1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual disk server 31 */ 32 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/crc32.h> 37 #include <sys/ddi.h> 38 #include <sys/dkio.h> 39 #include <sys/file.h> 40 #include <sys/fs/hsfs_isospec.h> 41 #include <sys/mdeg.h> 42 #include <sys/mhd.h> 43 #include <sys/modhash.h> 44 #include <sys/note.h> 45 #include <sys/pathname.h> 46 #include <sys/sdt.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunldi.h> 49 #include <sys/sysmacros.h> 50 #include <sys/vio_common.h> 51 #include <sys/vio_util.h> 52 #include <sys/vdsk_mailbox.h> 53 #include <sys/vdsk_common.h> 54 #include <sys/vtoc.h> 55 #include <sys/vfs.h> 56 #include <sys/stat.h> 57 #include <sys/scsi/impl/uscsi.h> 58 #include <vm/seg_map.h> 59 60 #define ONE_TERABYTE (1ULL << 40) 61 62 /* Virtual disk server initialization flags */ 63 #define VDS_LDI 0x01 64 #define VDS_MDEG 0x02 65 66 /* Virtual disk server tunable parameters */ 67 #define VDS_RETRIES 5 68 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 69 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 70 #define VDS_NCHAINS 32 71 72 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 73 #define VDS_NAME "virtual-disk-server" 74 75 #define VD_NAME "vd" 76 #define VD_VOLUME_NAME "vdisk" 77 #define VD_ASCIILABEL "Virtual Disk" 78 79 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 80 #define VD_ID_PROP "id" 81 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 82 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 83 #define VD_REG_PROP "reg" 84 85 /* Virtual disk initialization flags */ 86 #define VD_DISK_READY 0x01 87 #define VD_LOCKING 0x02 88 #define VD_LDC 0x04 89 #define VD_DRING 0x08 90 #define VD_SID 0x10 91 #define VD_SEQ_NUM 0x20 92 #define VD_SETUP_ERROR 0x40 93 94 /* Flags for writing to a vdisk which is a file */ 95 #define VD_FILE_WRITE_FLAGS SM_ASYNC 96 97 /* Number of backup labels */ 98 #define VD_FILE_NUM_BACKUP 5 99 100 /* Timeout for SCSI I/O */ 101 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 102 103 /* Maximum number of logical partitions */ 104 #define VD_MAXPART (NDKMAP + 1) 105 106 /* 107 * By Solaris convention, slice/partition 2 represents the entire disk; 108 * unfortunately, this convention does not appear to be codified. 109 */ 110 #define VD_ENTIRE_DISK_SLICE 2 111 112 /* Logical block address for EFI */ 113 #define VD_EFI_LBA_GPT 1 /* LBA of the GPT */ 114 #define VD_EFI_LBA_GPE 2 /* LBA of the GPE */ 115 116 /* Driver types */ 117 typedef enum vd_driver { 118 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 119 VD_DRIVER_DISK, /* disk driver */ 120 VD_DRIVER_VOLUME /* volume driver */ 121 } vd_driver_t; 122 123 #define VD_DRIVER_NAME_LEN 64 124 125 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 126 127 typedef struct vd_driver_type { 128 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 129 vd_driver_t type; /* driver type (disk or volume) */ 130 } vd_driver_type_t; 131 132 /* 133 * There is no reliable way to determine if a device is representing a disk 134 * or a volume, especially with pseudo devices. So we maintain a list of well 135 * known drivers and the type of device they represent (either a disk or a 136 * volume). 137 * 138 * The list can be extended by adding a "driver-type-list" entry in vds.conf 139 * with the following syntax: 140 * 141 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 142 * 143 * Where: 144 * <driver> is the name of a driver (limited to 64 characters) 145 * <type> is either the string "disk" or "volume" 146 * 147 * Invalid entries in "driver-type-list" will be ignored. 148 * 149 * For example, the following line in vds.conf: 150 * 151 * driver-type-list="foo:disk","bar:volume"; 152 * 153 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 154 * 155 * When a list is defined in vds.conf, it is checked before the built-in list 156 * (vds_driver_types[]) so that any definition from this list can be overriden 157 * using vds.conf. 158 */ 159 vd_driver_type_t vds_driver_types[] = { 160 { "dad", VD_DRIVER_DISK }, /* Solaris */ 161 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 162 { "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */ 163 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 164 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 165 { "sd", VD_DRIVER_DISK }, /* Solaris */ 166 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 167 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 168 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 169 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 170 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 171 }; 172 173 /* Return a cpp token as a string */ 174 #define STRINGIZE(token) #token 175 176 /* 177 * Print a message prefixed with the current function name to the message log 178 * (and optionally to the console for verbose boots); these macros use cpp's 179 * concatenation of string literals and C99 variable-length-argument-list 180 * macros 181 */ 182 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 183 #define _PRN(format, ...) \ 184 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 185 186 /* Return a pointer to the "i"th vdisk dring element */ 187 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 188 (vd->dring + (i)*vd->descriptor_size)) 189 190 /* Return the virtual disk client's type as a string (for use in messages) */ 191 #define VD_CLIENT(vd) \ 192 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 193 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 194 (((vd)->xfer_mode == 0) ? "null client" : \ 195 "unsupported client"))) 196 197 /* Read disk label from a disk on file */ 198 #define VD_FILE_LABEL_READ(vd, labelp) \ 199 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 200 0, sizeof (struct dk_label)) 201 202 /* Write disk label to a disk on file */ 203 #define VD_FILE_LABEL_WRITE(vd, labelp) \ 204 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 205 0, sizeof (struct dk_label)) 206 207 /* Message for disk access rights reset failure */ 208 #define VD_RESET_ACCESS_FAILURE_MSG \ 209 "Fail to reset disk access rights for disk %s" 210 211 /* 212 * Specification of an MD node passed to the MDEG to filter any 213 * 'vport' nodes that do not belong to the specified node. This 214 * template is copied for each vds instance and filled in with 215 * the appropriate 'cfg-handle' value before being passed to the MDEG. 216 */ 217 static mdeg_prop_spec_t vds_prop_template[] = { 218 { MDET_PROP_STR, "name", VDS_NAME }, 219 { MDET_PROP_VAL, "cfg-handle", NULL }, 220 { MDET_LIST_END, NULL, NULL } 221 }; 222 223 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 224 225 /* 226 * Matching criteria passed to the MDEG to register interest 227 * in changes to 'virtual-device-port' nodes identified by their 228 * 'id' property. 229 */ 230 static md_prop_match_t vd_prop_match[] = { 231 { MDET_PROP_VAL, VD_ID_PROP }, 232 { MDET_LIST_END, NULL } 233 }; 234 235 static mdeg_node_match_t vd_match = {"virtual-device-port", 236 vd_prop_match}; 237 238 /* 239 * Options for the VD_BLOCK_DEVICE_OPTS property. 240 */ 241 #define VD_OPT_RDONLY 0x1 /* read-only */ 242 #define VD_OPT_SLICE 0x2 /* single slice */ 243 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 244 245 #define VD_OPTION_NLEN 128 246 247 typedef struct vd_option { 248 char vdo_name[VD_OPTION_NLEN]; 249 uint64_t vdo_value; 250 } vd_option_t; 251 252 vd_option_t vd_bdev_options[] = { 253 { "ro", VD_OPT_RDONLY }, 254 { "slice", VD_OPT_SLICE }, 255 { "excl", VD_OPT_EXCLUSIVE } 256 }; 257 258 /* Debugging macros */ 259 #ifdef DEBUG 260 261 static int vd_msglevel = 0; 262 263 #define PR0 if (vd_msglevel > 0) PRN 264 #define PR1 if (vd_msglevel > 1) PRN 265 #define PR2 if (vd_msglevel > 2) PRN 266 267 #define VD_DUMP_DRING_ELEM(elem) \ 268 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 269 elem->hdr.dstate, \ 270 elem->payload.operation, \ 271 elem->payload.status, \ 272 elem->payload.nbytes, \ 273 elem->payload.addr, \ 274 elem->payload.ncookies); 275 276 char * 277 vd_decode_state(int state) 278 { 279 char *str; 280 281 #define CASE_STATE(_s) case _s: str = #_s; break; 282 283 switch (state) { 284 CASE_STATE(VD_STATE_INIT) 285 CASE_STATE(VD_STATE_VER) 286 CASE_STATE(VD_STATE_ATTR) 287 CASE_STATE(VD_STATE_DRING) 288 CASE_STATE(VD_STATE_RDX) 289 CASE_STATE(VD_STATE_DATA) 290 default: str = "unknown"; break; 291 } 292 293 #undef CASE_STATE 294 295 return (str); 296 } 297 298 void 299 vd_decode_tag(vio_msg_t *msg) 300 { 301 char *tstr, *sstr, *estr; 302 303 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 304 305 switch (msg->tag.vio_msgtype) { 306 CASE_TYPE(VIO_TYPE_CTRL) 307 CASE_TYPE(VIO_TYPE_DATA) 308 CASE_TYPE(VIO_TYPE_ERR) 309 default: tstr = "unknown"; break; 310 } 311 312 #undef CASE_TYPE 313 314 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 315 316 switch (msg->tag.vio_subtype) { 317 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 318 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 319 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 320 default: sstr = "unknown"; break; 321 } 322 323 #undef CASE_SUBTYPE 324 325 #define CASE_ENV(_s) case _s: estr = #_s; break; 326 327 switch (msg->tag.vio_subtype_env) { 328 CASE_ENV(VIO_VER_INFO) 329 CASE_ENV(VIO_ATTR_INFO) 330 CASE_ENV(VIO_DRING_REG) 331 CASE_ENV(VIO_DRING_UNREG) 332 CASE_ENV(VIO_RDX) 333 CASE_ENV(VIO_PKT_DATA) 334 CASE_ENV(VIO_DESC_DATA) 335 CASE_ENV(VIO_DRING_DATA) 336 default: estr = "unknown"; break; 337 } 338 339 #undef CASE_ENV 340 341 PR1("(%x/%x/%x) message : (%s/%s/%s)", 342 msg->tag.vio_msgtype, msg->tag.vio_subtype, 343 msg->tag.vio_subtype_env, tstr, sstr, estr); 344 } 345 346 #else /* !DEBUG */ 347 348 #define PR0(...) 349 #define PR1(...) 350 #define PR2(...) 351 352 #define VD_DUMP_DRING_ELEM(elem) 353 354 #define vd_decode_state(_s) (NULL) 355 #define vd_decode_tag(_s) (NULL) 356 357 #endif /* DEBUG */ 358 359 360 /* 361 * Soft state structure for a vds instance 362 */ 363 typedef struct vds { 364 uint_t initialized; /* driver inst initialization flags */ 365 dev_info_t *dip; /* driver inst devinfo pointer */ 366 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 367 mod_hash_t *vd_table; /* table of virtual disks served */ 368 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 369 mdeg_handle_t mdeg; /* handle for MDEG operations */ 370 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 371 int num_drivers; /* num of extra driver types */ 372 } vds_t; 373 374 /* 375 * Types of descriptor-processing tasks 376 */ 377 typedef enum vd_task_type { 378 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 379 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 380 } vd_task_type_t; 381 382 /* 383 * Structure describing the task for processing a descriptor 384 */ 385 typedef struct vd_task { 386 struct vd *vd; /* vd instance task is for */ 387 vd_task_type_t type; /* type of descriptor task */ 388 int index; /* dring elem index for task */ 389 vio_msg_t *msg; /* VIO message task is for */ 390 size_t msglen; /* length of message content */ 391 vd_dring_payload_t *request; /* request task will perform */ 392 struct buf buf; /* buf(9s) for I/O request */ 393 ldc_mem_handle_t mhdl; /* task memory handle */ 394 int status; /* status of processing task */ 395 int (*completef)(struct vd_task *task); /* completion func ptr */ 396 } vd_task_t; 397 398 /* 399 * Soft state structure for a virtual disk instance 400 */ 401 typedef struct vd { 402 uint_t initialized; /* vdisk initialization flags */ 403 uint64_t operations; /* bitmask of VD_OPs exported */ 404 vio_ver_t version; /* ver negotiated with client */ 405 vds_t *vds; /* server for this vdisk */ 406 ddi_taskq_t *startq; /* queue for I/O start tasks */ 407 ddi_taskq_t *completionq; /* queue for completion tasks */ 408 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 409 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 410 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 411 int open_flags; /* open flags */ 412 uint_t nslices; /* number of slices we export */ 413 size_t vdisk_size; /* number of blocks in vdisk */ 414 size_t vdisk_block_size; /* size of each vdisk block */ 415 vd_disk_type_t vdisk_type; /* slice or entire disk */ 416 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 417 vd_media_t vdisk_media; /* media type of backing dev. */ 418 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 419 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 420 size_t block_size; /* blk size of actual device */ 421 boolean_t volume; /* is vDisk backed by volume */ 422 boolean_t file; /* is vDisk backed by a file? */ 423 boolean_t scsi; /* is vDisk backed by scsi? */ 424 vnode_t *file_vnode; /* file vnode */ 425 size_t file_size; /* file size */ 426 ddi_devid_t file_devid; /* devid for disk image */ 427 int efi_reserved; /* EFI reserved slice */ 428 caddr_t flabel; /* fake label for slice type */ 429 uint_t flabel_size; /* fake label size */ 430 uint_t flabel_limit; /* limit of the fake label */ 431 struct dk_geom dk_geom; /* synthetic for slice type */ 432 struct vtoc vtoc; /* synthetic for slice type */ 433 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 434 boolean_t ownership; /* disk ownership status */ 435 ldc_status_t ldc_state; /* LDC connection state */ 436 ldc_handle_t ldc_handle; /* handle for LDC comm */ 437 size_t max_msglen; /* largest LDC message len */ 438 vd_state_t state; /* client handshake state */ 439 uint8_t xfer_mode; /* transfer mode with client */ 440 uint32_t sid; /* client's session ID */ 441 uint64_t seq_num; /* message sequence number */ 442 uint64_t dring_ident; /* identifier of dring */ 443 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 444 uint32_t descriptor_size; /* num bytes in desc */ 445 uint32_t dring_len; /* number of dring elements */ 446 caddr_t dring; /* address of dring */ 447 caddr_t vio_msgp; /* vio msg staging buffer */ 448 vd_task_t inband_task; /* task for inband descriptor */ 449 vd_task_t *dring_task; /* tasks dring elements */ 450 451 kmutex_t lock; /* protects variables below */ 452 boolean_t enabled; /* is vdisk enabled? */ 453 boolean_t reset_state; /* reset connection state? */ 454 boolean_t reset_ldc; /* reset LDC channel? */ 455 } vd_t; 456 457 /* 458 * Macros to manipulate the fake label (flabel) for single slice disks. 459 * 460 * If we fake a VTOC label then the fake label consists of only one block 461 * containing the VTOC label (struct dk_label). 462 * 463 * If we fake an EFI label then the fake label consists of a blank block 464 * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t). 465 * 466 */ 467 #define VD_LABEL_VTOC_SIZE \ 468 P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE) 469 470 #define VD_LABEL_EFI_SIZE \ 471 P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + \ 472 sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE) 473 474 #define VD_LABEL_VTOC(vd) \ 475 ((struct dk_label *)((vd)->flabel)) 476 477 #define VD_LABEL_EFI_GPT(vd) \ 478 ((efi_gpt_t *)((vd)->flabel + DEV_BSIZE)) 479 #define VD_LABEL_EFI_GPE(vd) \ 480 ((efi_gpe_t *)((vd)->flabel + DEV_BSIZE + sizeof (efi_gpt_t))) 481 482 483 typedef struct vds_operation { 484 char *namep; 485 uint8_t operation; 486 int (*start)(vd_task_t *task); 487 int (*complete)(vd_task_t *task); 488 } vds_operation_t; 489 490 typedef struct vd_ioctl { 491 uint8_t operation; /* vdisk operation */ 492 const char *operation_name; /* vdisk operation name */ 493 size_t nbytes; /* size of operation buffer */ 494 int cmd; /* corresponding ioctl cmd */ 495 const char *cmd_name; /* ioctl cmd name */ 496 void *arg; /* ioctl cmd argument */ 497 /* convert input vd_buf to output ioctl_arg */ 498 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 499 /* convert input ioctl_arg to output vd_buf */ 500 void (*copyout)(void *ioctl_arg, void *vd_buf); 501 /* write is true if the operation writes any data to the backend */ 502 boolean_t write; 503 } vd_ioctl_t; 504 505 /* Define trivial copyin/copyout conversion function flag */ 506 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 507 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 508 509 510 static int vds_ldc_retries = VDS_RETRIES; 511 static int vds_ldc_delay = VDS_LDC_DELAY; 512 static int vds_dev_retries = VDS_RETRIES; 513 static int vds_dev_delay = VDS_DEV_DELAY; 514 static void *vds_state; 515 516 static uint_t vd_file_write_flags = VD_FILE_WRITE_FLAGS; 517 518 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 519 static int vd_scsi_debug = USCSI_SILENT; 520 521 /* 522 * Tunable to define the behavior of the service domain if the vdisk server 523 * fails to reset disk exclusive access when a LDC channel is reset. When a 524 * LDC channel is reset the vdisk server will try to reset disk exclusive 525 * access by releasing any SCSI-2 reservation or resetting the disk. If these 526 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 527 * print a warning message. This default behavior can be changed by setting 528 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 529 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 530 * the service domain to panic. In both cases, the reset of the service domain 531 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 532 */ 533 static int vd_reset_access_failure = 0; 534 535 /* 536 * Tunable for backward compatibility. When this variable is set to B_TRUE, 537 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 538 * slice disks whether or not they have the "slice" option set. This is 539 * to provide a simple backward compatibility mechanism when upgrading 540 * the vds driver and using a domain configuration created before the 541 * "slice" option was available. 542 */ 543 static boolean_t vd_volume_force_slice = B_FALSE; 544 545 /* 546 * The label of disk images created with some earlier versions of the virtual 547 * disk software is not entirely correct and have an incorrect v_sanity field 548 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 549 * these images because we are now validating that the disk label (and the 550 * sanity) is correct when a disk image is opened. 551 * 552 * This tunable is set to false to not validate the sanity field and ensure 553 * compatibility. If the tunable is set to true, we will do a strict checking 554 * of the sanity but this can create compatibility problems with old disk 555 * images. 556 */ 557 static boolean_t vd_file_validate_sanity = B_FALSE; 558 559 /* 560 * When a backend is exported as a single-slice disk then we entirely fake 561 * its disk label. So it can be exported either with a VTOC label or with 562 * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all 563 * single-slice disks will be exported with a VTOC label; and if it is set 564 * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with 565 * an EFI label. 566 * 567 * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk 568 * or volume device then it will be exported with the same type of label as 569 * defined on the device. Otherwise if the backend is a file then it will 570 * exported with the disk label type set in the vd_file_slice_label variable. 571 * 572 * Note that if the backend size is greater than 1TB then it will always be 573 * exported with an EFI label no matter what the setting is. 574 */ 575 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK; 576 577 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC; 578 579 /* 580 * Tunable for backward compatibility. If this variable is set to B_TRUE then 581 * single-slice disks are exported as disks with only one slice instead of 582 * faking a complete disk partitioning. 583 */ 584 static boolean_t vd_slice_single_slice = B_FALSE; 585 586 /* 587 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 588 * 589 * Each supported major version should appear only once, paired with (and only 590 * with) its highest supported minor version number (as the protocol requires 591 * supporting all lower minor version numbers as well) 592 */ 593 static const vio_ver_t vds_version[] = {{1, 1}}; 594 static const size_t vds_num_versions = 595 sizeof (vds_version)/sizeof (vds_version[0]); 596 597 static void vd_free_dring_task(vd_t *vdp); 598 static int vd_setup_vd(vd_t *vd); 599 static int vd_setup_single_slice_disk(vd_t *vd); 600 static int vd_setup_mediainfo(vd_t *vd); 601 static boolean_t vd_enabled(vd_t *vd); 602 static ushort_t vd_lbl2cksum(struct dk_label *label); 603 static int vd_file_validate_geometry(vd_t *vd); 604 static boolean_t vd_file_is_iso_image(vd_t *vd); 605 static void vd_set_exported_operations(vd_t *vd); 606 static void vd_reset_access(vd_t *vd); 607 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 608 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 609 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 610 static void vds_driver_types_free(vds_t *vds); 611 static void vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom, 612 struct dk_label *label); 613 static void vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc, 614 struct dk_geom *geom); 615 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom); 616 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc); 617 618 extern int is_pseudo_device(dev_info_t *); 619 620 /* 621 * Function: 622 * vd_get_readable_size 623 * 624 * Description: 625 * Convert a given size in bytes to a human readable format in 626 * kilobytes, megabytes, gigabytes or terabytes. 627 * 628 * Parameters: 629 * full_size - the size to convert in bytes. 630 * size - the converted size. 631 * unit - the unit of the converted size: 'K' (kilobyte), 632 * 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte). 633 * 634 * Return Code: 635 * none 636 */ 637 void 638 vd_get_readable_size(size_t full_size, size_t *size, char *unit) 639 { 640 if (full_size < (1ULL << 20)) { 641 *size = full_size >> 10; 642 *unit = 'K'; /* Kilobyte */ 643 } else if (full_size < (1ULL << 30)) { 644 *size = full_size >> 20; 645 *unit = 'M'; /* Megabyte */ 646 } else if (full_size < (1ULL << 40)) { 647 *size = full_size >> 30; 648 *unit = 'G'; /* Gigabyte */ 649 } else { 650 *size = full_size >> 40; 651 *unit = 'T'; /* Terabyte */ 652 } 653 } 654 655 /* 656 * Function: 657 * vd_file_rw 658 * 659 * Description: 660 * Read or write to a disk on file. 661 * 662 * Parameters: 663 * vd - disk on which the operation is performed. 664 * slice - slice on which the operation is performed, 665 * VD_SLICE_NONE indicates that the operation 666 * is done using an absolute disk offset. 667 * operation - operation to execute: read (VD_OP_BREAD) or 668 * write (VD_OP_BWRITE). 669 * data - buffer where data are read to or written from. 670 * blk - starting block for the operation. 671 * len - number of bytes to read or write. 672 * 673 * Return Code: 674 * n >= 0 - success, n indicates the number of bytes read 675 * or written. 676 * -1 - error. 677 */ 678 static ssize_t 679 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk, 680 size_t len) 681 { 682 caddr_t maddr; 683 size_t offset, maxlen, moffset, mlen, n; 684 uint_t smflags; 685 enum seg_rw srw; 686 687 ASSERT(vd->file); 688 ASSERT(len > 0); 689 690 /* 691 * If a file is exported as a slice then we don't care about the vtoc. 692 * In that case, the vtoc is a fake mainly to make newfs happy and we 693 * handle any I/O as a raw disk access so that we can have access to the 694 * entire backend. 695 */ 696 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 697 /* raw disk access */ 698 offset = blk * DEV_BSIZE; 699 if (offset >= vd->file_size) { 700 /* offset past the end of the disk */ 701 PR0("offset (0x%lx) >= fsize (0x%lx)", 702 offset, vd->file_size); 703 return (0); 704 } 705 maxlen = vd->file_size - offset; 706 } else { 707 ASSERT(slice >= 0 && slice < V_NUMPAR); 708 709 /* 710 * v1.0 vDisk clients depended on the server not verifying 711 * the label of a unformatted disk. This "feature" is 712 * maintained for backward compatibility but all versions 713 * from v1.1 onwards must do the right thing. 714 */ 715 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 716 vio_ver_is_supported(vd->version, 1, 1)) { 717 (void) vd_file_validate_geometry(vd); 718 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 719 PR0("Unknown disk label, can't do I/O " 720 "from slice %d", slice); 721 return (-1); 722 } 723 } 724 725 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 726 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 727 } else { 728 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 729 ASSERT(vd->vdisk_block_size == DEV_BSIZE); 730 } 731 732 if (blk >= vd->slices[slice].nblocks) { 733 /* address past the end of the slice */ 734 PR0("req_addr (0x%lx) >= psize (0x%lx)", 735 blk, vd->slices[slice].nblocks); 736 return (0); 737 } 738 739 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 740 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 741 } 742 743 /* 744 * If the requested size is greater than the size 745 * of the partition, truncate the read/write. 746 */ 747 if (len > maxlen) { 748 PR0("I/O size truncated to %lu bytes from %lu bytes", 749 maxlen, len); 750 len = maxlen; 751 } 752 753 /* 754 * We have to ensure that we are reading/writing into the mmap 755 * range. If we have a partial disk image (e.g. an image of 756 * s0 instead s2) the system can try to access slices that 757 * are not included into the disk image. 758 */ 759 if ((offset + len) > vd->file_size) { 760 PR0("offset + nbytes (0x%lx + 0x%lx) > " 761 "file_size (0x%lx)", offset, len, vd->file_size); 762 return (-1); 763 } 764 765 srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE; 766 smflags = (operation == VD_OP_BREAD)? 0 : 767 (SM_WRITE | vd_file_write_flags); 768 n = len; 769 770 do { 771 /* 772 * segmap_getmapflt() returns a MAXBSIZE chunk which is 773 * MAXBSIZE aligned. 774 */ 775 moffset = offset & MAXBOFFSET; 776 mlen = MIN(MAXBSIZE - moffset, n); 777 maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset, 778 mlen, 1, srw); 779 /* 780 * Fault in the pages so we can check for error and ensure 781 * that we can safely used the mapped address. 