffer. 2177 */ 2178 if (request->status == 0) 2179 return (EINPROGRESS); 2180 2181 biofini(buf); 2182 2183 io_done: 2184 /* Clean up after error or completion */ 2185 rv = ldc_mem_release(task->mhdl, 0, buflen); 2186 if (rv) { 2187 PR0("ldc_mem_release() returned err %d ", rv); 2188 status = EIO; 2189 } 2190 rv = ldc_mem_unmap(task->mhdl); 2191 if (rv) { 2192 PR0("ldc_mem_unmap() returned err %d ", rv); 2193 status = EIO; 2194 } 2195 2196 return (status); 2197 } 2198 2199 /* 2200 * This function should only be called from vd_notify to ensure that requests 2201 * are responded to in the order that they are received. 2202 */ 2203 static int 2204 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 2205 { 2206 int status; 2207 size_t nbytes; 2208 2209 do { 2210 nbytes = msglen; 2211 status = ldc_write(ldc_handle, msg, &nbytes); 2212 if (status != EWOULDBLOCK) 2213 break; 2214 drv_usecwait(vds_ldc_delay); 2215 } while (status == EWOULDBLOCK); 2216 2217 if (status != 0) { 2218 if (status != ECONNRESET) 2219 PR0("ldc_write() returned errno %d", status); 2220 return (status); 2221 } else if (nbytes != msglen) { 2222 PR0("ldc_write() performed only partial write"); 2223 return (EIO); 2224 } 2225 2226 PR1("SENT %lu bytes", msglen); 2227 return (0); 2228 } 2229 2230 static void 2231 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 2232 { 2233 mutex_enter(&vd->lock); 2234 vd->reset_state = B_TRUE; 2235 vd->reset_ldc = reset_ldc; 2236 mutex_exit(&vd->lock); 2237 } 2238 2239 /* 2240 * Reset the state of the connection with a client, if needed; reset the LDC 2241 * transport as well, if needed. This function should only be called from the 2242 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 2243 */ 2244 static void 2245 vd_reset_if_needed(vd_t *vd) 2246 { 2247 int status = 0; 2248 2249 mutex_enter(&vd->lock); 2250 if (!vd->reset_state) { 2251 ASSERT(!vd->reset_ldc); 2252 mutex_exit(&vd->lock); 2253 return; 2254 } 2255 mutex_exit(&vd->lock); 2256 2257 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 2258 2259 /* 2260 * Let any asynchronous I/O complete before possibly pulling the rug 2261 * out from under it; defer checking vd->reset_ldc, as one of the 2262 * asynchronous tasks might set it 2263 */ 2264 if (vd->ioq != NULL) 2265 ddi_taskq_wait(vd->ioq); 2266 ddi_taskq_wait(vd->completionq); 2267 2268 status = vd_flush_write(vd); 2269 if (status) { 2270 PR0("flushwrite returned error %d", status); 2271 } 2272 2273 if ((vd->initialized & VD_DRING) && 2274 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 2275 PR0("ldc_mem_dring_unmap() returned errno %d", status); 2276 2277 vd_free_dring_task(vd); 2278 2279 /* Free the staging buffer for msgs */ 2280 if (vd->vio_msgp != NULL) { 2281 kmem_free(vd->vio_msgp, vd->max_msglen); 2282 vd->vio_msgp = NULL; 2283 } 2284 2285 /* Free the inband message buffer */ 2286 if (vd->inband_task.msg != NULL) { 2287 kmem_free(vd->inband_task.msg, vd->max_msglen); 2288 vd->inband_task.msg = NULL; 2289 } 2290 2291 mutex_enter(&vd->lock); 2292 2293 if (vd->reset_ldc) 2294 PR0("taking down LDC channel"); 2295 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 2296 PR0("ldc_down() returned errno %d", status); 2297 2298 /* Reset exclusive access rights */ 2299 vd_reset_access(vd); 2300 2301 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 2302 vd->state = VD_STATE_INIT; 2303 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2304 2305 /* Allocate the staging buffer */ 2306 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2307 2308 PR0("calling ldc_up\n"); 2309 (void) ldc_up(vd->ldc_handle); 2310 2311 vd->reset_state = B_FALSE; 2312 vd->reset_ldc = B_FALSE; 2313 2314 mutex_exit(&vd->lock); 2315 } 2316 2317 static void vd_recv_msg(void *arg); 2318 2319 static void 2320 vd_mark_in_reset(vd_t *vd) 2321 { 2322 int status; 2323 2324 PR0("vd_mark_in_reset: marking vd in reset\n"); 2325 2326 vd_need_reset(vd, B_FALSE); 2327 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 2328 if (status == DDI_FAILURE) { 2329 PR0("cannot schedule task to recv msg\n"); 2330 vd_need_reset(vd, B_TRUE); 2331 return; 2332 } 2333 } 2334 2335 static int 2336 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 2337 { 2338 boolean_t accepted; 2339 int status; 2340 on_trap_data_t otd; 2341 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 2342 2343 if (vd->reset_state) 2344 return (0); 2345 2346 /* Acquire the element */ 2347 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 2348 vd->dring_handle, idx, idx)) != 0) { 2349 if (status == ECONNRESET) { 2350 vd_mark_in_reset(vd); 2351 return (0); 2352 } else { 2353 return (status); 2354 } 2355 } 2356 2357 /* Set the element's status and mark it done */ 2358 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 2359 if (accepted) { 2360 elem->payload.nbytes = elem_nbytes; 2361 elem->payload.status = elem_status; 2362 elem->hdr.dstate = VIO_DESC_DONE; 2363 } else { 2364 /* Perhaps client timed out waiting for I/O... */ 2365 PR0("element %u no longer \"accepted\"", idx); 2366 VD_DUMP_DRING_ELEM(elem); 2367 } 2368 /* Release the element */ 2369 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 2370 vd->dring_handle, idx, idx)) != 0) { 2371 if (status == ECONNRESET) { 2372 vd_mark_in_reset(vd); 2373 return (0); 2374 } else { 2375 PR0("VIO_DRING_RELEASE() returned errno %d", 2376 status); 2377 return (status); 2378 } 2379 } 2380 2381 return (accepted ? 0 : EINVAL); 2382 } 2383 2384 /* 2385 * Return Values 2386 * 0 - operation completed successfully 2387 * EIO - encountered LDC / task error 2388 * 2389 * Side Effect 2390 * sets request->status = <disk operation status> 2391 */ 2392 static int 2393 vd_complete_bio(vd_task_t *task) 2394 { 2395 int status = 0; 2396 int rv = 0; 2397 vd_t *vd = task->vd; 2398 vd_dring_payload_t *request = task->request; 2399 struct buf *buf = &task->buf; 2400 int wid, nwrites; 2401 2402 2403 ASSERT(vd != NULL); 2404 ASSERT(request != NULL); 2405 ASSERT(task->msg != NULL); 2406 ASSERT(task->msglen >= sizeof (*task->msg)); 2407 2408 if (buf->b_flags & B_DONE) { 2409 /* 2410 * If the I/O is already done then we don't call biowait() 2411 * because biowait() might already have been called when 2412 * flushing a previous asynchronous write. So we just 2413 * retrieve the status of the request. 2414 */ 2415 request->status = geterror(buf); 2416 } else { 2417 /* 2418 * Wait for the I/O. For synchronous I/O, biowait() will return 2419 * when the I/O has completed. For asynchronous write, it will 2420 * return the write has been submitted to the backend, but it 2421 * may not have been committed. 2422 */ 2423 request->status = biowait(buf); 2424 } 2425 2426 if (buf->b_flags & B_ASYNC) { 2427 /* 2428 * Asynchronous writes are used when writing to a file or a 2429 * ZFS volume. In that case the bio notification indicates 2430 * that the write has started. We have to flush the backend 2431 * to ensure that the write has been committed before marking 2432 * the request as completed. 2433 */ 2434 ASSERT(task->request->operation == VD_OP_BWRITE); 2435 2436 wid = task->write_index; 2437 2438 /* check if write has been already flushed */ 2439 if (vd->write_queue[wid] != NULL) { 2440 2441 vd->write_queue[wid] = NULL; 2442 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2443 2444 /* 2445 * Because flushing is time consuming, it is worth 2446 * waiting for any other writes so that they can be 2447 * included in this single flush request. 2448 */ 2449 if (vd_awflush & VD_AWFLUSH_GROUP) { 2450 nwrites = 1; 2451 while (vd->write_queue[wid] != NULL) { 2452 (void) biowait(vd->write_queue[wid]); 2453 vd->write_queue[wid] = NULL; 2454 wid = VD_WRITE_INDEX_NEXT(vd, wid); 2455 nwrites++; 2456 } 2457 DTRACE_PROBE2(flushgrp, vd_task_t *, task, 2458 int, nwrites); 2459 } 2460 2461 if (vd_awflush & VD_AWFLUSH_IMMEDIATE) { 2462 request->status = vd_flush_write(vd); 2463 } else if (vd_awflush & VD_AWFLUSH_DEFER) { 2464 (void) taskq_dispatch(system_taskq, 2465 (void (*)(void *))vd_flush_write, vd, 2466 DDI_SLEEP); 2467 request->status = 0; 2468 } 2469 } 2470 } 2471 2472 /* Update the number of bytes read/written */ 2473 request->nbytes += buf->b_bcount - buf->b_resid; 2474 2475 /* Release the buffer */ 2476 if (!vd->reset_state) 2477 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize); 2478 if (status) { 2479 PR0("ldc_mem_release() returned errno %d copying to " 2480 "client", status); 2481 if (status == ECONNRESET) { 2482 vd_mark_in_reset(vd); 2483 } 2484 rv = EIO; 2485 } 2486 2487 /* Unmap the memory, even if in reset */ 2488 status = ldc_mem_unmap(task->mhdl); 2489 if (status) { 2490 PR0("ldc_mem_unmap() returned errno %d copying to client", 2491 status); 2492 if (status == ECONNRESET) { 2493 vd_mark_in_reset(vd); 2494 } 2495 rv = EIO; 2496 } 2497 2498 biofini(buf); 2499 2500 return (rv); 2501 } 2502 2503 /* 2504 * Description: 2505 * This function is called by the two functions called by a taskq 2506 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 2507 * message to the client. 2508 * 2509 * Parameters: 2510 * arg - opaque pointer to structure containing task to be completed 2511 * 2512 * Return Values 2513 * None 2514 */ 2515 static void 2516 vd_notify(vd_task_t *task) 2517 { 2518 int status; 2519 2520 ASSERT(task != NULL); 2521 ASSERT(task->vd != NULL); 2522 2523 /* 2524 * Send the "ack" or "nack" back to the client; if sending the message 2525 * via LDC fails, arrange to reset both the connection state and LDC 2526 * itself 2527 */ 2528 PR2("Sending %s", 2529 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 2530 2531 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 2532 switch (status) { 2533 case 0: 2534 break; 2535 case ECONNRESET: 2536 vd_mark_in_reset(task->vd); 2537 break; 2538 default: 2539 PR0("initiating full reset"); 2540 vd_need_reset(task->vd, B_TRUE); 2541 break; 2542 } 2543 2544 DTRACE_PROBE1(task__end, vd_task_t *, task); 2545 } 2546 2547 /* 2548 * Description: 2549 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 2550 * the vDisk client 2551 * 2552 * Parameters: 2553 * task - structure containing the request sent from client 2554 * 2555 * Return Values 2556 * None 2557 */ 2558 static void 2559 vd_complete_notify(vd_task_t *task) 2560 { 2561 int status = 0; 2562 vd_t *vd = task->vd; 2563 vd_dring_payload_t *request = task->request; 2564 2565 /* Update the dring element for a dring client */ 2566 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 2567 status = vd_mark_elem_done(vd, task->index, 2568 request->status, request->nbytes); 2569 if (status == ECONNRESET) 2570 vd_mark_in_reset(vd); 2571 else if (status == EACCES) 2572 vd_need_reset(vd, B_TRUE); 2573 } 2574 2575 /* 2576 * If a transport error occurred while marking the element done or 2577 * previously while executing the task, arrange to "nack" the message 2578 * when the final task in the descriptor element range completes 2579 */ 2580 if ((status != 0) || (task->status != 0)) 2581 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 2582 2583 /* 2584 * Only the final task for a range of elements will respond to and 2585 * free the message 2586 */ 2587 if (task->type == VD_NONFINAL_RANGE_TASK) { 2588 return; 2589 } 2590 2591 /* 2592 * We should only send an ACK/NACK here if we are not currently in 2593 * reset as, depending on how we reset, the dring may have been 2594 * blown away and we don't want to ACK/NACK a message that isn't 2595 * there. 2596 */ 2597 if (!vd->reset_state) 2598 vd_notify(task); 2599 } 2600 2601 /* 2602 * Description: 2603 * This is the basic completion function called to handle inband data 2604 * requests and handshake messages. All it needs to do is trigger a 2605 * message to the client that the request is completed. 2606 * 2607 * Parameters: 2608 * arg - opaque pointer to structure containing task to be completed 2609 * 2610 * Return Values 2611 * None 2612 */ 2613 static void 2614 vd_serial_notify(void *arg) 2615 { 2616 vd_task_t *task = (vd_task_t *)arg; 2617 2618 ASSERT(task != NULL); 2619 vd_notify(task); 2620 } 2621 2622 /* ARGSUSED */ 2623 static int 2624 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2625 { 2626 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 2627 return (0); 2628 } 2629 2630 /* ARGSUSED */ 2631 static int 2632 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2633 { 2634 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg); 2635 return (0); 2636 } 2637 2638 static void 2639 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 2640 { 2641 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 2642 } 2643 2644 static void 2645 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 2646 { 2647 VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 2648 } 2649 2650 static int 2651 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2652 { 2653 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2654 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2655 size_t data_len; 2656 2657 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2658 if (vd_efi->length > data_len) 2659 return (EINVAL); 2660 2661 dk_efi->dki_lba = vd_efi->lba; 2662 dk_efi->dki_length = vd_efi->length; 2663 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 2664 return (0); 2665 } 2666 2667 static void 2668 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 2669 { 2670 int len; 2671 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2672 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2673 2674 len = vd_efi->length; 2675 DK_EFI2VD_EFI(dk_efi, vd_efi); 2676 kmem_free(dk_efi->dki_data, len); 2677 } 2678 2679 static int 2680 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2681 { 2682 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2683 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2684 size_t data_len; 2685 2686 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2687 if (vd_efi->length > data_len) 2688 return (EINVAL); 2689 2690 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 2691 VD_EFI2DK_EFI(vd_efi, dk_efi); 2692 return (0); 2693 } 2694 2695 static void 2696 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 2697 { 2698 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2699 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2700 2701 kmem_free(dk_efi->dki_data, vd_efi->length); 2702 } 2703 2704 static int 2705 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2706 { 2707 size_t vd_scsi_len; 2708 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2709 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2710 2711 /* check buffer size */ 2712 vd_scsi_len = VD_SCSI_SIZE; 2713 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 2714 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 2715 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 2716 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 2717 2718 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 2719 2720 if (vd_buf_len < vd_scsi_len) 2721 return (EINVAL); 2722 2723 /* set flags */ 2724 uscsi->uscsi_flags = vd_scsi_debug; 2725 2726 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 2727 uscsi->uscsi_flags |= USCSI_ISOLATE; 2728 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 2729 } 2730 2731 /* task attribute */ 2732 switch (vd_scsi->task_attribute) { 2733 case VD_SCSI_TASK_ACA: 2734 uscsi->uscsi_flags |= USCSI_HEAD; 2735 break; 2736 case VD_SCSI_TASK_HQUEUE: 2737 uscsi->uscsi_flags |= USCSI_HTAG; 2738 break; 2739 case VD_SCSI_TASK_ORDERED: 2740 uscsi->uscsi_flags |= USCSI_OTAG; 2741 break; 2742 default: 2743 uscsi->uscsi_flags |= USCSI_NOTAG; 2744 break; 2745 } 2746 2747 /* timeout */ 2748 uscsi->uscsi_timeout = vd_scsi->timeout; 2749 2750 /* cdb data */ 2751 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 2752 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 2753 2754 /* sense buffer */ 2755 if (vd_scsi->sense_len != 0) { 2756 uscsi->uscsi_flags |= USCSI_RQENABLE; 2757 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 2758 uscsi->uscsi_rqlen = vd_scsi->sense_len; 2759 } 2760 2761 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 2762 /* uscsi does not support read/write request */ 2763 return (EINVAL); 2764 } 2765 2766 /* request data-in */ 2767 if (vd_scsi->datain_len != 0) { 2768 uscsi->uscsi_flags |= USCSI_READ; 2769 uscsi->uscsi_buflen = vd_scsi->datain_len; 2770 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 2771 } 2772 2773 /* request data-out */ 2774 if (vd_scsi->dataout_len != 0) { 2775 uscsi->uscsi_buflen = vd_scsi->dataout_len; 2776 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 2777 } 2778 2779 return (0); 2780 } 2781 2782 static void 2783 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 2784 { 2785 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2786 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2787 2788 /* output fields */ 2789 vd_scsi->cmd_status = uscsi->uscsi_status; 2790 2791 /* sense data */ 2792 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2793 (uscsi->uscsi_status == STATUS_CHECK || 2794 uscsi->uscsi_status == STATUS_TERMINATED)) { 2795 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2796 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2797 vd_scsi->sense_len -= uscsi->uscsi_rqresid; 2798 else 2799 vd_scsi->sense_len = 0; 2800 } else { 2801 vd_scsi->sense_len = 0; 2802 } 2803 2804 if (uscsi->uscsi_status != STATUS_GOOD) { 2805 vd_scsi->dataout_len = 0; 2806 vd_scsi->datain_len = 0; 2807 return; 2808 } 2809 2810 if (uscsi->uscsi_flags & USCSI_READ) { 2811 /* request data (read) */ 2812 vd_scsi->datain_len -= uscsi->uscsi_resid; 2813 vd_scsi->dataout_len = 0; 2814 } else { 2815 /* request data (write) */ 2816 vd_scsi->datain_len = 0; 2817 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2818 } 2819 } 2820 2821 static ushort_t 2822 vd_lbl2cksum(struct dk_label *label) 2823 { 2824 int count; 2825 ushort_t sum, *sp; 2826 2827 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2828 sp = (ushort_t *)label; 2829 sum = 0; 2830 while (count--) { 2831 sum ^= *sp++; 2832 } 2833 2834 return (sum); 2835 } 2836 2837 /* 2838 * Copy information from a vtoc and dk_geom structures to a dk_label structure. 2839 */ 2840 static void 2841 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom, 2842 struct dk_label *label) 2843 { 2844 int i; 2845 2846 ASSERT(vtoc->v_nparts == V_NUMPAR); 2847 ASSERT(vtoc->v_sanity == VTOC_SANE); 2848 2849 bzero(label, sizeof (struct dk_label)); 2850 2851 label->dkl_ncyl = geom->dkg_ncyl; 2852 label->dkl_acyl = geom->dkg_acyl; 2853 label->dkl_pcyl = geom->dkg_pcyl; 2854 label->dkl_nhead = geom->dkg_nhead; 2855 label->dkl_nsect = geom->dkg_nsect; 2856 label->dkl_intrlv = geom->dkg_intrlv; 2857 label->dkl_apc = geom->dkg_apc; 2858 label->dkl_rpm = geom->dkg_rpm; 2859 label->dkl_write_reinstruct = geom->dkg_write_reinstruct; 2860 label->dkl_read_reinstruct = geom->dkg_read_reinstruct; 2861 2862 label->dkl_vtoc.v_nparts = V_NUMPAR; 2863 label->dkl_vtoc.v_sanity = VTOC_SANE; 2864 label->dkl_vtoc.v_version = vtoc->v_version; 2865 for (i = 0; i < V_NUMPAR; i++) { 2866 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 2867 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; 2868 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; 2869 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / 2870 (label->dkl_nhead * label->dkl_nsect); 2871 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; 2872 } 2873 2874 /* 2875 * The bootinfo array can not be copied with bcopy() because 2876 * elements are of type long in vtoc (so 64-bit) and of type 2877 * int in dk_vtoc (so 32-bit). 