xref: /titanic_51/usr/src/uts/sun4v/io/vds.c (revision 505c7a699305ccafcfecc1ab0e7d4a25e2bfd1c2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Virtual disk server
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/crc32.h>
35 #include <sys/ddi.h>
36 #include <sys/dkio.h>
37 #include <sys/file.h>
38 #include <sys/fs/hsfs_isospec.h>
39 #include <sys/mdeg.h>
40 #include <sys/mhd.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vio_util.h>
50 #include <sys/vdsk_mailbox.h>
51 #include <sys/vdsk_common.h>
52 #include <sys/vtoc.h>
53 #include <sys/vfs.h>
54 #include <sys/stat.h>
55 #include <sys/scsi/impl/uscsi.h>
56 #include <sys/ontrap.h>
57 #include <vm/seg_map.h>
58 
59 #define	ONE_MEGABYTE	(1ULL << 20)
60 #define	ONE_GIGABYTE	(1ULL << 30)
61 #define	ONE_TERABYTE	(1ULL << 40)
62 
63 /* Virtual disk server initialization flags */
64 #define	VDS_LDI			0x01
65 #define	VDS_MDEG		0x02
66 
67 /* Virtual disk server tunable parameters */
68 #define	VDS_RETRIES		5
69 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
70 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
71 #define	VDS_NCHAINS		32
72 
73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
74 #define	VDS_NAME		"virtual-disk-server"
75 
76 #define	VD_NAME			"vd"
77 #define	VD_VOLUME_NAME		"vdisk"
78 #define	VD_ASCIILABEL		"Virtual Disk"
79 
80 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
81 #define	VD_ID_PROP		"id"
82 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
83 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
84 #define	VD_REG_PROP		"reg"
85 
86 /* Virtual disk initialization flags */
87 #define	VD_DISK_READY		0x01
88 #define	VD_LOCKING		0x02
89 #define	VD_LDC			0x04
90 #define	VD_DRING		0x08
91 #define	VD_SID			0x10
92 #define	VD_SEQ_NUM		0x20
93 #define	VD_SETUP_ERROR		0x40
94 
95 /* Number of backup labels */
96 #define	VD_DSKIMG_NUM_BACKUP	5
97 
98 /* Timeout for SCSI I/O */
99 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
100 
101 /*
102  * Default number of threads for the I/O queue. In many cases, we will not
103  * receive more than 8 I/O requests at the same time. However there are
104  * cases (for example during the OS installation) where we can have a lot
105  * more (up to the limit of the DRing size).
106  */
107 #define	VD_IOQ_NTHREADS		8
108 
109 /* Maximum number of logical partitions */
110 #define	VD_MAXPART	(NDKMAP + 1)
111 
112 /*
113  * By Solaris convention, slice/partition 2 represents the entire disk;
114  * unfortunately, this convention does not appear to be codified.
115  */
116 #define	VD_ENTIRE_DISK_SLICE	2
117 
118 /* Logical block address for EFI */
119 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
120 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
121 
122 #define	VD_EFI_DEV_SET(dev, vdsk, ioctl)	\
123 	VDSK_EFI_DEV_SET(dev, vdsk, ioctl,	\
124 	    (vdsk)->vdisk_bsize, (vdsk)->vdisk_size)
125 
126 /*
127  * Flags defining the behavior for flushing asynchronous writes used to
128  * performed some write I/O requests.
129  *
130  * The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous
131  * writes. This ensures that data are committed to the backend when the I/O
132  * request reply is sent to the guest domain so this prevents any data to
133  * be lost in case a service domain unexpectedly crashes.
134  *
135  * The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another
136  * thread while the request is immediatly marked as completed. In that case,
137  * a guest domain can a receive a reply that its write request is completed
138  * while data haven't been flushed to disk yet.
139  *
140  * Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive.
141  */
142 #define	VD_AWFLUSH_IMMEDIATE	0x01	/* immediate flushing */
143 #define	VD_AWFLUSH_DEFER	0x02	/* defer flushing */
144 #define	VD_AWFLUSH_GROUP	0x04	/* group requests before flushing */
145 
146 /* Driver types */
147 typedef enum vd_driver {
148 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
149 	VD_DRIVER_DISK,		/* disk driver */
150 	VD_DRIVER_VOLUME	/* volume driver */
151 } vd_driver_t;
152 
153 #define	VD_DRIVER_NAME_LEN	64
154 
155 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
156 
157 typedef struct vd_driver_type {
158 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
159 	vd_driver_t type;		/* driver type (disk or volume) */
160 } vd_driver_type_t;
161 
162 /*
163  * There is no reliable way to determine if a device is representing a disk
164  * or a volume, especially with pseudo devices. So we maintain a list of well
165  * known drivers and the type of device they represent (either a disk or a
166  * volume).