782 */ 783 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 784 F_SOFTLOCK, srw) != 0) { 785 (void) segmap_release(segkmap, maddr, 0); 786 return (-1); 787 } 788 789 if (operation == VD_OP_BREAD) 790 bcopy(maddr + moffset, data, mlen); 791 else 792 bcopy(data, maddr + moffset, mlen); 793 794 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 795 F_SOFTUNLOCK, srw) != 0) { 796 (void) segmap_release(segkmap, maddr, 0); 797 return (-1); 798 } 799 if (segmap_release(segkmap, maddr, smflags) != 0) 800 return (-1); 801 n -= mlen; 802 offset += mlen; 803 data += mlen; 804 805 } while (n > 0); 806 807 return (len); 808 } 809 810 /* 811 * Function: 812 * vd_build_default_label 813 * 814 * Description: 815 * Return a default label for a given disk size. This is used when the disk 816 * does not have a valid VTOC so that the user can get a valid default 817 * configuration. The default label has all slice sizes set to 0 (except 818 * slice 2 which is the entire disk) to force the user to write a valid 819 * label onto the disk image. 820 * 821 * Parameters: 822 * disk_size - the disk size in bytes 823 * label - the returned default label. 824 * 825 * Return Code: 826 * none. 827 */ 828 static void 829 vd_build_default_label(size_t disk_size, struct dk_label *label) 830 { 831 size_t size; 832 char unit; 833 834 bzero(label, sizeof (struct dk_label)); 835 836 /* 837 * We must have a resonable number of cylinders and sectors so 838 * that newfs can run using default values. 839 * 840 * if (disk_size < 2MB) 841 * phys_cylinders = disk_size / 100K 842 * else 843 * phys_cylinders = disk_size / 300K 844 * 845 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders 846 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0; 847 * data_cylinders = phys_cylinders - alt_cylinders 848 * 849 * sectors = disk_size / (phys_cylinders * blk_size) 850 * 851 * The file size test is an attempt to not have too few cylinders 852 * for a small file, or so many on a big file that you waste space 853 * for backup superblocks or cylinder group structures. 854 */ 855 if (disk_size < (2 * 1024 * 1024)) 856 label->dkl_pcyl = disk_size / (100 * 1024); 857 else 858 label->dkl_pcyl = disk_size / (300 * 1024); 859 860 if (label->dkl_pcyl == 0) 861 label->dkl_pcyl = 1; 862 863 label->dkl_acyl = 0; 864 865 if (label->dkl_pcyl > 2) 866 label->dkl_acyl = 2; 867 868 label->dkl_nsect = disk_size / (DEV_BSIZE * label->dkl_pcyl); 869 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 870 label->dkl_nhead = 1; 871 label->dkl_write_reinstruct = 0; 872 label->dkl_read_reinstruct = 0; 873 label->dkl_rpm = 7200; 874 label->dkl_apc = 0; 875 label->dkl_intrlv = 0; 876 877 PR0("requested disk size: %ld bytes\n", disk_size); 878 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 879 label->dkl_nhead, label->dkl_nsect); 880 PR0("provided disk size: %ld bytes\n", (uint64_t) 881 (label->dkl_pcyl * label->dkl_nhead * 882 label->dkl_nsect * DEV_BSIZE)); 883 884 vd_get_readable_size(disk_size, &size, &unit); 885 886 /* 887 * We must have a correct label name otherwise format(1m) will 888 * not recognized the disk as labeled. 889 */ 890 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 891 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 892 size, unit, 893 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 894 label->dkl_nsect); 895 896 /* default VTOC */ 897 label->dkl_vtoc.v_version = V_VERSION; 898 label->dkl_vtoc.v_nparts = V_NUMPAR; 899 label->dkl_vtoc.v_sanity = VTOC_SANE; 900 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 901 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 902 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 903 label->dkl_nhead * label->dkl_nsect; 904 label->dkl_magic = DKL_MAGIC; 905 label->dkl_cksum = vd_lbl2cksum(label); 906 } 907 908 /* 909 * Function: 910 * vd_file_set_vtoc 911 * 912 * Description: 913 * Set the vtoc of a disk image by writing the label and backup 914 * labels into the disk image backend. 915 * 916 * Parameters: 917 * vd - disk on which the operation is performed. 918 * label - the data to be written. 919 * 920 * Return Code: 921 * 0 - success. 922 * n > 0 - error, n indicates the errno code. 923 */ 924 static int 925 vd_file_set_vtoc(vd_t *vd, struct dk_label *label) 926 { 927 int blk, sec, cyl, head, cnt; 928 929 ASSERT(vd->file); 930 931 if (VD_FILE_LABEL_WRITE(vd, label) < 0) { 932 PR0("fail to write disk label"); 933 return (EIO); 934 } 935 936 /* 937 * Backup labels are on the last alternate cylinder's 938 * first five odd sectors. 939 */ 940 if (label->dkl_acyl == 0) { 941 PR0("no alternate cylinder, can not store backup labels"); 942 return (0); 943 } 944 945 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 946 head = label->dkl_nhead - 1; 947 948 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 949 (head * label->dkl_nsect); 950 951 /* 952 * Write the backup labels. Make sure we don't try to write past 953 * the last cylinder. 954 */ 955 sec = 1; 956 957 for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) { 958 959 if (sec >= label->dkl_nsect) { 960 PR0("not enough sector to store all backup labels"); 961 return (0); 962 } 963 964 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label, 965 blk + sec, sizeof (struct dk_label)) < 0) { 966 PR0("error writing backup label at block %d\n", 967 blk + sec); 968 return (EIO); 969 } 970 971 PR1("wrote backup label at block %d\n", blk + sec); 972 973 sec += 2; 974 } 975 976 return (0); 977 } 978 979 /* 980 * Function: 981 * vd_file_get_devid_block 982 * 983 * Description: 984 * Return the block number where the device id is stored. 985 * 986 * Parameters: 987 * vd - disk on which the operation is performed. 988 * blkp - pointer to the block number 989 * 990 * Return Code: 991 * 0 - success 992 * ENOSPC - disk has no space to store a device id 993 */ 994 static int 995 vd_file_get_devid_block(vd_t *vd, size_t *blkp) 996 { 997 diskaddr_t spc, head, cyl; 998 999 ASSERT(vd->file); 1000 1001 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 1002 /* 1003 * If no label is defined we don't know where to find 1004 * a device id. 1005 */ 1006 return (ENOSPC); 1007 } 1008 1009 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1010 /* 1011 * For an EFI disk, the devid is at the beginning of 1012 * the reserved slice 1013 */ 1014 if (vd->efi_reserved == -1) { 1015 PR0("EFI disk has no reserved slice"); 1016 return (ENOSPC); 1017 } 1018 1019 *blkp = vd->slices[vd->efi_reserved].start; 1020 return (0); 1021 } 1022 1023 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1024 1025 /* this geometry doesn't allow us to have a devid */ 1026 if (vd->dk_geom.dkg_acyl < 2) { 1027 PR0("not enough alternate cylinder available for devid " 1028 "(acyl=%u)", vd->dk_geom.dkg_acyl); 1029 return (ENOSPC); 1030 } 1031 1032 /* the devid is in on the track next to the last cylinder */ 1033 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 1034 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1035 head = vd->dk_geom.dkg_nhead - 1; 1036 1037 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 1038 (head * vd->dk_geom.dkg_nsect) + 1; 1039 1040 return (0); 1041 } 1042 1043 /* 1044 * Return the checksum of a disk block containing an on-disk devid. 1045 */ 1046 static uint_t 1047 vd_dkdevid2cksum(struct dk_devid *dkdevid) 1048 { 1049 uint_t chksum, *ip; 1050 int i; 1051 1052 chksum = 0; 1053 ip = (uint_t *)dkdevid; 1054 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 1055 chksum ^= ip[i]; 1056 1057 return (chksum); 1058 } 1059 1060 /* 1061 * Function: 1062 * vd_file_read_devid 1063 * 1064 * Description: 1065 * Read the device id stored on a disk image. 1066 * 1067 * Parameters: 1068 * vd - disk on which the operation is performed. 1069 * devid - the return address of the device ID. 1070 * 1071 * Return Code: 1072 * 0 - success 1073 * EIO - I/O error while trying to access the disk image 1074 * EINVAL - no valid device id was found 1075 * ENOSPC - disk has no space to store a device id 1076 */ 1077 static int 1078 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid) 1079 { 1080 struct dk_devid *dkdevid; 1081 size_t blk; 1082 uint_t chksum; 1083 int status, sz; 1084 1085 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 1086 return (status); 1087 1088 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1089 1090 /* get the devid */ 1091 if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 1092 DEV_BSIZE)) < 0) { 1093 PR0("error reading devid block at %lu", blk); 1094 status = EIO; 1095 goto done; 1096 } 1097 1098 /* validate the revision */ 1099 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1100 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1101 PR0("invalid devid found at block %lu (bad revision)", blk); 1102 status = EINVAL; 1103 goto done; 1104 } 1105 1106 /* compute checksum */ 1107 chksum = vd_dkdevid2cksum(dkdevid); 1108 1109 /* compare the checksums */ 1110 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1111 PR0("invalid devid found at block %lu (bad checksum)", blk); 1112 status = EINVAL; 1113 goto done; 1114 } 1115 1116 /* validate the device id */ 1117 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1118 PR0("invalid devid found at block %lu", blk); 1119 status = EINVAL; 1120 goto done; 1121 } 1122 1123 PR1("devid read at block %lu", blk); 1124 1125 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1126 *devid = kmem_alloc(sz, KM_SLEEP); 1127 bcopy(&dkdevid->dkd_devid, *devid, sz); 1128 1129 done: 1130 kmem_free(dkdevid, DEV_BSIZE); 1131 return (status); 1132 1133 } 1134 1135 /* 1136 * Function: 1137 * vd_file_write_devid 1138 * 1139 * Description: 1140 * Write a device id into disk image. 1141 * 1142 * Parameters: 1143 * vd - disk on which the operation is performed. 1144 * devid - the device ID to store. 1145 * 1146 * Return Code: 1147 * 0 - success 1148 * EIO - I/O error while trying to access the disk image 1149 * ENOSPC - disk has no space to store a device id 1150 */ 1151 static int 1152 vd_file_write_devid(vd_t *vd, ddi_devid_t devid) 1153 { 1154 struct dk_devid *dkdevid; 1155 uint_t chksum; 1156 size_t blk; 1157 int status; 1158 1159 if (devid == NULL) { 1160 /* nothing to write */ 1161 return (0); 1162 } 1163 1164 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 1165 return (status); 1166 1167 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1168 1169 /* set revision */ 1170 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1171 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1172 1173 /* copy devid */ 1174 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1175 1176 /* compute checksum */ 1177 chksum = vd_dkdevid2cksum(dkdevid); 1178 1179 /* set checksum */ 1180 DKD_FORMCHKSUM(chksum, dkdevid); 1181 1182 /* store the devid */ 1183 if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1184 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1185 PR0("Error writing devid block at %lu", blk); 1186 status = EIO; 1187 } else { 1188 PR1("devid written at block %lu", blk); 1189 status = 0; 1190 } 1191 1192 kmem_free(dkdevid, DEV_BSIZE); 1193 return (status); 1194 } 1195 1196 /* 1197 * Function: 1198 * vd_do_scsi_rdwr 1199 * 1200 * Description: 1201 * Read or write to a SCSI disk using an absolute disk offset. 1202 * 1203 * Parameters: 1204 * vd - disk on which the operation is performed. 1205 * operation - operation to execute: read (VD_OP_BREAD) or 1206 * write (VD_OP_BWRITE). 1207 * data - buffer where data are read to or written from. 1208 * blk - starting block for the operation. 1209 * len - number of bytes to read or write. 1210 * 1211 * Return Code: 1212 * 0 - success 1213 * n != 0 - error. 1214 */ 1215 static int 1216 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1217 { 1218 struct uscsi_cmd ucmd; 1219 union scsi_cdb cdb; 1220 int nsectors, nblk; 1221 int max_sectors; 1222 int status, rval; 1223 1224 ASSERT(!vd->file); 1225 ASSERT(vd->vdisk_block_size > 0); 1226 1227 max_sectors = vd->max_xfer_sz; 1228 nblk = (len / vd->vdisk_block_size); 1229 1230 if (len % vd->vdisk_block_size != 0) 1231 return (EINVAL); 1232 1233 /* 1234 * Build and execute the uscsi ioctl. We build a group0, group1 1235 * or group4 command as necessary, since some targets 1236 * do not support group1 commands. 1237 */ 1238 while (nblk) { 1239 1240 bzero(&ucmd, sizeof (ucmd)); 1241 bzero(&cdb, sizeof (cdb)); 1242 1243 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1244 1245 /* 1246 * Some of the optical drives on sun4v machines are ATAPI 1247 * devices which use Group 1 Read/Write commands so we need 1248 * to explicitly check a flag which is set when a domain 1249 * is bound. 1250 */ 1251 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1252 FORMG0ADDR(&cdb, blk); 1253 FORMG0COUNT(&cdb, nsectors); 1254 ucmd.uscsi_cdblen = CDB_GROUP0; 1255 } else if (blk > 0xffffffff) { 1256 FORMG4LONGADDR(&cdb, blk); 1257 FORMG4COUNT(&cdb, nsectors); 1258 ucmd.uscsi_cdblen = CDB_GROUP4; 1259 cdb.scc_cmd |= SCMD_GROUP4; 1260 } else { 1261 FORMG1ADDR(&cdb, blk); 1262 FORMG1COUNT(&cdb, nsectors); 1263 ucmd.uscsi_cdblen = CDB_GROUP1; 1264 cdb.scc_cmd |= SCMD_GROUP1; 1265 } 1266 ucmd.uscsi_cdb = (caddr_t)&cdb; 1267 ucmd.uscsi_bufaddr = data; 1268 ucmd.uscsi_buflen = nsectors * vd->block_size; 1269 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1270 /* 1271 * Set flags so that the command is isolated from normal 1272 * commands and no error message is printed. 1273 */ 1274 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1275 1276 if (operation == VD_OP_BREAD) { 1277 cdb.scc_cmd |= SCMD_READ; 1278 ucmd.uscsi_flags |= USCSI_READ; 1279 } else { 1280 cdb.scc_cmd |= SCMD_WRITE; 1281 } 1282 1283 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1284 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1285 kcred, &rval); 1286 1287 if (status == 0) 1288 status = ucmd.uscsi_status; 1289 1290 if (status != 0) 1291 break; 1292 1293 /* 1294 * Check if partial DMA breakup is required. If so, reduce 1295 * the request size by half and retry the last request. 1296 */ 1297 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1298 max_sectors >>= 1; 1299 if (max_sectors <= 0) { 1300 status = EIO; 1301 break; 1302 } 1303 continue; 1304 } 1305 1306 if (ucmd.uscsi_resid != 0) { 1307 status = EIO; 1308 break; 1309 } 1310 1311 blk += nsectors; 1312 nblk -= nsectors; 1313 data += nsectors * vd->vdisk_block_size; /* SECSIZE */ 1314 } 1315 1316 return (status); 1317 } 1318 1319 /* 1320 * Function: 1321 * vd_scsi_rdwr 1322 * 1323 * Description: 1324 * Wrapper function to read or write to a SCSI disk using an absolute 1325 * disk offset. It checks the blocksize of the underlying device and, 1326 * if necessary, adjusts the buffers accordingly before calling 1327 * vd_do_scsi_rdwr() to do the actual read or write. 1328 * 1329 * Parameters: 1330 * vd - disk on which the operation is performed. 1331 * operation - operation to execute: read (VD_OP_BREAD) or 1332 * write (VD_OP_BWRITE). 1333 * data - buffer where data are read to or written from. 1334 * blk - starting block for the operation. 1335 * len - number of bytes to read or write. 1336 * 1337 * Return Code: 1338 * 0 - success 1339 * n != 0 - error. 1340 */ 1341 static int 1342 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1343 { 1344 int rv; 1345 1346 size_t pblk; /* physical device block number of data on device */ 1347 size_t delta; /* relative offset between pblk and vblk */ 1348 size_t pnblk; /* number of physical blocks to be read from device */ 1349 size_t plen; /* length of data to be read from physical device */ 1350 char *buf; /* buffer area to fit physical device's block size */ 1351 1352 if (vd->block_size == 0) { 1353 /* 1354 * The block size was not available during the attach, 1355 * try to update it now. 1356 */ 1357 if (vd_setup_mediainfo(vd) != 0) 1358 return (EIO); 1359 } 1360 1361 /* 1362 * If the vdisk block size and the block size of the underlying device 1363 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1364 * to create a buffer large enough to handle the device's block size 1365 * and adjust the block to be read from and the amount of data to 1366 * read to correspond with the device's block size. 1367 */ 1368 if (vd->vdisk_block_size == vd->block_size) 1369 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1370 1371 if (vd->vdisk_block_size > vd->block_size) 1372 return (EINVAL); 1373 1374 /* 1375 * Writing of physical block sizes larger than the virtual block size 1376 * is not supported. This would be added if/when support for guests 1377 * writing to DVDs is implemented. 1378 */ 1379 if (operation == VD_OP_BWRITE) 1380 return (ENOTSUP); 1381 1382 /* BEGIN CSTYLED */ 1383 /* 1384 * Below is a diagram showing the relationship between the physical 1385 * and virtual blocks. If the virtual blocks marked by 'X' below are 1386 * requested, then the physical blocks denoted by 'Y' are read. 1387 * 1388 * vblk 1389 * | vlen 1390 * |<--------------->| 1391 * v v 1392 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1393 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1394 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_block_size 1395 * : : : : 1396 * >:==:< delta : : 1397 * : : : : 1398 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1399 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1400 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->block_size 1401 * ^ ^ 1402 * |<--------------------->| 1403 * | plen 1404 * pblk 1405 */ 1406 /* END CSTYLED */ 1407 pblk = (vblk * vd->vdisk_block_size) / vd->block_size; 1408 delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size); 1409 pnblk = ((delta + vlen - 1) / vd->block_size) + 1; 1410 plen = pnblk * vd->block_size; 1411 1412 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1413 1414 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1415 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1416 bcopy(buf + delta, data, vlen); 1417 1418 kmem_free(buf, sizeof (caddr_t) * plen); 1419 1420 return (rv); 1421 } 1422 1423 /* 1424 * Function: 1425 * vd_slice_flabel_read 1426 * 1427 * Description: 1428 * This function simulates a read operation from the fake label of 1429 * a single-slice disk. 1430 * 1431 * Parameters: 1432 * vd - single-slice disk to read from 1433 * data - buffer where data should be read to 1434 * offset - offset in byte where the read should start 1435 * length - number of bytes to read 1436 * 1437 * Return Code: 1438 * n >= 0 - success, n indicates the number of bytes read 1439 * -1 - error 1440 */ 1441 static ssize_t 1442 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length) 1443 { 1444 size_t n = 0; 1445 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1446 1447 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1448 ASSERT(vd->flabel != NULL); 1449 1450 /* if offset is past the fake label limit there's nothing to read */ 1451 if (offset >= limit) 1452 return (0); 1453 1454 /* data with offset 0 to flabel_size are read from flabel */ 1455 if (offset < vd->flabel_size) { 1456 1457 if (offset + length <= vd->flabel_size) { 1458 bcopy(vd->flabel + offset, data, length); 1459 return (length); 1460 } 1461 1462 n = vd->flabel_size - offset; 1463 bcopy(vd->flabel + offset, data, n); 1464 data += n; 1465 } 1466 1467 /* data with offset from flabel_size to flabel_limit are all zeros */ 1468 if (offset + length <= limit) { 1469 bzero(data, length - n); 1470 return (length); 1471 } 1472 1473 bzero(data, limit - offset - n); 1474 return (limit - offset); 1475 } 1476 1477 /* 1478 * Function: 1479 * vd_slice_flabel_write 1480 * 1481 * Description: 1482 * This function simulates a write operation to the fake label of 1483 * a single-slice disk. Write operations are actually faked and return 1484 * success although the label is never changed. This is mostly to 1485 * simulate a successful label update. 1486 * 1487 * Parameters: 1488 * vd - single-slice disk to write to 1489 * data - buffer where data should be written from 1490 * offset - offset in byte where the write should start 1491 * length - number of bytes to written 1492 * 1493 * Return Code: 1494 * n >= 0 - success, n indicates the number of bytes written 1495 * -1 - error 1496 */ 1497 static ssize_t 1498 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length) 1499 { 1500 uint_t limit = vd->flabel_limit * DEV_BSIZE; 1501 struct dk_label *label; 1502 struct dk_geom geom; 1503 struct vtoc vtoc; 1504 1505 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1506 ASSERT(vd->flabel != NULL); 1507 1508 if (offset >= limit) 1509 return (0); 1510 1511 /* 1512 * If this is a request to overwrite the VTOC disk label, check that 1513 * the new label is similar to the previous one and return that the 1514 * write was successful, but note that nothing is actually overwritten. 1515 */ 1516 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1517 offset == 0 && length == DEV_BSIZE) { 1518 label = (struct dk_label *)data; 1519 1520 /* check that this is a valid label */ 1521 if (label->dkl_magic != DKL_MAGIC || 1522 label->dkl_cksum != vd_lbl2cksum(label)) 1523 return (-1); 1524 1525 /* check the vtoc and geometry */ 1526 vd_label_to_vtocgeom(label, &vtoc, &geom); 1527 if (vd_slice_geom_isvalid(vd, &geom) && 1528 vd_slice_vtoc_isvalid(vd, &vtoc)) 1529 return (length); 1530 } 1531 1532 /* fail any other write */ 1533 return (-1); 1534 } 1535 1536 /* 1537 * Function: 1538 * vd_slice_fake_rdwr 1539 * 1540 * Description: 1541 * This function simulates a raw read or write operation to a single-slice 1542 * disk. It only handles the faked part of the operation i.e. I/Os to 1543 * blocks which have no mapping with the vdisk backend (I/Os to the 1544 * beginning and to the end of the vdisk). 1545 * 1546 * The function returns 0 is the operation is completed and it has been 1547 * entirely handled as a fake read or write. In that case, lengthp points 1548 * to the number of bytes not read or written. Values returned by datap 1549 * and blkp are undefined. 1550 * 1551 * If the fake operation has succeeded but the read or write is not 1552 * complete (i.e. the read/write operation extends beyond the blocks 1553 * we fake) then the function returns EAGAIN and datap, blkp and lengthp 1554 * pointers points to the parameters for completing the operation. 1555 * 1556 * In case of an error, for example if the slice is empty or parameters 1557 * are invalid, then the function returns a non-zero value different 1558 * from EAGAIN. In that case, the returned values of datap, blkp and 1559 * lengthp are undefined. 1560 * 1561 * Parameters: 1562 * vd - single-slice disk on which the operation is performed 1563 * slice - slice on which the operation is performed, 1564 * VD_SLICE_NONE indicates that the operation 1565 * is done using an absolute disk offset. 1566 * operation - operation to execute: read (VD_OP_BREAD) or 1567 * write (VD_OP_BWRITE). 1568 * datap - pointer to the buffer where data are read to 1569 * or written from. Return the pointer where remaining 1570 * data have to be read to or written from. 1571 * blkp - pointer to the starting block for the operation. 1572 * Return the starting block relative to the vdisk 1573 * backend for the remaining operation. 1574 * lengthp - pointer to the number of bytes to read or write. 1575 * This should be a multiple of DEV_BSIZE. Return the 1576 * remaining number of bytes to read or write. 1577 * 1578 * Return Code: 1579 * 0 - read/write operation is completed 1580 * EAGAIN - read/write operation is not completed 1581 * other values - error 1582 */ 1583 static int 1584 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap, 1585 size_t *blkp, size_t *lengthp) 1586 { 1587 struct dk_label *label; 1588 caddr_t data; 1589 size_t blk, length, csize; 1590 size_t ablk, asize, aoff, alen; 1591 ssize_t n; 1592 int sec, status; 1593 1594 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 1595 ASSERT(slice != 0); 1596 1597 data = *datap; 1598 blk = *blkp; 1599 length = *lengthp; 1600 1601 /* 1602 * If this is not a raw I/O or an I/O from a full disk slice then 1603 * this is an I/O to/from an empty slice. 1604 */ 1605 if (slice != VD_SLICE_NONE && 1606 (slice != VD_ENTIRE_DISK_SLICE || 1607 vd->vdisk_label != VD_DISK_LABEL_VTOC) && 1608 (slice != VD_EFI_WD_SLICE || 1609 vd->vdisk_label != VD_DISK_LABEL_EFI)) { 1610 return (EIO); 1611 } 1612 1613 if (length % DEV_BSIZE != 0) 1614 return (EINVAL); 1615 1616 /* handle any I/O with the fake label */ 1617 if (operation == VD_OP_BWRITE) 1618 n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length); 1619 else 1620 n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length); 1621 1622 if (n == -1) 1623 return (EINVAL); 1624 1625 ASSERT(n % DEV_BSIZE == 0); 1626 1627 /* adjust I/O arguments */ 1628 data += n; 1629 blk += n / DEV_BSIZE; 1630 length -= n; 1631 1632 /* check if there's something else to process */ 1633 if (length == 0) { 1634 status = 0; 1635 goto done; 1636 } 1637 1638 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 1639 slice == VD_ENTIRE_DISK_SLICE) { 1640 status = EAGAIN; 1641 goto done; 1642 } 1643 1644 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 1645 asize = EFI_MIN_RESV_SIZE + 33; 1646 ablk = vd->vdisk_size - asize; 1647 } else { 1648 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 1649 ASSERT(vd->dk_geom.dkg_apc == 0); 1650 1651 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 1652 ablk = vd->dk_geom.dkg_ncyl * csize; 1653 asize = vd->dk_geom.dkg_acyl * csize; 1654 } 1655 1656 alen = length / DEV_BSIZE; 1657 aoff = blk; 1658 1659 /* if we have reached the last block then the I/O is completed */ 1660 if (aoff == ablk + asize) { 1661 status = 0; 1662 goto done; 1663 } 1664 1665 /* if we are past the last block then return an error */ 1666 if (aoff > ablk + asize) 1667 return (EIO); 1668 1669 /* check if there is any I/O to end of the disk */ 1670 if (aoff + alen < ablk) { 1671 status = EAGAIN; 1672 goto done; 1673 } 1674 1675 /* we don't allow any write to the end of the disk */ 1676 if (operation == VD_OP_BWRITE) 1677 return (EIO); 1678 1679 if (aoff < ablk) { 1680 alen -= (ablk - aoff); 1681 aoff = ablk; 1682 } 1683 1684 if (aoff + alen > ablk + asize) { 1685 alen = ablk + asize - aoff; 1686 } 1687 1688 alen *= DEV_BSIZE; 1689 1690 if (operation == VD_OP_BREAD) { 1691 bzero(data + (aoff - blk) * DEV_BSIZE, alen); 1692 1693 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 1694 /* check if we read backup labels */ 1695 label = VD_LABEL_VTOC(vd); 1696 ablk += (label->dkl_acyl - 1) * csize + 1697 (label->dkl_nhead - 1) * label->dkl_nsect; 1698 1699 for (sec = 1; (sec < 5 * 2 + 1); sec += 2) { 1700 1701 if (ablk + sec >= blk && 1702 ablk + sec < blk + (length / DEV_BSIZE)) { 1703 bcopy(label, data + 1704 (ablk + sec - blk) * DEV_BSIZE, 1705 sizeof (struct dk_label)); 1706 } 1707 } 1708 } 1709 } 1710 1711 length -= alen; 1712 1713 status = (length == 0)? 