2878 */ 2879 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2880 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2881 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2882 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII); 2883 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL); 2884 2885 /* re-compute checksum */ 2886 label->dkl_magic = DKL_MAGIC; 2887 label->dkl_cksum = vd_lbl2cksum(label); 2888 } 2889 2890 /* 2891 * Copy information from a dk_label structure to a vtoc and dk_geom structures. 2892 */ 2893 static void 2894 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc, 2895 struct dk_geom *geom) 2896 { 2897 int i; 2898 2899 bzero(vtoc, sizeof (struct vtoc)); 2900 bzero(geom, sizeof (struct dk_geom)); 2901 2902 geom->dkg_ncyl = label->dkl_ncyl; 2903 geom->dkg_acyl = label->dkl_acyl; 2904 geom->dkg_nhead = label->dkl_nhead; 2905 geom->dkg_nsect = label->dkl_nsect; 2906 geom->dkg_intrlv = label->dkl_intrlv; 2907 geom->dkg_apc = label->dkl_apc; 2908 geom->dkg_rpm = label->dkl_rpm; 2909 geom->dkg_pcyl = label->dkl_pcyl; 2910 geom->dkg_write_reinstruct = label->dkl_write_reinstruct; 2911 geom->dkg_read_reinstruct = label->dkl_read_reinstruct; 2912 2913 vtoc->v_sanity = label->dkl_vtoc.v_sanity; 2914 vtoc->v_version = label->dkl_vtoc.v_version; 2915 vtoc->v_sectorsz = DEV_BSIZE; 2916 vtoc->v_nparts = label->dkl_vtoc.v_nparts; 2917 2918 for (i = 0; i < vtoc->v_nparts; i++) { 2919 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag; 2920 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag; 2921 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno * 2922 (label->dkl_nhead * label->dkl_nsect); 2923 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk; 2924 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i]; 2925 } 2926 2927 /* 2928 * The bootinfo array can not be copied with bcopy() because 2929 * elements are of type long in vtoc (so 64-bit) and of type 2930 * int in dk_vtoc (so 32-bit). 2931 */ 2932 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0]; 2933 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1]; 2934 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2]; 2935 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); 2936 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); 2937 } 2938 2939 /* 2940 * Check if a geometry is valid for a single-slice disk. A geometry is 2941 * considered valid if the main attributes of the geometry match with the 2942 * attributes of the fake geometry we have created. 2943 */ 2944 static boolean_t 2945 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom) 2946 { 2947 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2948 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2949 2950 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl || 2951 geom->dkg_acyl != vd->dk_geom.dkg_acyl || 2952 geom->dkg_nsect != vd->dk_geom.dkg_nsect || 2953 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl) 2954 return (B_FALSE); 2955 2956 return (B_TRUE); 2957 } 2958 2959 /* 2960 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered 2961 * valid if the main attributes of the vtoc match with the attributes of the 2962 * fake vtoc we have created. 2963 */ 2964 static boolean_t 2965 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc) 2966 { 2967 size_t csize; 2968 int i; 2969 2970 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2971 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2972 2973 if (vtoc->v_sanity != vd->vtoc.v_sanity || 2974 vtoc->v_version != vd->vtoc.v_version || 2975 vtoc->v_nparts != vd->vtoc.v_nparts || 2976 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 || 2977 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0) 2978 return (B_FALSE); 2979 2980 /* slice 2 should be unchanged */ 2981 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start != 2982 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start || 2983 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size != 2984 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size) 2985 return (B_FALSE); 2986 2987 /* 2988 * Slice 0 should be mostly unchanged and cover most of the disk. 2989 * However we allow some flexibility wrt to the start and the size 2990 * of this slice mainly because we can't exactly know how it will 2991 * be defined by the OS installer. 2992 * 2993 * We allow slice 0 to be defined as starting on any of the first 2994 * 4 cylinders. 2995 */ 2996 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 2997 2998 if (vtoc->v_part[0].p_start > 4 * csize || 2999 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size) 3000 return (B_FALSE); 3001 3002 if (vd->vtoc.v_part[0].p_size >= 4 * csize && 3003 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize) 3004 return (B_FALSE); 3005 3006 /* any other slice should have a size of 0 */ 3007 for (i = 1; i < vtoc->v_nparts; i++) { 3008 if (i != VD_ENTIRE_DISK_SLICE && 3009 vtoc->v_part[i].p_size != 0) 3010 return (B_FALSE); 3011 } 3012 3013 return (B_TRUE); 3014 } 3015 3016 /* 3017 * Handle ioctls to a disk slice. 3018 * 3019 * Return Values 3020 * 0 - Indicates that there are no errors in disk operations 3021 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 3022 * EINVAL - Not enough room to copy the EFI label 3023 * 3024 */ 3025 static int 3026 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3027 { 3028 dk_efi_t *dk_ioc; 3029 struct extvtoc *vtoc; 3030 struct dk_geom *geom; 3031 size_t len, lba; 3032 3033 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 3034 3035 if (cmd == DKIOCFLUSHWRITECACHE) 3036 return (vd_flush_write(vd)); 3037 3038 switch (vd->vdisk_label) { 3039 3040 /* ioctls for a single slice disk with a VTOC label */ 3041 case VD_DISK_LABEL_VTOC: 3042 3043 switch (cmd) { 3044 3045 case DKIOCGGEOM: 3046 ASSERT(ioctl_arg != NULL); 3047 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 3048 return (0); 3049 3050 case DKIOCGEXTVTOC: 3051 ASSERT(ioctl_arg != NULL); 3052 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 3053 return (0); 3054 3055 case DKIOCSGEOM: 3056 ASSERT(ioctl_arg != NULL); 3057 if (vd_slice_single_slice) 3058 return (ENOTSUP); 3059 3060 /* fake success only if new geometry is valid */ 3061 geom = (struct dk_geom *)ioctl_arg; 3062 if (!vd_slice_geom_isvalid(vd, geom)) 3063 return (EINVAL); 3064 3065 return (0); 3066 3067 case DKIOCSEXTVTOC: 3068 ASSERT(ioctl_arg != NULL); 3069 if (vd_slice_single_slice) 3070 return (ENOTSUP); 3071 3072 /* fake sucess only if the new vtoc is valid */ 3073 vtoc = (struct extvtoc *)ioctl_arg; 3074 if (!vd_slice_vtoc_isvalid(vd, vtoc)) 3075 return (EINVAL); 3076 3077 return (0); 3078 3079 default: 3080 return (ENOTSUP); 3081 } 3082 3083 /* ioctls for a single slice disk with an EFI label */ 3084 case VD_DISK_LABEL_EFI: 3085 3086 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI) 3087 return (ENOTSUP); 3088 3089 ASSERT(ioctl_arg != NULL); 3090 dk_ioc = (dk_efi_t *)ioctl_arg; 3091 3092 len = dk_ioc->dki_length; 3093 lba = dk_ioc->dki_lba; 3094 3095 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) || 3096 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) || 3097 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t))) 3098 return (EINVAL); 3099 3100 switch (cmd) { 3101 case DKIOCGETEFI: 3102 len = vd_slice_flabel_read(vd, 3103 (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len); 3104 3105 ASSERT(len > 0); 3106 3107 return (0); 3108 3109 case DKIOCSETEFI: 3110 if (vd_slice_single_slice) 3111 return (ENOTSUP); 3112 3113 /* we currently don't support writing EFI */ 3114 return (EIO); 3115 } 3116 3117 default: 3118 /* Unknown disk label type */ 3119 return (ENOTSUP); 3120 } 3121 } 3122 3123 static int 3124 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 3125 { 3126 vd_efi_dev_t edev; 3127 int status; 3128 3129 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3130 3131 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 3132 3133 return (status); 3134 } 3135 3136 static void 3137 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 3138 { 3139 vd_efi_dev_t edev; 3140 3141 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 3142 3143 vd_efi_free(&edev, gpt, gpe); 3144 } 3145 3146 static int 3147 vd_dskimg_validate_efi(vd_t *vd) 3148 { 3149 efi_gpt_t *gpt; 3150 efi_gpe_t *gpe; 3151 int i, nparts, status; 3152 struct uuid efi_reserved = EFI_RESERVED; 3153 3154 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 3155 return (status); 3156 3157 bzero(&vd->vtoc, sizeof (struct extvtoc)); 3158 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 3159 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3160 3161 vd->efi_reserved = -1; 3162 3163 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 3164 3165 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 3166 3167 if (gpe[i].efi_gpe_StartingLBA == 0 || 3168 gpe[i].efi_gpe_EndingLBA == 0) { 3169 continue; 3170 } 3171 3172 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 3173 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 3174 gpe[i].efi_gpe_StartingLBA + 1; 3175 3176 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 3177 sizeof (struct uuid)) == 0) 3178 vd->efi_reserved = i; 3179 3180 } 3181 3182 ASSERT(vd->vdisk_size != 0); 3183 vd->slices[VD_EFI_WD_SLICE].start = 0; 3184 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 3185 3186 vds_efi_free(vd, gpt, gpe); 3187 3188 return (status); 3189 } 3190 3191 /* 3192 * Function: 3193 * vd_dskimg_validate_geometry 3194 * 3195 * Description: 3196 * Read the label and validate the geometry of a disk image. The driver 3197 * label, vtoc and geometry information are updated according to the 3198 * label read from the disk image. 3199 * 3200 * If no valid label is found, the label is set to unknown and the 3201 * function returns EINVAL, but a default vtoc and geometry are provided 3202 * to the driver. If an EFI label is found, ENOTSUP is returned. 3203 * 3204 * Parameters: 3205 * vd - disk on which the operation is performed. 3206 * 3207 * Return Code: 3208 * 0 - success. 3209 * EIO - error reading the label from the disk image. 3210 * EINVAL - unknown disk label. 3211 * ENOTSUP - geometry not applicable (EFI label). 3212 */ 3213 static int 3214 vd_dskimg_validate_geometry(vd_t *vd) 3215 { 3216 struct dk_label label; 3217 struct dk_geom *geom = &vd->dk_geom; 3218 struct extvtoc *vtoc = &vd->vtoc; 3219 int i; 3220 int status = 0; 3221 3222 ASSERT(VD_DSKIMG(vd)); 3223 3224 if (VD_DSKIMG_LABEL_READ(vd, &label) < 0) 3225 return (EIO); 3226 3227 if (label.dkl_magic != DKL_MAGIC || 3228 label.dkl_cksum != vd_lbl2cksum(&label) || 3229 (vd_dskimg_validate_sanity && 3230 label.dkl_vtoc.v_sanity != VTOC_SANE) || 3231 label.dkl_vtoc.v_nparts != V_NUMPAR) { 3232 3233 if (vd_dskimg_validate_efi(vd) == 0) { 3234 vd->vdisk_label = VD_DISK_LABEL_EFI; 3235 return (ENOTSUP); 3236 } 3237 3238 vd->vdisk_label = VD_DISK_LABEL_UNK; 3239 vd_build_default_label(vd->dskimg_size, &label); 3240 status = EINVAL; 3241 } else { 3242 vd->vdisk_label = VD_DISK_LABEL_VTOC; 3243 } 3244 3245 /* Update the driver geometry and vtoc */ 3246 vd_label_to_vtocgeom(&label, vtoc, geom); 3247 3248 /* Update logical partitions */ 3249 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 3250 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 3251 for (i = 0; i < vtoc->v_nparts; i++) { 3252 vd->slices[i].start = vtoc->v_part[i].p_start; 3253 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 3254 } 3255 } 3256 3257 return (status); 3258 } 3259 3260 /* 3261 * Handle ioctls to a disk image. 3262 * 3263 * Return Values 3264 * 0 - Indicates that there are no errors 3265 * != 0 - Disk operation returned an error 3266 */ 3267 static int 3268 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 3269 { 3270 struct dk_label label; 3271 struct dk_geom *geom; 3272 struct extvtoc *vtoc; 3273 dk_efi_t *efi; 3274 int rc; 3275 3276 ASSERT(VD_DSKIMG(vd)); 3277 3278 switch (cmd) { 3279 3280 case DKIOCGGEOM: 3281 ASSERT(ioctl_arg != NULL); 3282 geom = (struct dk_geom *)ioctl_arg; 3283 3284 rc = vd_dskimg_validate_geometry(vd); 3285 if (rc != 0 && rc != EINVAL) 3286 return (rc); 3287 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 3288 return (0); 3289 3290 case DKIOCGEXTVTOC: 3291 ASSERT(ioctl_arg != NULL); 3292 vtoc = (struct extvtoc *)ioctl_arg; 3293 3294 rc = vd_dskimg_validate_geometry(vd); 3295 if (rc != 0 && rc != EINVAL) 3296 return (rc); 3297 bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc)); 3298 return (0); 3299 3300 case DKIOCSGEOM: 3301 ASSERT(ioctl_arg != NULL); 3302 geom = (struct dk_geom *)ioctl_arg; 3303 3304 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 3305 return (EINVAL); 3306 3307 /* 3308 * The current device geometry is not updated, just the driver 3309 * "notion" of it. The device geometry will be effectively 3310 * updated when a label is written to the device during a next 3311 * DKIOCSEXTVTOC. 3312 */ 3313 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 3314 return (0); 3315 3316 case DKIOCSEXTVTOC: 3317 ASSERT(ioctl_arg != NULL); 3318 ASSERT(vd->dk_geom.dkg_nhead != 0 && 3319 vd->dk_geom.dkg_nsect != 0); 3320 vtoc = (struct extvtoc *)ioctl_arg; 3321 3322 if (vtoc->v_sanity != VTOC_SANE || 3323 vtoc->v_sectorsz != DEV_BSIZE || 3324 vtoc->v_nparts != V_NUMPAR) 3325 return (EINVAL); 3326 3327 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label); 3328 3329 /* write label to the disk image */ 3330 if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0) 3331 return (rc); 3332 3333 break; 3334 3335 case DKIOCFLUSHWRITECACHE: 3336 return (vd_flush_write(vd)); 3337 3338 case DKIOCGETEFI: 3339 ASSERT(ioctl_arg != NULL); 3340 efi = (dk_efi_t *)ioctl_arg; 3341 3342 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 3343 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3344 return (EIO); 3345 3346 return (0); 3347 3348 case DKIOCSETEFI: 3349 ASSERT(ioctl_arg != NULL); 3350 efi = (dk_efi_t *)ioctl_arg; 3351 3352 if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 3353 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3354 return (EIO); 3355 3356 break; 3357 3358 3359 default: 3360 return (ENOTSUP); 3361 } 3362 3363 ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI); 3364 3365 /* label has changed, revalidate the geometry */ 3366 (void) vd_dskimg_validate_geometry(vd); 3367 3368 /* 3369 * The disk geometry may have changed, so we need to write 3370 * the devid (if there is one) so that it is stored at the 3371 * right location. 3372 */ 3373 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 3374 PR0("Fail to write devid"); 3375 } 3376 3377 return (0); 3378 } 3379 3380 static int 3381 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 3382 { 3383 int rval = 0, status; 3384 struct vtoc vtoc; 3385 3386 /* 3387 * Call the appropriate function to execute the ioctl depending 3388 * on the type of vdisk. 3389 */ 3390 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3391 3392 /* slice, file or volume exported as a single slice disk */ 3393 status = vd_do_slice_ioctl(vd, cmd, arg); 3394 3395 } else if (VD_DSKIMG(vd)) { 3396 3397 /* file or volume exported as a full disk */ 3398 status = vd_do_dskimg_ioctl(vd, cmd, arg); 3399 3400 } else { 3401 3402 /* disk device exported as a full disk */ 3403 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 3404 vd->open_flags | FKIOCTL, kcred, &rval); 3405 3406 /* 3407 * By default VTOC ioctls are done using ioctls for the 3408 * extended VTOC. Some drivers (in particular non-Sun drivers) 3409 * may not support these ioctls. In that case, we fallback to 3410 * the regular VTOC ioctls. 3411 */ 3412 if (status == ENOTTY) { 3413 switch (cmd) { 3414 3415 case DKIOCGEXTVTOC: 3416 cmd = DKIOCGVTOC; 3417 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3418 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3419 kcred, &rval); 3420 vtoctoextvtoc(vtoc, 3421 (*(struct extvtoc *)(void *)arg)); 3422 break; 3423 3424 case DKIOCSEXTVTOC: 3425 cmd = DKIOCSVTOC; 3426 extvtoctovtoc((*(struct extvtoc *)(void *)arg), 3427 vtoc); 3428 status = ldi_ioctl(vd->ldi_handle[0], cmd, 3429 (intptr_t)&vtoc, vd->open_flags | FKIOCTL, 3430 kcred, &rval); 3431 break; 3432 } 3433 } 3434 } 3435 3436 #ifdef DEBUG 3437 if (rval != 0) { 3438 PR0("ioctl %x set rval = %d, which is not being returned" 3439 " to caller", cmd, rval); 3440 } 3441 #endif /* DEBUG */ 3442 3443 return (status); 3444 } 3445 3446 /* 3447 * Description: 3448 * This is the function that processes the ioctl requests (farming it 3449 * out to functions that handle slices, files or whole disks) 3450 * 3451 * Return Values 3452 * 0 - ioctl operation completed successfully 3453 * != 0 - The LDC error value encountered 3454 * (propagated back up the call stack as a task error) 3455 * 3456 * Side Effect 3457 * sets request->status to the return value of the ioctl function. 3458 */ 3459 static int 3460 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 3461 { 3462 int status = 0; 3463 size_t nbytes = request->nbytes; /* modifiable copy */ 3464 3465 3466 ASSERT(request->slice < vd->nslices); 3467 PR0("Performing %s", ioctl->operation_name); 3468 3469 /* Get data from client and convert, if necessary */ 3470 if (ioctl->copyin != NULL) { 3471 ASSERT(nbytes != 0 && buf != NULL); 3472 PR1("Getting \"arg\" data from client"); 3473 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3474 request->cookie, request->ncookies, 3475 LDC_COPY_IN)) != 0) { 3476 PR0("ldc_mem_copy() returned errno %d " 3477 "copying from client", status); 3478 return (status); 3479 } 3480 3481 /* Convert client's data, if necessary */ 3482 if (ioctl->copyin == VD_IDENTITY_IN) { 3483 /* use client buffer */ 3484 ioctl->arg = buf; 3485 } else { 3486 /* convert client vdisk operation data to ioctl data */ 3487 status = (ioctl->copyin)(buf, nbytes, 3488 (void *)ioctl->arg); 3489 if (status != 0) { 3490 request->status = status; 3491 return (0); 3492 } 3493 } 3494 } 3495 3496 if (ioctl->operation == VD_OP_SCSICMD) { 3497 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 3498 3499 /* check write permission */ 3500 if (!(vd->open_flags & FWRITE) && 3501 !(uscsi->uscsi_flags & USCSI_READ)) { 3502 PR0("uscsi fails because backend is opened read-only"); 3503 request->status = EROFS; 3504 return (0); 3505 } 3506 } 3507 3508 /* 3509 * Send the ioctl to the disk backend. 3510 */ 3511 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 3512 3513 if (request->status != 0) { 3514 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 3515 if (ioctl->operation == VD_OP_SCSICMD && 3516 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 3517 /* 3518 * USCSICMD has reported an error and the uscsi_status 3519 * field is not zero. This means that the SCSI command 3520 * has completed but it has an error. So we should 3521 * mark the VD operation has succesfully completed 3522 * and clients can check the SCSI status field for 3523 * SCSI errors. 3524 */ 3525 request->status = 0; 3526 else 3527 return (0); 3528 } 3529 3530 /* Convert data and send to client, if necessary */ 3531 if (ioctl->copyout != NULL) { 3532 ASSERT(nbytes != 0 && buf != NULL); 3533 PR1("Sending \"arg\" data to client"); 3534 3535 /* Convert ioctl data to vdisk operation data, if necessary */ 3536 if (ioctl->copyout != VD_IDENTITY_OUT) 3537 (ioctl->copyout)((void *)ioctl->arg, buf); 3538 3539 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3540 request->cookie, request->ncookies, 3541 LDC_COPY_OUT)) != 0) { 3542 PR0("ldc_mem_copy() returned errno %d " 3543 "copying to client", status); 3544 return (status); 3545 } 3546 } 3547 3548 return (status); 3549 } 3550 3551 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 3552 3553 /* 3554 * Description: 3555 * This generic function is called by the task queue to complete 3556 * the processing of the tasks. The specific completion function 3557 * is passed in as a field in the task pointer. 