167  *
168  * The list can be extended by adding a "driver-type-list" entry in vds.conf
169  * with the following syntax:
170  *
171  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
172  *
173  * Where:
174  *	<driver> is the name of a driver (limited to 64 characters)
175  *	<type> is either the string "disk" or "volume"
176  *
177  * Invalid entries in "driver-type-list" will be ignored.
178  *
179  * For example, the following line in vds.conf:
180  *
181  * 	driver-type-list="foo:disk","bar:volume";
182  *
183  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
184  *
185  * When a list is defined in vds.conf, it is checked before the built-in list
186  * (vds_driver_types[]) so that any definition from this list can be overriden
187  * using vds.conf.
188  */
189 vd_driver_type_t vds_driver_types[] = {
190 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
191 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
192 	{ "dlmfdrv",	VD_DRIVER_DISK },	/* Hitachi HDLM */
193 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
194 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
195 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
196 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
197 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
198 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
199 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
200 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
201 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
202 };
203 
204 /* Return a cpp token as a string */
205 #define	STRINGIZE(token)	#token
206 
207 /*
208  * Print a message prefixed with the current function name to the message log
209  * (and optionally to the console for verbose boots); these macros use cpp's
210  * concatenation of string literals and C99 variable-length-argument-list
211  * macros
212  */
213 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
214 #define	_PRN(format, ...)					\
215 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
216 
217 /* Return a pointer to the "i"th vdisk dring element */
218 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
219 	    (vd->dring + (i)*vd->descriptor_size))
220 
221 /* Return the virtual disk client's type as a string (for use in messages) */
222 #define	VD_CLIENT(vd)							\
223 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
224 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
225 		(((vd)->xfer_mode == 0) ? "null client" :		\
226 		    "unsupported client")))
227 
228 /* Read disk label from a disk image */
229 #define	VD_DSKIMG_LABEL_READ(vd, labelp) \
230 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
231 	    0, sizeof (struct dk_label))
232 
233 /* Write disk label to a disk image */
234 #define	VD_DSKIMG_LABEL_WRITE(vd, labelp)	\
235 	vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
236 	    0, sizeof (struct dk_label))
237 
238 /* Identify if a backend is a disk image */
239 #define	VD_DSKIMG(vd)	((vd)->vdisk_type == VD_DISK_TYPE_DISK &&	\
240 	((vd)->file || (vd)->volume))
241 
242 /* Next index in a write queue */
243 #define	VD_WRITE_INDEX_NEXT(vd, id)		\
244 	((((id) + 1) >= vd->dring_len)? 0 : (id) + 1)
245 
246 /* Message for disk access rights reset failure */
247 #define	VD_RESET_ACCESS_FAILURE_MSG \
248 	"Fail to reset disk access rights for disk %s"
249 
250 /*
251  * Specification of an MD node passed to the MDEG to filter any
252  * 'vport' nodes that do not belong to the specified node. This
253  * template is copied for each vds instance and filled in with
254  * the appropriate 'cfg-handle' value before being passed to the MDEG.
255  */
256 static mdeg_prop_spec_t	vds_prop_template[] = {
257 	{ MDET_PROP_STR,	"name",		VDS_NAME },
258 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
259 	{ MDET_LIST_END,	NULL, 		NULL }
260 };
261 
262 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
263 
264 /*
265  * Matching criteria passed to the MDEG to register interest
266  * in changes to 'virtual-device-port' nodes identified by their
267  * 'id' property.
268  */
269 static md_prop_match_t	vd_prop_match[] = {
270 	{ MDET_PROP_VAL,	VD_ID_PROP },
271 	{ MDET_LIST_END,	NULL }
272 };
273 
274 static mdeg_node_match_t vd_match = {"virtual-device-port",
275 				    vd_prop_match};
276 
277 /*
278  * Options for the VD_BLOCK_DEVICE_OPTS property.