0: EAGAIN; 1714 1715 done: 1716 ASSERT(length == 0 || blk >= vd->flabel_limit); 1717 1718 /* 1719 * Return the parameters for the remaining I/O. The starting block is 1720 * adjusted so that it is relative to the vdisk backend. 1721 */ 1722 *datap = data; 1723 *blkp = blk - vd->flabel_limit; 1724 *lengthp = length; 1725 1726 return (status); 1727 } 1728 1729 /* 1730 * Return Values 1731 * EINPROGRESS - operation was successfully started 1732 * EIO - encountered LDC (aka. task error) 1733 * 0 - operation completed successfully 1734 * 1735 * Side Effect 1736 * sets request->status = <disk operation status> 1737 */ 1738 static int 1739 vd_start_bio(vd_task_t *task) 1740 { 1741 int rv, status = 0; 1742 vd_t *vd = task->vd; 1743 vd_dring_payload_t *request = task->request; 1744 struct buf *buf = &task->buf; 1745 uint8_t mtype; 1746 int slice; 1747 char *bufaddr = 0; 1748 size_t buflen; 1749 size_t offset, length, nbytes; 1750 1751 ASSERT(vd != NULL); 1752 ASSERT(request != NULL); 1753 1754 slice = request->slice; 1755 1756 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1757 ASSERT((request->operation == VD_OP_BREAD) || 1758 (request->operation == VD_OP_BWRITE)); 1759 1760 if (request->nbytes == 0) { 1761 /* no service for trivial requests */ 1762 request->status = EINVAL; 1763 return (0); 1764 } 1765 1766 PR1("%s %lu bytes at block %lu", 1767 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1768 request->nbytes, request->addr); 1769 1770 /* 1771 * We have to check the open flags because the functions processing 1772 * the read/write request will not do it. 1773 */ 1774 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 1775 PR0("write fails because backend is opened read-only"); 1776 request->nbytes = 0; 1777 request->status = EROFS; 1778 return (0); 1779 } 1780 1781 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 1782 1783 /* Map memory exported by client */ 1784 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 1785 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 1786 &bufaddr, NULL); 1787 if (status != 0) { 1788 PR0("ldc_mem_map() returned err %d ", status); 1789 return (EIO); 1790 } 1791 1792 /* 1793 * The buffer size has to be 8-byte aligned, so the client should have 1794 * sent a buffer which size is roundup to the next 8-byte aligned value. 1795 */ 1796 buflen = P2ROUNDUP(request->nbytes, 8); 1797 1798 status = ldc_mem_acquire(task->mhdl, 0, buflen); 1799 if (status != 0) { 1800 (void) ldc_mem_unmap(task->mhdl); 1801 PR0("ldc_mem_acquire() returned err %d ", status); 1802 return (EIO); 1803 } 1804 1805 offset = request->addr; 1806 nbytes = request->nbytes; 1807 length = nbytes; 1808 1809 /* default number of byte returned by the I/O */ 1810 request->nbytes = 0; 1811 1812 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 1813 1814 if (slice != 0) { 1815 /* handle any fake I/O */ 1816 rv = vd_slice_fake_rdwr(vd, slice, request->operation, 1817 &bufaddr, &offset, &length); 1818 1819 /* record the number of bytes from the fake I/O */ 1820 request->nbytes = nbytes - length; 1821 1822 if (rv == 0) { 1823 request->status = 0; 1824 goto io_done; 1825 } 1826 1827 if (rv != EAGAIN) { 1828 request->nbytes = 0; 1829 request->status = EIO; 1830 goto io_done; 1831 } 1832 1833 /* 1834 * If we return with EAGAIN then this means that there 1835 * are still data to read or write. 1836 */ 1837 ASSERT(length != 0); 1838 1839 /* 1840 * We need to continue the I/O from the slice backend to 1841 * complete the request. The variables bufaddr, offset 1842 * and length have been adjusted to have the right 1843 * information to do the remaining I/O from the backend. 1844 * The backend is entirely mapped to slice 0 so we just 1845 * have to complete the I/O from that slice. 1846 */ 1847 slice = 0; 1848 } 1849 1850 } else if ((slice == VD_SLICE_NONE) && (!vd->file)) { 1851 1852 /* 1853 * This is not a disk image so it is a real disk. We 1854 * assume that the underlying device driver supports 1855 * USCSICMD ioctls. This is the case of all SCSI devices 1856 * (sd, ssd...). 1857 * 1858 * In the future if we have non-SCSI disks we would need 1859 * to invoke the appropriate function to do I/O using an 1860 * absolute disk offset (for example using DIOCTL_RWCMD 1861 * for IDE disks). 1862 */ 1863 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset, 1864 length); 1865 if (rv != 0) { 1866 request->status = EIO; 1867 } else { 1868 request->nbytes = length; 1869 request->status = 0; 1870 } 1871 goto io_done; 1872 } 1873 1874 /* Start the block I/O */ 1875 if (vd->file) { 1876 rv = vd_file_rw(vd, slice, request->operation, bufaddr, offset, 1877 length); 1878 if (rv < 0) { 1879 request->nbytes = 0; 1880 request->status = EIO; 1881 } else { 1882 request->nbytes += rv; 1883 request->status = 0; 1884 } 1885 } else { 1886 bioinit(buf); 1887 buf->b_flags = B_BUSY; 1888 buf->b_bcount = length; 1889 buf->b_lblkno = offset; 1890 buf->b_bufsize = buflen; 1891 buf->b_edev = vd->dev[slice]; 1892 buf->b_un.b_addr = bufaddr; 1893 buf->b_flags |= (request->operation == VD_OP_BREAD)? 1894 B_READ : B_WRITE; 1895 1896 request->status = ldi_strategy(vd->ldi_handle[slice], buf); 1897 1898 /* 1899 * This is to indicate to the caller that the request 1900 * needs to be finished by vd_complete_bio() by calling 1901 * biowait() there and waiting for that to return before 1902 * triggering the notification of the vDisk client. 1903 * 1904 * This is necessary when writing to real disks as 1905 * otherwise calls to ldi_strategy() would be serialized 1906 * behind the calls to biowait() and performance would 1907 * suffer. 1908 */ 1909 if (request->status == 0) 1910 return (EINPROGRESS); 1911 1912 biofini(buf); 1913 } 1914 1915 io_done: 1916 /* Clean up after error or completion */ 1917 rv = ldc_mem_release(task->mhdl, 0, buflen); 1918 if (rv) { 1919 PR0("ldc_mem_release() returned err %d ", rv); 1920 status = EIO; 1921 } 1922 rv = ldc_mem_unmap(task->mhdl); 1923 if (rv) { 1924 PR0("ldc_mem_unmap() returned err %d ", rv); 1925 status = EIO; 1926 } 1927 1928 return (status); 1929 } 1930 1931 /* 1932 * This function should only be called from vd_notify to ensure that requests 1933 * are responded to in the order that they are received. 1934 */ 1935 static int 1936 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 1937 { 1938 int status; 1939 size_t nbytes; 1940 1941 do { 1942 nbytes = msglen; 1943 status = ldc_write(ldc_handle, msg, &nbytes); 1944 if (status != EWOULDBLOCK) 1945 break; 1946 drv_usecwait(vds_ldc_delay); 1947 } while (status == EWOULDBLOCK); 1948 1949 if (status != 0) { 1950 if (status != ECONNRESET) 1951 PR0("ldc_write() returned errno %d", status); 1952 return (status); 1953 } else if (nbytes != msglen) { 1954 PR0("ldc_write() performed only partial write"); 1955 return (EIO); 1956 } 1957 1958 PR1("SENT %lu bytes", msglen); 1959 return (0); 1960 } 1961 1962 static void 1963 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 1964 { 1965 mutex_enter(&vd->lock); 1966 vd->reset_state = B_TRUE; 1967 vd->reset_ldc = reset_ldc; 1968 mutex_exit(&vd->lock); 1969 } 1970 1971 /* 1972 * Reset the state of the connection with a client, if needed; reset the LDC 1973 * transport as well, if needed. This function should only be called from the 1974 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 1975 */ 1976 static void 1977 vd_reset_if_needed(vd_t *vd) 1978 { 1979 int status = 0; 1980 1981 mutex_enter(&vd->lock); 1982 if (!vd->reset_state) { 1983 ASSERT(!vd->reset_ldc); 1984 mutex_exit(&vd->lock); 1985 return; 1986 } 1987 mutex_exit(&vd->lock); 1988 1989 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 1990 1991 /* 1992 * Let any asynchronous I/O complete before possibly pulling the rug 1993 * out from under it; defer checking vd->reset_ldc, as one of the 1994 * asynchronous tasks might set it 1995 */ 1996 ddi_taskq_wait(vd->completionq); 1997 1998 if (vd->file) { 1999 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 2000 if (status) { 2001 PR0("VOP_FSYNC returned errno %d", status); 2002 } 2003 } 2004 2005 if ((vd->initialized & VD_DRING) && 2006 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 2007 PR0("ldc_mem_dring_unmap() returned errno %d", status); 2008 2009 vd_free_dring_task(vd); 2010 2011 /* Free the staging buffer for msgs */ 2012 if (vd->vio_msgp != NULL) { 2013 kmem_free(vd->vio_msgp, vd->max_msglen); 2014 vd->vio_msgp = NULL; 2015 } 2016 2017 /* Free the inband message buffer */ 2018 if (vd->inband_task.msg != NULL) { 2019 kmem_free(vd->inband_task.msg, vd->max_msglen); 2020 vd->inband_task.msg = NULL; 2021 } 2022 2023 mutex_enter(&vd->lock); 2024 2025 if (vd->reset_ldc) 2026 PR0("taking down LDC channel"); 2027 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 2028 PR0("ldc_down() returned errno %d", status); 2029 2030 /* Reset exclusive access rights */ 2031 vd_reset_access(vd); 2032 2033 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 2034 vd->state = VD_STATE_INIT; 2035 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 2036 2037 /* Allocate the staging buffer */ 2038 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 2039 2040 PR0("calling ldc_up\n"); 2041 (void) ldc_up(vd->ldc_handle); 2042 2043 vd->reset_state = B_FALSE; 2044 vd->reset_ldc = B_FALSE; 2045 2046 mutex_exit(&vd->lock); 2047 } 2048 2049 static void vd_recv_msg(void *arg); 2050 2051 static void 2052 vd_mark_in_reset(vd_t *vd) 2053 { 2054 int status; 2055 2056 PR0("vd_mark_in_reset: marking vd in reset\n"); 2057 2058 vd_need_reset(vd, B_FALSE); 2059 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 2060 if (status == DDI_FAILURE) { 2061 PR0("cannot schedule task to recv msg\n"); 2062 vd_need_reset(vd, B_TRUE); 2063 return; 2064 } 2065 } 2066 2067 static int 2068 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 2069 { 2070 boolean_t accepted; 2071 int status; 2072 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 2073 2074 if (vd->reset_state) 2075 return (0); 2076 2077 /* Acquire the element */ 2078 if (!vd->reset_state && 2079 (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 2080 if (status == ECONNRESET) { 2081 vd_mark_in_reset(vd); 2082 return (0); 2083 } else { 2084 PR0("ldc_mem_dring_acquire() returned errno %d", 2085 status); 2086 return (status); 2087 } 2088 } 2089 2090 /* Set the element's status and mark it done */ 2091 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 2092 if (accepted) { 2093 elem->payload.nbytes = elem_nbytes; 2094 elem->payload.status = elem_status; 2095 elem->hdr.dstate = VIO_DESC_DONE; 2096 } else { 2097 /* Perhaps client timed out waiting for I/O... */ 2098 PR0("element %u no longer \"accepted\"", idx); 2099 VD_DUMP_DRING_ELEM(elem); 2100 } 2101 /* Release the element */ 2102 if (!vd->reset_state && 2103 (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 2104 if (status == ECONNRESET) { 2105 vd_mark_in_reset(vd); 2106 return (0); 2107 } else { 2108 PR0("ldc_mem_dring_release() returned errno %d", 2109 status); 2110 return (status); 2111 } 2112 } 2113 2114 return (accepted ? 0 : EINVAL); 2115 } 2116 2117 /* 2118 * Return Values 2119 * 0 - operation completed successfully 2120 * EIO - encountered LDC / task error 2121 * 2122 * Side Effect 2123 * sets request->status = <disk operation status> 2124 */ 2125 static int 2126 vd_complete_bio(vd_task_t *task) 2127 { 2128 int status = 0; 2129 int rv = 0; 2130 vd_t *vd = task->vd; 2131 vd_dring_payload_t *request = task->request; 2132 struct buf *buf = &task->buf; 2133 2134 2135 ASSERT(vd != NULL); 2136 ASSERT(request != NULL); 2137 ASSERT(task->msg != NULL); 2138 ASSERT(task->msglen >= sizeof (*task->msg)); 2139 ASSERT(!vd->file); 2140 ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice && 2141 vd->vdisk_type == VD_DISK_TYPE_SLICE)); 2142 2143 /* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */ 2144 request->status = biowait(buf); 2145 2146 /* Update the number of bytes read/written */ 2147 request->nbytes += buf->b_bcount - buf->b_resid; 2148 2149 /* Release the buffer */ 2150 if (!vd->reset_state) 2151 status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize); 2152 if (status) { 2153 PR0("ldc_mem_release() returned errno %d copying to " 2154 "client", status); 2155 if (status == ECONNRESET) { 2156 vd_mark_in_reset(vd); 2157 } 2158 rv = EIO; 2159 } 2160 2161 /* Unmap the memory, even if in reset */ 2162 status = ldc_mem_unmap(task->mhdl); 2163 if (status) { 2164 PR0("ldc_mem_unmap() returned errno %d copying to client", 2165 status); 2166 if (status == ECONNRESET) { 2167 vd_mark_in_reset(vd); 2168 } 2169 rv = EIO; 2170 } 2171 2172 biofini(buf); 2173 2174 return (rv); 2175 } 2176 2177 /* 2178 * Description: 2179 * This function is called by the two functions called by a taskq 2180 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 2181 * message to the client. 2182 * 2183 * Parameters: 2184 * arg - opaque pointer to structure containing task to be completed 2185 * 2186 * Return Values 2187 * None 2188 */ 2189 static void 2190 vd_notify(vd_task_t *task) 2191 { 2192 int status; 2193 2194 ASSERT(task != NULL); 2195 ASSERT(task->vd != NULL); 2196 2197 if (task->vd->reset_state) 2198 return; 2199 2200 /* 2201 * Send the "ack" or "nack" back to the client; if sending the message 2202 * via LDC fails, arrange to reset both the connection state and LDC 2203 * itself 2204 */ 2205 PR2("Sending %s", 2206 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 2207 2208 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 2209 switch (status) { 2210 case 0: 2211 break; 2212 case ECONNRESET: 2213 vd_mark_in_reset(task->vd); 2214 break; 2215 default: 2216 PR0("initiating full reset"); 2217 vd_need_reset(task->vd, B_TRUE); 2218 break; 2219 } 2220 2221 DTRACE_PROBE1(task__end, vd_task_t *, task); 2222 } 2223 2224 /* 2225 * Description: 2226 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 2227 * the vDisk client 2228 * 2229 * Parameters: 2230 * task - structure containing the request sent from client 2231 * 2232 * Return Values 2233 * None 2234 */ 2235 static void 2236 vd_complete_notify(vd_task_t *task) 2237 { 2238 int status = 0; 2239 vd_t *vd = task->vd; 2240 vd_dring_payload_t *request = task->request; 2241 2242 /* Update the dring element for a dring client */ 2243 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 2244 status = vd_mark_elem_done(vd, task->index, 2245 request->status, request->nbytes); 2246 if (status == ECONNRESET) 2247 vd_mark_in_reset(vd); 2248 } 2249 2250 /* 2251 * If a transport error occurred while marking the element done or 2252 * previously while executing the task, arrange to "nack" the message 2253 * when the final task in the descriptor element range completes 2254 */ 2255 if ((status != 0) || (task->status != 0)) 2256 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 2257 2258 /* 2259 * Only the final task for a range of elements will respond to and 2260 * free the message 2261 */ 2262 if (task->type == VD_NONFINAL_RANGE_TASK) { 2263 return; 2264 } 2265 2266 vd_notify(task); 2267 } 2268 2269 /* 2270 * Description: 2271 * This is the basic completion function called to handle inband data 2272 * requests and handshake messages. All it needs to do is trigger a 2273 * message to the client that the request is completed. 2274 * 2275 * Parameters: 2276 * arg - opaque pointer to structure containing task to be completed 2277 * 2278 * Return Values 2279 * None 2280 */ 2281 static void 2282 vd_serial_notify(void *arg) 2283 { 2284 vd_task_t *task = (vd_task_t *)arg; 2285 2286 ASSERT(task != NULL); 2287 vd_notify(task); 2288 } 2289 2290 /* ARGSUSED */ 2291 static int 2292 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2293 { 2294 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 2295 return (0); 2296 } 2297 2298 /* ARGSUSED */ 2299 static int 2300 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2301 { 2302 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); 2303 return (0); 2304 } 2305 2306 static void 2307 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 2308 { 2309 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 2310 } 2311 2312 static void 2313 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 2314 { 2315 VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 2316 } 2317 2318 static int 2319 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2320 { 2321 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2322 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2323 size_t data_len; 2324 2325 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2326 if (vd_efi->length > data_len) 2327 return (EINVAL); 2328 2329 dk_efi->dki_lba = vd_efi->lba; 2330 dk_efi->dki_length = vd_efi->length; 2331 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 2332 return (0); 2333 } 2334 2335 static void 2336 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 2337 { 2338 int len; 2339 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2340 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2341 2342 len = vd_efi->length; 2343 DK_EFI2VD_EFI(dk_efi, vd_efi); 2344 kmem_free(dk_efi->dki_data, len); 2345 } 2346 2347 static int 2348 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2349 { 2350 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2351 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2352 size_t data_len; 2353 2354 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 2355 if (vd_efi->length > data_len) 2356 return (EINVAL); 2357 2358 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 2359 VD_EFI2DK_EFI(vd_efi, dk_efi); 2360 return (0); 2361 } 2362 2363 static void 2364 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 2365 { 2366 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 2367 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 2368 2369 kmem_free(dk_efi->dki_data, vd_efi->length); 2370 } 2371 2372 static int 2373 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 2374 { 2375 size_t vd_scsi_len; 2376 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2377 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2378 2379 /* check buffer size */ 2380 vd_scsi_len = VD_SCSI_SIZE; 2381 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 2382 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 2383 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 2384 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 2385 2386 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 2387 2388 if (vd_buf_len < vd_scsi_len) 2389 return (EINVAL); 2390 2391 /* set flags */ 2392 uscsi->uscsi_flags = vd_scsi_debug; 2393 2394 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 2395 uscsi->uscsi_flags |= USCSI_ISOLATE; 2396 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 2397 } 2398 2399 /* task attribute */ 2400 switch (vd_scsi->task_attribute) { 2401 case VD_SCSI_TASK_ACA: 2402 uscsi->uscsi_flags |= USCSI_HEAD; 2403 break; 2404 case VD_SCSI_TASK_HQUEUE: 2405 uscsi->uscsi_flags |= USCSI_HTAG; 2406 break; 2407 case VD_SCSI_TASK_ORDERED: 2408 uscsi->uscsi_flags |= USCSI_OTAG; 2409 break; 2410 default: 2411 uscsi->uscsi_flags |= USCSI_NOTAG; 2412 break; 2413 } 2414 2415 /* timeout */ 2416 uscsi->uscsi_timeout = vd_scsi->timeout; 2417 2418 /* cdb data */ 2419 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 2420 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 2421 2422 /* sense buffer */ 2423 if (vd_scsi->sense_len != 0) { 2424 uscsi->uscsi_flags |= USCSI_RQENABLE; 2425 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 2426 uscsi->uscsi_rqlen = vd_scsi->sense_len; 2427 } 2428 2429 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 2430 /* uscsi does not support read/write request */ 2431 return (EINVAL); 2432 } 2433 2434 /* request data-in */ 2435 if (vd_scsi->datain_len != 0) { 2436 uscsi->uscsi_flags |= USCSI_READ; 2437 uscsi->uscsi_buflen = vd_scsi->datain_len; 2438 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 2439 } 2440 2441 /* request data-out */ 2442 if (vd_scsi->dataout_len != 0) { 2443 uscsi->uscsi_buflen = vd_scsi->dataout_len; 2444 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 2445 } 2446 2447 return (0); 2448 } 2449 2450 static void 2451 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 2452 { 2453 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2454 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2455 2456 /* output fields */ 2457 vd_scsi->cmd_status = uscsi->uscsi_status; 2458 2459 /* sense data */ 2460 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2461 (uscsi->uscsi_status == STATUS_CHECK || 2462 uscsi->uscsi_status == STATUS_TERMINATED)) { 2463 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2464 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2465 vd_scsi->sense_len -= uscsi->uscsi_resid; 2466 else 2467 vd_scsi->sense_len = 0; 2468 } else { 2469 vd_scsi->sense_len = 0; 2470 } 2471 2472 if (uscsi->uscsi_status != STATUS_GOOD) { 2473 vd_scsi->dataout_len = 0; 2474 vd_scsi->datain_len = 0; 2475 return; 2476 } 2477 2478 if (uscsi->uscsi_flags & USCSI_READ) { 2479 /* request data (read) */ 2480 vd_scsi->datain_len -= uscsi->uscsi_resid; 2481 vd_scsi->dataout_len = 0; 2482 } else { 2483 /* request data (write) */ 2484 vd_scsi->datain_len = 0; 2485 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2486 } 2487 } 2488 2489 static ushort_t 2490 vd_lbl2cksum(struct dk_label *label) 2491 { 2492 int count; 2493 ushort_t sum, *sp; 2494 2495 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2496 sp = (ushort_t *)label; 2497 sum = 0; 2498 while (count--) { 2499 sum ^= *sp++; 2500 } 2501 2502 return (sum); 2503 } 2504 2505 /* 2506 * Copy information from a vtoc and dk_geom structures to a dk_label structure. 2507 */ 2508 static void 2509 vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom, 2510 struct dk_label *label) 2511 { 2512 int i; 2513 2514 ASSERT(vtoc->v_nparts == V_NUMPAR); 2515 ASSERT(vtoc->v_sanity == VTOC_SANE); 2516 2517 bzero(label, sizeof (struct dk_label)); 2518 2519 label->dkl_ncyl = geom->dkg_ncyl; 2520 label->dkl_acyl = geom->dkg_acyl; 2521 label->dkl_pcyl = geom->dkg_pcyl; 2522 label->dkl_nhead = geom->dkg_nhead; 2523 label->dkl_nsect = geom->dkg_nsect; 2524 label->dkl_intrlv = geom->dkg_intrlv; 2525 label->dkl_apc = geom->dkg_apc; 2526 label->dkl_rpm = geom->dkg_rpm; 2527 label->dkl_write_reinstruct = geom->dkg_write_reinstruct; 2528 label->dkl_read_reinstruct = geom->dkg_read_reinstruct; 2529 2530 label->dkl_vtoc.v_nparts = V_NUMPAR; 2531 label->dkl_vtoc.v_sanity = VTOC_SANE; 2532 label->dkl_vtoc.v_version = vtoc->v_version; 2533 for (i = 0; i < V_NUMPAR; i++) { 2534 label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 2535 label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; 2536 label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; 2537 label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / 2538 (label->dkl_nhead * label->dkl_nsect); 2539 label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; 2540 } 2541 2542 /* 2543 * The bootinfo array can not be copied with bcopy() because 2544 * elements are of type long in vtoc (so 64-bit) and of type 2545 * int in dk_vtoc (so 32-bit). 2546 */ 2547 label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2548 label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2549 label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2550 bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII); 2551 bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL); 2552 2553 /* re-compute checksum */ 2554 label->dkl_magic = DKL_MAGIC; 2555 label->dkl_cksum = vd_lbl2cksum(label); 2556 } 2557 2558 /* 2559 * Copy information from a dk_label structure to a vtoc and dk_geom structures. 2560 */ 2561 static void 2562 vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc, 2563 struct dk_geom *geom) 2564 { 2565 int i; 2566 2567 bzero(vtoc, sizeof (struct vtoc)); 2568 bzero(geom, sizeof (struct dk_geom)); 2569 2570 geom->dkg_ncyl = label->dkl_ncyl; 2571 geom->dkg_acyl = label->dkl_acyl; 2572 geom->dkg_nhead = label->dkl_nhead; 2573 geom->dkg_nsect = label->dkl_nsect; 2574 geom->dkg_intrlv = label->dkl_intrlv; 2575 geom->dkg_apc = label->dkl_apc; 2576 geom->dkg_rpm = label->dkl_rpm; 2577 geom->dkg_pcyl = label->dkl_pcyl; 2578 geom->dkg_write_reinstruct = label->dkl_write_reinstruct; 2579 geom->dkg_read_reinstruct = label->dkl_read_reinstruct; 2580 2581 vtoc->v_sanity = label->dkl_vtoc.v_sanity; 2582 vtoc->v_version = label->dkl_vtoc.v_version; 2583 vtoc->v_sectorsz = DEV_BSIZE; 2584 vtoc->v_nparts = label->dkl_vtoc.v_nparts; 2585 2586 for (i = 0; i < vtoc->v_nparts; i++) { 2587 vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag; 2588 vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag; 2589 vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno * 2590 (label->dkl_nhead * label->dkl_nsect); 2591 vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk; 2592 vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i]; 2593 } 2594 2595 /* 2596 * The bootinfo array can not be copied with bcopy() because 2597 * elements are of type long in vtoc (so 64-bit) and of type 2598 * int in dk_vtoc (so 32-bit). 2599 */ 2600 vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0]; 2601 vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1]; 2602 vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2]; 2603 bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); 2604 bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); 2605 } 2606 2607 /* 2608 * Check if a geometry is valid for a single-slice disk. A geometry is 2609 * considered valid if the main attributes of the geometry match with the 2610 * attributes of the fake geometry we have created. 