3558 * 3559 * Parameters: 3560 * arg - opaque pointer to structure containing task to be completed 3561 * 3562 * Return Values 3563 * None 3564 */ 3565 static void 3566 vd_complete(void *arg) 3567 { 3568 vd_task_t *task = (vd_task_t *)arg; 3569 3570 ASSERT(task != NULL); 3571 ASSERT(task->status == EINPROGRESS); 3572 ASSERT(task->completef != NULL); 3573 3574 task->status = task->completef(task); 3575 if (task->status) 3576 PR0("%s: Error %d completing task", __func__, task->status); 3577 3578 /* Now notify the vDisk client */ 3579 vd_complete_notify(task); 3580 } 3581 3582 static int 3583 vd_ioctl(vd_task_t *task) 3584 { 3585 int i, status; 3586 void *buf = NULL; 3587 struct dk_geom dk_geom = {0}; 3588 struct extvtoc vtoc = {0}; 3589 struct dk_efi dk_efi = {0}; 3590 struct uscsi_cmd uscsi = {0}; 3591 vd_t *vd = task->vd; 3592 vd_dring_payload_t *request = task->request; 3593 vd_ioctl_t ioctl[] = { 3594 /* Command (no-copy) operations */ 3595 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 3596 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 3597 NULL, NULL, NULL, B_TRUE}, 3598 3599 /* "Get" (copy-out) operations */ 3600 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 3601 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 3602 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 3603 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 3604 RNDSIZE(vd_geom_t), 3605 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 3606 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 3607 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 3608 DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC), 3609 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 3610 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 3611 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 3612 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 3613 3614 /* "Set" (copy-in) operations */ 3615 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 3616 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 3617 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 3618 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 3619 RNDSIZE(vd_geom_t), 3620 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 3621 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 3622 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 3623 DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC), 3624 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 3625 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 3626 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 3627 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 3628 3629 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 3630 USCSICMD, STRINGIZE(USCSICMD), 3631 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 3632 }; 3633 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 3634 3635 3636 ASSERT(vd != NULL); 3637 ASSERT(request != NULL); 3638 ASSERT(request->slice < vd->nslices); 3639 3640 /* 3641 * Determine ioctl corresponding to caller's "operation" and 3642 * validate caller's "nbytes" 3643 */ 3644 for (i = 0; i < nioctls; i++) { 3645 if (request->operation == ioctl[i].operation) { 3646 /* LDC memory operations require 8-byte multiples */ 3647 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 3648 3649 if (request->operation == VD_OP_GET_EFI || 3650 request->operation == VD_OP_SET_EFI || 3651 request->operation == VD_OP_SCSICMD) { 3652 if (request->nbytes >= ioctl[i].nbytes) 3653 break; 3654 PR0("%s: Expected at least nbytes = %lu, " 3655 "got %lu", ioctl[i].operation_name, 3656 ioctl[i].nbytes, request->nbytes); 3657 return (EINVAL); 3658 } 3659 3660 if (request->nbytes != ioctl[i].nbytes) { 3661 PR0("%s: Expected nbytes = %lu, got %lu", 3662 ioctl[i].operation_name, ioctl[i].nbytes, 3663 request->nbytes); 3664 return (EINVAL); 3665 } 3666 3667 break; 3668 } 3669 } 3670 ASSERT(i < nioctls); /* because "operation" already validated */ 3671 3672 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 3673 PR0("%s fails because backend is opened read-only", 3674 ioctl[i].operation_name); 3675 request->status = EROFS; 3676 return (0); 3677 } 3678 3679 if (request->nbytes) 3680 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 3681 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 3682 if (request->nbytes) 3683 kmem_free(buf, request->nbytes); 3684 3685 return (status); 3686 } 3687 3688 static int 3689 vd_get_devid(vd_task_t *task) 3690 { 3691 vd_t *vd = task->vd; 3692 vd_dring_payload_t *request = task->request; 3693 vd_devid_t *vd_devid; 3694 impl_devid_t *devid; 3695 int status, bufid_len, devid_len, len, sz; 3696 int bufbytes; 3697 3698 PR1("Get Device ID, nbytes=%ld", request->nbytes); 3699 3700 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3701 /* 3702 * We don't support devid for single-slice disks because we 3703 * have no space to store a fabricated devid and for physical 3704 * disk slices, we can't use the devid of the disk otherwise 3705 * exporting multiple slices from the same disk will produce 3706 * the same devids. 3707 */ 3708 PR2("No Device ID for slices"); 3709 request->status = ENOTSUP; 3710 return (0); 3711 } 3712 3713 if (VD_DSKIMG(vd)) { 3714 if (vd->dskimg_devid == NULL) { 3715 PR2("No Device ID"); 3716 request->status = ENOENT; 3717 return (0); 3718 } else { 3719 sz = ddi_devid_sizeof(vd->dskimg_devid); 3720 devid = kmem_alloc(sz, KM_SLEEP); 3721 bcopy(vd->dskimg_devid, devid, sz); 3722 } 3723 } else { 3724 if (ddi_lyr_get_devid(vd->dev[request->slice], 3725 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 3726 PR2("No Device ID"); 3727 request->status = ENOENT; 3728 return (0); 3729 } 3730 } 3731 3732 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 3733 devid_len = DEVID_GETLEN(devid); 3734 3735 /* 3736 * Save the buffer size here for use in deallocation. 3737 * The actual number of bytes copied is returned in 3738 * the 'nbytes' field of the request structure. 3739 */ 3740 bufbytes = request->nbytes; 3741 3742 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 3743 vd_devid->length = devid_len; 3744 vd_devid->type = DEVID_GETTYPE(devid); 3745 3746 len = (devid_len > bufid_len)? bufid_len : devid_len; 3747 3748 bcopy(devid->did_id, vd_devid->id, len); 3749 3750 request->status = 0; 3751 3752 /* LDC memory operations require 8-byte multiples */ 3753 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 3754 3755 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 3756 &request->nbytes, request->cookie, request->ncookies, 3757 LDC_COPY_OUT)) != 0) { 3758 PR0("ldc_mem_copy() returned errno %d copying to client", 3759 status); 3760 } 3761 PR1("post mem_copy: nbytes=%ld", request->nbytes); 3762 3763 kmem_free(vd_devid, bufbytes); 3764 ddi_devid_free((ddi_devid_t)devid); 3765 3766 return (status); 3767 } 3768 3769 static int 3770 vd_scsi_reset(vd_t *vd) 3771 { 3772 int rval, status; 3773 struct uscsi_cmd uscsi = { 0 }; 3774 3775 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 3776 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 3777 3778 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 3779 (vd->open_flags | FKIOCTL), kcred, &rval); 3780 3781 return (status); 3782 } 3783 3784 static int 3785 vd_reset(vd_task_t *task) 3786 { 3787 vd_t *vd = task->vd; 3788 vd_dring_payload_t *request = task->request; 3789 3790 ASSERT(request->operation == VD_OP_RESET); 3791 ASSERT(vd->scsi); 3792 3793 PR0("Performing VD_OP_RESET"); 3794 3795 if (request->nbytes != 0) { 3796 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 3797 request->nbytes); 3798 return (EINVAL); 3799 } 3800 3801 request->status = vd_scsi_reset(vd); 3802 3803 return (0); 3804 } 3805 3806 static int 3807 vd_get_capacity(vd_task_t *task) 3808 { 3809 int rv; 3810 size_t nbytes; 3811 vd_t *vd = task->vd; 3812 vd_dring_payload_t *request = task->request; 3813 vd_capacity_t vd_cap = { 0 }; 3814 3815 ASSERT(request->operation == VD_OP_GET_CAPACITY); 3816 3817 PR0("Performing VD_OP_GET_CAPACITY"); 3818 3819 nbytes = request->nbytes; 3820 3821 if (nbytes != RNDSIZE(vd_capacity_t)) { 3822 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 3823 RNDSIZE(vd_capacity_t), nbytes); 3824 return (EINVAL); 3825 } 3826 3827 /* 3828 * Check the backend size in case it has changed. If the check fails 3829 * then we will return the last known size. 3830 */ 3831 3832 (void) vd_backend_check_size(vd); 3833 ASSERT(vd->vdisk_size != 0); 3834 3835 request->status = 0; 3836 3837 vd_cap.vdisk_block_size = vd->vdisk_block_size; 3838 vd_cap.vdisk_size = vd->vdisk_size; 3839 3840 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 3841 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3842 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3843 return (rv); 3844 } 3845 3846 return (0); 3847 } 3848 3849 static int 3850 vd_get_access(vd_task_t *task) 3851 { 3852 uint64_t access; 3853 int rv, rval = 0; 3854 size_t nbytes; 3855 vd_t *vd = task->vd; 3856 vd_dring_payload_t *request = task->request; 3857 3858 ASSERT(request->operation == VD_OP_GET_ACCESS); 3859 ASSERT(vd->scsi); 3860 3861 PR0("Performing VD_OP_GET_ACCESS"); 3862 3863 nbytes = request->nbytes; 3864 3865 if (nbytes != sizeof (uint64_t)) { 3866 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 3867 sizeof (uint64_t), nbytes); 3868 return (EINVAL); 3869 } 3870 3871 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 3872 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3873 3874 if (request->status != 0) 3875 return (0); 3876 3877 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 3878 3879 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 3880 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3881 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3882 return (rv); 3883 } 3884 3885 return (0); 3886 } 3887 3888 static int 3889 vd_set_access(vd_task_t *task) 3890 { 3891 uint64_t flags; 3892 int rv, rval; 3893 size_t nbytes; 3894 vd_t *vd = task->vd; 3895 vd_dring_payload_t *request = task->request; 3896 3897 ASSERT(request->operation == VD_OP_SET_ACCESS); 3898 ASSERT(vd->scsi); 3899 3900 nbytes = request->nbytes; 3901 3902 if (nbytes != sizeof (uint64_t)) { 3903 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 3904 sizeof (uint64_t), nbytes); 3905 return (EINVAL); 3906 } 3907 3908 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 3909 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 3910 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 3911 return (rv); 3912 } 3913 3914 if (flags == VD_ACCESS_SET_CLEAR) { 3915 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 3916 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3917 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 3918 &rval); 3919 if (request->status == 0) 3920 vd->ownership = B_FALSE; 3921 return (0); 3922 } 3923 3924 /* 3925 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 3926 * when the EXCLUSIVE flag is set. 3927 */ 3928 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3929 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3930 request->status = EINVAL; 3931 return (0); 3932 } 3933 3934 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3935 3936 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3937 /* 3938 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3939 * acquire exclusive access rights, preserve them and we 3940 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3941 */ 3942 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3943 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3944 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3945 break; 3946 3947 case VD_ACCESS_SET_PRESERVE: 3948 /* 3949 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3950 * access rights and preserve them, but not preempt any other 3951 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3952 * "preserve" feature but we can not called it directly 3953 * because it uses preemption. So before that, we use the 3954 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3955 * without preempting anyone. 3956 */ 3957 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3958 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3959 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3960 &rval); 3961 if (request->status != 0) 3962 break; 3963 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3964 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3965 break; 3966 3967 case VD_ACCESS_SET_PREEMPT: 3968 /* 3969 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3970 * access rights and we can use preemption. So we try to do 3971 * a SCSI reservation, if it fails we reset the disk to clear 3972 * any reservation and we try to reserve again. 3973 */ 3974 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3975 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3976 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3977 &rval); 3978 if (request->status == 0) 3979 break; 3980 3981 /* reset the disk */ 3982 (void) vd_scsi_reset(vd); 3983 3984 /* try again even if the reset has failed */ 3985 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3986 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3987 &rval); 3988 break; 3989 3990 case 0: 3991 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 3992 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 3993 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3994 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3995 &rval); 3996 break; 3997 } 3998 3999 if (request->status == 0) 4000 vd->ownership = B_TRUE; 4001 else 4002 PR0("VD_OP_SET_ACCESS: error %d", request->status); 4003 4004 return (0); 4005 } 4006 4007 static void 4008 vd_reset_access(vd_t *vd) 4009 { 4010 int status, rval; 4011 4012 if (vd->file || vd->volume || !vd->ownership) 4013 return; 4014 4015 PR0("Releasing disk ownership"); 4016 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4017 (vd->open_flags | FKIOCTL), kcred, &rval); 4018 4019 /* 4020 * An EACCES failure means that there is a reservation conflict, 4021 * so we are not the owner of the disk anymore. 4022 */ 4023 if (status == 0 || status == EACCES) { 4024 vd->ownership = B_FALSE; 4025 return; 4026 } 4027 4028 PR0("Fail to release ownership, error %d", status); 4029 4030 /* 4031 * We have failed to release the ownership, try to reset the disk 4032 * to release reservations. 4033 */ 4034 PR0("Resetting disk"); 4035 status = vd_scsi_reset(vd); 4036 4037 if (status != 0) 4038 PR0("Fail to reset disk, error %d", status); 4039 4040 /* whatever the result of the reset is, we try the release again */ 4041 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 4042 (vd->open_flags | FKIOCTL), kcred, &rval); 4043 4044 if (status == 0 || status == EACCES) { 4045 vd->ownership = B_FALSE; 4046 return; 4047 } 4048 4049 PR0("Fail to release ownership, error %d", status); 4050 4051 /* 4052 * At this point we have done our best to try to reset the 4053 * access rights to the disk and we don't know if we still 4054 * own a reservation and if any mechanism to preserve the 4055 * ownership is still in place. The ultimate solution would 4056 * be to reset the system but this is usually not what we 4057 * want to happen. 4058 */ 4059 4060 if (vd_reset_access_failure == A_REBOOT) { 4061 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 4062 ", rebooting the system", vd->device_path); 4063 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 4064 } else if (vd_reset_access_failure == A_DUMP) { 4065 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4066 } 4067 4068 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 4069 } 4070 4071 /* 4072 * Define the supported operations once the functions for performing them have 4073 * been defined 4074 */ 4075 static const vds_operation_t vds_operation[] = { 4076 #define X(_s) #_s, _s 4077 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 4078 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 4079 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 4080 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 4081 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 4082 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 4083 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 4084 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 4085 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 4086 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 4087 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 4088 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 4089 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 4090 {X(VD_OP_RESET), vd_reset, NULL}, 4091 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 4092 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 4093 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 4094 #undef X 4095 }; 4096 4097 static const size_t vds_noperations = 4098 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 4099 4100 /* 4101 * Process a task specifying a client I/O request 4102 * 4103 * Parameters: 4104 * task - structure containing the request sent from client 4105 * 4106 * Return Value 4107 * 0 - success 4108 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 4109 * EINVAL - Invalid disk slice 4110 * != 0 - some other non-zero return value from start function 4111 */ 4112 static int 4113 vd_do_process_task(vd_task_t *task) 4114 { 4115 int i; 4116 vd_t *vd = task->vd; 4117 vd_dring_payload_t *request = task->request; 4118 4119 ASSERT(vd != NULL); 4120 ASSERT(request != NULL); 4121 4122 /* Find the requested operation */ 4123 for (i = 0; i < vds_noperations; i++) { 4124 if (request->operation == vds_operation[i].operation) { 4125 /* all operations should have a start func */ 4126 ASSERT(vds_operation[i].start != NULL); 4127 4128 task->completef = vds_operation[i].complete; 4129 break; 4130 } 4131 } 4132 4133 /* 4134 * We need to check that the requested operation is permitted 4135 * for the particular client that sent it or that the loop above 4136 * did not complete without finding the operation type (indicating 4137 * that the requested operation is unknown/unimplemented) 4138 */ 4139 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 4140 (i == vds_noperations)) { 4141 PR0("Unsupported operation %u", request->operation); 4142 request->status = ENOTSUP; 4143 return (0); 4144 } 4145 4146 /* Range-check slice */ 4147 if (request->slice >= vd->nslices && 4148 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) || 4149 request->slice != VD_SLICE_NONE)) { 4150 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 4151 request->slice, (vd->nslices - 1)); 4152 request->status = EINVAL; 4153 return (0); 4154 } 4155 4156 /* 4157 * Call the function pointer that starts the operation. 4158 */ 4159 return (vds_operation[i].start(task)); 4160 } 4161 4162 /* 4163 * Description: 4164 * This function is called by both the in-band and descriptor ring 4165 * message processing functions paths to actually execute the task 4166 * requested by the vDisk client. It in turn calls its worker 4167 * function, vd_do_process_task(), to carry our the request. 4168 * 4169 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 4170 * saved in the 'status' field of the task and are propagated back 4171 * up the call stack to trigger a NACK 4172 * 4173 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 4174 * the 'status' field of the request and result in an ACK being sent 4175 * by the completion handler. 4176 * 4177 * Parameters: 4178 * task - structure containing the request sent from client 4179 * 4180 * Return Value 4181 * 0 - successful synchronous request. 