279  */
280 #define	VD_OPT_RDONLY		0x1	/* read-only  */
281 #define	VD_OPT_SLICE		0x2	/* single slice */
282 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
283 
284 #define	VD_OPTION_NLEN	128
285 
286 typedef struct vd_option {
287 	char vdo_name[VD_OPTION_NLEN];
288 	uint64_t vdo_value;
289 } vd_option_t;
290 
291 vd_option_t vd_bdev_options[] = {
292 	{ "ro",		VD_OPT_RDONLY },
293 	{ "slice", 	VD_OPT_SLICE },
294 	{ "excl",	VD_OPT_EXCLUSIVE }
295 };
296 
297 /* Debugging macros */
298 #ifdef DEBUG
299 
300 static int	vd_msglevel = 0;
301 
302 #define	PR0 if (vd_msglevel > 0)	PRN
303 #define	PR1 if (vd_msglevel > 1)	PRN
304 #define	PR2 if (vd_msglevel > 2)	PRN
305 
306 #define	VD_DUMP_DRING_ELEM(elem)					\
307 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
308 	    elem->hdr.dstate,						\
309 	    elem->payload.operation,					\
310 	    elem->payload.status,					\
311 	    elem->payload.nbytes,					\
312 	    elem->payload.addr,						\
313 	    elem->payload.ncookies);
314 
315 char *
316 vd_decode_state(int state)
317 {
318 	char *str;
319 
320 #define	CASE_STATE(_s)	case _s: str = #_s; break;
321 
322 	switch (state) {
323 	CASE_STATE(VD_STATE_INIT)
324 	CASE_STATE(VD_STATE_VER)
325 	CASE_STATE(VD_STATE_ATTR)
326 	CASE_STATE(VD_STATE_DRING)
327 	CASE_STATE(VD_STATE_RDX)
328 	CASE_STATE(VD_STATE_DATA)
329 	default: str = "unknown"; break;
330 	}
331 
332 #undef CASE_STATE
333 
334 	return (str);
335 }
336 
337 void
338 vd_decode_tag(vio_msg_t *msg)
339 {
340 	char *tstr, *sstr, *estr;
341 
342 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
343 
344 	switch (msg->tag.vio_msgtype) {
345 	CASE_TYPE(VIO_TYPE_CTRL)
346 	CASE_TYPE(VIO_TYPE_DATA)
347 	CASE_TYPE(VIO_TYPE_ERR)
348 	default: tstr = "unknown"; break;
349 	}
350 
351 #undef CASE_TYPE
352 
353 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
354 
355 	switch (msg->tag.vio_subtype) {
356 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
357 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
358 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
359 	default: sstr = "unknown"; break;
360 	}
361 
362 #undef CASE_SUBTYPE
363 
364 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
365 
366 	switch (msg->tag.vio_subtype_env) {
367 	CASE_ENV(VIO_VER_INFO)
368 	CASE_ENV(VIO_ATTR_INFO)
369 	CASE_ENV(VIO_DRING_REG)
370 	CASE_ENV(VIO_DRING_UNREG)
371 	CASE_ENV(VIO_RDX)
372 	CASE_ENV(VIO_PKT_DATA)
373 	CASE_ENV(VIO_DESC_DATA)
374 	CASE_ENV(VIO_DRING_DATA)
375 	default: estr = "unknown"; break;
376 	}
377 
378 #undef CASE_ENV
379 
380 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
381 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
382 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
383 }
384 
385 #else	/* !DEBUG */
386 
387 #define	PR0(...)
388 #define	PR1(...)
389 #define	PR2(...)