2611 */ 2612 static boolean_t 2613 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom) 2614 { 2615 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2616 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2617 2618 if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl || 2619 geom->dkg_acyl != vd->dk_geom.dkg_acyl || 2620 geom->dkg_nsect != vd->dk_geom.dkg_nsect || 2621 geom->dkg_pcyl != vd->dk_geom.dkg_pcyl) 2622 return (B_FALSE); 2623 2624 return (B_TRUE); 2625 } 2626 2627 /* 2628 * Check if a vtoc is valid for a single-slice disk. A vtoc is considered 2629 * valid if the main attributes of the vtoc match with the attributes of the 2630 * fake vtoc we have created. 2631 */ 2632 static boolean_t 2633 vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc) 2634 { 2635 size_t csize; 2636 int i; 2637 2638 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2639 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 2640 2641 if (vtoc->v_sanity != vd->vtoc.v_sanity || 2642 vtoc->v_version != vd->vtoc.v_version || 2643 vtoc->v_nparts != vd->vtoc.v_nparts || 2644 strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 || 2645 strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0) 2646 return (B_FALSE); 2647 2648 /* slice 2 should be unchanged */ 2649 if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start != 2650 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start || 2651 vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size != 2652 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size) 2653 return (B_FALSE); 2654 2655 /* 2656 * Slice 0 should be mostly unchanged and cover most of the disk. 2657 * However we allow some flexibility wrt to the start and the size 2658 * of this slice mainly because we can't exactly know how it will 2659 * be defined by the OS installer. 2660 * 2661 * We allow slice 0 to be defined as starting on any of the first 2662 * 4 cylinders. 2663 */ 2664 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 2665 2666 if (vtoc->v_part[0].p_start > 4 * csize || 2667 vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size) 2668 return (B_FALSE); 2669 2670 if (vd->vtoc.v_part[0].p_size >= 4 * csize && 2671 vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize) 2672 return (B_FALSE); 2673 2674 /* any other slice should have a size of 0 */ 2675 for (i = 1; i < vtoc->v_nparts; i++) { 2676 if (i != VD_ENTIRE_DISK_SLICE && 2677 vtoc->v_part[i].p_size != 0) 2678 return (B_FALSE); 2679 } 2680 2681 return (B_TRUE); 2682 } 2683 2684 /* 2685 * Handle ioctls to a disk slice. 2686 * 2687 * Return Values 2688 * 0 - Indicates that there are no errors in disk operations 2689 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 2690 * EINVAL - Not enough room to copy the EFI label 2691 * 2692 */ 2693 static int 2694 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2695 { 2696 dk_efi_t *dk_ioc; 2697 struct vtoc *vtoc; 2698 struct dk_geom *geom; 2699 size_t len, lba; 2700 int rval; 2701 2702 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2703 2704 if (cmd == DKIOCFLUSHWRITECACHE) { 2705 if (vd->file) { 2706 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 2707 } else { 2708 return (ldi_ioctl(vd->ldi_handle[0], cmd, 2709 (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL, 2710 kcred, &rval)); 2711 } 2712 } 2713 2714 switch (vd->vdisk_label) { 2715 2716 /* ioctls for a single slice disk with a VTOC label */ 2717 case VD_DISK_LABEL_VTOC: 2718 2719 switch (cmd) { 2720 2721 case DKIOCGGEOM: 2722 ASSERT(ioctl_arg != NULL); 2723 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 2724 return (0); 2725 2726 case DKIOCGVTOC: 2727 ASSERT(ioctl_arg != NULL); 2728 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 2729 return (0); 2730 2731 case DKIOCSGEOM: 2732 ASSERT(ioctl_arg != NULL); 2733 if (vd_slice_single_slice) 2734 return (ENOTSUP); 2735 2736 /* fake success only if new geometry is valid */ 2737 geom = (struct dk_geom *)ioctl_arg; 2738 if (!vd_slice_geom_isvalid(vd, geom)) 2739 return (EINVAL); 2740 2741 return (0); 2742 2743 case DKIOCSVTOC: 2744 ASSERT(ioctl_arg != NULL); 2745 if (vd_slice_single_slice) 2746 return (ENOTSUP); 2747 2748 /* fake sucess only if the new vtoc is valid */ 2749 vtoc = (struct vtoc *)ioctl_arg; 2750 if (!vd_slice_vtoc_isvalid(vd, vtoc)) 2751 return (EINVAL); 2752 2753 return (0); 2754 2755 default: 2756 return (ENOTSUP); 2757 } 2758 2759 /* ioctls for a single slice disk with an EFI label */ 2760 case VD_DISK_LABEL_EFI: 2761 2762 if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI) 2763 return (ENOTSUP); 2764 2765 ASSERT(ioctl_arg != NULL); 2766 dk_ioc = (dk_efi_t *)ioctl_arg; 2767 2768 len = dk_ioc->dki_length; 2769 lba = dk_ioc->dki_lba; 2770 2771 if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) || 2772 (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) || 2773 (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t))) 2774 return (EINVAL); 2775 2776 switch (cmd) { 2777 case DKIOCGETEFI: 2778 len = vd_slice_flabel_read(vd, 2779 (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len); 2780 2781 ASSERT(len > 0); 2782 2783 return (0); 2784 2785 case DKIOCSETEFI: 2786 if (vd_slice_single_slice) 2787 return (ENOTSUP); 2788 2789 /* we currently don't support writing EFI */ 2790 return (EIO); 2791 } 2792 2793 default: 2794 /* Unknown disk label type */ 2795 return (ENOTSUP); 2796 } 2797 } 2798 2799 static int 2800 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 2801 { 2802 vd_efi_dev_t edev; 2803 int status; 2804 2805 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2806 2807 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 2808 2809 return (status); 2810 } 2811 2812 static void 2813 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 2814 { 2815 vd_efi_dev_t edev; 2816 2817 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2818 2819 vd_efi_free(&edev, gpt, gpe); 2820 } 2821 2822 static int 2823 vd_file_validate_efi(vd_t *vd) 2824 { 2825 efi_gpt_t *gpt; 2826 efi_gpe_t *gpe; 2827 int i, nparts, status; 2828 struct uuid efi_reserved = EFI_RESERVED; 2829 2830 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 2831 return (status); 2832 2833 bzero(&vd->vtoc, sizeof (struct vtoc)); 2834 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 2835 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2836 2837 vd->efi_reserved = -1; 2838 2839 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 2840 2841 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 2842 2843 if (gpe[i].efi_gpe_StartingLBA == 0 || 2844 gpe[i].efi_gpe_EndingLBA == 0) { 2845 continue; 2846 } 2847 2848 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 2849 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 2850 gpe[i].efi_gpe_StartingLBA + 1; 2851 2852 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 2853 sizeof (struct uuid)) == 0) 2854 vd->efi_reserved = i; 2855 2856 } 2857 2858 ASSERT(vd->vdisk_size != 0); 2859 vd->slices[VD_EFI_WD_SLICE].start = 0; 2860 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 2861 2862 vds_efi_free(vd, gpt, gpe); 2863 2864 return (status); 2865 } 2866 2867 /* 2868 * Function: 2869 * vd_file_validate_geometry 2870 * 2871 * Description: 2872 * Read the label and validate the geometry of a disk image. The driver 2873 * label, vtoc and geometry information are updated according to the 2874 * label read from the disk image. 2875 * 2876 * If no valid label is found, the label is set to unknown and the 2877 * function returns EINVAL, but a default vtoc and geometry are provided 2878 * to the driver. If an EFI label is found, ENOTSUP is returned. 2879 * 2880 * Parameters: 2881 * vd - disk on which the operation is performed. 2882 * 2883 * Return Code: 2884 * 0 - success. 2885 * EIO - error reading the label from the disk image. 2886 * EINVAL - unknown disk label. 2887 * ENOTSUP - geometry not applicable (EFI label). 2888 */ 2889 static int 2890 vd_file_validate_geometry(vd_t *vd) 2891 { 2892 struct dk_label label; 2893 struct dk_geom *geom = &vd->dk_geom; 2894 struct vtoc *vtoc = &vd->vtoc; 2895 int i; 2896 int status = 0; 2897 2898 ASSERT(vd->file); 2899 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2900 2901 if (VD_FILE_LABEL_READ(vd, &label) < 0) 2902 return (EIO); 2903 2904 if (label.dkl_magic != DKL_MAGIC || 2905 label.dkl_cksum != vd_lbl2cksum(&label) || 2906 (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) || 2907 label.dkl_vtoc.v_nparts != V_NUMPAR) { 2908 2909 if (vd_file_validate_efi(vd) == 0) { 2910 vd->vdisk_label = VD_DISK_LABEL_EFI; 2911 return (ENOTSUP); 2912 } 2913 2914 vd->vdisk_label = VD_DISK_LABEL_UNK; 2915 vd_build_default_label(vd->file_size, &label); 2916 status = EINVAL; 2917 } else { 2918 vd->vdisk_label = VD_DISK_LABEL_VTOC; 2919 } 2920 2921 /* Update the driver geometry and vtoc */ 2922 vd_label_to_vtocgeom(&label, vtoc, geom); 2923 2924 /* Update logical partitions */ 2925 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2926 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 2927 for (i = 0; i < vtoc->v_nparts; i++) { 2928 vd->slices[i].start = vtoc->v_part[i].p_start; 2929 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 2930 } 2931 } 2932 2933 return (status); 2934 } 2935 2936 /* 2937 * Handle ioctls to a disk image (file-based). 2938 * 2939 * Return Values 2940 * 0 - Indicates that there are no errors 2941 * != 0 - Disk operation returned an error 2942 */ 2943 static int 2944 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2945 { 2946 struct dk_label label; 2947 struct dk_geom *geom; 2948 struct vtoc *vtoc; 2949 dk_efi_t *efi; 2950 int rc; 2951 2952 ASSERT(vd->file); 2953 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2954 2955 switch (cmd) { 2956 2957 case DKIOCGGEOM: 2958 ASSERT(ioctl_arg != NULL); 2959 geom = (struct dk_geom *)ioctl_arg; 2960 2961 rc = vd_file_validate_geometry(vd); 2962 if (rc != 0 && rc != EINVAL) 2963 return (rc); 2964 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 2965 return (0); 2966 2967 case DKIOCGVTOC: 2968 ASSERT(ioctl_arg != NULL); 2969 vtoc = (struct vtoc *)ioctl_arg; 2970 2971 rc = vd_file_validate_geometry(vd); 2972 if (rc != 0 && rc != EINVAL) 2973 return (rc); 2974 bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc)); 2975 return (0); 2976 2977 case DKIOCSGEOM: 2978 ASSERT(ioctl_arg != NULL); 2979 geom = (struct dk_geom *)ioctl_arg; 2980 2981 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 2982 return (EINVAL); 2983 2984 /* 2985 * The current device geometry is not updated, just the driver 2986 * "notion" of it. The device geometry will be effectively 2987 * updated when a label is written to the device during a next 2988 * DKIOCSVTOC. 2989 */ 2990 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 2991 return (0); 2992 2993 case DKIOCSVTOC: 2994 ASSERT(ioctl_arg != NULL); 2995 ASSERT(vd->dk_geom.dkg_nhead != 0 && 2996 vd->dk_geom.dkg_nsect != 0); 2997 vtoc = (struct vtoc *)ioctl_arg; 2998 2999 if (vtoc->v_sanity != VTOC_SANE || 3000 vtoc->v_sectorsz != DEV_BSIZE || 3001 vtoc->v_nparts != V_NUMPAR) 3002 return (EINVAL); 3003 3004 vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label); 3005 3006 /* write label to the disk image */ 3007 if ((rc = vd_file_set_vtoc(vd, &label)) != 0) 3008 return (rc); 3009 3010 break; 3011 3012 case DKIOCFLUSHWRITECACHE: 3013 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 3014 3015 case DKIOCGETEFI: 3016 ASSERT(ioctl_arg != NULL); 3017 efi = (dk_efi_t *)ioctl_arg; 3018 3019 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 3020 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3021 return (EIO); 3022 3023 return (0); 3024 3025 case DKIOCSETEFI: 3026 ASSERT(ioctl_arg != NULL); 3027 efi = (dk_efi_t *)ioctl_arg; 3028 3029 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 3030 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 3031 return (EIO); 3032 3033 break; 3034 3035 3036 default: 3037 return (ENOTSUP); 3038 } 3039 3040 ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI); 3041 3042 /* label has changed, revalidate the geometry */ 3043 (void) vd_file_validate_geometry(vd); 3044 3045 /* 3046 * The disk geometry may have changed, so we need to write 3047 * the devid (if there is one) so that it is stored at the 3048 * right location. 3049 */ 3050 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 3051 PR0("Fail to write devid"); 3052 } 3053 3054 return (0); 3055 } 3056 3057 static int 3058 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 3059 { 3060 int rval = 0, status; 3061 3062 /* 3063 * Call the appropriate function to execute the ioctl depending 3064 * on the type of vdisk. 3065 */ 3066 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3067 3068 /* slice, file or volume exported as a single slice disk */ 3069 status = vd_do_slice_ioctl(vd, cmd, arg); 3070 3071 } else if (vd->file) { 3072 3073 /* file or volume exported as a full disk */ 3074 status = vd_do_file_ioctl(vd, cmd, arg); 3075 3076 } else { 3077 3078 /* disk device exported as a full disk */ 3079 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 3080 vd->open_flags | FKIOCTL, kcred, &rval); 3081 } 3082 3083 #ifdef DEBUG 3084 if (rval != 0) { 3085 PR0("ioctl %x set rval = %d, which is not being returned" 3086 " to caller", cmd, rval); 3087 } 3088 #endif /* DEBUG */ 3089 3090 return (status); 3091 } 3092 3093 /* 3094 * Description: 3095 * This is the function that processes the ioctl requests (farming it 3096 * out to functions that handle slices, files or whole disks) 3097 * 3098 * Return Values 3099 * 0 - ioctl operation completed successfully 3100 * != 0 - The LDC error value encountered 3101 * (propagated back up the call stack as a task error) 3102 * 3103 * Side Effect 3104 * sets request->status to the return value of the ioctl function. 3105 */ 3106 static int 3107 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 3108 { 3109 int status = 0; 3110 size_t nbytes = request->nbytes; /* modifiable copy */ 3111 3112 3113 ASSERT(request->slice < vd->nslices); 3114 PR0("Performing %s", ioctl->operation_name); 3115 3116 /* Get data from client and convert, if necessary */ 3117 if (ioctl->copyin != NULL) { 3118 ASSERT(nbytes != 0 && buf != NULL); 3119 PR1("Getting \"arg\" data from client"); 3120 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3121 request->cookie, request->ncookies, 3122 LDC_COPY_IN)) != 0) { 3123 PR0("ldc_mem_copy() returned errno %d " 3124 "copying from client", status); 3125 return (status); 3126 } 3127 3128 /* Convert client's data, if necessary */ 3129 if (ioctl->copyin == VD_IDENTITY_IN) { 3130 /* use client buffer */ 3131 ioctl->arg = buf; 3132 } else { 3133 /* convert client vdisk operation data to ioctl data */ 3134 status = (ioctl->copyin)(buf, nbytes, 3135 (void *)ioctl->arg); 3136 if (status != 0) { 3137 request->status = status; 3138 return (0); 3139 } 3140 } 3141 } 3142 3143 if (ioctl->operation == VD_OP_SCSICMD) { 3144 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 3145 3146 /* check write permission */ 3147 if (!(vd->open_flags & FWRITE) && 3148 !(uscsi->uscsi_flags & USCSI_READ)) { 3149 PR0("uscsi fails because backend is opened read-only"); 3150 request->status = EROFS; 3151 return (0); 3152 } 3153 } 3154 3155 /* 3156 * Send the ioctl to the disk backend. 3157 */ 3158 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 3159 3160 if (request->status != 0) { 3161 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 3162 if (ioctl->operation == VD_OP_SCSICMD && 3163 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 3164 /* 3165 * USCSICMD has reported an error and the uscsi_status 3166 * field is not zero. This means that the SCSI command 3167 * has completed but it has an error. So we should 3168 * mark the VD operation has succesfully completed 3169 * and clients can check the SCSI status field for 3170 * SCSI errors. 3171 */ 3172 request->status = 0; 3173 else 3174 return (0); 3175 } 3176 3177 /* Convert data and send to client, if necessary */ 3178 if (ioctl->copyout != NULL) { 3179 ASSERT(nbytes != 0 && buf != NULL); 3180 PR1("Sending \"arg\" data to client"); 3181 3182 /* Convert ioctl data to vdisk operation data, if necessary */ 3183 if (ioctl->copyout != VD_IDENTITY_OUT) 3184 (ioctl->copyout)((void *)ioctl->arg, buf); 3185 3186 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 3187 request->cookie, request->ncookies, 3188 LDC_COPY_OUT)) != 0) { 3189 PR0("ldc_mem_copy() returned errno %d " 3190 "copying to client", status); 3191 return (status); 3192 } 3193 } 3194 3195 return (status); 3196 } 3197 3198 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 3199 3200 /* 3201 * Description: 3202 * This generic function is called by the task queue to complete 3203 * the processing of the tasks. The specific completion function 3204 * is passed in as a field in the task pointer. 3205 * 3206 * Parameters: 3207 * arg - opaque pointer to structure containing task to be completed 3208 * 3209 * Return Values 3210 * None 3211 */ 3212 static void 3213 vd_complete(void *arg) 3214 { 3215 vd_task_t *task = (vd_task_t *)arg; 3216 3217 ASSERT(task != NULL); 3218 ASSERT(task->status == EINPROGRESS); 3219 ASSERT(task->completef != NULL); 3220 3221 task->status = task->completef(task); 3222 if (task->status) 3223 PR0("%s: Error %d completing task", __func__, task->status); 3224 3225 /* Now notify the vDisk client */ 3226 vd_complete_notify(task); 3227 } 3228 3229 static int 3230 vd_ioctl(vd_task_t *task) 3231 { 3232 int i, status; 3233 void *buf = NULL; 3234 struct dk_geom dk_geom = {0}; 3235 struct vtoc vtoc = {0}; 3236 struct dk_efi dk_efi = {0}; 3237 struct uscsi_cmd uscsi = {0}; 3238 vd_t *vd = task->vd; 3239 vd_dring_payload_t *request = task->request; 3240 vd_ioctl_t ioctl[] = { 3241 /* Command (no-copy) operations */ 3242 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 3243 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 3244 NULL, NULL, NULL, B_TRUE}, 3245 3246 /* "Get" (copy-out) operations */ 3247 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 3248 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 3249 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 3250 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 3251 RNDSIZE(vd_geom_t), 3252 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 3253 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 3254 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 3255 DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), 3256 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 3257 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 3258 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 3259 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 3260 3261 /* "Set" (copy-in) operations */ 3262 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 3263 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 3264 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 3265 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 3266 RNDSIZE(vd_geom_t), 3267 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 3268 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 3269 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 3270 DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), 3271 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 3272 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 3273 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 3274 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 3275 3276 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 3277 USCSICMD, STRINGIZE(USCSICMD), 3278 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 3279 }; 3280 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 3281 3282 3283 ASSERT(vd != NULL); 3284 ASSERT(request != NULL); 3285 ASSERT(request->slice < vd->nslices); 3286 3287 /* 3288 * Determine ioctl corresponding to caller's "operation" and 3289 * validate caller's "nbytes" 3290 */ 3291 for (i = 0; i < nioctls; i++) { 3292 if (request->operation == ioctl[i].operation) { 3293 /* LDC memory operations require 8-byte multiples */ 3294 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 3295 3296 if (request->operation == VD_OP_GET_EFI || 3297 request->operation == VD_OP_SET_EFI || 3298 request->operation == VD_OP_SCSICMD) { 3299 if (request->nbytes >= ioctl[i].nbytes) 3300 break; 3301 PR0("%s: Expected at least nbytes = %lu, " 3302 "got %lu", ioctl[i].operation_name, 3303 ioctl[i].nbytes, request->nbytes); 3304 return (EINVAL); 3305 } 3306 3307 if (request->nbytes != ioctl[i].nbytes) { 3308 PR0("%s: Expected nbytes = %lu, got %lu", 3309 ioctl[i].operation_name, ioctl[i].nbytes, 3310 request->nbytes); 3311 return (EINVAL); 3312 } 3313 3314 break; 3315 } 3316 } 3317 ASSERT(i < nioctls); /* because "operation" already validated */ 3318 3319 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 3320 PR0("%s fails because backend is opened read-only", 3321 ioctl[i].operation_name); 3322 request->status = EROFS; 3323 return (0); 3324 } 3325 3326 if (request->nbytes) 3327 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 3328 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 3329 if (request->nbytes) 3330 kmem_free(buf, request->nbytes); 3331 3332 return (status); 3333 } 3334 3335 static int 3336 vd_get_devid(vd_task_t *task) 3337 { 3338 vd_t *vd = task->vd; 3339 vd_dring_payload_t *request = task->request; 3340 vd_devid_t *vd_devid; 3341 impl_devid_t *devid; 3342 int status, bufid_len, devid_len, len, sz; 3343 int bufbytes; 3344 3345 PR1("Get Device ID, nbytes=%ld", request->nbytes); 3346 3347 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 3348 /* 3349 * We don't support devid for single-slice disks because we 3350 * have no space to store a fabricated devid and for physical 3351 * disk slices, we can't use the devid of the disk otherwise 3352 * exporting multiple slices from the same disk will produce 3353 * the same devids. 3354 */ 3355 PR2("No Device ID for slices"); 3356 request->status = ENOTSUP; 3357 return (0); 3358 } 3359 3360 if (vd->file) { 3361 if (vd->file_devid == NULL) { 3362 PR2("No Device ID"); 3363 request->status = ENOENT; 3364 return (0); 3365 } else { 3366 sz = ddi_devid_sizeof(vd->file_devid); 3367 devid = kmem_alloc(sz, KM_SLEEP); 3368 bcopy(vd->file_devid, devid, sz); 3369 } 3370 } else { 3371 if (ddi_lyr_get_devid(vd->dev[request->slice], 3372 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 3373 PR2("No Device ID"); 3374 request->status = ENOENT; 3375 return (0); 3376 } 3377 } 3378 3379 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 3380 devid_len = DEVID_GETLEN(devid); 3381 3382 /* 3383 * Save the buffer size here for use in deallocation. 3384 * The actual number of bytes copied is returned in 3385 * the 'nbytes' field of the request structure. 3386 */ 3387 bufbytes = request->nbytes; 3388 3389 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 3390 vd_devid->length = devid_len; 3391 vd_devid->type = DEVID_GETTYPE(devid); 3392 3393 len = (devid_len > bufid_len)? bufid_len : devid_len; 3394 3395 bcopy(devid->did_id, vd_devid->id, len); 3396 3397 request->status = 0; 3398 3399 /* LDC memory operations require 8-byte multiples */ 3400 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 3401 3402 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 3403 &request->nbytes, request->cookie, request->ncookies, 3404 LDC_COPY_OUT)) != 0) { 3405 PR0("ldc_mem_copy() returned errno %d copying to client", 3406 status); 3407 } 3408 PR1("post mem_copy: nbytes=%ld", request->nbytes); 3409 3410 kmem_free(vd_devid, bufbytes); 3411 ddi_devid_free((ddi_devid_t)devid); 3412 3413 return (status); 3414 } 3415 3416 static int 3417 vd_scsi_reset(vd_t *vd) 3418 { 3419 int rval, status; 3420 struct uscsi_cmd uscsi = { 0 }; 3421 3422 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 3423 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 3424 3425 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 3426 (vd->open_flags | FKIOCTL), kcred, &rval); 3427 3428 return (status); 3429 } 3430 3431 static int 3432 vd_reset(vd_task_t *task) 3433 { 3434 vd_t *vd = task->vd; 3435 vd_dring_payload_t *request = task->request; 3436 3437 ASSERT(request->operation == VD_OP_RESET); 3438 ASSERT(vd->scsi); 3439 3440 PR0("Performing VD_OP_RESET"); 3441 3442 if (request->nbytes != 0) { 3443 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 3444 request->nbytes); 3445 return (EINVAL); 3446 } 3447 3448 request->status = vd_scsi_reset(vd); 3449 3450 return (0); 3451 } 3452 3453 static int 3454 vd_get_capacity(vd_task_t *task) 3455 { 3456 int rv; 3457 size_t nbytes; 3458 vd_t *vd = task->vd; 3459 vd_dring_payload_t *request = task->request; 3460 vd_capacity_t vd_cap = { 0 }; 3461 3462 ASSERT(request->operation == VD_OP_GET_CAPACITY); 3463 ASSERT(vd->scsi); 3464 3465 PR0("Performing VD_OP_GET_CAPACITY"); 3466 3467 nbytes = request->nbytes; 3468 3469 if (nbytes != RNDSIZE(vd_capacity_t)) { 3470 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 3471 RNDSIZE(vd_capacity_t), nbytes); 3472 return (EINVAL); 3473 } 3474 3475 if (vd->vdisk_size == VD_SIZE_UNKNOWN) { 3476 if (vd_setup_mediainfo(vd) != 0) 3477 ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN); 3478 } 3479 3480 ASSERT(vd->vdisk_size != 0); 3481 3482 request->status = 0; 3483 3484 vd_cap.vdisk_block_size = vd->vdisk_block_size; 3485 vd_cap.vdisk_size = vd->vdisk_size; 3486 3487 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 3488 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3489 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3490 return (rv); 3491 } 3492 3493 return (0); 3494 } 3495 3496 static int 3497 vd_get_access(vd_task_t *task) 3498 { 3499 uint64_t access; 3500 int rv, rval = 0; 3501 size_t nbytes; 3502 vd_t *vd = task->vd; 3503 vd_dring_payload_t *request = task->request; 3504 3505 ASSERT(request->operation == VD_OP_GET_ACCESS); 3506 ASSERT(vd->scsi); 3507 3508 PR0("Performing VD_OP_GET_ACCESS"); 3509 3510 nbytes = request->nbytes; 3511 3512 if (nbytes != sizeof (uint64_t)) { 3513 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 3514 sizeof (uint64_t), nbytes); 3515 return (EINVAL); 3516 } 3517 3518 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 3519 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3520 3521 if (request->status != 0) 3522 return (0); 3523 3524 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 3525 3526 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 3527 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 3528 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 3529 return (rv); 3530 } 3531 3532 return (0); 3533 } 3534 3535 static int 3536 vd_set_access(vd_task_t *task) 3537 { 3538 uint64_t flags; 3539 int rv, rval; 3540 size_t nbytes; 3541 vd_t *vd = task->vd; 3542 vd_dring_payload_t *request = task->request; 3543 3544 ASSERT(request->operation == VD_OP_SET_ACCESS); 3545 ASSERT(vd->scsi); 3546 3547 nbytes = request->nbytes; 3548 3549 if (nbytes != sizeof (uint64_t)) { 3550 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 3551 sizeof (uint64_t), nbytes); 3552 return (EINVAL); 3553 } 3554 3555 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 3556 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 3557 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 3558 return (rv); 3559 } 3560 3561 if (flags == VD_ACCESS_SET_CLEAR) { 3562 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 3563 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3564 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 3565 &rval); 3566 if (request->status == 0) 3567 vd->ownership = B_FALSE; 3568 return (0); 3569 } 3570 3571 /* 3572 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 3573 * when the EXCLUSIVE flag is set. 3574 */ 3575 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3576 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3577 request->status = EINVAL; 3578 return (0); 3579 } 3580 3581 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3582 3583 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3584 /* 3585 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3586 * acquire exclusive access rights, preserve them and we 3587 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3588 */ 3589 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3590 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3591 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3592 break; 3593 3594 case VD_ACCESS_SET_PRESERVE: 3595 /* 3596 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3597 * access rights and preserve them, but not preempt any other 3598 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3599 * "preserve" feature but we can not called it directly 3600 * because it uses preemption. So before that, we use the 3601 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3602 * without preempting anyone. 