4182 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 4183 * EINPROGRESS - task will be finished in a completion handler 4184 */ 4185 static int 4186 vd_process_task(vd_task_t *task) 4187 { 4188 vd_t *vd = task->vd; 4189 int status; 4190 4191 DTRACE_PROBE1(task__start, vd_task_t *, task); 4192 4193 task->status = vd_do_process_task(task); 4194 4195 /* 4196 * If the task processing function returned EINPROGRESS indicating 4197 * that the task needs completing then schedule a taskq entry to 4198 * finish it now. 4199 * 4200 * Otherwise the task processing function returned either zero 4201 * indicating that the task was finished in the start function (and we 4202 * don't need to wait in a completion function) or the start function 4203 * returned an error - in both cases all that needs to happen is the 4204 * notification to the vDisk client higher up the call stack. 4205 * If the task was using a Descriptor Ring, we need to mark it as done 4206 * at this stage. 4207 */ 4208 if (task->status == EINPROGRESS) { 4209 /* Queue a task to complete the operation */ 4210 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 4211 task, DDI_SLEEP); 4212 return (EINPROGRESS); 4213 } 4214 4215 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 4216 /* Update the dring element if it's a dring client */ 4217 status = vd_mark_elem_done(vd, task->index, 4218 task->request->status, task->request->nbytes); 4219 if (status == ECONNRESET) 4220 vd_mark_in_reset(vd); 4221 else if (status == EACCES) 4222 vd_need_reset(vd, B_TRUE); 4223 } 4224 4225 return (task->status); 4226 } 4227 4228 /* 4229 * Return true if the "type", "subtype", and "env" fields of the "tag" first 4230 * argument match the corresponding remaining arguments; otherwise, return false 4231 */ 4232 boolean_t 4233 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 4234 { 4235 return ((tag->vio_msgtype == type) && 4236 (tag->vio_subtype == subtype) && 4237 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 4238 } 4239 4240 /* 4241 * Check whether the major/minor version specified in "ver_msg" is supported 4242 * by this server. 4243 */ 4244 static boolean_t 4245 vds_supported_version(vio_ver_msg_t *ver_msg) 4246 { 4247 for (int i = 0; i < vds_num_versions; i++) { 4248 ASSERT(vds_version[i].major > 0); 4249 ASSERT((i == 0) || 4250 (vds_version[i].major < vds_version[i-1].major)); 4251 4252 /* 4253 * If the major versions match, adjust the minor version, if 4254 * necessary, down to the highest value supported by this 4255 * server and return true so this message will get "ack"ed; 4256 * the client should also support all minor versions lower 4257 * than the value it sent 4258 */ 4259 if (ver_msg->ver_major == vds_version[i].major) { 4260 if (ver_msg->ver_minor > vds_version[i].minor) { 4261 PR0("Adjusting minor version from %u to %u", 4262 ver_msg->ver_minor, vds_version[i].minor); 4263 ver_msg->ver_minor = vds_version[i].minor; 4264 } 4265 return (B_TRUE); 4266 } 4267 4268 /* 4269 * If the message contains a higher major version number, set 4270 * the message's major/minor versions to the current values 4271 * and return false, so this message will get "nack"ed with 4272 * these values, and the client will potentially try again 4273 * with the same or a lower version 4274 */ 4275 if (ver_msg->ver_major > vds_version[i].major) { 4276 ver_msg->ver_major = vds_version[i].major; 4277 ver_msg->ver_minor = vds_version[i].minor; 4278 return (B_FALSE); 4279 } 4280 4281 /* 4282 * Otherwise, the message's major version is less than the 4283 * current major version, so continue the loop to the next 4284 * (lower) supported version 4285 */ 4286 } 4287 4288 /* 4289 * No common version was found; "ground" the version pair in the 4290 * message to terminate negotiation 4291 */ 4292 ver_msg->ver_major = 0; 4293 ver_msg->ver_minor = 0; 4294 return (B_FALSE); 4295 } 4296 4297 /* 4298 * Process a version message from a client. vds expects to receive version 4299 * messages from clients seeking service, but never issues version messages 4300 * itself; therefore, vds can ACK or NACK client version messages, but does 4301 * not expect to receive version-message ACKs or NACKs (and will treat such 4302 * messages as invalid). 4303 */ 4304 static int 4305 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4306 { 4307 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 4308 4309 4310 ASSERT(msglen >= sizeof (msg->tag)); 4311 4312 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4313 VIO_VER_INFO)) { 4314 return (ENOMSG); /* not a version message */ 4315 } 4316 4317 if (msglen != sizeof (*ver_msg)) { 4318 PR0("Expected %lu-byte version message; " 4319 "received %lu bytes", sizeof (*ver_msg), msglen); 4320 return (EBADMSG); 4321 } 4322 4323 if (ver_msg->dev_class != VDEV_DISK) { 4324 PR0("Expected device class %u (disk); received %u", 4325 VDEV_DISK, ver_msg->dev_class); 4326 return (EBADMSG); 4327 } 4328 4329 /* 4330 * We're talking to the expected kind of client; set our device class 4331 * for "ack/nack" back to the client 4332 */ 4333 ver_msg->dev_class = VDEV_DISK_SERVER; 4334 4335 /* 4336 * Check whether the (valid) version message specifies a version 4337 * supported by this server. If the version is not supported, return 4338 * EBADMSG so the message will get "nack"ed; vds_supported_version() 4339 * will have updated the message with a supported version for the 4340 * client to consider 4341 */ 4342 if (!vds_supported_version(ver_msg)) 4343 return (EBADMSG); 4344 4345 4346 /* 4347 * A version has been agreed upon; use the client's SID for 4348 * communication on this channel now 4349 */ 4350 ASSERT(!(vd->initialized & VD_SID)); 4351 vd->sid = ver_msg->tag.vio_sid; 4352 vd->initialized |= VD_SID; 4353 4354 /* 4355 * Store the negotiated major and minor version values in the "vd" data 4356 * structure so that we can check if certain operations are supported 4357 * by the client. 4358 */ 4359 vd->version.major = ver_msg->ver_major; 4360 vd->version.minor = ver_msg->ver_minor; 4361 4362 PR0("Using major version %u, minor version %u", 4363 ver_msg->ver_major, ver_msg->ver_minor); 4364 return (0); 4365 } 4366 4367 static void 4368 vd_set_exported_operations(vd_t *vd) 4369 { 4370 vd->operations = 0; /* clear field */ 4371 4372 /* 4373 * We need to check from the highest version supported to the 4374 * lowest because versions with a higher minor number implicitly 4375 * support versions with a lower minor number. 4376 */ 4377 if (vio_ver_is_supported(vd->version, 1, 1)) { 4378 ASSERT(vd->open_flags & FREAD); 4379 vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY); 4380 4381 if (vd->open_flags & FWRITE) 4382 vd->operations |= VD_OP_MASK_WRITE; 4383 4384 if (vd->scsi) 4385 vd->operations |= VD_OP_MASK_SCSI; 4386 4387 if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) { 4388 /* 4389 * can't write to ISO images, make sure that write 4390 * support is not set in case administrator did not 4391 * use "options=ro" when doing an ldm add-vdsdev 4392 */ 4393 vd->operations &= ~VD_OP_MASK_WRITE; 4394 } 4395 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 4396 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 4397 } 4398 4399 /* we should have already agreed on a version */ 4400 ASSERT(vd->operations != 0); 4401 } 4402 4403 static int 4404 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4405 { 4406 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 4407 int status, retry = 0; 4408 4409 4410 ASSERT(msglen >= sizeof (msg->tag)); 4411 4412 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4413 VIO_ATTR_INFO)) { 4414 PR0("Message is not an attribute message"); 4415 return (ENOMSG); 4416 } 4417 4418 if (msglen != sizeof (*attr_msg)) { 4419 PR0("Expected %lu-byte attribute message; " 4420 "received %lu bytes", sizeof (*attr_msg), msglen); 4421 return (EBADMSG); 4422 } 4423 4424 if (attr_msg->max_xfer_sz == 0) { 4425 PR0("Received maximum transfer size of 0 from client"); 4426 return (EBADMSG); 4427 } 4428 4429 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 4430 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 4431 PR0("Client requested unsupported transfer mode"); 4432 return (EBADMSG); 4433 } 4434 4435 /* 4436 * check if the underlying disk is ready, if not try accessing 4437 * the device again. Open the vdisk device and extract info 4438 * about it, as this is needed to respond to the attr info msg 4439 */ 4440 if ((vd->initialized & VD_DISK_READY) == 0) { 4441 PR0("Retry setting up disk (%s)", vd->device_path); 4442 do { 4443 status = vd_setup_vd(vd); 4444 if (status != EAGAIN || ++retry > vds_dev_retries) 4445 break; 4446 4447 /* incremental delay */ 4448 delay(drv_usectohz(vds_dev_delay)); 4449 4450 /* if vdisk is no longer enabled - return error */ 4451 if (!vd_enabled(vd)) 4452 return (ENXIO); 4453 4454 } while (status == EAGAIN); 4455 4456 if (status) 4457 return (ENXIO); 4458 4459 vd->initialized |= VD_DISK_READY; 4460 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 4461 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 4462 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 4463 (vd->volume ? "yes" : "no"), 4464 (vd->file ? "yes" : "no"), 4465 vd->nslices); 4466 } 4467 4468 /* Success: valid message and transfer mode */ 4469 vd->xfer_mode = attr_msg->xfer_mode; 4470 4471 if (vd->xfer_mode == VIO_DESC_MODE) { 4472 4473 /* 4474 * The vd_dring_inband_msg_t contains one cookie; need room 4475 * for up to n-1 more cookies, where "n" is the number of full 4476 * pages plus possibly one partial page required to cover 4477 * "max_xfer_sz". Add room for one more cookie if 4478 * "max_xfer_sz" isn't an integral multiple of the page size. 4479 * Must first get the maximum transfer size in bytes. 4480 */ 4481 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 4482 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 4483 attr_msg->max_xfer_sz; 4484 size_t max_inband_msglen = 4485 sizeof (vd_dring_inband_msg_t) + 4486 ((max_xfer_bytes/PAGESIZE + 4487 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 4488 (sizeof (ldc_mem_cookie_t))); 4489 4490 /* 4491 * Set the maximum expected message length to 4492 * accommodate in-band-descriptor messages with all 4493 * their cookies 4494 */ 4495 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 4496 4497 /* 4498 * Initialize the data structure for processing in-band I/O 4499 * request descriptors 4500 */ 4501 vd->inband_task.vd = vd; 4502 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4503 vd->inband_task.index = 0; 4504 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 4505 } 4506 4507 /* Return the device's block size and max transfer size to the client */ 4508 attr_msg->vdisk_block_size = vd->vdisk_block_size; 4509 attr_msg->max_xfer_sz = vd->max_xfer_sz; 4510 4511 attr_msg->vdisk_size = vd->vdisk_size; 4512 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type : 4513 VD_DISK_TYPE_DISK; 4514 attr_msg->vdisk_media = vd->vdisk_media; 4515 4516 /* Discover and save the list of supported VD_OP_XXX operations */ 4517 vd_set_exported_operations(vd); 4518 attr_msg->operations = vd->operations; 4519 4520 PR0("%s", VD_CLIENT(vd)); 4521 4522 ASSERT(vd->dring_task == NULL); 4523 4524 return (0); 4525 } 4526 4527 static int 4528 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4529 { 4530 int status; 4531 size_t expected; 4532 ldc_mem_info_t dring_minfo; 4533 uint8_t mtype; 4534 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 4535 4536 4537 ASSERT(msglen >= sizeof (msg->tag)); 4538 4539 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4540 VIO_DRING_REG)) { 4541 PR0("Message is not a register-dring message"); 4542 return (ENOMSG); 4543 } 4544 4545 if (msglen < sizeof (*reg_msg)) { 4546 PR0("Expected at least %lu-byte register-dring message; " 4547 "received %lu bytes", sizeof (*reg_msg), msglen); 4548 return (EBADMSG); 4549 } 4550 4551 expected = sizeof (*reg_msg) + 4552 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 4553 if (msglen != expected) { 4554 PR0("Expected %lu-byte register-dring message; " 4555 "received %lu bytes", expected, msglen); 4556 return (EBADMSG); 4557 } 4558 4559 if (vd->initialized & VD_DRING) { 4560 PR0("A dring was previously registered; only support one"); 4561 return (EBADMSG); 4562 } 4563 4564 if (reg_msg->num_descriptors > INT32_MAX) { 4565 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 4566 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 4567 return (EBADMSG); 4568 } 4569 4570 if (reg_msg->ncookies != 1) { 4571 /* 4572 * In addition to fixing the assertion in the success case 4573 * below, supporting drings which require more than one 4574 * "cookie" requires increasing the value of vd->max_msglen 4575 * somewhere in the code path prior to receiving the message 4576 * which results in calling this function. Note that without 4577 * making this change, the larger message size required to 4578 * accommodate multiple cookies cannot be successfully 4579 * received, so this function will not even get called. 4580 * Gracefully accommodating more dring cookies might 4581 * reasonably demand exchanging an additional attribute or 4582 * making a minor protocol adjustment 4583 */ 4584 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 4585 return (EBADMSG); 4586 } 4587 4588 if (vd_direct_mapped_drings) 4589 mtype = LDC_DIRECT_MAP; 4590 else 4591 mtype = LDC_SHADOW_MAP; 4592 4593 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 4594 reg_msg->ncookies, reg_msg->num_descriptors, 4595 reg_msg->descriptor_size, mtype, &vd->dring_handle); 4596 if (status != 0) { 4597 PR0("ldc_mem_dring_map() returned errno %d", status); 4598 return (status); 4599 } 4600 4601 /* 4602 * To remove the need for this assertion, must call 4603 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 4604 * successful call to ldc_mem_dring_map() 4605 */ 4606 ASSERT(reg_msg->ncookies == 1); 4607 4608 if ((status = 4609 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 4610 PR0("ldc_mem_dring_info() returned errno %d", status); 4611 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 4612 PR0("ldc_mem_dring_unmap() returned errno %d", status); 4613 return (status); 4614 } 4615 4616 if (dring_minfo.vaddr == NULL) { 4617 PR0("Descriptor ring virtual address is NULL"); 4618 return (ENXIO); 4619 } 4620 4621 4622 /* Initialize for valid message and mapped dring */ 4623 vd->initialized |= VD_DRING; 4624 vd->dring_ident = 1; /* "There Can Be Only One" */ 4625 vd->dring = dring_minfo.vaddr; 4626 vd->descriptor_size = reg_msg->descriptor_size; 4627 vd->dring_len = reg_msg->num_descriptors; 4628 vd->dring_mtype = dring_minfo.mtype; 4629 reg_msg->dring_ident = vd->dring_ident; 4630 PR1("descriptor size = %u, dring length = %u", 4631 vd->descriptor_size, vd->dring_len); 4632 4633 /* 4634 * Allocate and initialize a "shadow" array of data structures for 4635 * tasks to process I/O requests in dring elements 4636 */ 4637 vd->dring_task = 4638 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 4639 for (int i = 0; i < vd->dring_len; i++) { 4640 vd->dring_task[i].vd = vd; 4641 vd->dring_task[i].index = i; 4642 4643 status = ldc_mem_alloc_handle(vd->ldc_handle, 4644 &(vd->dring_task[i].mhdl)); 4645 if (status) { 4646 PR0("ldc_mem_alloc_handle() returned err %d ", status); 4647 return (ENXIO); 4648 } 4649 4650 /* 4651 * The descriptor payload varies in length. Calculate its 4652 * size by subtracting the header size from the total 4653 * descriptor size. 4654 */ 4655 vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size - 4656 sizeof (vio_dring_entry_hdr_t)), KM_SLEEP); 4657 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4658 } 4659 4660 if (vd->file || vd->zvol) { 4661 vd->write_queue = 4662 kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP); 4663 } 4664 4665 return (0); 4666 } 4667 4668 static int 4669 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4670 { 4671 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 4672 4673 4674 ASSERT(msglen >= sizeof (msg->tag)); 4675 4676 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4677 VIO_DRING_UNREG)) { 4678 PR0("Message is not an unregister-dring message"); 4679 return (ENOMSG); 4680 } 4681 4682 if (msglen != sizeof (*unreg_msg)) { 4683 PR0("Expected %lu-byte unregister-dring message; " 4684 "received %lu bytes", sizeof (*unreg_msg), msglen); 4685 return (EBADMSG); 4686 } 4687 4688 if (unreg_msg->dring_ident != vd->dring_ident) { 4689 PR0("Expected dring ident %lu; received %lu", 4690 vd->dring_ident, unreg_msg->dring_ident); 4691 return (EBADMSG); 4692 } 4693 4694 return (0); 4695 } 4696 4697 static int 4698 process_rdx_msg(vio_msg_t *msg, size_t msglen) 4699 { 4700 ASSERT(msglen >= sizeof (msg->tag)); 4701 4702 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 4703 PR0("Message is not an RDX message"); 4704 return (ENOMSG); 4705 } 4706 4707 if (msglen != sizeof (vio_rdx_msg_t)) { 4708 PR0("Expected %lu-byte RDX message; received %lu bytes", 4709 sizeof (vio_rdx_msg_t), msglen); 4710 return (EBADMSG); 4711 } 4712 4713 PR0("Valid RDX message"); 4714 return (0); 4715 } 4716 4717 static int 4718 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 4719 { 4720 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 4721 PR0("Received seq_num %lu; expected %lu", 4722 seq_num, (vd->seq_num + 1)); 4723 PR0("initiating soft reset"); 4724 vd_need_reset(vd, B_FALSE); 4725 return (1); 4726 } 4727 4728 vd->seq_num = seq_num; 4729 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 4730 return (0); 4731 } 4732 4733 /* 4734 * Return the expected size of an inband-descriptor message with all the 4735 * cookies it claims to include 4736 */ 4737 static size_t 4738 expected_inband_size(vd_dring_inband_msg_t *msg) 4739 { 4740 return ((sizeof (*msg)) + 4741 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 4742 } 4743 4744 /* 4745 * Process an in-band descriptor message: used with clients like OBP, with 4746 * which vds exchanges descriptors within VIO message payloads, rather than 4747 * operating on them within a descriptor ring 4748 */ 4749 static int 4750 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4751 { 4752 size_t expected; 4753 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 4754 4755 4756 ASSERT(msglen >= sizeof (msg->tag)); 4757 4758 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4759 VIO_DESC_DATA)) { 4760 PR1("Message is not an in-band-descriptor message"); 4761 return (ENOMSG); 4762 } 4763 4764 if (msglen < sizeof (*desc_msg)) { 4765 PR0("Expected at least %lu-byte descriptor message; " 4766 "received %lu bytes", sizeof (*desc_msg), msglen); 4767 return (EBADMSG); 4768 } 4769 4770 if (msglen != (expected = expected_inband_size(desc_msg))) { 4771 PR0("Expected %lu-byte descriptor message; " 4772 "received %lu bytes", expected, msglen); 4773 return (EBADMSG); 4774 } 4775 4776 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 4777 return (EBADMSG); 4778 4779 /* 4780 * Valid message: Set up the in-band descriptor task and process the 4781 * request. Arrange to acknowledge the client's message, unless an 4782 * error processing the descriptor task results in setting 4783 * VIO_SUBTYPE_NACK 4784 */ 4785 PR1("Valid in-band-descriptor message"); 4786 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4787 4788 ASSERT(vd->inband_task.msg != NULL); 4789 4790 bcopy(msg, vd->inband_task.msg, msglen); 4791 vd->inband_task.msglen = msglen; 4792 4793 /* 4794 * The task request is now the payload of the message 4795 * that was just copied into the body of the task. 4796 */ 4797 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 4798 vd->inband_task.request = &desc_msg->payload; 4799 4800 return (vd_process_task(&vd->inband_task)); 4801 } 4802 4803 static int 4804 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 4805 vio_msg_t *msg, size_t msglen) 4806 { 4807 int status; 4808 boolean_t ready; 4809 on_trap_data_t otd; 4810 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 4811 4812 /* Accept the updated dring element */ 4813 if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype, 4814 vd->dring_handle, idx, idx)) != 0) { 4815 return (status); 4816 } 4817 ready = (elem->hdr.dstate == VIO_DESC_READY); 4818 if (ready) { 4819 elem->hdr.dstate = VIO_DESC_ACCEPTED; 4820 bcopy(&elem->payload, vd->dring_task[idx].request, 4821 (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t))); 4822 } else { 4823 PR0("descriptor %u not ready", idx); 4824 VD_DUMP_DRING_ELEM(elem); 4825 } 4826 if ((status = VIO_DRING_RELEASE(vd->dring_mtype, 4827 vd->dring_handle, idx, idx)) != 0) { 4828 PR0("VIO_DRING_RELEASE() returned errno %d", status); 4829 return (status); 4830 } 4831 if (!ready) 4832 return (EBUSY); 4833 4834 4835 /* Initialize a task and process the accepted element */ 4836 PR1("Processing dring element %u", idx); 4837 vd->dring_task[idx].type = type; 4838 4839 /* duplicate msg buf for cookies etc. */ 4840 bcopy(msg, vd->dring_task[idx].msg, msglen); 4841 4842 vd->dring_task[idx].msglen = msglen; 4843 return (vd_process_task(&vd->dring_task[idx])); 4844 } 4845 4846 static int 4847 vd_process_element_range(vd_t *vd, int start, int end, 4848 vio_msg_t *msg, size_t msglen) 4849 { 4850 int i, n, nelem, status = 0; 4851 boolean_t inprogress = B_FALSE; 4852 vd_task_type_t type; 4853 4854 4855 ASSERT(start >= 0); 4856 ASSERT(end >= 0); 4857 4858 /* 4859 * Arrange to acknowledge the client's message, unless an error 4860 * processing one of the dring elements results in setting 4861 * VIO_SUBTYPE_NACK 4862 */ 4863 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4864 4865 /* 4866 * Process the dring elements in the range 4867 */ 4868 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 4869 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 4870 ((vio_dring_msg_t *)msg)->end_idx = i; 4871 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 4872 status = vd_process_element(vd, type, i, msg, msglen); 4873 if (status == EINPROGRESS) 4874 inprogress = B_TRUE; 4875 else if (status != 0) 4876 break; 4877 } 4878 4879 /* 4880 * If some, but not all, operations of a multi-element range are in 4881 * progress, wait for other operations to complete before returning 4882 * (which will result in "ack" or "nack" of the message). Note that 4883 * all outstanding operations will need to complete, not just the ones 4884 * corresponding to the current range of dring elements; howevever, as 4885 * this situation is an error case, performance is less critical. 