390 
391 #define	VD_DUMP_DRING_ELEM(elem)
392 
393 #define	vd_decode_state(_s)	(NULL)
394 #define	vd_decode_tag(_s)	(NULL)
395 
396 #endif	/* DEBUG */
397 
398 
399 /*
400  * Soft state structure for a vds instance
401  */
402 typedef struct vds {
403 	uint_t		initialized;	/* driver inst initialization flags */
404 	dev_info_t	*dip;		/* driver inst devinfo pointer */
405 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
406 	mod_hash_t	*vd_table;	/* table of virtual disks served */
407 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
408 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
409 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
410 	int 		num_drivers;	/* num of extra driver types */
411 } vds_t;
412 
413 /*
414  * Types of descriptor-processing tasks
415  */
416 typedef enum vd_task_type {
417 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
418 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
419 } vd_task_type_t;
420 
421 /*
422  * Structure describing the task for processing a descriptor
423  */
424 typedef struct vd_task {
425 	struct vd		*vd;		/* vd instance task is for */
426 	vd_task_type_t		type;		/* type of descriptor task */
427 	int			index;		/* dring elem index for task */
428 	vio_msg_t		*msg;		/* VIO message task is for */
429 	size_t			msglen;		/* length of message content */
430 	vd_dring_payload_t	*request;	/* request task will perform */
431 	struct buf		buf;		/* buf(9s) for I/O request */
432 	ldc_mem_handle_t	mhdl;		/* task memory handle */
433 	int			status;		/* status of processing task */
434 	int	(*completef)(struct vd_task *task); /* completion func ptr */
435 	uint32_t		write_index;	/* index in the write_queue */
436 } vd_task_t;
437 
438 /*
439  * Soft state structure for a virtual disk instance
440  */
441 typedef struct vd {
442 	uint64_t		id;		/* vdisk id */
443 	uint_t			initialized;	/* vdisk initialization flags */
444 	uint64_t		operations;	/* bitmask of VD_OPs exported */
445 	vio_ver_t		version;	/* ver negotiated with client */
446 	vds_t			*vds;		/* server for this vdisk */
447 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
448 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
449 	ddi_taskq_t		*ioq;		/* queue for I/O */
450 	uint32_t		write_index;	/* next write index */
451 	buf_t			**write_queue;	/* queue for async writes */
452 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
453 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
454 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
455 	int			open_flags;	/* open flags */
456 	uint_t			nslices;	/* number of slices we export */
457 	size_t			vdisk_size;	/* number of blocks in vdisk */
458 	size_t			vdisk_bsize;	/* blk size of the vdisk */
459 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
460 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
461 	vd_media_t		vdisk_media;	/* media type of backing dev. */
462 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
463 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
464 	size_t			backend_bsize;	/* blk size of backend device */
465 	int			vio_bshift;	/* shift for blk convertion */
466 	boolean_t		volume;		/* is vDisk backed by volume */
467 	boolean_t		zvol;		/* is vDisk backed by a zvol */
468 	boolean_t		file;		/* is vDisk backed by a file? */
469 	boolean_t		scsi;		/* is vDisk backed by scsi? */
470 	vnode_t			*file_vnode;	/* file vnode */
471 	size_t			dskimg_size;	/* size of disk image */
472 	ddi_devid_t		dskimg_devid;	/* devid for disk image */
473 	int			efi_reserved;	/* EFI reserved slice */
474 	caddr_t			flabel;		/* fake label for slice type */
475 	uint_t			flabel_size;	/* fake label size */
476 	uint_t			flabel_limit;	/* limit of the fake label */
477 	struct dk_geom		dk_geom;	/* synthetic for slice type */
478 	struct extvtoc		vtoc;		/* synthetic for slice type */
479 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
480 	boolean_t		ownership;	/* disk ownership status */
481 	ldc_status_t		ldc_state;	/* LDC connection state */
482 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
483 	size_t			max_msglen;	/* largest LDC message len */
484 	vd_state_t		state;		/* client handshake state */
485 	uint8_t			xfer_mode;	/* transfer mode with client */
486 	uint32_t		sid;		/* client's session ID */
487 	uint64_t		seq_num;	/* message sequence number */
488 	uint64_t		dring_ident;	/* identifier of dring */
489 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
490 	uint32_t		descriptor_size;	/* num bytes in desc */
491 	uint32_t		dring_len;	/* number of dring elements */
492 	uint8_t			dring_mtype;	/* dring mem map type */
493 	caddr_t			dring;		/* address of dring */
494 	caddr_t			vio_msgp;	/* vio msg staging buffer */
495 	vd_task_t		inband_task;	/* task for inband descriptor */
496 	vd_task_t		*dring_task;	/* tasks dring elements */
497 
498 	kmutex_t		lock;		/* protects variables below */
499 	boolean_t		enabled;	/* is vdisk enabled? */
500 	boolean_t		reset_state;	/* reset connection state? */
501 	boolean_t		reset_ldc;	/* reset LDC channel? */
502 } vd_t;
503 
504 /*
505  * Macros to manipulate the fake label (flabel) for single slice disks.