3603 */ 3604 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3605 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3606 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3607 &rval); 3608 if (request->status != 0) 3609 break; 3610 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3611 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3612 break; 3613 3614 case VD_ACCESS_SET_PREEMPT: 3615 /* 3616 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3617 * access rights and we can use preemption. So we try to do 3618 * a SCSI reservation, if it fails we reset the disk to clear 3619 * any reservation and we try to reserve again. 3620 */ 3621 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3622 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3623 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3624 &rval); 3625 if (request->status == 0) 3626 break; 3627 3628 /* reset the disk */ 3629 (void) vd_scsi_reset(vd); 3630 3631 /* try again even if the reset has failed */ 3632 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3633 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3634 &rval); 3635 break; 3636 3637 case 0: 3638 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 3639 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 3640 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3641 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3642 &rval); 3643 break; 3644 } 3645 3646 if (request->status == 0) 3647 vd->ownership = B_TRUE; 3648 else 3649 PR0("VD_OP_SET_ACCESS: error %d", request->status); 3650 3651 return (0); 3652 } 3653 3654 static void 3655 vd_reset_access(vd_t *vd) 3656 { 3657 int status, rval; 3658 3659 if (vd->file || !vd->ownership) 3660 return; 3661 3662 PR0("Releasing disk ownership"); 3663 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3664 (vd->open_flags | FKIOCTL), kcred, &rval); 3665 3666 /* 3667 * An EACCES failure means that there is a reservation conflict, 3668 * so we are not the owner of the disk anymore. 3669 */ 3670 if (status == 0 || status == EACCES) { 3671 vd->ownership = B_FALSE; 3672 return; 3673 } 3674 3675 PR0("Fail to release ownership, error %d", status); 3676 3677 /* 3678 * We have failed to release the ownership, try to reset the disk 3679 * to release reservations. 3680 */ 3681 PR0("Resetting disk"); 3682 status = vd_scsi_reset(vd); 3683 3684 if (status != 0) 3685 PR0("Fail to reset disk, error %d", status); 3686 3687 /* whatever the result of the reset is, we try the release again */ 3688 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3689 (vd->open_flags | FKIOCTL), kcred, &rval); 3690 3691 if (status == 0 || status == EACCES) { 3692 vd->ownership = B_FALSE; 3693 return; 3694 } 3695 3696 PR0("Fail to release ownership, error %d", status); 3697 3698 /* 3699 * At this point we have done our best to try to reset the 3700 * access rights to the disk and we don't know if we still 3701 * own a reservation and if any mechanism to preserve the 3702 * ownership is still in place. The ultimate solution would 3703 * be to reset the system but this is usually not what we 3704 * want to happen. 3705 */ 3706 3707 if (vd_reset_access_failure == A_REBOOT) { 3708 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 3709 ", rebooting the system", vd->device_path); 3710 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 3711 } else if (vd_reset_access_failure == A_DUMP) { 3712 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3713 } 3714 3715 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3716 } 3717 3718 /* 3719 * Define the supported operations once the functions for performing them have 3720 * been defined 3721 */ 3722 static const vds_operation_t vds_operation[] = { 3723 #define X(_s) #_s, _s 3724 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 3725 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 3726 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 3727 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 3728 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 3729 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 3730 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 3731 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 3732 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 3733 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 3734 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 3735 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 3736 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 3737 {X(VD_OP_RESET), vd_reset, NULL}, 3738 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 3739 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 3740 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 3741 #undef X 3742 }; 3743 3744 static const size_t vds_noperations = 3745 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 3746 3747 /* 3748 * Process a task specifying a client I/O request 3749 * 3750 * Parameters: 3751 * task - structure containing the request sent from client 3752 * 3753 * Return Value 3754 * 0 - success 3755 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 3756 * EINVAL - Invalid disk slice 3757 * != 0 - some other non-zero return value from start function 3758 */ 3759 static int 3760 vd_do_process_task(vd_task_t *task) 3761 { 3762 int i; 3763 vd_t *vd = task->vd; 3764 vd_dring_payload_t *request = task->request; 3765 3766 ASSERT(vd != NULL); 3767 ASSERT(request != NULL); 3768 3769 /* Find the requested operation */ 3770 for (i = 0; i < vds_noperations; i++) { 3771 if (request->operation == vds_operation[i].operation) { 3772 /* all operations should have a start func */ 3773 ASSERT(vds_operation[i].start != NULL); 3774 3775 task->completef = vds_operation[i].complete; 3776 break; 3777 } 3778 } 3779 3780 /* 3781 * We need to check that the requested operation is permitted 3782 * for the particular client that sent it or that the loop above 3783 * did not complete without finding the operation type (indicating 3784 * that the requested operation is unknown/unimplemented) 3785 */ 3786 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 3787 (i == vds_noperations)) { 3788 PR0("Unsupported operation %u", request->operation); 3789 request->status = ENOTSUP; 3790 return (0); 3791 } 3792 3793 /* Range-check slice */ 3794 if (request->slice >= vd->nslices && 3795 ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) || 3796 request->slice != VD_SLICE_NONE)) { 3797 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 3798 request->slice, (vd->nslices - 1)); 3799 request->status = EINVAL; 3800 return (0); 3801 } 3802 3803 /* 3804 * Call the function pointer that starts the operation. 3805 */ 3806 return (vds_operation[i].start(task)); 3807 } 3808 3809 /* 3810 * Description: 3811 * This function is called by both the in-band and descriptor ring 3812 * message processing functions paths to actually execute the task 3813 * requested by the vDisk client. It in turn calls its worker 3814 * function, vd_do_process_task(), to carry our the request. 3815 * 3816 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 3817 * saved in the 'status' field of the task and are propagated back 3818 * up the call stack to trigger a NACK 3819 * 3820 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 3821 * the 'status' field of the request and result in an ACK being sent 3822 * by the completion handler. 3823 * 3824 * Parameters: 3825 * task - structure containing the request sent from client 3826 * 3827 * Return Value 3828 * 0 - successful synchronous request. 3829 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 3830 * EINPROGRESS - task will be finished in a completion handler 3831 */ 3832 static int 3833 vd_process_task(vd_task_t *task) 3834 { 3835 vd_t *vd = task->vd; 3836 int status; 3837 3838 DTRACE_PROBE1(task__start, vd_task_t *, task); 3839 3840 task->status = vd_do_process_task(task); 3841 3842 /* 3843 * If the task processing function returned EINPROGRESS indicating 3844 * that the task needs completing then schedule a taskq entry to 3845 * finish it now. 3846 * 3847 * Otherwise the task processing function returned either zero 3848 * indicating that the task was finished in the start function (and we 3849 * don't need to wait in a completion function) or the start function 3850 * returned an error - in both cases all that needs to happen is the 3851 * notification to the vDisk client higher up the call stack. 3852 * If the task was using a Descriptor Ring, we need to mark it as done 3853 * at this stage. 3854 */ 3855 if (task->status == EINPROGRESS) { 3856 /* Queue a task to complete the operation */ 3857 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 3858 task, DDI_SLEEP); 3859 3860 } else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 3861 /* Update the dring element if it's a dring client */ 3862 status = vd_mark_elem_done(vd, task->index, 3863 task->request->status, task->request->nbytes); 3864 if (status == ECONNRESET) 3865 vd_mark_in_reset(vd); 3866 } 3867 3868 return (task->status); 3869 } 3870 3871 /* 3872 * Return true if the "type", "subtype", and "env" fields of the "tag" first 3873 * argument match the corresponding remaining arguments; otherwise, return false 3874 */ 3875 boolean_t 3876 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 3877 { 3878 return ((tag->vio_msgtype == type) && 3879 (tag->vio_subtype == subtype) && 3880 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 3881 } 3882 3883 /* 3884 * Check whether the major/minor version specified in "ver_msg" is supported 3885 * by this server. 3886 */ 3887 static boolean_t 3888 vds_supported_version(vio_ver_msg_t *ver_msg) 3889 { 3890 for (int i = 0; i < vds_num_versions; i++) { 3891 ASSERT(vds_version[i].major > 0); 3892 ASSERT((i == 0) || 3893 (vds_version[i].major < vds_version[i-1].major)); 3894 3895 /* 3896 * If the major versions match, adjust the minor version, if 3897 * necessary, down to the highest value supported by this 3898 * server and return true so this message will get "ack"ed; 3899 * the client should also support all minor versions lower 3900 * than the value it sent 3901 */ 3902 if (ver_msg->ver_major == vds_version[i].major) { 3903 if (ver_msg->ver_minor > vds_version[i].minor) { 3904 PR0("Adjusting minor version from %u to %u", 3905 ver_msg->ver_minor, vds_version[i].minor); 3906 ver_msg->ver_minor = vds_version[i].minor; 3907 } 3908 return (B_TRUE); 3909 } 3910 3911 /* 3912 * If the message contains a higher major version number, set 3913 * the message's major/minor versions to the current values 3914 * and return false, so this message will get "nack"ed with 3915 * these values, and the client will potentially try again 3916 * with the same or a lower version 3917 */ 3918 if (ver_msg->ver_major > vds_version[i].major) { 3919 ver_msg->ver_major = vds_version[i].major; 3920 ver_msg->ver_minor = vds_version[i].minor; 3921 return (B_FALSE); 3922 } 3923 3924 /* 3925 * Otherwise, the message's major version is less than the 3926 * current major version, so continue the loop to the next 3927 * (lower) supported version 3928 */ 3929 } 3930 3931 /* 3932 * No common version was found; "ground" the version pair in the 3933 * message to terminate negotiation 3934 */ 3935 ver_msg->ver_major = 0; 3936 ver_msg->ver_minor = 0; 3937 return (B_FALSE); 3938 } 3939 3940 /* 3941 * Process a version message from a client. vds expects to receive version 3942 * messages from clients seeking service, but never issues version messages 3943 * itself; therefore, vds can ACK or NACK client version messages, but does 3944 * not expect to receive version-message ACKs or NACKs (and will treat such 3945 * messages as invalid). 3946 */ 3947 static int 3948 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3949 { 3950 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 3951 3952 3953 ASSERT(msglen >= sizeof (msg->tag)); 3954 3955 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3956 VIO_VER_INFO)) { 3957 return (ENOMSG); /* not a version message */ 3958 } 3959 3960 if (msglen != sizeof (*ver_msg)) { 3961 PR0("Expected %lu-byte version message; " 3962 "received %lu bytes", sizeof (*ver_msg), msglen); 3963 return (EBADMSG); 3964 } 3965 3966 if (ver_msg->dev_class != VDEV_DISK) { 3967 PR0("Expected device class %u (disk); received %u", 3968 VDEV_DISK, ver_msg->dev_class); 3969 return (EBADMSG); 3970 } 3971 3972 /* 3973 * We're talking to the expected kind of client; set our device class 3974 * for "ack/nack" back to the client 3975 */ 3976 ver_msg->dev_class = VDEV_DISK_SERVER; 3977 3978 /* 3979 * Check whether the (valid) version message specifies a version 3980 * supported by this server. If the version is not supported, return 3981 * EBADMSG so the message will get "nack"ed; vds_supported_version() 3982 * will have updated the message with a supported version for the 3983 * client to consider 3984 */ 3985 if (!vds_supported_version(ver_msg)) 3986 return (EBADMSG); 3987 3988 3989 /* 3990 * A version has been agreed upon; use the client's SID for 3991 * communication on this channel now 3992 */ 3993 ASSERT(!(vd->initialized & VD_SID)); 3994 vd->sid = ver_msg->tag.vio_sid; 3995 vd->initialized |= VD_SID; 3996 3997 /* 3998 * Store the negotiated major and minor version values in the "vd" data 3999 * structure so that we can check if certain operations are supported 4000 * by the client. 4001 */ 4002 vd->version.major = ver_msg->ver_major; 4003 vd->version.minor = ver_msg->ver_minor; 4004 4005 PR0("Using major version %u, minor version %u", 4006 ver_msg->ver_major, ver_msg->ver_minor); 4007 return (0); 4008 } 4009 4010 static void 4011 vd_set_exported_operations(vd_t *vd) 4012 { 4013 vd->operations = 0; /* clear field */ 4014 4015 /* 4016 * We need to check from the highest version supported to the 4017 * lowest because versions with a higher minor number implicitly 4018 * support versions with a lower minor number. 4019 */ 4020 if (vio_ver_is_supported(vd->version, 1, 1)) { 4021 ASSERT(vd->open_flags & FREAD); 4022 vd->operations |= VD_OP_MASK_READ; 4023 4024 if (vd->open_flags & FWRITE) 4025 vd->operations |= VD_OP_MASK_WRITE; 4026 4027 if (vd->scsi) 4028 vd->operations |= VD_OP_MASK_SCSI; 4029 4030 if (vd->file && vd_file_is_iso_image(vd)) { 4031 /* 4032 * can't write to ISO images, make sure that write 4033 * support is not set in case administrator did not 4034 * use "options=ro" when doing an ldm add-vdsdev 4035 */ 4036 vd->operations &= ~VD_OP_MASK_WRITE; 4037 } 4038 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 4039 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 4040 } 4041 4042 /* we should have already agreed on a version */ 4043 ASSERT(vd->operations != 0); 4044 } 4045 4046 static int 4047 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4048 { 4049 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 4050 int status, retry = 0; 4051 4052 4053 ASSERT(msglen >= sizeof (msg->tag)); 4054 4055 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4056 VIO_ATTR_INFO)) { 4057 PR0("Message is not an attribute message"); 4058 return (ENOMSG); 4059 } 4060 4061 if (msglen != sizeof (*attr_msg)) { 4062 PR0("Expected %lu-byte attribute message; " 4063 "received %lu bytes", sizeof (*attr_msg), msglen); 4064 return (EBADMSG); 4065 } 4066 4067 if (attr_msg->max_xfer_sz == 0) { 4068 PR0("Received maximum transfer size of 0 from client"); 4069 return (EBADMSG); 4070 } 4071 4072 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 4073 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 4074 PR0("Client requested unsupported transfer mode"); 4075 return (EBADMSG); 4076 } 4077 4078 /* 4079 * check if the underlying disk is ready, if not try accessing 4080 * the device again. Open the vdisk device and extract info 4081 * about it, as this is needed to respond to the attr info msg 4082 */ 4083 if ((vd->initialized & VD_DISK_READY) == 0) { 4084 PR0("Retry setting up disk (%s)", vd->device_path); 4085 do { 4086 status = vd_setup_vd(vd); 4087 if (status != EAGAIN || ++retry > vds_dev_retries) 4088 break; 4089 4090 /* incremental delay */ 4091 delay(drv_usectohz(vds_dev_delay)); 4092 4093 /* if vdisk is no longer enabled - return error */ 4094 if (!vd_enabled(vd)) 4095 return (ENXIO); 4096 4097 } while (status == EAGAIN); 4098 4099 if (status) 4100 return (ENXIO); 4101 4102 vd->initialized |= VD_DISK_READY; 4103 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 4104 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 4105 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 4106 (vd->volume ? "yes" : "no"), 4107 (vd->file ? "yes" : "no"), 4108 vd->nslices); 4109 } 4110 4111 /* Success: valid message and transfer mode */ 4112 vd->xfer_mode = attr_msg->xfer_mode; 4113 4114 if (vd->xfer_mode == VIO_DESC_MODE) { 4115 4116 /* 4117 * The vd_dring_inband_msg_t contains one cookie; need room 4118 * for up to n-1 more cookies, where "n" is the number of full 4119 * pages plus possibly one partial page required to cover 4120 * "max_xfer_sz". Add room for one more cookie if 4121 * "max_xfer_sz" isn't an integral multiple of the page size. 4122 * Must first get the maximum transfer size in bytes. 4123 */ 4124 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 4125 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 4126 attr_msg->max_xfer_sz; 4127 size_t max_inband_msglen = 4128 sizeof (vd_dring_inband_msg_t) + 4129 ((max_xfer_bytes/PAGESIZE + 4130 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 4131 (sizeof (ldc_mem_cookie_t))); 4132 4133 /* 4134 * Set the maximum expected message length to 4135 * accommodate in-band-descriptor messages with all 4136 * their cookies 4137 */ 4138 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 4139 4140 /* 4141 * Initialize the data structure for processing in-band I/O 4142 * request descriptors 4143 */ 4144 vd->inband_task.vd = vd; 4145 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4146 vd->inband_task.index = 0; 4147 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 4148 } 4149 4150 /* Return the device's block size and max transfer size to the client */ 4151 attr_msg->vdisk_block_size = vd->vdisk_block_size; 4152 attr_msg->max_xfer_sz = vd->max_xfer_sz; 4153 4154 attr_msg->vdisk_size = vd->vdisk_size; 4155 attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type : 4156 VD_DISK_TYPE_DISK; 4157 attr_msg->vdisk_media = vd->vdisk_media; 4158 4159 /* Discover and save the list of supported VD_OP_XXX operations */ 4160 vd_set_exported_operations(vd); 4161 attr_msg->operations = vd->operations; 4162 4163 PR0("%s", VD_CLIENT(vd)); 4164 4165 ASSERT(vd->dring_task == NULL); 4166 4167 return (0); 4168 } 4169 4170 static int 4171 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4172 { 4173 int status; 4174 size_t expected; 4175 ldc_mem_info_t dring_minfo; 4176 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 4177 4178 4179 ASSERT(msglen >= sizeof (msg->tag)); 4180 4181 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4182 VIO_DRING_REG)) { 4183 PR0("Message is not a register-dring message"); 4184 return (ENOMSG); 4185 } 4186 4187 if (msglen < sizeof (*reg_msg)) { 4188 PR0("Expected at least %lu-byte register-dring message; " 4189 "received %lu bytes", sizeof (*reg_msg), msglen); 4190 return (EBADMSG); 4191 } 4192 4193 expected = sizeof (*reg_msg) + 4194 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 4195 if (msglen != expected) { 4196 PR0("Expected %lu-byte register-dring message; " 4197 "received %lu bytes", expected, msglen); 4198 return (EBADMSG); 4199 } 4200 4201 if (vd->initialized & VD_DRING) { 4202 PR0("A dring was previously registered; only support one"); 4203 return (EBADMSG); 4204 } 4205 4206 if (reg_msg->num_descriptors > INT32_MAX) { 4207 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 4208 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 4209 return (EBADMSG); 4210 } 4211 4212 if (reg_msg->ncookies != 1) { 4213 /* 4214 * In addition to fixing the assertion in the success case 4215 * below, supporting drings which require more than one 4216 * "cookie" requires increasing the value of vd->max_msglen 4217 * somewhere in the code path prior to receiving the message 4218 * which results in calling this function. Note that without 4219 * making this change, the larger message size required to 4220 * accommodate multiple cookies cannot be successfully 4221 * received, so this function will not even get called. 