4886 */ 4887 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) { 4888 if (vd->ioq != NULL) 4889 ddi_taskq_wait(vd->ioq); 4890 ddi_taskq_wait(vd->completionq); 4891 } 4892 4893 return (status); 4894 } 4895 4896 static int 4897 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4898 { 4899 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 4900 4901 4902 ASSERT(msglen >= sizeof (msg->tag)); 4903 4904 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4905 VIO_DRING_DATA)) { 4906 PR1("Message is not a dring-data message"); 4907 return (ENOMSG); 4908 } 4909 4910 if (msglen != sizeof (*dring_msg)) { 4911 PR0("Expected %lu-byte dring message; received %lu bytes", 4912 sizeof (*dring_msg), msglen); 4913 return (EBADMSG); 4914 } 4915 4916 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 4917 return (EBADMSG); 4918 4919 if (dring_msg->dring_ident != vd->dring_ident) { 4920 PR0("Expected dring ident %lu; received ident %lu", 4921 vd->dring_ident, dring_msg->dring_ident); 4922 return (EBADMSG); 4923 } 4924 4925 if (dring_msg->start_idx >= vd->dring_len) { 4926 PR0("\"start_idx\" = %u; must be less than %u", 4927 dring_msg->start_idx, vd->dring_len); 4928 return (EBADMSG); 4929 } 4930 4931 if ((dring_msg->end_idx < 0) || 4932 (dring_msg->end_idx >= vd->dring_len)) { 4933 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 4934 dring_msg->end_idx, vd->dring_len); 4935 return (EBADMSG); 4936 } 4937 4938 /* Valid message; process range of updated dring elements */ 4939 PR1("Processing descriptor range, start = %u, end = %u", 4940 dring_msg->start_idx, dring_msg->end_idx); 4941 return (vd_process_element_range(vd, dring_msg->start_idx, 4942 dring_msg->end_idx, msg, msglen)); 4943 } 4944 4945 static int 4946 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 4947 { 4948 int retry, status; 4949 size_t size = *nbytes; 4950 4951 4952 for (retry = 0, status = ETIMEDOUT; 4953 retry < vds_ldc_retries && status == ETIMEDOUT; 4954 retry++) { 4955 PR1("ldc_read() attempt %d", (retry + 1)); 4956 *nbytes = size; 4957 status = ldc_read(ldc_handle, msg, nbytes); 4958 } 4959 4960 if (status) { 4961 PR0("ldc_read() returned errno %d", status); 4962 if (status != ECONNRESET) 4963 return (ENOMSG); 4964 return (status); 4965 } else if (*nbytes == 0) { 4966 PR1("ldc_read() returned 0 and no message read"); 4967 return (ENOMSG); 4968 } 4969 4970 PR1("RCVD %lu-byte message", *nbytes); 4971 return (0); 4972 } 4973 4974 static int 4975 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4976 { 4977 int status; 4978 4979 4980 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 4981 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 4982 #ifdef DEBUG 4983 vd_decode_tag(msg); 4984 #endif 4985 4986 /* 4987 * Validate session ID up front, since it applies to all messages 4988 * once set 4989 */ 4990 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 4991 PR0("Expected SID %u, received %u", vd->sid, 4992 msg->tag.vio_sid); 4993 return (EBADMSG); 4994 } 4995 4996 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 4997 4998 /* 4999 * Process the received message based on connection state 5000 */ 5001 switch (vd->state) { 5002 case VD_STATE_INIT: /* expect version message */ 5003 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 5004 return (status); 5005 5006 /* Version negotiated, move to that state */ 5007 vd->state = VD_STATE_VER; 5008 return (0); 5009 5010 case VD_STATE_VER: /* expect attribute message */ 5011 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 5012 return (status); 5013 5014 /* Attributes exchanged, move to that state */ 5015 vd->state = VD_STATE_ATTR; 5016 return (0); 5017 5018 case VD_STATE_ATTR: 5019 switch (vd->xfer_mode) { 5020 case VIO_DESC_MODE: /* expect RDX message */ 5021 if ((status = process_rdx_msg(msg, msglen)) != 0) 5022 return (status); 5023 5024 /* Ready to receive in-band descriptors */ 5025 vd->state = VD_STATE_DATA; 5026 return (0); 5027 5028 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 5029 if ((status = 5030 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 5031 return (status); 5032 5033 /* One dring negotiated, move to that state */ 5034 vd->state = VD_STATE_DRING; 5035 return (0); 5036 5037 default: 5038 ASSERT("Unsupported transfer mode"); 5039 PR0("Unsupported transfer mode"); 5040 return (ENOTSUP); 5041 } 5042 5043 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 5044 if ((status = process_rdx_msg(msg, msglen)) == 0) { 5045 /* Ready to receive data */ 5046 vd->state = VD_STATE_DATA; 5047 return (0); 5048 } else if (status != ENOMSG) { 5049 return (status); 5050 } 5051 5052 5053 /* 5054 * If another register-dring message is received, stay in 5055 * dring state in case the client sends RDX; although the 5056 * protocol allows multiple drings, this server does not 5057 * support using more than one 5058 */ 5059 if ((status = 5060 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 5061 return (status); 5062 5063 /* 5064 * Acknowledge an unregister-dring message, but reset the 5065 * connection anyway: Although the protocol allows 5066 * unregistering drings, this server cannot serve a vdisk 5067 * without its only dring 5068 */ 5069 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5070 return ((status == 0) ? ENOTSUP : status); 5071 5072 case VD_STATE_DATA: 5073 switch (vd->xfer_mode) { 5074 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 5075 return (vd_process_desc_msg(vd, msg, msglen)); 5076 5077 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 5078 /* 5079 * Typically expect dring-data messages, so handle 5080 * them first 5081 */ 5082 if ((status = vd_process_dring_msg(vd, msg, 5083 msglen)) != ENOMSG) 5084 return (status); 5085 5086 /* 5087 * Acknowledge an unregister-dring message, but reset 5088 * the connection anyway: Although the protocol 5089 * allows unregistering drings, this server cannot 5090 * serve a vdisk without its only dring 5091 */ 5092 status = vd_process_dring_unreg_msg(vd, msg, msglen); 5093 return ((status == 0) ? ENOTSUP : status); 5094 5095 default: 5096 ASSERT("Unsupported transfer mode"); 5097 PR0("Unsupported transfer mode"); 5098 return (ENOTSUP); 5099 } 5100 5101 default: 5102 ASSERT("Invalid client connection state"); 5103 PR0("Invalid client connection state"); 5104 return (ENOTSUP); 5105 } 5106 } 5107 5108 static int 5109 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 5110 { 5111 int status; 5112 boolean_t reset_ldc = B_FALSE; 5113 vd_task_t task; 5114 5115 /* 5116 * Check that the message is at least big enough for a "tag", so that 5117 * message processing can proceed based on tag-specified message type 5118 */ 5119 if (msglen < sizeof (vio_msg_tag_t)) { 5120 PR0("Received short (%lu-byte) message", msglen); 5121 /* Can't "nack" short message, so drop the big hammer */ 5122 PR0("initiating full reset"); 5123 vd_need_reset(vd, B_TRUE); 5124 return (EBADMSG); 5125 } 5126 5127 /* 5128 * Process the message 5129 */ 5130 switch (status = vd_do_process_msg(vd, msg, msglen)) { 5131 case 0: 5132 /* "ack" valid, successfully-processed messages */ 5133 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 5134 break; 5135 5136 case EINPROGRESS: 5137 /* The completion handler will "ack" or "nack" the message */ 5138 return (EINPROGRESS); 5139 case ENOMSG: 5140 PR0("Received unexpected message"); 5141 _NOTE(FALLTHROUGH); 5142 case EBADMSG: 5143 case ENOTSUP: 5144 /* "transport" error will cause NACK of invalid messages */ 5145 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5146 break; 5147 5148 default: 5149 /* "transport" error will cause NACK of invalid messages */ 5150 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 5151 /* An LDC error probably occurred, so try resetting it */ 5152 reset_ldc = B_TRUE; 5153 break; 5154 } 5155 5156 PR1("\tResulting in state %d (%s)", vd->state, 5157 vd_decode_state(vd->state)); 5158 5159 /* populate the task so we can dispatch it on the taskq */ 5160 task.vd = vd; 5161 task.msg = msg; 5162 task.msglen = msglen; 5163 5164 /* 5165 * Queue a task to send the notification that the operation completed. 5166 * We need to ensure that requests are responded to in the correct 5167 * order and since the taskq is processed serially this ordering 5168 * is maintained. 5169 */ 5170 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 5171 &task, DDI_SLEEP); 5172 5173 /* 5174 * To ensure handshake negotiations do not happen out of order, such 5175 * requests that come through this path should not be done in parallel 5176 * so we need to wait here until the response is sent to the client. 5177 */ 5178 ddi_taskq_wait(vd->completionq); 5179 5180 /* Arrange to reset the connection for nack'ed or failed messages */ 5181 if ((status != 0) || reset_ldc) { 5182 PR0("initiating %s reset", 5183 (reset_ldc) ? "full" : "soft"); 5184 vd_need_reset(vd, reset_ldc); 5185 } 5186 5187 return (status); 5188 } 5189 5190 static boolean_t 5191 vd_enabled(vd_t *vd) 5192 { 5193 boolean_t enabled; 5194 5195 mutex_enter(&vd->lock); 5196 enabled = vd->enabled; 5197 mutex_exit(&vd->lock); 5198 return (enabled); 5199 } 5200 5201 static void 5202 vd_recv_msg(void *arg) 5203 { 5204 vd_t *vd = (vd_t *)arg; 5205 int rv = 0, status = 0; 5206 5207 ASSERT(vd != NULL); 5208 5209 PR2("New task to receive incoming message(s)"); 5210 5211 5212 while (vd_enabled(vd) && status == 0) { 5213 size_t msglen, msgsize; 5214 ldc_status_t lstatus; 5215 5216 /* 5217 * Receive and process a message 5218 */ 5219 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 5220 5221 /* 5222 * check if channel is UP - else break out of loop 5223 */ 5224 status = ldc_status(vd->ldc_handle, &lstatus); 5225 if (lstatus != LDC_UP) { 5226 PR0("channel not up (status=%d), exiting recv loop\n", 5227 lstatus); 5228 break; 5229 } 5230 5231 ASSERT(vd->max_msglen != 0); 5232 5233 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 5234 msglen = msgsize; /* actual len after recv_msg() */ 5235 5236 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 5237 switch (status) { 5238 case 0: 5239 rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen); 5240 /* check if max_msglen changed */ 5241 if (msgsize != vd->max_msglen) { 5242 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 5243 msgsize, vd->max_msglen); 5244 kmem_free(vd->vio_msgp, msgsize); 5245 vd->vio_msgp = 5246 kmem_alloc(vd->max_msglen, KM_SLEEP); 5247 } 5248 if (rv == EINPROGRESS) 5249 continue; 5250 break; 5251 5252 case ENOMSG: 5253 break; 5254 5255 case ECONNRESET: 5256 PR0("initiating soft reset (ECONNRESET)\n"); 5257 vd_need_reset(vd, B_FALSE); 5258 status = 0; 5259 break; 5260 5261 default: 5262 /* Probably an LDC failure; arrange to reset it */ 5263 PR0("initiating full reset (status=0x%x)", status); 5264 vd_need_reset(vd, B_TRUE); 5265 break; 5266 } 5267 } 5268 5269 PR2("Task finished"); 5270 } 5271 5272 static uint_t 5273 vd_handle_ldc_events(uint64_t event, caddr_t arg) 5274 { 5275 vd_t *vd = (vd_t *)(void *)arg; 5276 int status; 5277 5278 ASSERT(vd != NULL); 5279 5280 if (!vd_enabled(vd)) 5281 return (LDC_SUCCESS); 5282 5283 if (event & LDC_EVT_DOWN) { 5284 PR0("LDC_EVT_DOWN: LDC channel went down"); 5285 5286 vd_need_reset(vd, B_TRUE); 5287 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5288 DDI_SLEEP); 5289 if (status == DDI_FAILURE) { 5290 PR0("cannot schedule task to recv msg\n"); 5291 vd_need_reset(vd, B_TRUE); 5292 } 5293 } 5294 5295 if (event & LDC_EVT_RESET) { 5296 PR0("LDC_EVT_RESET: LDC channel was reset"); 5297 5298 if (vd->state != VD_STATE_INIT) { 5299 PR0("scheduling full reset"); 5300 vd_need_reset(vd, B_FALSE); 5301 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5302 vd, DDI_SLEEP); 5303 if (status == DDI_FAILURE) { 5304 PR0("cannot schedule task to recv msg\n"); 5305 vd_need_reset(vd, B_TRUE); 5306 } 5307 5308 } else { 5309 PR0("channel already reset, ignoring...\n"); 5310 PR0("doing ldc up...\n"); 5311 (void) ldc_up(vd->ldc_handle); 5312 } 5313 5314 return (LDC_SUCCESS); 5315 } 5316 5317 if (event & LDC_EVT_UP) { 5318 PR0("EVT_UP: LDC is up\nResetting client connection state"); 5319 PR0("initiating soft reset"); 5320 vd_need_reset(vd, B_FALSE); 5321 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 5322 vd, DDI_SLEEP); 5323 if (status == DDI_FAILURE) { 5324 PR0("cannot schedule task to recv msg\n"); 5325 vd_need_reset(vd, B_TRUE); 5326 return (LDC_SUCCESS); 5327 } 5328 } 5329 5330 if (event & LDC_EVT_READ) { 5331 int status; 5332 5333 PR1("New data available"); 5334 /* Queue a task to receive the new data */ 5335 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 5336 DDI_SLEEP); 5337 5338 if (status == DDI_FAILURE) { 5339 PR0("cannot schedule task to recv msg\n"); 5340 vd_need_reset(vd, B_TRUE); 5341 } 5342 } 5343 5344 return (LDC_SUCCESS); 5345 } 5346 5347 static uint_t 5348 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 5349 { 5350 _NOTE(ARGUNUSED(key, val)) 5351 (*((uint_t *)arg))++; 5352 return (MH_WALK_TERMINATE); 5353 } 5354 5355 5356 static int 5357 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 5358 { 5359 uint_t vd_present = 0; 5360 minor_t instance; 5361 vds_t *vds; 5362 5363 5364 switch (cmd) { 5365 case DDI_DETACH: 5366 /* the real work happens below */ 5367 break; 5368 case DDI_SUSPEND: 5369 PR0("No action required for DDI_SUSPEND"); 5370 return (DDI_SUCCESS); 5371 default: 5372 PR0("Unrecognized \"cmd\""); 5373 return (DDI_FAILURE); 5374 } 5375 5376 ASSERT(cmd == DDI_DETACH); 5377 instance = ddi_get_instance(dip); 5378 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 5379 PR0("Could not get state for instance %u", instance); 5380 ddi_soft_state_free(vds_state, instance); 5381 return (DDI_FAILURE); 5382 } 5383 5384 /* Do no detach when serving any vdisks */ 5385 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 5386 if (vd_present) { 5387 PR0("Not detaching because serving vdisks"); 5388 return (DDI_FAILURE); 5389 } 5390 5391 PR0("Detaching"); 5392 if (vds->initialized & VDS_MDEG) { 5393 (void) mdeg_unregister(vds->mdeg); 5394 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 5395 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 5396 vds->ispecp = NULL; 5397 vds->mdeg = NULL; 5398 } 5399 5400 vds_driver_types_free(vds); 5401 5402 if (vds->initialized & VDS_LDI) 5403 (void) ldi_ident_release(vds->ldi_ident); 5404 mod_hash_destroy_hash(vds->vd_table); 5405 ddi_soft_state_free(vds_state, instance); 5406 return (DDI_SUCCESS); 5407 } 5408 5409 /* 5410 * Description: 5411 * This function checks to see if the disk image being used as a 5412 * virtual disk is an ISO image. An ISO image is a special case 5413 * which can be booted/installed from like a CD/DVD. 5414 * 5415 * Parameters: 5416 * vd - disk on which the operation is performed. 5417 * 5418 * Return Code: 5419 * B_TRUE - The disk image is an ISO 9660 compliant image 5420 * B_FALSE - just a regular disk image 5421 */ 5422 static boolean_t 5423 vd_dskimg_is_iso_image(vd_t *vd) 5424 { 5425 char iso_buf[ISO_SECTOR_SIZE]; 5426 int i, rv; 5427 uint_t sec; 5428 5429 ASSERT(VD_DSKIMG(vd)); 5430 5431 /* 5432 * If we have already discovered and saved this info we can 5433 * short-circuit the check and avoid reading the disk image. 5434 */ 5435 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 5436 return (B_TRUE); 5437 5438 /* 5439 * We wish to read the sector that should contain the 2nd ISO volume 5440 * descriptor. The second field in this descriptor is called the 5441 * Standard Identifier and is set to CD001 for a CD-ROM compliant 5442 * to the ISO 9660 standard. 5443 */ 5444 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size; 5445 rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 5446 sec, ISO_SECTOR_SIZE); 5447 5448 if (rv < 0) 5449 return (B_FALSE); 5450 5451 for (i = 0; i < ISO_ID_STRLEN; i++) { 5452 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 5453 return (B_FALSE); 5454 } 5455 5456 return (B_TRUE); 5457 } 5458 5459 /* 5460 * Description: 5461 * This function checks to see if the virtual device is an ATAPI 5462 * device. ATAPI devices use Group 1 Read/Write commands, so 5463 * any USCSI calls vds makes need to take this into account. 5464 * 5465 * Parameters: 5466 * vd - disk on which the operation is performed. 