506  *
507  * If we fake a VTOC label then the fake label consists of only one block
508  * containing the VTOC label (struct dk_label).
509  *
510  * If we fake an EFI label then the fake label consists of a blank block
511  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
512  *
513  */
514 #define	VD_LABEL_VTOC_SIZE(lba)					\
515 	P2ROUNDUP(sizeof (struct dk_label), (lba))
516 
517 #define	VD_LABEL_EFI_SIZE(lba)					\
518 	P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART,	\
519 	    (lba))
520 
521 #define	VD_LABEL_VTOC(vd)	\
522 		((struct dk_label *)(void *)((vd)->flabel))
523 
524 #define	VD_LABEL_EFI_GPT(vd, lba)	\
525 		((efi_gpt_t *)(void *)((vd)->flabel + (lba)))
526 #define	VD_LABEL_EFI_GPE(vd, lba)	\
527 		((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba)))
528 
529 
530 typedef struct vds_operation {
531 	char	*namep;
532 	uint8_t	operation;
533 	int	(*start)(vd_task_t *task);
534 	int	(*complete)(vd_task_t *task);
535 } vds_operation_t;
536 
537 typedef struct vd_ioctl {
538 	uint8_t		operation;		/* vdisk operation */
539 	const char	*operation_name;	/* vdisk operation name */
540 	size_t		nbytes;			/* size of operation buffer */
541 	int		cmd;			/* corresponding ioctl cmd */
542 	const char	*cmd_name;		/* ioctl cmd name */
543 	void		*arg;			/* ioctl cmd argument */
544 	/* convert input vd_buf to output ioctl_arg */
545 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
546 	/* convert input ioctl_arg to output vd_buf */
547 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
548 	/* write is true if the operation writes any data to the backend */
549 	boolean_t	write;
550 } vd_ioctl_t;
551 
552 /* Define trivial copyin/copyout conversion function flag */
553 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
554 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
555 
556 
557 static int	vds_ldc_retries = VDS_RETRIES;
558 static int	vds_ldc_delay = VDS_LDC_DELAY;
559 static int	vds_dev_retries = VDS_RETRIES;
560 static int	vds_dev_delay = VDS_DEV_DELAY;
561 static void	*vds_state;
562 
563 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
564 static int	vd_scsi_debug = USCSI_SILENT;
565 
566 /*
567  * Number of threads in the taskq handling vdisk I/O. This can be set up to
568  * the size of the DRing which is the maximum number of I/O we can receive
569  * in parallel. Note that using a high number of threads can improve performance
570  * but this is going to consume a lot of resources if there are many vdisks.
571  */
572 static int	vd_ioq_nthreads = VD_IOQ_NTHREADS;
573 
574 /*
575  * Tunable to define the behavior for flushing asynchronous writes used to
576  * performed some write I/O requests. The default behavior is to group as
577  * much asynchronous writes as possible and to flush them immediatly.
578  *
579  * If the tunable is set to 0 then explicit flushing is disabled. In that
580  * case, data will be flushed by traditional mechanism (like fsflush) but
581  * this might not happen immediatly.
582  *
583  */
584 static int	vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP;
585 
586 /*
587  * Tunable to define the behavior of the service domain if the vdisk server
588  * fails to reset disk exclusive access when a LDC channel is reset. When a
589  * LDC channel is reset the vdisk server will try to reset disk exclusive
590  * access by releasing any SCSI-2 reservation or resetting the disk. If these
591  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
592  * print a warning message. This default behavior can be changed by setting
593  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
594  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
595  * the service domain to panic. In both cases, the reset of the service domain
596  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
597  */
598 static int 	vd_reset_access_failure = 0;
599 
600 /*
601  * Tunable for backward compatibility. When this variable is set to B_TRUE,
602  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
603  * slice disks whether or not they have the "slice" option set. This is
604  * to provide a simple backward compatibility mechanism when upgrading
605  * the vds driver and using a domain configuration created before the
606  * "slice" option was available.
607  */
608 static boolean_t vd_volume_force_slice = B_FALSE;
609 
610 /*
611  * The label of disk images created with some earlier versions of the virtual
612  * disk software is not entirely correct and have an incorrect v_sanity field
613  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
614  * these images because we are now validating that the disk label (and the
615  * sanity) is correct when a disk image is opened.