4222 * Gracefully accommodating more dring cookies might 4223 * reasonably demand exchanging an additional attribute or 4224 * making a minor protocol adjustment 4225 */ 4226 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 4227 return (EBADMSG); 4228 } 4229 4230 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 4231 reg_msg->ncookies, reg_msg->num_descriptors, 4232 reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle); 4233 if (status != 0) { 4234 PR0("ldc_mem_dring_map() returned errno %d", status); 4235 return (status); 4236 } 4237 4238 /* 4239 * To remove the need for this assertion, must call 4240 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 4241 * successful call to ldc_mem_dring_map() 4242 */ 4243 ASSERT(reg_msg->ncookies == 1); 4244 4245 if ((status = 4246 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 4247 PR0("ldc_mem_dring_info() returned errno %d", status); 4248 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 4249 PR0("ldc_mem_dring_unmap() returned errno %d", status); 4250 return (status); 4251 } 4252 4253 if (dring_minfo.vaddr == NULL) { 4254 PR0("Descriptor ring virtual address is NULL"); 4255 return (ENXIO); 4256 } 4257 4258 4259 /* Initialize for valid message and mapped dring */ 4260 PR1("descriptor size = %u, dring length = %u", 4261 vd->descriptor_size, vd->dring_len); 4262 vd->initialized |= VD_DRING; 4263 vd->dring_ident = 1; /* "There Can Be Only One" */ 4264 vd->dring = dring_minfo.vaddr; 4265 vd->descriptor_size = reg_msg->descriptor_size; 4266 vd->dring_len = reg_msg->num_descriptors; 4267 reg_msg->dring_ident = vd->dring_ident; 4268 4269 /* 4270 * Allocate and initialize a "shadow" array of data structures for 4271 * tasks to process I/O requests in dring elements 4272 */ 4273 vd->dring_task = 4274 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 4275 for (int i = 0; i < vd->dring_len; i++) { 4276 vd->dring_task[i].vd = vd; 4277 vd->dring_task[i].index = i; 4278 vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; 4279 4280 status = ldc_mem_alloc_handle(vd->ldc_handle, 4281 &(vd->dring_task[i].mhdl)); 4282 if (status) { 4283 PR0("ldc_mem_alloc_handle() returned err %d ", status); 4284 return (ENXIO); 4285 } 4286 4287 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 4288 } 4289 4290 return (0); 4291 } 4292 4293 static int 4294 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4295 { 4296 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 4297 4298 4299 ASSERT(msglen >= sizeof (msg->tag)); 4300 4301 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 4302 VIO_DRING_UNREG)) { 4303 PR0("Message is not an unregister-dring message"); 4304 return (ENOMSG); 4305 } 4306 4307 if (msglen != sizeof (*unreg_msg)) { 4308 PR0("Expected %lu-byte unregister-dring message; " 4309 "received %lu bytes", sizeof (*unreg_msg), msglen); 4310 return (EBADMSG); 4311 } 4312 4313 if (unreg_msg->dring_ident != vd->dring_ident) { 4314 PR0("Expected dring ident %lu; received %lu", 4315 vd->dring_ident, unreg_msg->dring_ident); 4316 return (EBADMSG); 4317 } 4318 4319 return (0); 4320 } 4321 4322 static int 4323 process_rdx_msg(vio_msg_t *msg, size_t msglen) 4324 { 4325 ASSERT(msglen >= sizeof (msg->tag)); 4326 4327 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 4328 PR0("Message is not an RDX message"); 4329 return (ENOMSG); 4330 } 4331 4332 if (msglen != sizeof (vio_rdx_msg_t)) { 4333 PR0("Expected %lu-byte RDX message; received %lu bytes", 4334 sizeof (vio_rdx_msg_t), msglen); 4335 return (EBADMSG); 4336 } 4337 4338 PR0("Valid RDX message"); 4339 return (0); 4340 } 4341 4342 static int 4343 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 4344 { 4345 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 4346 PR0("Received seq_num %lu; expected %lu", 4347 seq_num, (vd->seq_num + 1)); 4348 PR0("initiating soft reset"); 4349 vd_need_reset(vd, B_FALSE); 4350 return (1); 4351 } 4352 4353 vd->seq_num = seq_num; 4354 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 4355 return (0); 4356 } 4357 4358 /* 4359 * Return the expected size of an inband-descriptor message with all the 4360 * cookies it claims to include 4361 */ 4362 static size_t 4363 expected_inband_size(vd_dring_inband_msg_t *msg) 4364 { 4365 return ((sizeof (*msg)) + 4366 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 4367 } 4368 4369 /* 4370 * Process an in-band descriptor message: used with clients like OBP, with 4371 * which vds exchanges descriptors within VIO message payloads, rather than 4372 * operating on them within a descriptor ring 4373 */ 4374 static int 4375 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4376 { 4377 size_t expected; 4378 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 4379 4380 4381 ASSERT(msglen >= sizeof (msg->tag)); 4382 4383 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4384 VIO_DESC_DATA)) { 4385 PR1("Message is not an in-band-descriptor message"); 4386 return (ENOMSG); 4387 } 4388 4389 if (msglen < sizeof (*desc_msg)) { 4390 PR0("Expected at least %lu-byte descriptor message; " 4391 "received %lu bytes", sizeof (*desc_msg), msglen); 4392 return (EBADMSG); 4393 } 4394 4395 if (msglen != (expected = expected_inband_size(desc_msg))) { 4396 PR0("Expected %lu-byte descriptor message; " 4397 "received %lu bytes", expected, msglen); 4398 return (EBADMSG); 4399 } 4400 4401 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 4402 return (EBADMSG); 4403 4404 /* 4405 * Valid message: Set up the in-band descriptor task and process the 4406 * request. Arrange to acknowledge the client's message, unless an 4407 * error processing the descriptor task results in setting 4408 * VIO_SUBTYPE_NACK 4409 */ 4410 PR1("Valid in-band-descriptor message"); 4411 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4412 4413 ASSERT(vd->inband_task.msg != NULL); 4414 4415 bcopy(msg, vd->inband_task.msg, msglen); 4416 vd->inband_task.msglen = msglen; 4417 4418 /* 4419 * The task request is now the payload of the message 4420 * that was just copied into the body of the task. 4421 */ 4422 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 4423 vd->inband_task.request = &desc_msg->payload; 4424 4425 return (vd_process_task(&vd->inband_task)); 4426 } 4427 4428 static int 4429 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 4430 vio_msg_t *msg, size_t msglen) 4431 { 4432 int status; 4433 boolean_t ready; 4434 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 4435 4436 4437 /* Accept the updated dring element */ 4438 if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 4439 PR0("ldc_mem_dring_acquire() returned errno %d", status); 4440 return (status); 4441 } 4442 ready = (elem->hdr.dstate == VIO_DESC_READY); 4443 if (ready) { 4444 elem->hdr.dstate = VIO_DESC_ACCEPTED; 4445 } else { 4446 PR0("descriptor %u not ready", idx); 4447 VD_DUMP_DRING_ELEM(elem); 4448 } 4449 if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 4450 PR0("ldc_mem_dring_release() returned errno %d", status); 4451 return (status); 4452 } 4453 if (!ready) 4454 return (EBUSY); 4455 4456 4457 /* Initialize a task and process the accepted element */ 4458 PR1("Processing dring element %u", idx); 4459 vd->dring_task[idx].type = type; 4460 4461 /* duplicate msg buf for cookies etc. */ 4462 bcopy(msg, vd->dring_task[idx].msg, msglen); 4463 4464 vd->dring_task[idx].msglen = msglen; 4465 return (vd_process_task(&vd->dring_task[idx])); 4466 } 4467 4468 static int 4469 vd_process_element_range(vd_t *vd, int start, int end, 4470 vio_msg_t *msg, size_t msglen) 4471 { 4472 int i, n, nelem, status = 0; 4473 boolean_t inprogress = B_FALSE; 4474 vd_task_type_t type; 4475 4476 4477 ASSERT(start >= 0); 4478 ASSERT(end >= 0); 4479 4480 /* 4481 * Arrange to acknowledge the client's message, unless an error 4482 * processing one of the dring elements results in setting 4483 * VIO_SUBTYPE_NACK 4484 */ 4485 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4486 4487 /* 4488 * Process the dring elements in the range 4489 */ 4490 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 4491 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 4492 ((vio_dring_msg_t *)msg)->end_idx = i; 4493 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 4494 status = vd_process_element(vd, type, i, msg, msglen); 4495 if (status == EINPROGRESS) 4496 inprogress = B_TRUE; 4497 else if (status != 0) 4498 break; 4499 } 4500 4501 /* 4502 * If some, but not all, operations of a multi-element range are in 4503 * progress, wait for other operations to complete before returning 4504 * (which will result in "ack" or "nack" of the message). Note that 4505 * all outstanding operations will need to complete, not just the ones 4506 * corresponding to the current range of dring elements; howevever, as 4507 * this situation is an error case, performance is less critical. 4508 */ 4509 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) 4510 ddi_taskq_wait(vd->completionq); 4511 4512 return (status); 4513 } 4514 4515 static int 4516 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4517 { 4518 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 4519 4520 4521 ASSERT(msglen >= sizeof (msg->tag)); 4522 4523 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 4524 VIO_DRING_DATA)) { 4525 PR1("Message is not a dring-data message"); 4526 return (ENOMSG); 4527 } 4528 4529 if (msglen != sizeof (*dring_msg)) { 4530 PR0("Expected %lu-byte dring message; received %lu bytes", 4531 sizeof (*dring_msg), msglen); 4532 return (EBADMSG); 4533 } 4534 4535 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 4536 return (EBADMSG); 4537 4538 if (dring_msg->dring_ident != vd->dring_ident) { 4539 PR0("Expected dring ident %lu; received ident %lu", 4540 vd->dring_ident, dring_msg->dring_ident); 4541 return (EBADMSG); 4542 } 4543 4544 if (dring_msg->start_idx >= vd->dring_len) { 4545 PR0("\"start_idx\" = %u; must be less than %u", 4546 dring_msg->start_idx, vd->dring_len); 4547 return (EBADMSG); 4548 } 4549 4550 if ((dring_msg->end_idx < 0) || 4551 (dring_msg->end_idx >= vd->dring_len)) { 4552 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 4553 dring_msg->end_idx, vd->dring_len); 4554 return (EBADMSG); 4555 } 4556 4557 /* Valid message; process range of updated dring elements */ 4558 PR1("Processing descriptor range, start = %u, end = %u", 4559 dring_msg->start_idx, dring_msg->end_idx); 4560 return (vd_process_element_range(vd, dring_msg->start_idx, 4561 dring_msg->end_idx, msg, msglen)); 4562 } 4563 4564 static int 4565 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 4566 { 4567 int retry, status; 4568 size_t size = *nbytes; 4569 4570 4571 for (retry = 0, status = ETIMEDOUT; 4572 retry < vds_ldc_retries && status == ETIMEDOUT; 4573 retry++) { 4574 PR1("ldc_read() attempt %d", (retry + 1)); 4575 *nbytes = size; 4576 status = ldc_read(ldc_handle, msg, nbytes); 4577 } 4578 4579 if (status) { 4580 PR0("ldc_read() returned errno %d", status); 4581 if (status != ECONNRESET) 4582 return (ENOMSG); 4583 return (status); 4584 } else if (*nbytes == 0) { 4585 PR1("ldc_read() returned 0 and no message read"); 4586 return (ENOMSG); 4587 } 4588 4589 PR1("RCVD %lu-byte message", *nbytes); 4590 return (0); 4591 } 4592 4593 static int 4594 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4595 { 4596 int status; 4597 4598 4599 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 4600 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 4601 #ifdef DEBUG 4602 vd_decode_tag(msg); 4603 #endif 4604 4605 /* 4606 * Validate session ID up front, since it applies to all messages 4607 * once set 4608 */ 4609 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 4610 PR0("Expected SID %u, received %u", vd->sid, 4611 msg->tag.vio_sid); 4612 return (EBADMSG); 4613 } 4614 4615 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 4616 4617 /* 4618 * Process the received message based on connection state 4619 */ 4620 switch (vd->state) { 4621 case VD_STATE_INIT: /* expect version message */ 4622 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 4623 return (status); 4624 4625 /* Version negotiated, move to that state */ 4626 vd->state = VD_STATE_VER; 4627 return (0); 4628 4629 case VD_STATE_VER: /* expect attribute message */ 4630 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 4631 return (status); 4632 4633 /* Attributes exchanged, move to that state */ 4634 vd->state = VD_STATE_ATTR; 4635 return (0); 4636 4637 case VD_STATE_ATTR: 4638 switch (vd->xfer_mode) { 4639 case VIO_DESC_MODE: /* expect RDX message */ 4640 if ((status = process_rdx_msg(msg, msglen)) != 0) 4641 return (status); 4642 4643 /* Ready to receive in-band descriptors */ 4644 vd->state = VD_STATE_DATA; 4645 return (0); 4646 4647 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 4648 if ((status = 4649 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 4650 return (status); 4651 4652 /* One dring negotiated, move to that state */ 4653 vd->state = VD_STATE_DRING; 4654 return (0); 4655 4656 default: 4657 ASSERT("Unsupported transfer mode"); 4658 PR0("Unsupported transfer mode"); 4659 return (ENOTSUP); 4660 } 4661 4662 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 4663 if ((status = process_rdx_msg(msg, msglen)) == 0) { 4664 /* Ready to receive data */ 4665 vd->state = VD_STATE_DATA; 4666 return (0); 4667 } else if (status != ENOMSG) { 4668 return (status); 4669 } 4670 4671 4672 /* 4673 * If another register-dring message is received, stay in 4674 * dring state in case the client sends RDX; although the 4675 * protocol allows multiple drings, this server does not 4676 * support using more than one 4677 */ 4678 if ((status = 4679 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 4680 return (status); 4681 4682 /* 4683 * Acknowledge an unregister-dring message, but reset the 4684 * connection anyway: Although the protocol allows 4685 * unregistering drings, this server cannot serve a vdisk 4686 * without its only dring 4687 */ 4688 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4689 return ((status == 0) ? ENOTSUP : status); 4690 4691 case VD_STATE_DATA: 4692 switch (vd->xfer_mode) { 4693 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 4694 return (vd_process_desc_msg(vd, msg, msglen)); 4695 4696 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 4697 /* 4698 * Typically expect dring-data messages, so handle 4699 * them first 4700 */ 4701 if ((status = vd_process_dring_msg(vd, msg, 4702 msglen)) != ENOMSG) 4703 return (status); 4704 4705 /* 4706 * Acknowledge an unregister-dring message, but reset 4707 * the connection anyway: Although the protocol 4708 * allows unregistering drings, this server cannot 4709 * serve a vdisk without its only dring 4710 */ 4711 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4712 return ((status == 0) ? ENOTSUP : status); 4713 4714 default: 4715 ASSERT("Unsupported transfer mode"); 4716 PR0("Unsupported transfer mode"); 4717 return (ENOTSUP); 4718 } 4719 4720 default: 4721 ASSERT("Invalid client connection state"); 4722 PR0("Invalid client connection state"); 4723 return (ENOTSUP); 4724 } 4725 } 4726 4727 static int 4728 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4729 { 4730 int status; 4731 boolean_t reset_ldc = B_FALSE; 4732 vd_task_t task; 4733 4734 /* 4735 * Check that the message is at least big enough for a "tag", so that 4736 * message processing can proceed based on tag-specified message type 4737 */ 4738 if (msglen < sizeof (vio_msg_tag_t)) { 4739 PR0("Received short (%lu-byte) message", msglen); 4740 /* Can't "nack" short message, so drop the big hammer */ 4741 PR0("initiating full reset"); 4742 vd_need_reset(vd, B_TRUE); 4743 return (EBADMSG); 4744 } 4745 4746 /* 4747 * Process the message 4748 */ 4749 switch (status = vd_do_process_msg(vd, msg, msglen)) { 4750 case 0: 4751 /* "ack" valid, successfully-processed messages */ 4752 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4753 break; 4754 4755 case EINPROGRESS: 4756 /* The completion handler will "ack" or "nack" the message */ 4757 return (EINPROGRESS); 4758 case ENOMSG: 4759 PR0("Received unexpected message"); 4760 _NOTE(FALLTHROUGH); 4761 case EBADMSG: 4762 case ENOTSUP: 4763 /* "transport" error will cause NACK of invalid messages */ 4764 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4765 break; 4766 4767 default: 4768 /* "transport" error will cause NACK of invalid messages */ 4769 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4770 /* An LDC error probably occurred, so try resetting it */ 4771 reset_ldc = B_TRUE; 4772 break; 4773 } 4774 4775 PR1("\tResulting in state %d (%s)", vd->state, 4776 vd_decode_state(vd->state)); 4777 4778 /* populate the task so we can dispatch it on the taskq */ 4779 task.vd = vd; 4780 task.msg = msg; 4781 task.msglen = msglen; 4782 4783 /* 4784 * Queue a task to send the notification that the operation completed. 4785 * We need to ensure that requests are responded to in the correct 4786 * order and since the taskq is processed serially this ordering 4787 * is maintained. 4788 */ 4789 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 4790 &task, DDI_SLEEP); 4791 4792 /* 4793 * To ensure handshake negotiations do not happen out of order, such 4794 * requests that come through this path should not be done in parallel 4795 * so we need to wait here until the response is sent to the client. 4796 */ 4797 ddi_taskq_wait(vd->completionq); 4798 4799 /* Arrange to reset the connection for nack'ed or failed messages */ 4800 if ((status != 0) || reset_ldc) { 4801 PR0("initiating %s reset", 4802 (reset_ldc) ? "full" : "soft"); 4803 vd_need_reset(vd, reset_ldc); 4804 } 4805 4806 return (status); 4807 } 4808 4809 static boolean_t 4810 vd_enabled(vd_t *vd) 4811 { 4812 boolean_t enabled; 4813 4814 mutex_enter(&vd->lock); 4815 enabled = vd->enabled; 4816 mutex_exit(&vd->lock); 4817 return (enabled); 4818 } 4819 4820 static void 4821 vd_recv_msg(void *arg) 4822 { 4823 vd_t *vd = (vd_t *)arg; 4824 int rv = 0, status = 0; 4825 4826 ASSERT(vd != NULL); 4827 4828 PR2("New task to receive incoming message(s)"); 4829 4830 4831 while (vd_enabled(vd) && status == 0) { 4832 size_t msglen, msgsize; 4833 ldc_status_t lstatus; 4834 4835 /* 4836 * Receive and process a message 4837 */ 4838 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 4839 4840 /* 4841 * check if channel is UP - else break out of loop 4842 */ 4843 status = ldc_status(vd->ldc_handle, &lstatus); 4844 if (lstatus != LDC_UP) { 4845 PR0("channel not up (status=%d), exiting recv loop\n", 4846 lstatus); 4847 break; 4848 } 4849 4850 ASSERT(vd->max_msglen != 0); 4851 4852 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 4853 msglen = msgsize; /* actual len after recv_msg() */ 4854 4855 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 4856 switch (status) { 4857 case 0: 4858 rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp, 4859 msglen); 4860 /* check if max_msglen changed */ 4861 if (msgsize != vd->max_msglen) { 4862 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 4863 msgsize, vd->max_msglen); 4864 kmem_free(vd->vio_msgp, msgsize); 4865 vd->vio_msgp = 4866 kmem_alloc(vd->max_msglen, KM_SLEEP); 4867 } 4868 if (rv == EINPROGRESS) 4869 continue; 4870 break; 4871 4872 case ENOMSG: 4873 break; 4874 4875 case ECONNRESET: 4876 PR0("initiating soft reset (ECONNRESET)\n"); 4877 vd_need_reset(vd, B_FALSE); 4878 status = 0; 4879 break; 4880 4881 default: 4882 /* Probably an LDC failure; arrange to reset it */ 4883 PR0("initiating full reset (status=0x%x)", status); 4884 vd_need_reset(vd, B_TRUE); 4885 break; 4886 } 4887 } 4888 4889 PR2("Task finished"); 4890 } 4891 4892 static uint_t 4893 vd_handle_ldc_events(uint64_t event, caddr_t arg) 4894 { 4895 vd_t *vd = (vd_t *)(void *)arg; 4896 int status; 4897 4898 ASSERT(vd != NULL); 4899 4900 if (!vd_enabled(vd)) 4901 return (LDC_SUCCESS); 4902 4903 if (event & LDC_EVT_DOWN) { 4904 PR0("LDC_EVT_DOWN: LDC channel went down"); 4905 4906 vd_need_reset(vd, B_TRUE); 4907 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4908 DDI_SLEEP); 4909 if (status == DDI_FAILURE) { 4910 PR0("cannot schedule task to recv msg\n"); 4911 vd_need_reset(vd, B_TRUE); 4912 } 4913 } 4914 4915 if (event & LDC_EVT_RESET) { 4916 PR0("LDC_EVT_RESET: LDC channel was reset"); 4917 4918 if (vd->state != VD_STATE_INIT) { 4919 PR0("scheduling full reset"); 4920 vd_need_reset(vd, B_FALSE); 4921 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4922 vd, DDI_SLEEP); 4923 if (status == DDI_FAILURE) { 4924 PR0("cannot schedule task to recv msg\n"); 4925 vd_need_reset(vd, B_TRUE); 4926 } 4927 4928 } else { 4929 PR0("channel already reset, ignoring...\n"); 4930 PR0("doing ldc up...\n"); 4931 (void) ldc_up(vd->ldc_handle); 4932 } 4933 4934 return (LDC_SUCCESS); 4935 } 4936 4937 if (event & LDC_EVT_UP) { 4938 PR0("EVT_UP: LDC is up\nResetting client connection state"); 4939 PR0("initiating soft reset"); 4940 vd_need_reset(vd, B_FALSE); 4941 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4942 vd, DDI_SLEEP); 4943 if (status == DDI_FAILURE) { 4944 PR0("cannot schedule task to recv msg\n"); 4945 vd_need_reset(vd, B_TRUE); 4946 return (LDC_SUCCESS); 4947 } 4948 } 4949 4950 if (event & LDC_EVT_READ) { 4951 int status; 4952 4953 PR1("New data available"); 4954 /* Queue a task to receive the new data */ 4955 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4956 DDI_SLEEP); 4957 4958 if (status == DDI_FAILURE) { 4959 PR0("cannot schedule task to recv msg\n"); 4960 vd_need_reset(vd, B_TRUE); 4961 } 4962 } 4963 4964 return (LDC_SUCCESS); 4965 } 4966 4967 static uint_t 4968 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4969 { 4970 _NOTE(ARGUNUSED(key, val)) 4971 (*((uint_t *)arg))++; 4972 return (MH_WALK_TERMINATE); 4973 } 4974 4975 4976 static int 4977 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 4978 { 4979 uint_t vd_present = 0; 4980 minor_t instance; 4981 vds_t *vds; 4982 4983 4984 switch (cmd) { 4985 case DDI_DETACH: 4986 /* the real work happens below */ 4987 break; 4988 case DDI_SUSPEND: 4989 PR0("No action required for DDI_SUSPEND"); 4990 return (DDI_SUCCESS); 4991 default: 4992 PR0("Unrecognized \"cmd\""); 4993 return (DDI_FAILURE); 4994 } 4995 4996 ASSERT(cmd == DDI_DETACH); 4997 instance = ddi_get_instance(dip); 4998 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 4999 PR0("Could not get state for instance %u", instance); 5000 ddi_soft_state_free(vds_state, instance); 5001 return (DDI_FAILURE); 5002 } 5003 5004 /* Do no detach when serving any vdisks */ 5005 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 5006 if (vd_present) { 5007 PR0("Not detaching because serving vdisks"); 5008 return (DDI_FAILURE); 5009 } 5010 5011 PR0("Detaching"); 5012 if (vds->initialized & VDS_MDEG) { 5013 (void) mdeg_unregister(vds->mdeg); 5014 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 5015 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 5016 vds->ispecp = NULL; 5017 vds->mdeg = NULL; 5018 } 5019 5020 vds_driver_types_free(vds); 5021 5022 if (vds->initialized & VDS_LDI) 5023 (void) ldi_ident_release(vds->ldi_ident); 5024 mod_hash_destroy_hash(vds->vd_table); 5025 ddi_soft_state_free(vds_state, instance); 5026 return (DDI_SUCCESS); 5027 } 5028 5029 /* 5030 * Description: 5031 * This function checks to see if the file being used as a 5032 * virtual disk is an ISO image. An ISO image is a special 5033 * case which can be booted/installed from like a CD/DVD 5034 * 5035 * Parameters: 5036 * vd - disk on which the operation is performed. 5037 * 5038 * Return Code: 5039 * B_TRUE - The file is an ISO 9660 compliant image 5040 * B_FALSE - just a regular disk image file 5041 */ 5042 static boolean_t 5043 vd_file_is_iso_image(vd_t *vd) 5044 { 5045 char iso_buf[ISO_SECTOR_SIZE]; 5046 int i, rv; 5047 uint_t sec; 5048 5049 ASSERT(vd->file); 5050 5051 /* 5052 * If we have already discovered and saved this info we can 5053 * short-circuit the check and avoid reading the file. 5054 */ 5055 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 5056 return (B_TRUE); 5057 5058 /* 5059 * We wish to read the sector that should contain the 2nd ISO volume 5060 * descriptor. The second field in this descriptor is called the 5061 * Standard Identifier and is set to CD001 for a CD-ROM compliant 5062 * to the ISO 9660 standard. 5063 */ 5064 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size; 5065 rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 5066 sec, ISO_SECTOR_SIZE); 5067 5068 if (rv < 0) 5069 return (B_FALSE); 5070 5071 for (i = 0; i < ISO_ID_STRLEN; i++) { 5072 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 5073 return (B_FALSE); 5074 } 5075 5076 return (B_TRUE); 5077 } 5078 5079 /* 5080 * Description: 5081 * This function checks to see if the virtual device is an ATAPI 5082 * device. ATAPI devices use Group 1 Read/Write commands, so 5083 * any USCSI calls vds makes need to take this into account. 5084 * 5085 * Parameters: 5086 * vd - disk on which the operation is performed. 5087 * 5088 * Return Code: 5089 * B_TRUE - The virtual disk is backed by an ATAPI device 5090 * B_FALSE - not an ATAPI device (presumably SCSI) 5091 */ 5092 static boolean_t 5093 vd_is_atapi_device(vd_t *vd) 5094 { 5095 boolean_t is_atapi = B_FALSE; 5096 char *variantp; 5097 int rv; 5098 5099 ASSERT(vd->ldi_handle[0] != NULL); 5100 ASSERT(!vd->file); 5101 5102 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 5103 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 5104 if (rv == DDI_PROP_SUCCESS) { 5105 PR0("'variant' property exists for %s", vd->device_path); 5106 if (strcmp(variantp, "atapi") == 0) 5107 is_atapi = B_TRUE; 5108 ddi_prop_free(variantp); 5109 } 5110 5111 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 5112 if (rv) { 5113 PR0("'atapi' property exists for %s", vd->device_path); 5114 is_atapi = B_TRUE; 5115 } 5116 5117 return (is_atapi); 5118 } 5119 5120 static int 5121 vd_setup_mediainfo(vd_t *vd) 5122 { 5123 int status, rval; 5124 struct dk_minfo dk_minfo; 5125 5126 ASSERT(vd->ldi_handle[0] != NULL); 5127 ASSERT(vd->vdisk_block_size != 0); 5128 5129 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 5130 (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL), 5131 kcred, &rval)) != 0) 5132 return (status); 5133 5134 ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0); 5135 5136 vd->block_size = dk_minfo.dki_lbsize; 5137 vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) / 5138 vd->vdisk_block_size; 5139 vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type); 5140 return (0); 5141 } 5142 5143 static int 5144 vd_setup_full_disk(vd_t *vd) 5145 { 5146 int status; 5147 major_t major = getmajor(vd->dev[0]); 5148 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 5149 5150 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 5151 5152 vd->vdisk_block_size = DEV_BSIZE; 5153 5154 /* 5155 * At this point, vdisk_size is set to the size of partition 2 but 5156 * this does not represent the size of the disk because partition 2 5157 * may not cover the entire disk and its size does not include reserved 5158 * blocks. So we call vd_get_mediainfo to udpate this information and 5159 * set the block size and the media type of the disk. 5160 */ 5161 status = vd_setup_mediainfo(vd); 5162 5163 if (status != 0) { 5164 if (!vd->scsi) { 5165 /* unexpected failure */ 5166 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 5167 status); 5168 return (status); 5169 } 5170 5171 /* 5172 * The function can fail for SCSI disks which are present but 5173 * reserved by another system. In that case, we don't know the 5174 * size of the disk and the block size. 5175 */ 5176 vd->vdisk_size = VD_SIZE_UNKNOWN; 5177 vd->block_size = 0; 5178 vd->vdisk_media = VD_MEDIA_FIXED; 5179 } 5180 5181 /* Move dev number and LDI handle to entire-disk-slice array elements */ 5182 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 5183 vd->dev[0] = 0; 5184 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 5185 vd->ldi_handle[0] = NULL; 5186 5187 /* Initialize device numbers for remaining slices and open them */ 5188 for (int slice = 0; slice < vd->nslices; slice++) { 5189 /* 5190 * Skip the entire-disk slice, as it's already open and its 5191 * device known 5192 */ 5193 if (slice == VD_ENTIRE_DISK_SLICE) 5194 continue; 5195 ASSERT(vd->dev[slice] == 0); 5196 ASSERT(vd->ldi_handle[slice] == NULL); 5197 5198 /* 5199 * Construct the device number for the current slice 5200 */ 5201 vd->dev[slice] = makedevice(major, (minor + slice)); 5202 5203 /* 5204 * Open all slices of the disk to serve them to the client. 5205 * Slices are opened exclusively to prevent other threads or 5206 * processes in the service domain from performing I/O to 5207 * slices being accessed by a client. Failure to open a slice 5208 * results in vds not serving this disk, as the client could 5209 * attempt (and should be able) to access any slice immediately. 5210 * Any slices successfully opened before a failure will get 5211 * closed by vds_destroy_vd() as a result of the error returned 5212 * by this function. 