5467 * 5468 * Return Code: 5469 * B_TRUE - The virtual disk is backed by an ATAPI device 5470 * B_FALSE - not an ATAPI device (presumably SCSI) 5471 */ 5472 static boolean_t 5473 vd_is_atapi_device(vd_t *vd) 5474 { 5475 boolean_t is_atapi = B_FALSE; 5476 char *variantp; 5477 int rv; 5478 5479 ASSERT(vd->ldi_handle[0] != NULL); 5480 ASSERT(!vd->file); 5481 5482 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 5483 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 5484 if (rv == DDI_PROP_SUCCESS) { 5485 PR0("'variant' property exists for %s", vd->device_path); 5486 if (strcmp(variantp, "atapi") == 0) 5487 is_atapi = B_TRUE; 5488 ddi_prop_free(variantp); 5489 } 5490 5491 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 5492 if (rv) { 5493 PR0("'atapi' property exists for %s", vd->device_path); 5494 is_atapi = B_TRUE; 5495 } 5496 5497 return (is_atapi); 5498 } 5499 5500 static int 5501 vd_setup_full_disk(vd_t *vd) 5502 { 5503 int status; 5504 major_t major = getmajor(vd->dev[0]); 5505 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 5506 5507 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 5508 5509 vd->vdisk_block_size = DEV_BSIZE; 5510 5511 /* set the disk size, block size and the media type of the disk */ 5512 status = vd_backend_check_size(vd); 5513 5514 if (status != 0) { 5515 if (!vd->scsi) { 5516 /* unexpected failure */ 5517 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 5518 status); 5519 return (status); 5520 } 5521 5522 /* 5523 * The function can fail for SCSI disks which are present but 5524 * reserved by another system. In that case, we don't know the 5525 * size of the disk and the block size. 5526 */ 5527 vd->vdisk_size = VD_SIZE_UNKNOWN; 5528 vd->block_size = 0; 5529 vd->vdisk_media = VD_MEDIA_FIXED; 5530 } 5531 5532 /* Move dev number and LDI handle to entire-disk-slice array elements */ 5533 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 5534 vd->dev[0] = 0; 5535 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 5536 vd->ldi_handle[0] = NULL; 5537 5538 /* Initialize device numbers for remaining slices and open them */ 5539 for (int slice = 0; slice < vd->nslices; slice++) { 5540 /* 5541 * Skip the entire-disk slice, as it's already open and its 5542 * device known 5543 */ 5544 if (slice == VD_ENTIRE_DISK_SLICE) 5545 continue; 5546 ASSERT(vd->dev[slice] == 0); 5547 ASSERT(vd->ldi_handle[slice] == NULL); 5548 5549 /* 5550 * Construct the device number for the current slice 5551 */ 5552 vd->dev[slice] = makedevice(major, (minor + slice)); 5553 5554 /* 5555 * Open all slices of the disk to serve them to the client. 5556 * Slices are opened exclusively to prevent other threads or 5557 * processes in the service domain from performing I/O to 5558 * slices being accessed by a client. Failure to open a slice 5559 * results in vds not serving this disk, as the client could 5560 * attempt (and should be able) to access any slice immediately. 5561 * Any slices successfully opened before a failure will get 5562 * closed by vds_destroy_vd() as a result of the error returned 5563 * by this function. 5564 * 5565 * We need to do the open with FNDELAY so that opening an empty 5566 * slice does not fail. 5567 */ 5568 PR0("Opening device major %u, minor %u = slice %u", 5569 major, minor, slice); 5570 5571 /* 5572 * Try to open the device. This can fail for example if we are 5573 * opening an empty slice. So in case of a failure, we try the 5574 * open again but this time with the FNDELAY flag. 5575 */ 5576 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5577 vd->open_flags, kcred, &vd->ldi_handle[slice], 5578 vd->vds->ldi_ident); 5579 5580 if (status != 0) { 5581 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5582 vd->open_flags | FNDELAY, kcred, 5583 &vd->ldi_handle[slice], vd->vds->ldi_ident); 5584 } 5585 5586 if (status != 0) { 5587 PRN("ldi_open_by_dev() returned errno %d " 5588 "for slice %u", status, slice); 5589 /* vds_destroy_vd() will close any open slices */ 5590 vd->ldi_handle[slice] = NULL; 5591 return (status); 5592 } 5593 } 5594 5595 return (0); 5596 } 5597 5598 /* 5599 * When a slice or a volume is exported as a single-slice disk, we want 5600 * the disk backend (i.e. the slice or volume) to be entirely mapped as 5601 * a slice without the addition of any metadata. 5602 * 5603 * So when exporting the disk as a VTOC disk, we fake a disk with the following 5604 * layout: 5605 * flabel +--- flabel_limit 5606 * <-> V 5607 * 0 1 C D E 5608 * +-+---+--------------------------+--+ 5609 * virtual disk: |L|XXX| slice 0 |AA| 5610 * +-+---+--------------------------+--+ 5611 * ^ : : 5612 * | : : 5613 * VTOC LABEL--+ : : 5614 * +--------------------------+ 5615 * disk backend: | slice/volume/file | 5616 * +--------------------------+ 5617 * 0 N 5618 * 5619 * N is the number of blocks in the slice/volume/file. 5620 * 5621 * We simulate a disk with N+M blocks, where M is the number of blocks 5622 * simluated at the beginning and at the end of the disk (blocks 0-C 5623 * and D-E). 5624 * 5625 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C 5626 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2 5627 * alternate cylinders at the end of the disk (blocks D-E). In summary we have: 5628 * 5629 * - block 0 (L) returns a fake VTOC label 5630 * - blocks 1 to C-1 (X) are unused and return 0 5631 * - blocks C to D-1 are mapped to the exported slice or volume 5632 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders) 5633 * 5634 * Note: because we define a fake disk geometry, it is possible that the length 5635 * of the backend is not a multiple of the size of cylinder, in that case the 5636 * very end of the backend will not map to any block of the virtual disk. 5637 */ 5638 static int 5639 vd_setup_partition_vtoc(vd_t *vd) 5640 { 5641 char *device_path = vd->device_path; 5642 char unit; 5643 size_t size, csize; 5644 5645 /* Initialize dk_geom structure for single-slice device */ 5646 if (vd->dk_geom.dkg_nsect == 0) { 5647 PRN("%s geometry claims 0 sectors per track", device_path); 5648 return (EIO); 5649 } 5650 if (vd->dk_geom.dkg_nhead == 0) { 5651 PRN("%s geometry claims 0 heads", device_path); 5652 return (EIO); 5653 } 5654 5655 /* size of a cylinder in block */ 5656 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 5657 5658 /* 5659 * Add extra cylinders: we emulate the first cylinder (which contains 5660 * the disk label). 5661 */ 5662 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1; 5663 5664 /* we emulate 2 alternate cylinders */ 5665 vd->dk_geom.dkg_acyl = 2; 5666 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 5667 5668 5669 /* Initialize vtoc structure for single-slice device */ 5670 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 5671 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 5672 vd->vtoc.v_part[0].p_flag = 0; 5673 /* 5674 * Partition 0 starts on cylinder 1 and its size has to be 5675 * a multiple of a number of cylinder. 5676 */ 5677 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */ 5678 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize; 5679 5680 if (vd_slice_single_slice) { 5681 vd->vtoc.v_nparts = 1; 5682 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 5683 MIN(sizeof (VD_ASCIILABEL), 5684 sizeof (vd->vtoc.v_asciilabel))); 5685 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 5686 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 5687 } else { 5688 /* adjust the number of slices */ 5689 vd->nslices = V_NUMPAR; 5690 vd->vtoc.v_nparts = V_NUMPAR; 5691 5692 /* define slice 2 representing the entire disk */ 5693 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 5694 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0; 5695 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0; 5696 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size = 5697 vd->dk_geom.dkg_ncyl * csize; 5698 5699 vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size, 5700 &size, &unit); 5701 5702 /* 5703 * Set some attributes of the geometry to what format(1m) uses 5704 * so that writing a default label using format(1m) does not 5705 * produce any error. 5706 */ 5707 vd->dk_geom.dkg_bcyl = 0; 5708 vd->dk_geom.dkg_intrlv = 1; 5709 vd->dk_geom.dkg_write_reinstruct = 0; 5710 vd->dk_geom.dkg_read_reinstruct = 0; 5711 5712 /* 5713 * We must have a correct label name otherwise format(1m) will 5714 * not recognized the disk as labeled. 5715 */ 5716 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII, 5717 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d", 5718 size, unit, 5719 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl, 5720 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect); 5721 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume)); 5722 5723 /* create a fake label from the vtoc and geometry */ 5724 vd->flabel_limit = (uint_t)csize; 5725 vd->flabel_size = VD_LABEL_VTOC_SIZE; 5726 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5727 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom, 5728 VD_LABEL_VTOC(vd)); 5729 } 5730 5731 /* adjust the vdisk_size, we emulate 3 cylinders */ 5732 vd->vdisk_size += csize * 3; 5733 5734 return (0); 5735 } 5736 5737 /* 5738 * When a slice, volume or file is exported as a single-slice disk, we want 5739 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 5740 * as a slice without the addition of any metadata. 5741 * 5742 * So when exporting the disk as an EFI disk, we fake a disk with the following 5743 * layout: 5744 * 5745 * flabel +--- flabel_limit 5746 * <------> v 5747 * 0 1 2 L 34 34+N P 5748 * +-+-+--+-------+--------------------------+-------+ 5749 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR| 5750 * +-+-+--+-------+--------------------------+-------+ 5751 * ^ ^ : : 5752 * | | : : 5753 * GPT-+ +-GPE : : 5754 * +--------------------------+ 5755 * disk backend: | slice/volume/file | 5756 * +--------------------------+ 5757 * 0 N 5758 * 5759 * N is the number of blocks in the slice/volume/file. 5760 * 5761 * We simulate a disk with N+M blocks, where M is the number of blocks 5762 * simluated at the beginning and at the end of the disk (blocks 0-34 5763 * and 34+N-P). 5764 * 5765 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34 5766 * to 34+N defines slice 0 and are mapped to the exported backend, and we 5767 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI 5768 * reserved partition. 5769 * 5770 * - block 0 (X) is unused and return 0 5771 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 5772 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI) 5773 * - blocks L to 33 (X) are unused and return 0 5774 * - blocks 34 to 34+N are mapped to the exported slice, volume or file 5775 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it 5776 * returns 0 5777 * 5778 * Note: if the backend size is not a multiple of the vdisk block size 5779 * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to 5780 * any block of the virtual disk. 5781 */ 5782 static int 5783 vd_setup_partition_efi(vd_t *vd) 5784 { 5785 efi_gpt_t *gpt; 5786 efi_gpe_t *gpe; 5787 struct uuid uuid = EFI_USR; 5788 struct uuid efi_reserved = EFI_RESERVED; 5789 uint32_t crc; 5790 uint64_t s0_start, s0_end; 5791 5792 vd->flabel_limit = 34; 5793 vd->flabel_size = VD_LABEL_EFI_SIZE; 5794 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5795 gpt = VD_LABEL_EFI_GPT(vd); 5796 gpe = VD_LABEL_EFI_GPE(vd); 5797 5798 /* adjust the vdisk_size, we emulate the first 34 blocks */ 5799 vd->vdisk_size += 34; 5800 s0_start = 34; 5801 s0_end = vd->vdisk_size - 1; 5802 5803 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 5804 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 5805 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 5806 gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL); 5807 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 5808 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 5809 5810 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid); 5811 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start); 5812 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end); 5813 5814 if (vd_slice_single_slice) { 5815 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 5816 } else { 5817 /* adjust the number of slices */ 5818 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART); 5819 vd->nslices = V_NUMPAR; 5820 5821 /* define a fake reserved partition */ 5822 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID, 5823 efi_reserved); 5824 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA = 5825 LE_64(s0_end + 1); 5826 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA = 5827 LE_64(s0_end + EFI_MIN_RESV_SIZE); 5828 5829 /* adjust the vdisk_size to include the reserved slice */ 5830 vd->vdisk_size += EFI_MIN_RESV_SIZE; 5831 } 5832 5833 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 5834 5835 /* adjust the vdisk size for the backup GPT and GPE */ 5836 vd->vdisk_size += 33; 5837 5838 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table); 5839 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 5840 5841 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 5842 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 5843 5844 return (0); 5845 } 5846 5847 /* 5848 * Setup for a virtual disk whose backend is a file (exported as a single slice 5849 * or as a full disk). In that case, the backend is accessed using the vnode 5850 * interface. 5851 */ 5852 static int 5853 vd_setup_backend_vnode(vd_t *vd) 5854 { 5855 int rval, status; 5856 vattr_t vattr; 5857 dev_t dev; 5858 char *file_path = vd->device_path; 5859 ldi_handle_t lhandle; 5860 struct dk_cinfo dk_cinfo; 5861 5862 ASSERT(!vd->volume); 5863 5864 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 5865 0, &vd->file_vnode, 0, 0)) != 0) { 5866 PRN("vn_open(%s) = errno %d", file_path, status); 5867 return (status); 5868 } 5869 5870 /* 5871 * We set vd->file now so that vds_destroy_vd will take care of 5872 * closing the file and releasing the vnode in case of an error. 5873 */ 5874 vd->file = B_TRUE; 5875 5876 vattr.va_mask = AT_SIZE; 5877 if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL)) 5878 != 0) { 5879 PRN("VOP_GETATTR(%s) = errno %d", file_path, status); 5880 return (EIO); 5881 } 5882 5883 vd->dskimg_size = vattr.va_size; 5884 5885 if (vd->file_vnode->v_flag & VNOMAP) { 5886 PRN("File %s cannot be mapped", file_path); 5887 return (EIO); 5888 } 5889 5890 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 5891 5892 /* 5893 * Get max_xfer_sz from the device where the file is. 5894 */ 5895 dev = vd->file_vnode->v_vfsp->vfs_dev; 5896 PR0("underlying device of %s = (%d, %d)\n", file_path, 5897 getmajor(dev), getminor(dev)); 5898 5899 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 5900 vd->vds->ldi_ident); 5901 5902 if (status != 0) { 5903 PR0("ldi_open() returned errno %d for underlying device", 5904 status); 5905 } else { 5906 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 5907 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5908 &rval)) != 0) { 5909 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for " 5910 "underlying device", status); 5911 } else { 5912 /* 5913 * Store the device's max transfer size for 5914 * return to the client 5915 */ 5916 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5917 } 5918 5919 PR0("close the underlying device"); 5920 (void) ldi_close(lhandle, FREAD, kcred); 5921 } 5922 5923 PR0("using file %s on device (%d, %d), max_xfer = %u blks", 5924 file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz); 5925 5926 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) 5927 status = vd_setup_slice_image(vd); 5928 else 5929 status = vd_setup_disk_image(vd); 5930 5931 return (status); 5932 } 5933 5934 static int 5935 vd_setup_slice_image(vd_t *vd) 5936 { 5937 struct dk_label label; 5938 int status; 5939 5940 /* sector size = block size = DEV_BSIZE */ 5941 vd->block_size = DEV_BSIZE; 5942 vd->vdisk_block_size = DEV_BSIZE; 5943 vd->vdisk_size = vd->dskimg_size / DEV_BSIZE; 5944 vd->vdisk_media = VD_MEDIA_FIXED; 5945 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)? 5946 vd_file_slice_label : vd_slice_label; 5947 5948 if (vd->vdisk_label == VD_DISK_LABEL_EFI || 5949 vd->dskimg_size >= 2 * ONE_TERABYTE) { 5950 status = vd_setup_partition_efi(vd); 5951 } else { 5952 /* 5953 * We build a default label to get a geometry for 5954 * the vdisk. Then the partition setup function will 5955 * adjust the vtoc so that it defines a single-slice 5956 * disk. 5957 */ 5958 vd_build_default_label(vd->dskimg_size, &label); 5959 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5960 status = vd_setup_partition_vtoc(vd); 5961 } 5962 5963 return (status); 5964 } 5965 5966 static int 5967 vd_setup_disk_image(vd_t *vd) 5968 { 5969 int status; 5970 char *backend_path = vd->device_path; 5971 5972 /* size should be at least sizeof(dk_label) */ 5973 if (vd->dskimg_size < sizeof (struct dk_label)) { 5974 PRN("Size of file has to be at least %ld bytes", 5975 sizeof (struct dk_label)); 5976 return (EIO); 5977 } 5978 5979 /* sector size = block size = DEV_BSIZE */ 5980 vd->block_size = DEV_BSIZE; 5981 vd->vdisk_block_size = DEV_BSIZE; 5982 vd->vdisk_size = vd->dskimg_size / DEV_BSIZE; 5983 5984 /* 5985 * Find and validate the geometry of a disk image. 5986 */ 5987 status = vd_dskimg_validate_geometry(vd); 5988 if (status != 0 && status != EINVAL && status != ENOTSUP) { 5989 PRN("Failed to read label from %s", backend_path); 5990 return (EIO); 5991 } 5992 5993 if (vd_dskimg_is_iso_image(vd)) { 5994 /* 5995 * Indicate whether to call this a CD or DVD from the size 5996 * of the ISO image (images for both drive types are stored 5997 * in the ISO-9600 format). CDs can store up to just under 1Gb 5998 */ 5999 if ((vd->vdisk_size * vd->vdisk_block_size) > ONE_GIGABYTE) 6000 vd->vdisk_media = VD_MEDIA_DVD; 6001 else 6002 vd->vdisk_media = VD_MEDIA_CD; 6003 } else { 6004 vd->vdisk_media = VD_MEDIA_FIXED; 6005 } 6006 6007 /* Setup devid for the disk image */ 6008 6009 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6010 6011 status = vd_dskimg_read_devid(vd, &vd->dskimg_devid); 6012 6013 if (status == 0) { 6014 /* a valid devid was found */ 6015 return (0); 6016 } 6017 6018 if (status != EINVAL) { 6019 /* 6020 * There was an error while trying to read the devid. 6021 * So this disk image may have a devid but we are 6022 * unable to read it. 6023 */ 6024 PR0("can not read devid for %s", backend_path); 6025 vd->dskimg_devid = NULL; 6026 return (0); 6027 } 6028 } 6029 6030 /* 6031 * No valid device id was found so we create one. Note that a failure 6032 * to create a device id is not fatal and does not prevent the disk 6033 * image from being attached. 6034 */ 6035 PR1("creating devid for %s", backend_path); 6036 6037 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 6038 &vd->dskimg_devid) != DDI_SUCCESS) { 6039 PR0("fail to create devid for %s", backend_path); 6040 vd->dskimg_devid = NULL; 6041 return (0); 6042 } 6043 6044 /* 6045 * Write devid to the disk image. The devid is stored into the disk 6046 * image if we have a valid label; otherwise the devid will be stored 6047 * when the user writes a valid label. 6048 */ 6049 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 6050 if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) { 6051 PR0("fail to write devid for %s", backend_path); 6052 ddi_devid_free(vd->dskimg_devid); 6053 vd->dskimg_devid = NULL; 6054 } 6055 } 6056 6057 return (0); 6058 } 6059 6060 6061 /* 6062 * Description: 6063 * Open a device using its device path (supplied by ldm(1m)) 6064 * 6065 * Parameters: 6066 * vd - pointer to structure containing the vDisk info 6067 * flags - open flags 6068 * 6069 * Return Value 6070 * 0 - success 6071 * != 0 - some other non-zero return value from ldi(9F) functions 6072 */ 6073 static int 6074 vd_open_using_ldi_by_name(vd_t *vd, int flags) 6075 { 6076 int status; 6077 char *device_path = vd->device_path; 6078 6079 /* Attempt to open device */ 6080 status = ldi_open_by_name(device_path, flags, kcred, 6081 &vd->ldi_handle[0], vd->vds->ldi_ident); 6082 6083 /* 6084 * The open can fail for example if we are opening an empty slice. 6085 * In case of a failure, we try the open again but this time with 6086 * the FNDELAY flag. 6087 */ 6088 if (status != 0) 6089 status = ldi_open_by_name(device_path, flags | FNDELAY, 6090 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 6091 6092 if (status != 0) { 6093 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 6094 vd->ldi_handle[0] = NULL; 6095 return (status); 6096 } 6097 6098 return (0); 6099 } 6100 6101 /* 6102 * Setup for a virtual disk which backend is a device (a physical disk, 6103 * slice or volume device) exported as a full disk or as a slice. In these 6104 * cases, the backend is accessed using the LDI interface. 