5213 * 5214 * We need to do the open with FNDELAY so that opening an empty 5215 * slice does not fail. 5216 */ 5217 PR0("Opening device major %u, minor %u = slice %u", 5218 major, minor, slice); 5219 5220 /* 5221 * Try to open the device. This can fail for example if we are 5222 * opening an empty slice. So in case of a failure, we try the 5223 * open again but this time with the FNDELAY flag. 5224 */ 5225 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5226 vd->open_flags, kcred, &vd->ldi_handle[slice], 5227 vd->vds->ldi_ident); 5228 5229 if (status != 0) { 5230 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 5231 vd->open_flags | FNDELAY, kcred, 5232 &vd->ldi_handle[slice], vd->vds->ldi_ident); 5233 } 5234 5235 if (status != 0) { 5236 PRN("ldi_open_by_dev() returned errno %d " 5237 "for slice %u", status, slice); 5238 /* vds_destroy_vd() will close any open slices */ 5239 vd->ldi_handle[slice] = NULL; 5240 return (status); 5241 } 5242 } 5243 5244 return (0); 5245 } 5246 5247 /* 5248 * When a slice or a volume is exported as a single-slice disk, we want 5249 * the disk backend (i.e. the slice or volume) to be entirely mapped as 5250 * a slice without the addition of any metadata. 5251 * 5252 * So when exporting the disk as a VTOC disk, we fake a disk with the following 5253 * layout: 5254 * flabel +--- flabel_limit 5255 * <-> V 5256 * 0 1 C D E 5257 * +-+---+--------------------------+--+ 5258 * virtual disk: |L|XXX| slice 0 |AA| 5259 * +-+---+--------------------------+--+ 5260 * ^ : : 5261 * | : : 5262 * VTOC LABEL--+ : : 5263 * +--------------------------+ 5264 * disk backend: | slice/volume/file | 5265 * +--------------------------+ 5266 * 0 N 5267 * 5268 * N is the number of blocks in the slice/volume/file. 5269 * 5270 * We simulate a disk with N+M blocks, where M is the number of blocks 5271 * simluated at the beginning and at the end of the disk (blocks 0-C 5272 * and D-E). 5273 * 5274 * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C 5275 * to D defines slice 0 and are mapped to the backend. Finally we emulate 2 5276 * alternate cylinders at the end of the disk (blocks D-E). In summary we have: 5277 * 5278 * - block 0 (L) returns a fake VTOC label 5279 * - blocks 1 to C-1 (X) are unused and return 0 5280 * - blocks C to D-1 are mapped to the exported slice or volume 5281 * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders) 5282 * 5283 * Note: because we define a fake disk geometry, it is possible that the length 5284 * of the backend is not a multiple of the size of cylinder, in that case the 5285 * very end of the backend will not map to any block of the virtual disk. 5286 */ 5287 static int 5288 vd_setup_partition_vtoc(vd_t *vd) 5289 { 5290 char *device_path = vd->device_path; 5291 char unit; 5292 size_t size, csize; 5293 5294 /* Initialize dk_geom structure for single-slice device */ 5295 if (vd->dk_geom.dkg_nsect == 0) { 5296 PRN("%s geometry claims 0 sectors per track", device_path); 5297 return (EIO); 5298 } 5299 if (vd->dk_geom.dkg_nhead == 0) { 5300 PRN("%s geometry claims 0 heads", device_path); 5301 return (EIO); 5302 } 5303 5304 /* size of a cylinder in block */ 5305 csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 5306 5307 /* 5308 * Add extra cylinders: we emulate the first cylinder (which contains 5309 * the disk label). 5310 */ 5311 vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1; 5312 5313 /* we emulate 2 alternate cylinders */ 5314 vd->dk_geom.dkg_acyl = 2; 5315 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 5316 5317 5318 /* Initialize vtoc structure for single-slice device */ 5319 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 5320 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 5321 vd->vtoc.v_part[0].p_flag = 0; 5322 /* 5323 * Partition 0 starts on cylinder 1 and its size has to be 5324 * a multiple of a number of cylinder. 5325 */ 5326 vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */ 5327 vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize; 5328 5329 if (vd_slice_single_slice) { 5330 vd->vtoc.v_nparts = 1; 5331 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 5332 MIN(sizeof (VD_ASCIILABEL), 5333 sizeof (vd->vtoc.v_asciilabel))); 5334 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 5335 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 5336 } else { 5337 /* adjust the number of slices */ 5338 vd->nslices = V_NUMPAR; 5339 vd->vtoc.v_nparts = V_NUMPAR; 5340 5341 /* define slice 2 representing the entire disk */ 5342 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 5343 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0; 5344 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0; 5345 vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size = 5346 vd->dk_geom.dkg_ncyl * csize; 5347 5348 vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size, 5349 &size, &unit); 5350 5351 /* 5352 * Set some attributes of the geometry to what format(1m) uses 5353 * so that writing a default label using format(1m) does not 5354 * produce any error. 5355 */ 5356 vd->dk_geom.dkg_bcyl = 0; 5357 vd->dk_geom.dkg_intrlv = 1; 5358 vd->dk_geom.dkg_write_reinstruct = 0; 5359 vd->dk_geom.dkg_read_reinstruct = 0; 5360 5361 /* 5362 * We must have a correct label name otherwise format(1m) will 5363 * not recognized the disk as labeled. 5364 */ 5365 (void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII, 5366 "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d", 5367 size, unit, 5368 vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl, 5369 vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect); 5370 bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume)); 5371 5372 /* create a fake label from the vtoc and geometry */ 5373 vd->flabel_limit = csize; 5374 vd->flabel_size = VD_LABEL_VTOC_SIZE; 5375 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5376 vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom, 5377 VD_LABEL_VTOC(vd)); 5378 } 5379 5380 /* adjust the vdisk_size, we emulate 3 cylinders */ 5381 vd->vdisk_size += csize * 3; 5382 5383 return (0); 5384 } 5385 5386 /* 5387 * When a slice, volume or file is exported as a single-slice disk, we want 5388 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 5389 * as a slice without the addition of any metadata. 5390 * 5391 * So when exporting the disk as an EFI disk, we fake a disk with the following 5392 * layout: 5393 * 5394 * flabel +--- flabel_limit 5395 * <------> v 5396 * 0 1 2 L 34 34+N P 5397 * +-+-+--+-------+--------------------------+-------+ 5398 * virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR| 5399 * +-+-+--+-------+--------------------------+-------+ 5400 * ^ ^ : : 5401 * | | : : 5402 * GPT-+ +-GPE : : 5403 * +--------------------------+ 5404 * disk backend: | slice/volume/file | 5405 * +--------------------------+ 5406 * 0 N 5407 * 5408 * N is the number of blocks in the slice/volume/file. 5409 * 5410 * We simulate a disk with N+M blocks, where M is the number of blocks 5411 * simluated at the beginning and at the end of the disk (blocks 0-34 5412 * and 34+N-P). 5413 * 5414 * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34 5415 * to 34+N defines slice 0 and are mapped to the exported backend, and we 5416 * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI 5417 * reserved partition. 5418 * 5419 * - block 0 (X) is unused and return 0 5420 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 5421 * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI) 5422 * - blocks L to 33 (X) are unused and return 0 5423 * - blocks 34 to 34+N are mapped to the exported slice, volume or file 5424 * - blocks 34+N+1 to P define a fake reserved partition and backup label, it 5425 * returns 0 5426 * 5427 * Note: if the backend size is not a multiple of the vdisk block size 5428 * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to 5429 * any block of the virtual disk. 5430 */ 5431 static int 5432 vd_setup_partition_efi(vd_t *vd) 5433 { 5434 efi_gpt_t *gpt; 5435 efi_gpe_t *gpe; 5436 struct uuid uuid = EFI_USR; 5437 struct uuid efi_reserved = EFI_RESERVED; 5438 uint32_t crc; 5439 uint64_t s0_start, s0_end; 5440 5441 vd->flabel_limit = 34; 5442 vd->flabel_size = VD_LABEL_EFI_SIZE; 5443 vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP); 5444 gpt = VD_LABEL_EFI_GPT(vd); 5445 gpe = VD_LABEL_EFI_GPE(vd); 5446 5447 /* adjust the vdisk_size, we emulate the first 34 blocks */ 5448 vd->vdisk_size += 34; 5449 s0_start = 34; 5450 s0_end = vd->vdisk_size - 1; 5451 5452 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 5453 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 5454 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 5455 gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL); 5456 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 5457 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 5458 5459 UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid); 5460 gpe[0].efi_gpe_StartingLBA = LE_64(s0_start); 5461 gpe[0].efi_gpe_EndingLBA = LE_64(s0_end); 5462 5463 if (vd_slice_single_slice) { 5464 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 5465 } else { 5466 /* adjust the number of slices */ 5467 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART); 5468 vd->nslices = V_NUMPAR; 5469 5470 /* define a fake reserved partition */ 5471 UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID, 5472 efi_reserved); 5473 gpe[VD_MAXPART - 1].efi_gpe_StartingLBA = 5474 LE_64(s0_end + 1); 5475 gpe[VD_MAXPART - 1].efi_gpe_EndingLBA = 5476 LE_64(s0_end + EFI_MIN_RESV_SIZE); 5477 5478 /* adjust the vdisk_size to include the reserved slice */ 5479 vd->vdisk_size += EFI_MIN_RESV_SIZE; 5480 } 5481 5482 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 5483 5484 /* adjust the vdisk size for the backup GPT and GPE */ 5485 vd->vdisk_size += 33; 5486 5487 CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table); 5488 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 5489 5490 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 5491 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 5492 5493 return (0); 5494 } 5495 5496 /* 5497 * Setup for a virtual disk whose backend is a file (exported as a single slice 5498 * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume) 5499 * exported as a full disk. In these cases, the backend is accessed using the 5500 * vnode interface. 5501 */ 5502 static int 5503 vd_setup_backend_vnode(vd_t *vd) 5504 { 5505 int rval, status; 5506 vattr_t vattr; 5507 dev_t dev; 5508 char *file_path = vd->device_path; 5509 char dev_path[MAXPATHLEN + 1]; 5510 ldi_handle_t lhandle; 5511 struct dk_cinfo dk_cinfo; 5512 struct dk_label label; 5513 5514 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 5515 0, &vd->file_vnode, 0, 0)) != 0) { 5516 PRN("vn_open(%s) = errno %d", file_path, status); 5517 return (status); 5518 } 5519 5520 /* 5521 * We set vd->file now so that vds_destroy_vd will take care of 5522 * closing the file and releasing the vnode in case of an error. 5523 */ 5524 vd->file = B_TRUE; 5525 5526 vattr.va_mask = AT_SIZE; 5527 if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL)) 5528 != 0) { 5529 PRN("VOP_GETATTR(%s) = errno %d", file_path, status); 5530 return (EIO); 5531 } 5532 5533 vd->file_size = vattr.va_size; 5534 /* size should be at least sizeof(dk_label) */ 5535 if (vd->file_size < sizeof (struct dk_label)) { 5536 PRN("Size of file has to be at least %ld bytes", 5537 sizeof (struct dk_label)); 5538 return (EIO); 5539 } 5540 5541 if (vd->file_vnode->v_flag & VNOMAP) { 5542 PRN("File %s cannot be mapped", file_path); 5543 return (EIO); 5544 } 5545 5546 /* sector size = block size = DEV_BSIZE */ 5547 vd->block_size = DEV_BSIZE; 5548 vd->vdisk_block_size = DEV_BSIZE; 5549 vd->vdisk_size = vd->file_size / DEV_BSIZE; 5550 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 5551 5552 /* 5553 * Get max_xfer_sz from the device where the file is or from the device 5554 * itself if we have a volume device. 5555 */ 5556 dev_path[0] = '\0'; 5557 5558 if (vd->volume) { 5559 status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle, 5560 vd->vds->ldi_ident); 5561 } else { 5562 dev = vd->file_vnode->v_vfsp->vfs_dev; 5563 if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) { 5564 PR0("underlying device = %s\n", dev_path); 5565 } 5566 5567 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 5568 vd->vds->ldi_ident); 5569 } 5570 5571 if (status != 0) { 5572 PR0("ldi_open() returned errno %d for device %s", 5573 status, (dev_path[0] == '\0')? file_path : dev_path); 5574 } else { 5575 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 5576 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5577 &rval)) != 0) { 5578 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 5579 status, dev_path); 5580 } else { 5581 /* 5582 * Store the device's max transfer size for 5583 * return to the client 5584 */ 5585 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5586 } 5587 5588 PR0("close the device %s", dev_path); 5589 (void) ldi_close(lhandle, FREAD, kcred); 5590 } 5591 5592 PR0("using file %s, dev %s, max_xfer = %u blks", 5593 file_path, dev_path, vd->max_xfer_sz); 5594 5595 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 5596 ASSERT(!vd->volume); 5597 vd->vdisk_media = VD_MEDIA_FIXED; 5598 vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)? 5599 vd_file_slice_label : vd_slice_label; 5600 if (vd->vdisk_label == VD_DISK_LABEL_EFI || 5601 vd->file_size >= ONE_TERABYTE) { 5602 status = vd_setup_partition_efi(vd); 5603 } else { 5604 /* 5605 * We build a default label to get a geometry for 5606 * the vdisk. Then the partition setup function will 5607 * adjust the vtoc so that it defines a single-slice 5608 * disk. 5609 */ 5610 vd_build_default_label(vd->file_size, &label); 5611 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5612 status = vd_setup_partition_vtoc(vd); 5613 } 5614 return (status); 5615 } 5616 5617 /* 5618 * Find and validate the geometry of a disk image. 5619 */ 5620 status = vd_file_validate_geometry(vd); 5621 if (status != 0 && status != EINVAL && status != ENOTSUP) { 5622 PRN("Failed to read label from %s", file_path); 5623 return (EIO); 5624 } 5625 5626 if (vd_file_is_iso_image(vd)) { 5627 /* 5628 * Indicate whether to call this a CD or DVD from the size 5629 * of the ISO image (images for both drive types are stored 5630 * in the ISO-9600 format). CDs can store up to just under 1Gb 5631 */ 5632 if ((vd->vdisk_size * vd->vdisk_block_size) > 5633 (1024 * 1024 * 1024)) 5634 vd->vdisk_media = VD_MEDIA_DVD; 5635 else 5636 vd->vdisk_media = VD_MEDIA_CD; 5637 } else { 5638 vd->vdisk_media = VD_MEDIA_FIXED; 5639 } 5640 5641 /* Setup devid for the disk image */ 5642 5643 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 5644 5645 status = vd_file_read_devid(vd, &vd->file_devid); 5646 5647 if (status == 0) { 5648 /* a valid devid was found */ 5649 return (0); 5650 } 5651 5652 if (status != EINVAL) { 5653 /* 5654 * There was an error while trying to read the devid. 5655 * So this disk image may have a devid but we are 5656 * unable to read it. 5657 */ 5658 PR0("can not read devid for %s", file_path); 5659 vd->file_devid = NULL; 5660 return (0); 5661 } 5662 } 5663 5664 /* 5665 * No valid device id was found so we create one. Note that a failure 5666 * to create a device id is not fatal and does not prevent the disk 5667 * image from being attached. 5668 */ 5669 PR1("creating devid for %s", file_path); 5670 5671 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 5672 &vd->file_devid) != DDI_SUCCESS) { 5673 PR0("fail to create devid for %s", file_path); 5674 vd->file_devid = NULL; 5675 return (0); 5676 } 5677 5678 /* 5679 * Write devid to the disk image. The devid is stored into the disk 5680 * image if we have a valid label; otherwise the devid will be stored 5681 * when the user writes a valid label. 5682 */ 5683 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 5684 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 5685 PR0("fail to write devid for %s", file_path); 5686 ddi_devid_free(vd->file_devid); 5687 vd->file_devid = NULL; 5688 } 5689 } 5690 5691 return (0); 5692 } 5693 5694 5695 /* 5696 * Description: 5697 * Open a device using its device path (supplied by ldm(1m)) 5698 * 5699 * Parameters: 5700 * vd - pointer to structure containing the vDisk info 5701 * flags - open flags 5702 * 5703 * Return Value 5704 * 0 - success 5705 * != 0 - some other non-zero return value from ldi(9F) functions 5706 */ 5707 static int 5708 vd_open_using_ldi_by_name(vd_t *vd, int flags) 5709 { 5710 int status; 5711 char *device_path = vd->device_path; 5712 5713 /* Attempt to open device */ 5714 status = ldi_open_by_name(device_path, flags, kcred, 5715 &vd->ldi_handle[0], vd->vds->ldi_ident); 5716 5717 /* 5718 * The open can fail for example if we are opening an empty slice. 5719 * In case of a failure, we try the open again but this time with 5720 * the FNDELAY flag. 5721 */ 5722 if (status != 0) 5723 status = ldi_open_by_name(device_path, flags | FNDELAY, 5724 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 5725 5726 if (status != 0) { 5727 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 5728 vd->ldi_handle[0] = NULL; 5729 return (status); 5730 } 5731 5732 return (0); 5733 } 5734 5735 /* 5736 * Setup for a virtual disk which backend is a device (a physical disk, 5737 * slice or volume device) that is directly exported either as a full disk 5738 * for a physical disk or as a slice for a volume device or a disk slice. 5739 * In these cases, the backend is accessed using the LDI interface. 5740 */ 5741 static int 5742 vd_setup_backend_ldi(vd_t *vd) 5743 { 5744 int rval, status; 5745 struct dk_cinfo dk_cinfo; 5746 char *device_path = vd->device_path; 5747 5748 /* device has been opened by vd_identify_dev() */ 5749 ASSERT(vd->ldi_handle[0] != NULL); 5750 ASSERT(vd->dev[0] != NULL); 5751 5752 vd->file = B_FALSE; 5753 5754 /* Verify backing device supports dk_cinfo */ 5755 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 5756 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5757 &rval)) != 0) { 5758 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 5759 status, device_path); 5760 return (status); 5761 } 5762 if (dk_cinfo.dki_partition >= V_NUMPAR) { 5763 PRN("slice %u >= maximum slice %u for %s", 5764 dk_cinfo.dki_partition, V_NUMPAR, device_path); 5765 return (EIO); 5766 } 5767 5768 /* 5769 * The device has been opened read-only by vd_identify_dev(), re-open 5770 * it read-write if the write flag is set and we don't have an optical 5771 * device such as a CD-ROM, which, for now, we do not permit writes to 5772 * and thus should not export write operations to the client. 5773 * 5774 * Future: if/when we implement support for guest domains writing to 5775 * optical devices we will need to do further checking of the media type 5776 * to distinguish between read-only and writable discs. 5777 */ 5778 if (dk_cinfo.dki_ctype == DKC_CDROM) { 5779 5780 vd->open_flags &= ~FWRITE; 5781 5782 } else if (vd->open_flags & FWRITE) { 5783 5784 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 5785 kcred); 5786 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 5787 if (status != 0) { 5788 PR0("Failed to open (%s) = errno %d", 5789 device_path, status); 5790 return (status); 5791 } 5792 } 5793 5794 /* Store the device's max transfer size for return to the client */ 5795 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5796 5797 /* 5798 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 5799 * that we can use the correct CDB group when sending USCSI commands. 5800 */ 5801 vd->is_atapi_dev = vd_is_atapi_device(vd); 5802 5803 /* 5804 * Export a full disk. 5805 * 5806 * When we use the LDI interface, we export a device as a full disk 5807 * if we have an entire disk slice (slice 2) and if this slice is 5808 * exported as a full disk and not as a single slice disk. 5809 * Similarly, we want to use LDI if we are accessing a CD or DVD 5810 * device (even if it isn't s2) 5811 * 5812 * Note that volume devices are exported as full disks using the vnode 5813 * interface, not the LDI interface. 5814 */ 5815 if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE && 5816 vd->vdisk_type == VD_DISK_TYPE_DISK) || 5817 dk_cinfo.dki_ctype == DKC_CDROM) { 5818 ASSERT(!vd->volume); 5819 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 5820 vd->scsi = B_TRUE; 5821 return (vd_setup_full_disk(vd)); 5822 } 5823 5824 /* 5825 * Export a single slice disk. 5826 * 5827 * The exported device can be either a volume device or a disk slice. If 5828 * it is a disk slice different from slice 2 then it is always exported 5829 * as a single slice disk even if the "slice" option is not specified. 5830 * If it is disk slice 2 or a volume device then it is exported as a 5831 * single slice disk only if the "slice" option is specified. 5832 */ 5833 return (vd_setup_single_slice_disk(vd)); 5834 } 5835 5836 static int 5837 vd_setup_single_slice_disk(vd_t *vd) 5838 { 5839 int status, rval; 5840 struct dk_label label; 5841 char *device_path = vd->device_path; 5842 5843 /* Get size of backing device */ 5844 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 5845 PRN("ldi_get_size() failed for %s", device_path); 5846 return (EIO); 5847 } 5848 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 5849 vd->block_size = DEV_BSIZE; 5850 vd->vdisk_block_size = DEV_BSIZE; 5851 vd->vdisk_media = VD_MEDIA_FIXED; 5852 5853 if (vd->volume) { 5854 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 5855 } 5856 5857 /* 5858 * We export the slice as a single slice disk even if the "slice" 5859 * option was not specified. 5860 */ 5861 vd->vdisk_type = VD_DISK_TYPE_SLICE; 5862 vd->nslices = 1; 5863 5864 /* 5865 * When exporting a slice or a device as a single slice disk, we don't 5866 * care about any partitioning exposed by the backend. The goal is just 5867 * to export the backend as a flat storage. We provide a fake partition 5868 * table (either a VTOC or EFI), which presents only one slice, to 5869 * accommodate tools expecting a disk label. The selection of the label 5870 * type (VTOC or EFI) depends on the value of the vd_slice_label 5871 * variable. 5872 */ 5873 if (vd_slice_label == VD_DISK_LABEL_EFI || 5874 vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) { 5875 vd->vdisk_label = VD_DISK_LABEL_EFI; 5876 } else { 5877 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, 5878 (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL), 5879 kcred, &rval); 5880 5881 if (status == 0) { 5882 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 5883 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), 5884 kcred, &rval); 5885 5886 if (status != 0) { 5887 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d " 5888 "for %s", status, device_path); 5889 return (status); 5890 } 5891 vd->vdisk_label = VD_DISK_LABEL_VTOC; 5892 5893 } else if (vd_slice_label == VD_DISK_LABEL_VTOC) { 5894 5895 vd->vdisk_label = VD_DISK_LABEL_VTOC; 5896 vd_build_default_label(vd->vdisk_size * DEV_BSIZE, 5897 &label); 5898 vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom); 5899 5900 } else { 5901 vd->vdisk_label = VD_DISK_LABEL_EFI; 5902 } 5903 } 5904 5905 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 5906 /* export with a fake VTOC label */ 5907 status = vd_setup_partition_vtoc(vd); 5908 5909 } else { 5910 /* export with a fake EFI label */ 5911 status = vd_setup_partition_efi(vd); 5912 } 5913 5914 return (status); 5915 } 5916 5917 /* 5918 * Description: 5919 * Open a device using its device path and identify if this is 5920 * a disk device or a volume device. 5921 * 5922 * Parameters: 5923 * vd - pointer to structure containing the vDisk info 5924 * dtype - return the driver type of the device 5925 * 5926 * Return Value 5927 * 0 - success 5928 * != 0 - some other non-zero return value from ldi(9F) functions 5929 */ 5930 static int 5931 vd_identify_dev(vd_t *vd, int *dtype) 5932 { 5933 int status, i; 5934 char *device_path = vd->device_path; 5935 char *drv_name; 5936 int drv_type; 5937 vds_t *vds = vd->vds; 5938 5939 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 5940 if (status != 0) { 5941 PR0("Failed to open (%s) = errno %d", device_path, status); 5942 return (status); 5943 } 5944 5945 /* Get device number of backing device */ 5946 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 5947 PRN("ldi_get_dev() returned errno %d for %s", 5948 status, device_path); 5949 return (status); 5950 } 5951 5952 /* 5953 * We start by looking if the driver is in the list from vds.conf 5954 * so that we can override the built-in list using vds.conf. 5955 */ 5956 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 5957 drv_type = VD_DRIVER_UNKNOWN; 5958 5959 /* check vds.conf list */ 5960 for (i = 0; i < vds->num_drivers; i++) { 5961 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 5962 /* ignore invalid entries */ 5963 continue; 5964 } 5965 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 5966 drv_type = vds->driver_types[i].type; 5967 goto done; 5968 } 5969 } 5970 5971 /* check built-in list */ 5972 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 5973 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 5974 drv_type = vds_driver_types[i].type; 5975 goto done; 5976 } 5977 } 5978 5979 done: 5980 PR0("driver %s identified as %s", drv_name, 5981 (drv_type == VD_DRIVER_DISK)? "DISK" : 5982 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 5983 5984 *dtype = drv_type; 5985 5986 return (0); 5987 } 5988 5989 static int 5990 vd_setup_vd(vd_t *vd) 5991 { 5992 int status, drv_type, pseudo; 5993 dev_info_t *dip; 5994 vnode_t *vnp; 5995 char *path = vd->device_path; 5996 5997 /* make sure the vdisk backend is valid */ 5998 if ((status = lookupname(path, UIO_SYSSPACE, 5999 FOLLOW, NULLVPP, &vnp)) != 0) { 6000 PR0("Cannot lookup %s errno %d", path, status); 6001 goto done; 6002 } 6003 6004 switch (vnp->v_type) { 6005 case VREG: 6006 /* 6007 * Backend is a file so it is exported as a full disk or as a 6008 * single slice disk using the vnode interface. 6009 */ 6010 VN_RELE(vnp); 6011 vd->volume = B_FALSE; 6012 status = vd_setup_backend_vnode(vd); 6013 break; 6014 6015 case VBLK: 6016 case VCHR: 6017 /* 6018 * Backend is a device. The way it is exported depends on the 6019 * type of the device. 6020 * 6021 * - A volume device is exported as a full disk using the vnode 6022 * interface or as a single slice disk using the LDI 6023 * interface. 6024 * 6025 * - A disk (represented by the slice 2 of that disk) is 6026 * exported as a full disk using the LDI interface. 6027 * 6028 * - A disk slice (different from slice 2) is always exported 6029 * as a single slice disk using the LDI interface. 6030 * 6031 * - The slice 2 of a disk is exported as a single slice disk 6032 * if the "slice" option is specified, otherwise the entire 6033 * disk will be exported. In any case, the LDI interface is 6034 * used. 6035 */ 6036 6037 /* check if this is a pseudo device */ 6038 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 6039 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 6040 PRN("%s is no longer accessible", path); 6041 VN_RELE(vnp); 6042 status = EIO; 6043 break; 6044 } 6045 pseudo = is_pseudo_device(dip); 6046 ddi_release_devi(dip); 6047 VN_RELE(vnp); 6048 6049 if (vd_identify_dev(vd, &drv_type) != 0) { 6050 PRN("%s identification failed", path); 6051 status = EIO; 6052 break; 6053 } 6054 6055 /* 6056 * If the driver hasn't been identified then we consider that 6057 * pseudo devices are volumes and other devices are disks. 6058 */ 6059 if (drv_type == VD_DRIVER_VOLUME || 6060 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 6061 vd->volume = B_TRUE; 6062 } else { 6063 status = vd_setup_backend_ldi(vd); 6064 break; 6065 } 6066 6067 /* 6068 * If this is a volume device then its usage depends if the 6069 * "slice" option is set or not. If the "slice" option is set 6070 * then the volume device will be exported as a single slice, 6071 * otherwise it will be exported as a full disk. 6072 * 6073 * For backward compatibility, if vd_volume_force_slice is set 6074 * then we always export volume devices as slices. 6075 */ 6076 if (vd_volume_force_slice) { 6077 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6078 vd->nslices = 1; 6079 } 6080 6081 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 6082 /* close device opened during identification */ 6083 (void) ldi_close(vd->ldi_handle[0], 6084 vd->open_flags & ~FWRITE, kcred); 6085 vd->ldi_handle[0] = NULL; 6086 vd->dev[0] = 0; 6087 status = vd_setup_backend_vnode(vd); 6088 } else { 6089 status = vd_setup_backend_ldi(vd); 6090 } 6091 break; 6092 6093 default: 6094 PRN("Unsupported vdisk backend %s", path); 6095 VN_RELE(vnp); 6096 status = EBADF; 6097 } 6098 6099 done: 6100 if (status != 0) { 6101 /* 6102 * If the error is retryable print an error message only 6103 * during the first try. 6104 */ 6105 if (status == ENXIO || status == ENODEV || 6106 status == ENOENT || status == EROFS) { 6107 if (!(vd->initialized & VD_SETUP_ERROR)) { 6108 PRN("%s is currently inaccessible (error %d)", 6109 path, status); 6110 } 6111 status = EAGAIN; 6112 } else { 6113 PRN("%s can not be exported as a virtual disk " 6114 "(error %d)", path, status); 6115 } 6116 vd->initialized |= VD_SETUP_ERROR; 6117 6118 } else if (vd->initialized & VD_SETUP_ERROR) { 6119 /* print a message only if we previously had an error */ 6120 PRN("%s is now online", path); 6121 vd->initialized &= ~VD_SETUP_ERROR; 6122 } 6123 6124 return (status); 6125 } 6126 6127 static int 6128 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6129 uint64_t ldc_id, vd_t **vdp) 6130 { 6131 char tq_name[TASKQ_NAMELEN]; 6132 int status; 6133 ddi_iblock_cookie_t iblock = NULL; 6134 ldc_attr_t ldc_attr; 6135 vd_t *vd; 6136 6137 6138 ASSERT(vds != NULL); 6139 ASSERT(device_path != NULL); 6140 ASSERT(vdp != NULL); 6141 PR0("Adding vdisk for %s", device_path); 6142 6143 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 6144 PRN("No memory for virtual disk"); 6145 return (EAGAIN); 6146 } 6147 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 6148 vd->vds = vds; 6149 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 6150 6151 /* Setup open flags */ 6152 vd->open_flags = FREAD; 6153 6154 if (!(options & VD_OPT_RDONLY)) 6155 vd->open_flags |= FWRITE; 6156 6157 if (options & VD_OPT_EXCLUSIVE) 6158 vd->open_flags |= FEXCL; 6159 6160 /* Setup disk type */ 6161 if (options & VD_OPT_SLICE) { 6162 vd->vdisk_type = VD_DISK_TYPE_SLICE; 6163 vd->nslices = 1; 6164 } else { 6165 vd->vdisk_type = VD_DISK_TYPE_DISK; 6166 vd->nslices = V_NUMPAR; 6167 } 6168 6169 /* default disk label */ 6170 vd->vdisk_label = VD_DISK_LABEL_UNK; 6171 6172 /* Open vdisk and initialize parameters */ 6173 if ((status = vd_setup_vd(vd)) == 0) { 6174 vd->initialized |= VD_DISK_READY; 6175 6176 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 6177 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 6178 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 6179 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 6180 vd->nslices); 6181 } else { 6182 if (status != EAGAIN) 6183 return (status); 6184 } 6185 6186 /* Initialize locking */ 6187 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 6188 &iblock) != DDI_SUCCESS) { 6189 PRN("Could not get iblock cookie."); 6190 return (EIO); 6191 } 6192 6193 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 6194 vd->initialized |= VD_LOCKING; 6195 6196 6197 /* Create start and completion task queues for the vdisk */ 6198 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 6199 PR1("tq_name = %s", tq_name); 6200 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 6201 TASKQ_DEFAULTPRI, 0)) == NULL) { 6202 PRN("Could not create task queue"); 6203 return (EIO); 6204 } 6205 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 6206 PR1("tq_name = %s", tq_name); 6207 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 6208 TASKQ_DEFAULTPRI, 0)) == NULL) { 6209 PRN("Could not create task queue"); 6210 return (EIO); 6211 } 6212 6213 /* Allocate the staging buffer */ 6214 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 6215 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 6216 6217 vd->enabled = 1; /* before callback can dispatch to startq */ 6218 6219 6220 /* Bring up LDC */ 6221 ldc_attr.devclass = LDC_DEV_BLK_SVC; 6222 ldc_attr.instance = ddi_get_instance(vds->dip); 6223 ldc_attr.mode = LDC_MODE_UNRELIABLE; 6224 ldc_attr.mtu = VD_LDC_MTU; 6225 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 6226 PRN("Could not initialize LDC channel %lx, " 6227 "init failed with error %d", ldc_id, status); 6228 return (status); 6229 } 6230 vd->initialized |= VD_LDC; 6231 6232 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 6233 (caddr_t)vd)) != 0) { 6234 PRN("Could not initialize LDC channel %lu," 6235 "reg_callback failed with error %d", ldc_id, status); 6236 return (status); 6237 } 6238 6239 if ((status = ldc_open(vd->ldc_handle)) != 0) { 6240 PRN("Could not initialize LDC channel %lu," 6241 "open failed with error %d", ldc_id, status); 6242 return (status); 6243 } 6244 6245 if ((status = ldc_up(vd->ldc_handle)) != 0) { 6246 PR0("ldc_up() returned errno %d", status); 6247 } 6248 6249 /* Allocate the inband task memory handle */ 6250 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 6251 if (status) { 6252 PRN("Could not initialize LDC channel %lu," 6253 "alloc_handle failed with error %d", ldc_id, status); 6254 return (ENXIO); 6255 } 6256 6257 /* Add the successfully-initialized vdisk to the server's table */ 6258 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 6259 PRN("Error adding vdisk ID %lu to table", id); 6260 return (EIO); 6261 } 6262 6263 /* store initial state */ 6264 vd->state = VD_STATE_INIT; 6265 6266 return (0); 6267 } 6268 6269 static void 6270 vd_free_dring_task(vd_t *vdp) 6271 { 6272 if (vdp->dring_task != NULL) { 6273 ASSERT(vdp->dring_len != 0); 6274 /* Free all dring_task memory handles */ 6275 for (int i = 0; i < vdp->dring_len; i++) { 6276 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 6277 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 6278 vdp->dring_task[i].msg = NULL; 6279 } 6280 kmem_free(vdp->dring_task, 6281 (sizeof (*vdp->dring_task)) * vdp->dring_len); 6282 vdp->dring_task = NULL; 6283 } 6284 } 6285 6286 /* 6287 * Destroy the state associated with a virtual disk 6288 */ 6289 static void 6290 vds_destroy_vd(void *arg) 6291 { 6292 vd_t *vd = (vd_t *)arg; 6293 int retry = 0, rv; 6294 6295 if (vd == NULL) 6296 return; 6297 6298 PR0("Destroying vdisk state"); 6299 6300 /* Disable queuing requests for the vdisk */ 6301 if (vd->initialized & VD_LOCKING) { 6302 mutex_enter(&vd->lock); 6303 vd->enabled = 0; 6304 mutex_exit(&vd->lock); 6305 } 6306 6307 /* Drain and destroy start queue (*before* destroying completionq) */ 6308 if (vd->startq != NULL) 6309 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 6310 6311 /* Drain and destroy completion queue (*before* shutting down LDC) */ 6312 if (vd->completionq != NULL) 6313 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 6314 6315 vd_free_dring_task(vd); 6316 6317 /* Free the inband task memory handle */ 6318 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 6319 6320 /* Shut down LDC */ 6321 if (vd->initialized & VD_LDC) { 6322 /* unmap the dring */ 6323 if (vd->initialized & VD_DRING) 6324 (void) ldc_mem_dring_unmap(vd->dring_handle); 6325 6326 /* close LDC channel - retry on EAGAIN */ 6327 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 6328 if (++retry > vds_ldc_retries) { 6329 PR0("Timed out closing channel"); 6330 break; 6331 } 6332 drv_usecwait(vds_ldc_delay); 6333 } 6334 if (rv == 0) { 6335 (void) ldc_unreg_callback(vd->ldc_handle); 6336 (void) ldc_fini(vd->ldc_handle); 6337 } else { 6338 /* 6339 * Closing the LDC channel has failed. Ideally we should 6340 * fail here but there is no Zeus level infrastructure 6341 * to handle this. The MD has already been changed and 6342 * we have to do the close. So we try to do as much 6343 * clean up as we can. 6344 */ 6345 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 6346 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 6347 drv_usecwait(vds_ldc_delay); 6348 } 6349 } 6350 6351 /* Free the staging buffer for msgs */ 6352 if (vd->vio_msgp != NULL) { 6353 kmem_free(vd->vio_msgp, vd->max_msglen); 6354 vd->vio_msgp = NULL; 6355 } 6356 6357 /* Free the inband message buffer */ 6358 if (vd->inband_task.msg != NULL) { 6359 kmem_free(vd->inband_task.msg, vd->max_msglen); 6360 vd->inband_task.msg = NULL; 6361 } 6362 6363 if (vd->file) { 6364 /* Close file */ 6365 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 6366 0, kcred, NULL); 6367 VN_RELE(vd->file_vnode); 6368 if (vd->file_devid != NULL) 6369 ddi_devid_free(vd->file_devid); 6370 } else { 6371 /* Close any open backing-device slices */ 6372 for (uint_t slice = 0; slice < V_NUMPAR; slice++) { 6373 if (vd->ldi_handle[slice] != NULL) { 6374 PR0("Closing slice %u", slice); 6375 (void) ldi_close(vd->ldi_handle[slice], 6376 vd->open_flags, kcred); 6377 } 6378 } 6379 } 6380 6381 /* Free any fake label */ 6382 if (vd->flabel) { 6383 kmem_free(vd->flabel, vd->flabel_size); 6384 vd->flabel = NULL; 6385 vd->flabel_size = 0; 6386 } 6387 6388 /* Free lock */ 6389 if (vd->initialized & VD_LOCKING) 6390 mutex_destroy(&vd->lock); 6391 6392 /* Finally, free the vdisk structure itself */ 6393 kmem_free(vd, sizeof (*vd)); 6394 } 6395 6396 static int 6397 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 6398 uint64_t ldc_id) 6399 { 6400 int status; 6401 vd_t *vd = NULL; 6402 6403 6404 if ((status = vds_do_init_vd(vds, id, device_path, options, 6405 ldc_id, &vd)) != 0) 6406 vds_destroy_vd(vd); 6407 6408 return (status); 6409 } 6410 6411 static int 6412 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 6413 uint64_t *ldc_id) 6414 { 6415 int num_channels; 6416 6417 6418 /* Look for channel endpoint child(ren) of the vdisk MD node */ 6419 if ((num_channels = md_scan_dag(md, vd_node, 6420 md_find_name(md, VD_CHANNEL_ENDPOINT), 6421 md_find_name(md, "fwd"), channel)) <= 0) { 6422 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 6423 return (-1); 6424 } 6425 6426 /* Get the "id" value for the first channel endpoint node */ 6427 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 6428 PRN("No \"%s\" property found for \"%s\" of vdisk", 6429 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 6430 return (-1); 6431 } 6432 6433 if (num_channels > 1) { 6434 PRN("Using ID of first of multiple channels for this vdisk"); 6435 } 6436 6437 return (0); 6438 } 6439 6440 static int 6441 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 6442 { 6443 int num_nodes, status; 6444 size_t size; 6445 mde_cookie_t *channel; 6446 6447 6448 if ((num_nodes = md_node_count(md)) <= 0) { 6449 PRN("Invalid node count in Machine Description subtree"); 6450 return (-1); 6451 } 6452 size = num_nodes*(sizeof (*channel)); 6453 channel = kmem_zalloc(size, KM_SLEEP); 6454 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 6455 kmem_free(channel, size); 6456 6457 return (status); 6458 } 6459 6460 /* 6461 * Function: 6462 * vds_get_options 6463 * 6464 * Description: 6465 * Parse the options of a vds node. Options are defined as an array 6466 * of strings in the vds-block-device-opts property of the vds node 6467 * in the machine description. Options are returned as a bitmask. The 6468 * mapping between the bitmask options and the options strings from the 6469 * machine description is defined in the vd_bdev_options[] array. 6470 * 6471 * The vds-block-device-opts property is optional. If a vds has no such 6472 * property then no option is defined. 6473 * 6474 * Parameters: 6475 * md - machine description. 6476 * vd_node - vds node in the machine description for which 6477 * options have to be parsed. 6478 * options - the returned options. 6479 * 6480 * Return Code: 6481 * none. 6482 */ 6483 static void 6484 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 6485 { 6486 char *optstr, *opt; 6487 int len, n, i; 6488 6489 *options = 0; 6490 6491 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 6492 (uint8_t **)&optstr, &len) != 0) { 6493 PR0("No options found"); 6494 return; 6495 } 6496 6497 /* parse options */ 6498 opt = optstr; 6499 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 6500 6501 while (opt < optstr + len) { 6502 for (i = 0; i < n; i++) { 6503 if (strncmp(vd_bdev_options[i].vdo_name, 6504 opt, VD_OPTION_NLEN) == 0) { 6505 *options |= vd_bdev_options[i].vdo_value; 6506 break; 6507 } 6508 } 6509 6510 if (i < n) { 6511 PR0("option: %s", opt); 6512 } else { 6513 PRN("option %s is unknown or unsupported", opt); 6514 } 6515 6516 opt += strlen(opt) + 1; 6517 } 6518 } 6519 6520 static void 6521 vds_driver_types_free(vds_t *vds) 6522 { 6523 if (vds->driver_types != NULL) { 6524 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 6525 vds->num_drivers); 6526 vds->driver_types = NULL; 6527 vds->num_drivers = 0; 6528 } 6529 } 6530 6531 /* 6532 * Update the driver type list with information from vds.conf. 6533 */ 6534 static void 6535 vds_driver_types_update(vds_t *vds) 6536 { 6537 char **list, *s; 6538 uint_t i, num, count = 0, len; 6539 6540 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 6541 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 6542 DDI_PROP_SUCCESS) 6543 return; 6544 6545 /* 6546 * We create a driver_types list with as many as entries as there 6547 * is in the driver-type-list from vds.conf. However only valid 6548 * entries will be populated (i.e. entries from driver-type-list 6549 * with a valid syntax). Invalid entries will be left blank so 6550 * they will have no driver name and the driver type will be 6551 * VD_DRIVER_UNKNOWN (= 0). 6552 */ 6553 vds->num_drivers = num; 6554 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 6555 KM_SLEEP); 6556 6557 for (i = 0; i < num; i++) { 6558 6559 s = strchr(list[i], ':'); 6560 6561 if (s == NULL) { 6562 PRN("vds.conf: driver-type-list, entry %d (%s): " 6563 "a colon is expected in the entry", 6564 i, list[i]); 6565 continue; 6566 } 6567 6568 len = (uintptr_t)s - (uintptr_t)list[i]; 6569 6570 if (len == 0) { 6571 PRN("vds.conf: driver-type-list, entry %d (%s): " 6572 "the driver name is empty", 6573 i, list[i]); 6574 continue; 6575 } 6576 6577 if (len >= VD_DRIVER_NAME_LEN) { 6578 PRN("vds.conf: driver-type-list, entry %d (%s): " 6579 "the driver name is too long", 6580 i, list[i]); 6581 continue; 6582 } 6583 6584 if (strcmp(s + 1, "disk") == 0) { 6585 6586 vds->driver_types[i].type = VD_DRIVER_DISK; 6587 6588 } else if (strcmp(s + 1, "volume") == 0) { 6589 6590 vds->driver_types[i].type = VD_DRIVER_VOLUME; 6591 6592 } else { 6593 PRN("vds.conf: driver-type-list, entry %d (%s): " 6594 "the driver type is invalid", 6595 i, list[i]); 6596 continue; 6597 } 6598 6599 (void) strncpy(vds->driver_types[i].name, list[i], len); 6600 6601 PR0("driver-type-list, entry %d (%s) added", 6602 i, list[i]); 6603 6604 count++; 6605 } 6606 6607 ddi_prop_free(list); 6608 6609 if (count == 0) { 6610 /* nothing was added, clean up */ 6611 vds_driver_types_free(vds); 6612 } 6613 } 6614 6615 static void 6616 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 6617 { 6618 char *device_path = NULL; 6619 uint64_t id = 0, ldc_id = 0, options = 0; 6620 6621 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 6622 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 6623 return; 6624 } 6625 PR0("Adding vdisk ID %lu", id); 6626 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 6627 &device_path) != 0) { 6628 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 6629 return; 6630 } 6631 6632 vds_get_options(md, vd_node, &options); 6633 6634 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 6635 PRN("Error getting LDC ID for vdisk %lu", id); 6636 return; 6637 } 6638 6639 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 6640 PRN("Failed to add vdisk ID %lu", id); 6641 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 6642 PRN("No vDisk entry found for vdisk ID %lu", id); 6643 return; 6644 } 6645 } 6646 6647 static void 6648 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 6649 { 6650 uint64_t id = 0; 6651 6652 6653 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 6654 PRN("Unable to get \"%s\" property from vdisk's MD node", 6655 VD_ID_PROP); 6656 return; 6657 } 6658 PR0("Removing vdisk ID %lu", id); 6659 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 6660 PRN("No vdisk entry found for vdisk ID %lu", id); 6661 } 6662 6663 static void 6664 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 6665 md_t *curr_md, mde_cookie_t curr_vd_node) 6666 { 6667 char *curr_dev, *prev_dev; 6668 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 6669 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 6670 size_t len; 6671 6672 6673 /* Validate that vdisk ID has not changed */ 6674 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 6675 PRN("Error getting previous vdisk \"%s\" property", 6676 VD_ID_PROP); 6677 return; 6678 } 6679 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 6680 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 6681 return; 6682 } 6683 if (curr_id != prev_id) { 6684 PRN("Not changing vdisk: ID changed from %lu to %lu", 6685 prev_id, curr_id); 6686 return; 6687 } 6688 6689 /* Validate that LDC ID has not changed */ 6690 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 6691 PRN("Error getting LDC ID for vdisk %lu", prev_id); 6692 return; 6693 } 6694 6695 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 6696 PRN("Error getting LDC ID for vdisk %lu", curr_id); 6697 return; 6698 } 6699 if (curr_ldc_id != prev_ldc_id) { 6700 _NOTE(NOTREACHED); /* lint is confused */ 6701 PRN("Not changing vdisk: " 6702 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 6703 return; 6704 } 6705 6706 /* Determine whether device path has changed */ 6707 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 6708 &prev_dev) != 0) { 6709 PRN("Error getting previous vdisk \"%s\"", 6710 VD_BLOCK_DEVICE_PROP); 6711 return; 6712 } 6713 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 6714 &curr_dev) != 0) { 6715 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 6716 return; 6717 } 6718 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 6719 (strncmp(curr_dev, prev_dev, len) == 0)) 6720 return; /* no relevant (supported) change */ 6721 6722 /* Validate that options have not changed */ 6723 vds_get_options(prev_md, prev_vd_node, &prev_options); 6724 vds_get_options(curr_md, curr_vd_node, &curr_options); 6725 if (prev_options != curr_options) { 6726 PRN("Not changing vdisk: options changed from %lx to %lx", 6727 prev_options, curr_options); 6728 return; 6729 } 6730 6731 PR0("Changing vdisk ID %lu", prev_id); 6732 6733 /* Remove old state, which will close vdisk and reset */ 6734 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 6735 PRN("No entry found for vdisk ID %lu", prev_id); 6736 6737 /* Re-initialize vdisk with new state */ 6738 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 6739 curr_ldc_id) != 0) { 6740 PRN("Failed to change vdisk ID %lu", curr_id); 6741 return; 6742 } 6743 } 6744 6745 static int 6746 vds_process_md(void *arg, mdeg_result_t *md) 6747 { 6748 int i; 6749 vds_t *vds = arg; 6750 6751 6752 if (md == NULL) 6753 return (MDEG_FAILURE); 6754 ASSERT(vds != NULL); 6755 6756 for (i = 0; i < md->removed.nelem; i++) 6757 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 6758 for (i = 0; i < md->match_curr.nelem; i++) 6759 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 6760 md->match_curr.mdp, md->match_curr.mdep[i]); 6761 for (i = 0; i < md->added.nelem; i++) 6762 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 6763 6764 return (MDEG_SUCCESS); 6765 } 6766 6767 6768 static int 6769 vds_do_attach(dev_info_t *dip) 6770 { 6771 int status, sz; 6772 int cfg_handle; 6773 minor_t instance = ddi_get_instance(dip); 6774 vds_t *vds; 6775 mdeg_prop_spec_t *pspecp; 6776 mdeg_node_spec_t *ispecp; 6777 6778 /* 6779 * The "cfg-handle" property of a vds node in an MD contains the MD's 6780 * notion of "instance", or unique identifier, for that node; OBP 6781 * stores the value of the "cfg-handle" MD property as the value of 6782 * the "reg" property on the node in the device tree it builds from 6783 * the MD and passes to Solaris. Thus, we look up the devinfo node's 6784 * "reg" property value to uniquely identify this device instance when 6785 * registering with the MD event-generation framework. If the "reg" 6786 * property cannot be found, the device tree state is presumably so 6787 * broken that there is no point in continuing. 6788 */ 6789 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6790 VD_REG_PROP)) { 6791 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 6792 return (DDI_FAILURE); 6793 } 6794 6795 /* Get the MD instance for later MDEG registration */ 6796 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6797 VD_REG_PROP, -1); 6798 6799 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 6800 PRN("Could not allocate state for instance %u", instance); 6801 return (DDI_FAILURE); 6802 } 6803 6804 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 6805 PRN("Could not get state for instance %u", instance); 6806 ddi_soft_state_free(vds_state, instance); 6807 return (DDI_FAILURE); 6808 } 6809 6810 vds->dip = dip; 6811 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 6812 vds_destroy_vd, sizeof (void *)); 6813 6814 ASSERT(vds->vd_table != NULL); 6815 6816 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 6817 PRN("ldi_ident_from_dip() returned errno %d", status); 6818 return (DDI_FAILURE); 6819 } 6820 vds->initialized |= VDS_LDI; 6821 6822 /* Register for MD updates */ 6823 sz = sizeof (vds_prop_template); 6824 pspecp = kmem_alloc(sz, KM_SLEEP); 6825 bcopy(vds_prop_template, pspecp, sz); 6826 6827 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 6828 6829 /* initialize the complete prop spec structure */ 6830 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 6831 ispecp->namep = "virtual-device"; 6832 ispecp->specp = pspecp; 6833 6834 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 6835 &vds->mdeg) != MDEG_SUCCESS) { 6836 PRN("Unable to register for MD updates"); 6837 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 6838 kmem_free(pspecp, sz); 6839 return (DDI_FAILURE); 6840 } 6841 6842 vds->ispecp = ispecp; 6843 vds->initialized |= VDS_MDEG; 6844 6845 /* Prevent auto-detaching so driver is available whenever MD changes */ 6846 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 6847 DDI_PROP_SUCCESS) { 6848 PRN("failed to set \"%s\" property for instance %u", 6849 DDI_NO_AUTODETACH, instance); 6850 } 6851 6852 /* read any user defined driver types from conf file and update list */ 6853 vds_driver_types_update(vds); 6854 6855 ddi_report_dev(dip); 6856 return (DDI_SUCCESS); 6857 } 6858 6859 static int 6860 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 6861 { 6862 int status; 6863 6864 switch (cmd) { 6865 case DDI_ATTACH: 6866 PR0("Attaching"); 6867 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 6868 (void) vds_detach(dip, DDI_DETACH); 6869 return (status); 6870 case DDI_RESUME: 6871 PR0("No action required for DDI_RESUME"); 6872 return (DDI_SUCCESS); 6873 default: 6874 return (DDI_FAILURE); 6875 } 6876 } 6877 6878 static struct dev_ops vds_ops = { 6879 DEVO_REV, /* devo_rev */ 6880 0, /* devo_refcnt */ 6881 ddi_no_info, /* devo_getinfo */ 6882 nulldev, /* devo_identify */ 6883 nulldev, /* devo_probe */ 6884 vds_attach, /* devo_attach */ 6885 vds_detach, /* devo_detach */ 6886 nodev, /* devo_reset */ 6887 NULL, /* devo_cb_ops */ 6888 NULL, /* devo_bus_ops */ 6889 nulldev /* devo_power */ 6890 }; 6891 6892 static struct modldrv modldrv = { 6893 &mod_driverops, 6894 "virtual disk server", 6895 &vds_ops, 6896 }; 6897 6898 static struct modlinkage modlinkage = { 6899 MODREV_1, 6900 &modldrv, 6901 NULL 6902 }; 6903 6904 6905 int 6906 _init(void) 6907 { 6908 int status; 6909 6910 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 6911 return (status); 6912 6913 if ((status = mod_install(&modlinkage)) != 0) { 6914 ddi_soft_state_fini(&vds_state); 6915 return (status); 6916 } 6917 6918 return (0); 6919 } 6920 6921 int 6922 _info(struct modinfo *modinfop) 6923 { 6924 return (mod_info(&modlinkage, modinfop)); 6925 } 6926 6927 int 6928 _fini(void) 6929 { 6930 int status; 6931 6932 if ((status = mod_remove(&modlinkage)) != 0) 6933 return (status); 6934 ddi_soft_state_fini(&vds_state); 6935 return (0); 6936 } 6937