6105 */ 6106 static int 6107 vd_setup_backend_ldi(vd_t *vd) 6108 { 6109 int rval, status; 6110 struct dk_cinfo dk_cinfo; 6111 char *device_path = vd->device_path; 6112 6113 /* device has been opened by vd_identify_dev() */ 6114 ASSERT(vd->ldi_handle[0] != NULL); 6115 ASSERT(vd->dev[0] != NULL); 6116 6117 vd->file = B_FALSE; 6118 6119 /* Verify backing device supports dk_cinfo */ 6120 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 6121 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 6122 &rval)) != 0) { 6123 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 6124 status, device_path); 6125 return (status); 6126 } 6127 if (dk_cinfo.dki_partition >= V_NUMPAR) { 6128 PRN("slice %u >= maximum slice %u for %s", 6129 dk_cinfo.dki_partition, V_NUMPAR, device_path); 6130 return (EIO); 6131 } 6132 6133 /* 6134 * The device has been opened read-only by vd_identify_dev(), re-open 6135 * it read-write if the write flag is set and we don't have an optical 6136 * device such as a CD-ROM, which, for now, we do not permit writes to 6137 * and thus should not export write operations to the client. 6138 * 6139 * Future: if/when we implement support for guest domains writing to 6140 * optical devices we will need to do further checking of the media type 6141 * to distinguish between read-only and writable discs. 6142 */ 6143 if (dk_cinfo.dki_ctype == DKC_CDROM) { 6144 6145 vd->open_flags &= ~FWRITE; 6146 6147 } else if (vd->open_flags & FWRITE) { 6148 6149 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 6150 kcred); 6151 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 6152 if (status != 0) { 6153 PR0("Failed to open (%s) = errno %d", 6154 device_path, status); 6155 return (status); 6156 } 6157 } 6158 6159 /* Store the device's max transfer size for return to the client */ 6160 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 6161 6162 /* 6163 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 6164 * that we can use the correct CDB group when sending USCSI commands. 6165 */ 6166 vd->is_atapi_dev = vd_is_atapi_device(vd); 6167 6168 /* 6169 * Export a full disk. 6170 * 6171 * The exported device can be either a volume, a disk or a CD/DVD 6172 * device. We export a device as a full disk if we have an entire 6173 * disk slice (slice 2) and if this slice is exported as a full disk 6174 * and not as a single slice disk. A CD or DVD device is exported 6175 * as a full disk (even if it isn't s2). A volume is exported as a 6176 * full disk as long as the "slice" option is not specified. 6177 */ 6178 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 6179 6180 if (vd->volume) { 6181 /* get size of backing device */ 6182 if (ldi_get_size(vd->ldi_handle[0], &vd->dskimg_size) != 6183 DDI_SUCCESS) { 6184 PRN("ldi_get_size() failed for %s", 6185 device_path); 6186 return (EIO); 6187 } 6188 6189 /* setup disk image */ 6190 return (vd_setup_disk_image(vd)); 6191 } 6192 6193 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE || 6194 dk_cinfo.dki_ctype == DKC_CDROM) { 6195 ASSERT(!vd->volume); 6196 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 6197 vd->scsi = B_TRUE; 6198 return (vd_setup_full_disk(vd)); 6199 } 6200 } 6201 6202 /* 6203 * Export a single slice disk. 6204 * 6205 * The exported device can be either a volume device or a disk slice. If 6206 * it is a disk slice different from slice 2 then it is always exported 6207 * as a single slice disk even if the "slice" option is not specified. 6208 * If it is disk slice 2 or a volume device then it is exported as a 6209 * single slice disk only if the "slice" option is specified. 6210 */ 6211 return (vd_setup_single_slice_disk(vd)); 6212 } 6213 6214 static int 6215 vd_setup_single_slice_disk(vd_t *vd) 6216 { 6217 int status, rval; 6218 struct dk_label label; 6219 char *device_path = vd->device_path; 6220 struct vtoc vtoc; 6221 6222 /* Get size of backing device */ 6223 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 6224 PRN("ldi_get_size() failed for %s", device_path); 6225 return (EIO); 6226 } 6227 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 6228 vd->block_size = DEV_BSIZE; 6229 vd->vdisk_block_size = DEV_BSIZE; 6230 vd->vdisk_media = VD_MEDIA_FIXED; 6231 6232 if (vd->volume) { 6233 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 6234 } 6235 6236 /* 6237 * We export the slice as a single slice disk even if the "slice" 6238 * option was not specified. 6239 */ 6240 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6241 vd->nslices = 1; 6242 6243 /* 6244 * When exporting a slice or a device as a single slice disk, we don't 6245 * care about any partitioning exposed by the backend. The goal is just 6246 * to export the backend as a flat storage. We provide a fake partition 6247 * table (either a VTOC or EFI), which presents only one slice, to 6248 * accommodate tools expecting a disk label. The selection of the label 6249 * type (VTOC or EFI) depends on the value of the vd_slice_label 6250 * variable. 6251 */ 6252 if (vd_slice_label == VD_DISK_LABEL_EFI || 6253 vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) { 6254 vd->vdisk_label = VD_DISK_LABEL_EFI; 6255 } else { 6256 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC, 6257 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL), 6258 kcred, &rval); 6259 6260 if (status == ENOTTY) { 6261 /* try with the non-extended vtoc ioctl */ 6262 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, 6263 (intptr_t)&vtoc, (vd->open_flags | FKIOCTL), 6264 kcred, &rval); 6265 vtoctoextvtoc(vtoc, vd->vtoc); 6266 } 6267 6268 if (status == 0) { 6269 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 6270 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), 6271 kcred, &rval); 6272 6273 if (status != 0) { 6274 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d " 6275 "for %s", status, device_path); 6276 return (status); 6277 } 6278 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6279 6280 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) { 6281 6282 vd->vdisk_label = VD_DISK_LABEL_VTOC; 6283 vd_build_default_label(vd->vdisk_size * DEV_BSIZE, 6284 &label); 6285 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 6286 6287 } else { 6288 vd->vdisk_label = VD_DISK_LABEL_EFI; 6289 } 6290 } 6291 6292 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6293 /* export with a fake VTOC label */ 6294 status = vd_setup_partition_vtoc(vd); 6295 6296 } else { 6297 /* export with a fake EFI label */ 6298 status = vd_setup_partition_efi(vd); 6299 } 6300 6301 return (status); 6302 } 6303 6304 static int 6305 vd_backend_check_size(vd_t *vd) 6306 { 6307 size_t backend_size, old_size, new_size; 6308 struct dk_minfo minfo; 6309 vattr_t vattr; 6310 int rval, rv; 6311 6312 if (vd->file) { 6313 6314 /* file (slice or full disk) */ 6315 vattr.va_mask = AT_SIZE; 6316 rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL); 6317 if (rv != 0) { 6318 PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv); 6319 return (rv); 6320 } 6321 backend_size = vattr.va_size; 6322 6323 } else if (vd->volume || vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6324 6325 /* physical slice or volume (slice or full disk) */ 6326 rv = ldi_get_size(vd->ldi_handle[0], &backend_size); 6327 if (rv != DDI_SUCCESS) { 6328 PR0("ldi_get_size() failed for %s", vd->device_path); 6329 return (EIO); 6330 } 6331 6332 } else { 6333 6334 /* physical disk */ 6335 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6336 rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 6337 (intptr_t)&minfo, (vd->open_flags | FKIOCTL), 6338 kcred, &rval); 6339 if (rv != 0) { 6340 PR0("DKIOCGMEDIAINFO failed for %s (err=%d)", 6341 vd->device_path, rv); 6342 return (rv); 6343 } 6344 backend_size = minfo.dki_capacity * minfo.dki_lbsize; 6345 } 6346 6347 old_size = vd->vdisk_size; 6348 new_size = backend_size / DEV_BSIZE; 6349 6350 /* check if size has changed */ 6351 if (old_size != VD_SIZE_UNKNOWN && old_size == new_size) 6352 return (0); 6353 6354 vd->vdisk_size = new_size; 6355 6356 if (vd->file || vd->volume) 6357 vd->dskimg_size = backend_size; 6358 6359 /* 6360 * If we are exporting a single-slice disk and the size of the backend 6361 * has changed then we regenerate the partition setup so that the 6362 * partitioning matches with the new disk backend size. 6363 */ 6364 6365 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 6366 /* slice or file or device exported as a slice */ 6367 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 6368 rv = vd_setup_partition_vtoc(vd); 6369 if (rv != 0) { 6370 PR0("vd_setup_partition_vtoc() failed for %s " 6371 "(err = %d)", vd->device_path, rv); 6372 return (rv); 6373 } 6374 } else { 6375 rv = vd_setup_partition_efi(vd); 6376 if (rv != 0) { 6377 PR0("vd_setup_partition_efi() failed for %s " 6378 "(err = %d)", vd->device_path, rv); 6379 return (rv); 6380 } 6381 } 6382 6383 } else if (!vd->file && !vd->volume) { 6384 /* physical disk */ 6385 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 6386 vd->block_size = minfo.dki_lbsize; 6387 vd->vdisk_media = 6388 DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type); 6389 } 6390 6391 return (0); 6392 } 6393 6394 /* 6395 * Description: 6396 * Open a device using its device path and identify if this is 6397 * a disk device or a volume device. 6398 * 6399 * Parameters: 6400 * vd - pointer to structure containing the vDisk info 6401 * dtype - return the driver type of the device 6402 * 6403 * Return Value 6404 * 0 - success 6405 * != 0 - some other non-zero return value from ldi(9F) functions 6406 */ 6407 static int 6408 vd_identify_dev(vd_t *vd, int *dtype) 6409 { 6410 int status, i; 6411 char *device_path = vd->device_path; 6412 char *drv_name; 6413 int drv_type; 6414 vds_t *vds = vd->vds; 6415 6416 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 6417 if (status != 0) { 6418 PR0("Failed to open (%s) = errno %d", device_path, status); 6419 return (status); 6420 } 6421 6422 /* Get device number of backing device */ 6423 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 6424 PRN("ldi_get_dev() returned errno %d for %s", 6425 status, device_path); 6426 return (status); 6427 } 6428 6429 /* 6430 * We start by looking if the driver is in the list from vds.conf 6431 * so that we can override the built-in list using vds.conf. 6432 */ 6433 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 6434 drv_type = VD_DRIVER_UNKNOWN; 6435 6436 /* check vds.conf list */ 6437 for (i = 0; i < vds->num_drivers; i++) { 6438 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 6439 /* ignore invalid entries */ 6440 continue; 6441 } 6442 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 6443 drv_type = vds->driver_types[i].type; 6444 goto done; 6445 } 6446 } 6447 6448 /* check built-in list */ 6449 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 6450 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 6451 drv_type = vds_driver_types[i].type; 6452 goto done; 6453 } 6454 } 6455 6456 done: 6457 PR0("driver %s identified as %s", drv_name, 6458 (drv_type == VD_DRIVER_DISK)? "DISK" : 6459 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 6460 6461 if (strcmp(drv_name, "zfs") == 0) 6462 vd->zvol = B_TRUE; 6463 6464 *dtype = drv_type; 6465 6466 return (0); 6467 } 6468 6469 static int 6470 vd_setup_vd(vd_t *vd) 6471 { 6472 int status, drv_type, pseudo; 6473 dev_info_t *dip; 6474 vnode_t *vnp; 6475 char *path = vd->device_path; 6476 char tq_name[TASKQ_NAMELEN]; 6477 6478 /* make sure the vdisk backend is valid */ 6479 if ((status = lookupname(path, UIO_SYSSPACE, 6480 FOLLOW, NULLVPP, &vnp)) != 0) { 6481 PR0("Cannot lookup %s errno %d", path, status); 6482 goto done; 6483 } 6484 6485 switch (vnp->v_type) { 6486 case VREG: 6487 /* 6488 * Backend is a file so it is exported as a full disk or as a 6489 * single slice disk using the vnode interface. 6490 */ 6491 VN_RELE(vnp); 6492 vd->volume = B_FALSE; 6493 status = vd_setup_backend_vnode(vd); 6494 break; 6495 6496 case VBLK: 6497 case VCHR: 6498 /* 6499 * Backend is a device. In that case, it is exported using the 6500 * LDI interface, and it is exported either as a single-slice 6501 * disk or as a full disk depending on the "slice" option and 6502 * on the type of device. 6503 * 6504 * - A volume device is exported as a single-slice disk if the 6505 * "slice" is specified, otherwise it is exported as a full 6506 * disk. 6507 * 6508 * - A disk slice (different from slice 2) is always exported 6509 * as a single slice disk using the LDI interface. 6510 * 6511 * - The slice 2 of a disk is exported as a single slice disk 6512 * if the "slice" option is specified, otherwise the entire 6513 * disk will be exported. 6514 * 6515 * - The slice of a CD or DVD is exported as single slice disk 6516 * if the "slice" option is specified, otherwise the entire 6517 * disk will be exported. 6518 */ 6519 6520 /* check if this is a pseudo device */ 6521 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 6522 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 6523 PRN("%s is no longer accessible", path); 6524 VN_RELE(vnp); 6525 status = EIO; 6526 break; 6527 } 6528 pseudo = is_pseudo_device(dip); 6529 ddi_release_devi(dip); 6530 VN_RELE(vnp); 6531 6532 if (vd_identify_dev(vd, &drv_type) != 0) { 6533 PRN("%s identification failed", path); 6534 status = EIO; 6535 break; 6536 } 6537 6538 /* 6539 * If the driver hasn't been identified then we consider that 6540 * pseudo devices are volumes and other devices are disks. 6541 */ 6542 if (drv_type == VD_DRIVER_VOLUME || 6543 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 6544 vd->volume = B_TRUE; 6545 } 6546 6547 /* 6548 * If this is a volume device then its usage depends if the 6549 * "slice" option is set or not. If the "slice" option is set 6550 * then the volume device will be exported as a single slice, 6551 * otherwise it will be exported as a full disk. 6552 * 6553 * For backward compatibility, if vd_volume_force_slice is set 6554 * then we always export volume devices as slices. 6555 */ 6556 if (vd->volume && vd_volume_force_slice) { 6557 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6558 vd->nslices = 1; 6559 } 6560 6561 status = vd_setup_backend_ldi(vd); 6562 break; 6563 6564 default: 6565 PRN("Unsupported vdisk backend %s", path); 6566 VN_RELE(vnp); 6567 status = EBADF; 6568 } 6569 6570 done: 6571 if (status != 0) { 6572 /* 6573 * If the error is retryable print an error message only 6574 * during the first try. 6575 */ 6576 if (status == ENXIO || status == ENODEV || 6577 status == ENOENT || status == EROFS) { 6578 if (!(vd->initialized & VD_SETUP_ERROR)) { 6579 PRN("%s is currently inaccessible (error %d)", 6580 path, status); 6581 } 6582 status = EAGAIN; 6583 } else { 6584 PRN("%s can not be exported as a virtual disk " 6585 "(error %d)", path, status); 6586 } 6587 vd->initialized |= VD_SETUP_ERROR; 6588 6589 } else if (vd->initialized & VD_SETUP_ERROR) { 6590 /* print a message only if we previously had an error */ 6591 PRN("%s is now online", path); 6592 vd->initialized &= ~VD_SETUP_ERROR; 6593 } 6594 6595 /* 6596 * For file or ZFS volume we also need an I/O queue. 6597 * 6598 * The I/O task queue is initialized here and not in vds_do_init_vd() 6599 * (as the start and completion queues) because vd_setup_vd() will be 6600 * call again if the backend is not available, and we need to know if 6601 * the backend is a ZFS volume or a file. 6602 */ 6603 if ((vd->file || vd->zvol) && vd->ioq == NULL) { 6604 (void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id); 6605 6606 if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name, 6607 vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) { 6608 PRN("Could not create io task queue"); 6609 return (EIO); 6610 } 6611 } 6612 6613 return (status); 6614 } 6615 6616 static int 6617 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6618 uint64_t ldc_id, vd_t **vdp) 6619 { 6620 char tq_name[TASKQ_NAMELEN]; 6621 int status; 6622 ddi_iblock_cookie_t iblock = NULL; 6623 ldc_attr_t ldc_attr; 6624 vd_t *vd; 6625 6626 6627 ASSERT(vds != NULL); 6628 ASSERT(device_path != NULL); 6629 ASSERT(vdp != NULL); 6630 PR0("Adding vdisk for %s", device_path); 6631 6632 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 6633 PRN("No memory for virtual disk"); 6634 return (EAGAIN); 6635 } 6636 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 6637 vd->id = id; 6638 vd->vds = vds; 6639 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 6640 6641 /* Setup open flags */ 6642 vd->open_flags = FREAD; 6643 6644 if (!(options & VD_OPT_RDONLY)) 6645 vd->open_flags |= FWRITE; 6646 6647 if (options & VD_OPT_EXCLUSIVE) 6648 vd->open_flags |= FEXCL; 6649 6650 /* Setup disk type */ 6651 if (options & VD_OPT_SLICE) { 6652 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6653 vd->nslices = 1; 6654 } else { 6655 vd->vdisk_type = VD_DISK_TYPE_DISK; 6656 vd->nslices = V_NUMPAR; 6657 } 6658 6659 /* default disk label */ 6660 vd->vdisk_label = VD_DISK_LABEL_UNK; 6661 6662 /* Open vdisk and initialize parameters */ 6663 if ((status = vd_setup_vd(vd)) == 0) { 6664 vd->initialized |= VD_DISK_READY; 6665 6666 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 6667 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 6668 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 6669 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 6670 vd->nslices); 6671 } else { 6672 if (status != EAGAIN) 6673 return (status); 6674 } 6675 6676 /* Initialize locking */ 6677 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 6678 &iblock) != DDI_SUCCESS) { 6679 PRN("Could not get iblock cookie."); 6680 return (EIO); 6681 } 6682 6683 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 6684 vd->initialized |= VD_LOCKING; 6685 6686 6687 /* Create start and completion task queues for the vdisk */ 6688 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 6689 PR1("tq_name = %s", tq_name); 6690 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 6691 TASKQ_DEFAULTPRI, 0)) == NULL) { 6692 PRN("Could not create task queue"); 6693 return (EIO); 6694 } 6695 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 6696 PR1("tq_name = %s", tq_name); 6697 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 6698 TASKQ_DEFAULTPRI, 0)) == NULL) { 6699 PRN("Could not create task queue"); 6700 return (EIO); 6701 } 6702 6703 /* Allocate the staging buffer */ 6704 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 6705 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 6706 6707 vd->enabled = 1; /* before callback can dispatch to startq */ 6708 6709 6710 /* Bring up LDC */ 6711 ldc_attr.devclass = LDC_DEV_BLK_SVC; 6712 ldc_attr.instance = ddi_get_instance(vds->dip); 6713 ldc_attr.mode = LDC_MODE_UNRELIABLE; 6714 ldc_attr.mtu = VD_LDC_MTU; 6715 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 6716 PRN("Could not initialize LDC channel %lx, " 6717 "init failed with error %d", ldc_id, status); 6718 return (status); 6719 } 6720 vd->initialized |= VD_LDC; 6721 6722 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 6723 (caddr_t)vd)) != 0) { 6724 PRN("Could not initialize LDC channel %lu," 6725 "reg_callback failed with error %d", ldc_id, status); 6726 return (status); 6727 } 6728 6729 if ((status = ldc_open(vd->ldc_handle)) != 0) { 6730 PRN("Could not initialize LDC channel %lu," 6731 "open failed with error %d", ldc_id, status); 6732 return (status); 6733 } 6734 6735 if ((status = ldc_up(vd->ldc_handle)) != 0) { 6736 PR0("ldc_up() returned errno %d", status); 6737 } 6738 6739 /* Allocate the inband task memory handle */ 6740 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 6741 if (status) { 6742 PRN("Could not initialize LDC channel %lu," 6743 "alloc_handle failed with error %d", ldc_id, status); 6744 return (ENXIO); 6745 } 6746 6747 /* Add the successfully-initialized vdisk to the server's table */ 6748 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 6749 PRN("Error adding vdisk ID %lu to table", id); 6750 return (EIO); 6751 } 6752 6753 /* store initial state */ 6754 vd->state = VD_STATE_INIT; 6755 6756 return (0); 6757 } 6758 6759 static void 6760 vd_free_dring_task(vd_t *vdp) 6761 { 6762 if (vdp->dring_task != NULL) { 6763 ASSERT(vdp->dring_len != 0); 6764 /* Free all dring_task memory handles */ 6765 for (int i = 0; i < vdp->dring_len; i++) { 6766 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 6767 kmem_free(vdp->dring_task[i].request, 6768 (vdp->descriptor_size - 6769 sizeof (vio_dring_entry_hdr_t))); 6770 vdp->dring_task[i].request = NULL; 6771 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 6772 vdp->dring_task[i].msg = NULL; 6773 } 6774 kmem_free(vdp->dring_task, 6775 (sizeof (*vdp->dring_task)) * vdp->dring_len); 6776 vdp->dring_task = NULL; 6777 } 6778 6779 if (vdp->write_queue != NULL) { 6780 kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len); 6781 vdp->write_queue = NULL; 6782 } 6783 } 6784 6785 /* 6786 * Destroy the state associated with a virtual disk 6787 */ 6788 static void 6789 vds_destroy_vd(void *arg) 6790 { 6791 vd_t *vd = (vd_t *)arg; 6792 int retry = 0, rv; 6793 6794 if (vd == NULL) 6795 return; 6796 6797 PR0("Destroying vdisk state"); 6798 6799 /* Disable queuing requests for the vdisk */ 6800 if (vd->initialized & VD_LOCKING) { 6801 mutex_enter(&vd->lock); 6802 vd->enabled = 0; 6803 mutex_exit(&vd->lock); 6804 } 6805 6806 /* Drain and destroy start queue (*before* destroying ioq) */ 6807 if (vd->startq != NULL) 6808 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 6809 6810 /* Drain and destroy the I/O queue (*before* destroying completionq) */ 6811 if (vd->ioq != NULL) 6812 ddi_taskq_destroy(vd->ioq); 6813 6814 /* Drain and destroy completion queue (*before* shutting down LDC) */ 6815 if (vd->completionq != NULL) 6816 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 6817 6818 vd_free_dring_task(vd); 6819 6820 /* Free the inband task memory handle */ 6821 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 6822 6823 /* Shut down LDC */ 6824 if (vd->initialized & VD_LDC) { 6825 /* unmap the dring */ 6826 if (vd->initialized & VD_DRING) 6827 (void) ldc_mem_dring_unmap(vd->dring_handle); 6828 6829 /* close LDC channel - retry on EAGAIN */ 6830 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 6831 if (++retry > vds_ldc_retries) { 6832 PR0("Timed out closing channel"); 6833 break; 6834 } 6835 drv_usecwait(vds_ldc_delay); 6836 } 6837 if (rv == 0) { 6838 (void) ldc_unreg_callback(vd->ldc_handle); 6839 (void) ldc_fini(vd->ldc_handle); 6840 } else { 6841 /* 6842 * Closing the LDC channel has failed. Ideally we should 6843 * fail here but there is no Zeus level infrastructure 6844 * to handle this. The MD has already been changed and 6845 * we have to do the close. So we try to do as much 6846 * clean up as we can. 6847 */ 6848 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 6849 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 6850 drv_usecwait(vds_ldc_delay); 6851 } 6852 } 6853 6854 /* Free the staging buffer for msgs */ 6855 if (vd->vio_msgp != NULL) { 6856 kmem_free(vd->vio_msgp, vd->max_msglen); 6857 vd->vio_msgp = NULL; 6858 } 6859 6860 /* Free the inband message buffer */ 6861 if (vd->inband_task.msg != NULL) { 6862 kmem_free(vd->inband_task.msg, vd->max_msglen); 6863 vd->inband_task.msg = NULL; 6864 } 6865 6866 if (vd->file) { 6867 /* Close file */ 6868 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 6869 0, kcred, NULL); 6870 VN_RELE(vd->file_vnode); 6871 } else { 6872 /* Close any open backing-device slices */ 6873 for (uint_t slice = 0; slice < V_NUMPAR; slice++) { 6874 if (vd->ldi_handle[slice] != NULL) { 6875 PR0("Closing slice %u", slice); 6876 (void) ldi_close(vd->ldi_handle[slice], 6877 vd->open_flags, kcred); 6878 } 6879 } 6880 } 6881 6882 /* Free disk image devid */ 6883 if (vd->dskimg_devid != NULL) 6884 ddi_devid_free(vd->dskimg_devid); 6885 6886 /* Free any fake label */ 6887 if (vd->flabel) { 6888 kmem_free(vd->flabel, vd->flabel_size); 6889 vd->flabel = NULL; 6890 vd->flabel_size = 0; 6891 } 6892 6893 /* Free lock */ 6894 if (vd->initialized & VD_LOCKING) 6895 mutex_destroy(&vd->lock); 6896 6897 /* Finally, free the vdisk structure itself */ 6898 kmem_free(vd, sizeof (*vd)); 6899 } 6900 6901 static int 6902 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6903 uint64_t ldc_id) 6904 { 6905 int status; 6906 vd_t *vd = NULL; 6907 6908 6909 if ((status = vds_do_init_vd(vds, id, device_path, options, 6910 ldc_id, &vd)) != 0) 6911 vds_destroy_vd(vd); 6912 6913 return (status); 6914 } 6915 6916 static int 6917 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 6918 uint64_t *ldc_id) 6919 { 6920 int num_channels; 6921 6922 6923 /* Look for channel endpoint child(ren) of the vdisk MD node */ 6924 if ((num_channels = md_scan_dag(md, vd_node, 6925 md_find_name(md, VD_CHANNEL_ENDPOINT), 6926 md_find_name(md, "fwd"), channel)) <= 0) { 6927 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 6928 return (-1); 6929 } 6930 6931 /* Get the "id" value for the first channel endpoint node */ 6932 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 6933 PRN("No \"%s\" property found for \"%s\" of vdisk", 6934 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 6935 return (-1); 6936 } 6937 6938 if (num_channels > 1) { 6939 PRN("Using ID of first of multiple channels for this vdisk"); 6940 } 6941 6942 return (0); 6943 } 6944 6945 static int 6946 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 6947 { 6948 int num_nodes, status; 6949 size_t size; 6950 mde_cookie_t *channel; 6951 6952 6953 if ((num_nodes = md_node_count(md)) <= 0) { 6954 PRN("Invalid node count in Machine Description subtree"); 6955 return (-1); 6956 } 6957 size = num_nodes*(sizeof (*channel)); 6958 channel = kmem_zalloc(size, KM_SLEEP); 6959 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 6960 kmem_free(channel, size); 6961 6962 return (status); 6963 } 6964 6965 /* 6966 * Function: 6967 * vds_get_options 6968 * 6969 * Description: 6970 * Parse the options of a vds node. Options are defined as an array 6971 * of strings in the vds-block-device-opts property of the vds node 6972 * in the machine description. Options are returned as a bitmask. The 6973 * mapping between the bitmask options and the options strings from the 6974 * machine description is defined in the vd_bdev_options[] array. 6975 * 6976 * The vds-block-device-opts property is optional. If a vds has no such 6977 * property then no option is defined. 6978 * 6979 * Parameters: 6980 * md - machine description. 6981 * vd_node - vds node in the machine description for which 6982 * options have to be parsed. 6983 * options - the returned options. 6984 * 6985 * Return Code: 6986 * none. 6987 */ 6988 static void 6989 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 6990 { 6991 char *optstr, *opt; 6992 int len, n, i; 6993 6994 *options = 0; 6995 6996 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 6997 (uint8_t **)&optstr, &len) != 0) { 6998 PR0("No options found"); 6999 return; 7000 } 7001 7002 /* parse options */ 7003 opt = optstr; 7004 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 7005 7006 while (opt < optstr + len) { 7007 for (i = 0; i < n; i++) { 7008 if (strncmp(vd_bdev_options[i].vdo_name, 7009 opt, VD_OPTION_NLEN) == 0) { 7010 *options |= vd_bdev_options[i].vdo_value; 7011 break; 7012 } 7013 } 7014 7015 if (i < n) { 7016 PR0("option: %s", opt); 7017 } else { 7018 PRN("option %s is unknown or unsupported", opt); 7019 } 7020 7021 opt += strlen(opt) + 1; 7022 } 7023 } 7024 7025 static void 7026 vds_driver_types_free(vds_t *vds) 7027 { 7028 if (vds->driver_types != NULL) { 7029 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 7030 vds->num_drivers); 7031 vds->driver_types = NULL; 7032 vds->num_drivers = 0; 7033 } 7034 } 7035 7036 /* 7037 * Update the driver type list with information from vds.conf. 7038 */ 7039 static void 7040 vds_driver_types_update(vds_t *vds) 7041 { 7042 char **list, *s; 7043 uint_t i, num, count = 0, len; 7044 7045 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 7046 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 7047 DDI_PROP_SUCCESS) 7048 return; 7049 7050 /* 7051 * We create a driver_types list with as many as entries as there 7052 * is in the driver-type-list from vds.conf. However only valid 7053 * entries will be populated (i.e. entries from driver-type-list 7054 * with a valid syntax). Invalid entries will be left blank so 7055 * they will have no driver name and the driver type will be 7056 * VD_DRIVER_UNKNOWN (= 0). 7057 */ 7058 vds->num_drivers = num; 7059 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 7060 KM_SLEEP); 7061 7062 for (i = 0; i < num; i++) { 7063 7064 s = strchr(list[i], ':'); 7065 7066 if (s == NULL) { 7067 PRN("vds.conf: driver-type-list, entry %d (%s): " 7068 "a colon is expected in the entry", 7069 i, list[i]); 7070 continue; 7071 } 7072 7073 len = (uintptr_t)s - (uintptr_t)list[i]; 7074 7075 if (len == 0) { 7076 PRN("vds.conf: driver-type-list, entry %d (%s): " 7077 "the driver name is empty", 7078 i, list[i]); 7079 continue; 7080 } 7081 7082 if (len >= VD_DRIVER_NAME_LEN) { 7083 PRN("vds.conf: driver-type-list, entry %d (%s): " 7084 "the driver name is too long", 7085 i, list[i]); 7086 continue; 7087 } 7088 7089 if (strcmp(s + 1, "disk") == 0) { 7090 7091 vds->driver_types[i].type = VD_DRIVER_DISK; 7092 7093 } else if (strcmp(s + 1, "volume") == 0) { 7094 7095 vds->driver_types[i].type = VD_DRIVER_VOLUME; 7096 7097 } else { 7098 PRN("vds.conf: driver-type-list, entry %d (%s): " 7099 "the driver type is invalid", 7100 i, list[i]); 7101 continue; 7102 } 7103 7104 (void) strncpy(vds->driver_types[i].name, list[i], len); 7105 7106 PR0("driver-type-list, entry %d (%s) added", 7107 i, list[i]); 7108 7109 count++; 7110 } 7111 7112 ddi_prop_free(list); 7113 7114 if (count == 0) { 7115 /* nothing was added, clean up */ 7116 vds_driver_types_free(vds); 7117 } 7118 } 7119 7120 static void 7121 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7122 { 7123 char *device_path = NULL; 7124 uint64_t id = 0, ldc_id = 0, options = 0; 7125 7126 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7127 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 7128 return; 7129 } 7130 PR0("Adding vdisk ID %lu", id); 7131 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 7132 &device_path) != 0) { 7133 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7134 return; 7135 } 7136 7137 vds_get_options(md, vd_node, &options); 7138 7139 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 7140 PRN("Error getting LDC ID for vdisk %lu", id); 7141 return; 7142 } 7143 7144 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 7145 PRN("Failed to add vdisk ID %lu", id); 7146 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7147 PRN("No vDisk entry found for vdisk ID %lu", id); 7148 return; 7149 } 7150 } 7151 7152 static void 7153 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 7154 { 7155 uint64_t id = 0; 7156 7157 7158 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 7159 PRN("Unable to get \"%s\" property from vdisk's MD node", 7160 VD_ID_PROP); 7161 return; 7162 } 7163 PR0("Removing vdisk ID %lu", id); 7164 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 7165 PRN("No vdisk entry found for vdisk ID %lu", id); 7166 } 7167 7168 static void 7169 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 7170 md_t *curr_md, mde_cookie_t curr_vd_node) 7171 { 7172 char *curr_dev, *prev_dev; 7173 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 7174 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 7175 size_t len; 7176 7177 7178 /* Validate that vdisk ID has not changed */ 7179 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 7180 PRN("Error getting previous vdisk \"%s\" property", 7181 VD_ID_PROP); 7182 return; 7183 } 7184 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 7185 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 7186 return; 7187 } 7188 if (curr_id != prev_id) { 7189 PRN("Not changing vdisk: ID changed from %lu to %lu", 7190 prev_id, curr_id); 7191 return; 7192 } 7193 7194 /* Validate that LDC ID has not changed */ 7195 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 7196 PRN("Error getting LDC ID for vdisk %lu", prev_id); 7197 return; 7198 } 7199 7200 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 7201 PRN("Error getting LDC ID for vdisk %lu", curr_id); 7202 return; 7203 } 7204 if (curr_ldc_id != prev_ldc_id) { 7205 _NOTE(NOTREACHED); /* lint is confused */ 7206 PRN("Not changing vdisk: " 7207 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 7208 return; 7209 } 7210 7211 /* Determine whether device path has changed */ 7212 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 7213 &prev_dev) != 0) { 7214 PRN("Error getting previous vdisk \"%s\"", 7215 VD_BLOCK_DEVICE_PROP); 7216 return; 7217 } 7218 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 7219 &curr_dev) != 0) { 7220 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 7221 return; 7222 } 7223 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 7224 (strncmp(curr_dev, prev_dev, len) == 0)) 7225 return; /* no relevant (supported) change */ 7226 7227 /* Validate that options have not changed */ 7228 vds_get_options(prev_md, prev_vd_node, &prev_options); 7229 vds_get_options(curr_md, curr_vd_node, &curr_options); 7230 if (prev_options != curr_options) { 7231 PRN("Not changing vdisk: options changed from %lx to %lx", 7232 prev_options, curr_options); 7233 return; 7234 } 7235 7236 PR0("Changing vdisk ID %lu", prev_id); 7237 7238 /* Remove old state, which will close vdisk and reset */ 7239 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 7240 PRN("No entry found for vdisk ID %lu", prev_id); 7241 7242 /* Re-initialize vdisk with new state */ 7243 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 7244 curr_ldc_id) != 0) { 7245 PRN("Failed to change vdisk ID %lu", curr_id); 7246 return; 7247 } 7248 } 7249 7250 static int 7251 vds_process_md(void *arg, mdeg_result_t *md) 7252 { 7253 int i; 7254 vds_t *vds = arg; 7255 7256 7257 if (md == NULL) 7258 return (MDEG_FAILURE); 7259 ASSERT(vds != NULL); 7260 7261 for (i = 0; i < md->removed.nelem; i++) 7262 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 7263 for (i = 0; i < md->match_curr.nelem; i++) 7264 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 7265 md->match_curr.mdp, md->match_curr.mdep[i]); 7266 for (i = 0; i < md->added.nelem; i++) 7267 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 7268 7269 return (MDEG_SUCCESS); 7270 } 7271 7272 7273 static int 7274 vds_do_attach(dev_info_t *dip) 7275 { 7276 int status, sz; 7277 int cfg_handle; 7278 minor_t instance = ddi_get_instance(dip); 7279 vds_t *vds; 7280 mdeg_prop_spec_t *pspecp; 7281 mdeg_node_spec_t *ispecp; 7282 7283 /* 7284 * The "cfg-handle" property of a vds node in an MD contains the MD's 7285 * notion of "instance", or unique identifier, for that node; OBP 7286 * stores the value of the "cfg-handle" MD property as the value of 7287 * the "reg" property on the node in the device tree it builds from 7288 * the MD and passes to Solaris. Thus, we look up the devinfo node's 7289 * "reg" property value to uniquely identify this device instance when 7290 * registering with the MD event-generation framework. If the "reg" 7291 * property cannot be found, the device tree state is presumably so 7292 * broken that there is no point in continuing. 7293 */ 7294 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7295 VD_REG_PROP)) { 7296 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 7297 return (DDI_FAILURE); 7298 } 7299 7300 /* Get the MD instance for later MDEG registration */ 7301 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 7302 VD_REG_PROP, -1); 7303 7304 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 7305 PRN("Could not allocate state for instance %u", instance); 7306 return (DDI_FAILURE); 7307 } 7308 7309 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 7310 PRN("Could not get state for instance %u", instance); 7311 ddi_soft_state_free(vds_state, instance); 7312 return (DDI_FAILURE); 7313 } 7314 7315 vds->dip = dip; 7316 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 7317 vds_destroy_vd, sizeof (void *)); 7318 7319 ASSERT(vds->vd_table != NULL); 7320 7321 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 7322 PRN("ldi_ident_from_dip() returned errno %d", status); 7323 return (DDI_FAILURE); 7324 } 7325 vds->initialized |= VDS_LDI; 7326 7327 /* Register for MD updates */ 7328 sz = sizeof (vds_prop_template); 7329 pspecp = kmem_alloc(sz, KM_SLEEP); 7330 bcopy(vds_prop_template, pspecp, sz); 7331 7332 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 7333 7334 /* initialize the complete prop spec structure */ 7335 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 7336 ispecp->namep = "virtual-device"; 7337 ispecp->specp = pspecp; 7338 7339 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 7340 &vds->mdeg) != MDEG_SUCCESS) { 7341 PRN("Unable to register for MD updates"); 7342 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 7343 kmem_free(pspecp, sz); 7344 return (DDI_FAILURE); 7345 } 7346 7347 vds->ispecp = ispecp; 7348 vds->initialized |= VDS_MDEG; 7349 7350 /* Prevent auto-detaching so driver is available whenever MD changes */ 7351 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 7352 DDI_PROP_SUCCESS) { 7353 PRN("failed to set \"%s\" property for instance %u", 7354 DDI_NO_AUTODETACH, instance); 7355 } 7356 7357 /* read any user defined driver types from conf file and update list */ 7358 vds_driver_types_update(vds); 7359 7360 ddi_report_dev(dip); 7361 return (DDI_SUCCESS); 7362 } 7363 7364 static int 7365 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 7366 { 7367 int status; 7368 7369 switch (cmd) { 7370 case DDI_ATTACH: 7371 PR0("Attaching"); 7372 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 7373 (void) vds_detach(dip, DDI_DETACH); 7374 return (status); 7375 case DDI_RESUME: 7376 PR0("No action required for DDI_RESUME"); 7377 return (DDI_SUCCESS); 7378 default: 7379 return (DDI_FAILURE); 7380 } 7381 } 7382 7383 static struct dev_ops vds_ops = { 7384 DEVO_REV, /* devo_rev */ 7385 0, /* devo_refcnt */ 7386 ddi_no_info, /* devo_getinfo */ 7387 nulldev, /* devo_identify */ 7388 nulldev, /* devo_probe */ 7389 vds_attach, /* devo_attach */ 7390 vds_detach, /* devo_detach */ 7391 nodev, /* devo_reset */ 7392 NULL, /* devo_cb_ops */ 7393 NULL, /* devo_bus_ops */ 7394 nulldev, /* devo_power */ 7395 ddi_quiesce_not_needed, /* devo_quiesce */ 7396 }; 7397 7398 static struct modldrv modldrv = { 7399 &mod_driverops, 7400 "virtual disk server", 7401 &vds_ops, 7402 }; 7403 7404 static struct modlinkage modlinkage = { 7405 MODREV_1, 7406 &modldrv, 7407 NULL 7408 }; 7409 7410 7411 int 7412 _init(void) 7413 { 7414 int status; 7415 7416 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 7417 return (status); 7418 7419 if ((status = mod_install(&modlinkage)) != 0) { 7420 ddi_soft_state_fini(&vds_state); 7421 return (status); 7422 } 7423 7424 return (0); 7425 } 7426 7427 int 7428 _info(struct modinfo *modinfop) 7429 { 7430 return (mod_info(&modlinkage, modinfop)); 7431 } 7432 7433 int 7434 _fini(void) 7435 { 7436 int status; 7437 7438 if ((status = mod_remove(&modlinkage)) != 0) 7439 return (status); 7440 ddi_soft_state_fini(&vds_state); 7441 return (0); 7442 } 7443