616  *
617  * This tunable is set to false to not validate the sanity field and ensure
618  * compatibility. If the tunable is set to true, we will do a strict checking
619  * of the sanity but this can create compatibility problems with old disk
620  * images.
621  */
622 static boolean_t vd_dskimg_validate_sanity = B_FALSE;
623 
624 /*
625  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
626  */
627 static boolean_t vd_direct_mapped_drings = B_TRUE;
628 
629 /*
630  * When a backend is exported as a single-slice disk then we entirely fake
631  * its disk label. So it can be exported either with a VTOC label or with
632  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
633  * single-slice disks will be exported with a VTOC label; and if it is set
634  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
635  * an EFI label.
636  *
637  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
638  * or volume device then it will be exported with the same type of label as
639  * defined on the device. Otherwise if the backend is a file then it will
640  * exported with the disk label type set in the vd_file_slice_label variable.
641  *
642  * Note that if the backend size is greater than 1TB then it will always be
643  * exported with an EFI label no matter what the setting is.
644  */
645 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
646 
647 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
648 
649 /*
650  * Tunable for backward compatibility. If this variable is set to B_TRUE then
651  * single-slice disks are exported as disks with only one slice instead of
652  * faking a complete disk partitioning.
653  */
654 static boolean_t vd_slice_single_slice = B_FALSE;
655 
656 /*
657  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
658  *
659  * Each supported major version should appear only once, paired with (and only
660  * with) its highest supported minor version number (as the protocol requires
661  * supporting all lower minor version numbers as well)
662  */
663 static const vio_ver_t	vds_version[] = {{1, 1}};
664 static const size_t	vds_num_versions =
665     sizeof (vds_version)/sizeof (vds_version[0]);
666 
667 static void vd_free_dring_task(vd_t *vdp);
668 static int vd_setup_vd(vd_t *vd);
669 static int vd_setup_single_slice_disk(vd_t *vd);
670 static int vd_setup_slice_image(vd_t *vd);
671 static int vd_setup_disk_image(vd_t *vd);
672 static int vd_backend_check_size(vd_t *vd);
673 static boolean_t vd_enabled(vd_t *vd);
674 static ushort_t vd_lbl2cksum(struct dk_label *label);
675 static int vd_dskimg_validate_geometry(vd_t *vd);
676 static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
677 static void vd_set_exported_operations(vd_t *vd);
678 static void vd_reset_access(vd_t *vd);
679 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
680 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
681 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
682 static void vds_driver_types_free(vds_t *vds);
683 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
684     struct dk_label *label);
685 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
686     struct dk_geom *geom);
687 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
688 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
689 
690 extern int is_pseudo_device(dev_info_t *);
691 
692 /*
693  * Function:
694  *	vd_get_readable_size
695  *
696  * Description:
697  * 	Convert a given size in bytes to a human readable format in
698  * 	kilobytes, megabytes, gigabytes or terabytes.
699  *
700  * Parameters:
701  *	full_size	- the size to convert in bytes.
702  *	size		- the converted size.
703  *	unit		- the unit of the converted size: 'K' (kilobyte),
704  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
705  *
706  * Return Code:
707  *	none
708  */
709 static void
710 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
711 {
712 	if (full_size < (1ULL << 20)) {
713 		*size = full_size >> 10;
714 		*unit = 'K'; /* Kilobyte */
715 	} else if (full_size < (1ULL << 30)) {
716 		*size = full_size >> 20;
717 		*unit = 'M'; /* Megabyte */
718 	} else if (full_size < (1ULL << 40)) {
719 		*size = full_size >> 30;
720 		*unit = 'G'; /* Gigabyte */
721 	} else {
722 		*size = full_size >> 40;
723 		*unit = 'T'; /* Terabyte */
724 	}
725 }
726 
727 /*
728  * Function:
729  *	vd_dskimg_io_params
730  *
731  * Description:
732  * 	Convert virtual disk I/O parameters (slice, block, length) to
733  *	(offset, length) relative to the disk image and according to
734  *	the virtual disk partitioning.
735  *
736  * Parameters:
737  *	vd		- disk on which the operation is performed.
738  *	slice		- slice to which is the I/O parameters apply.
739  *			  VD_SLICE_NONE indicates that parameters are
740  *			  are relative to the entire virtual disk.
741  *	blkp		- pointer to the starting block relative to the
742  *			  slice; return the starting block relative to
743  *			  the disk image.
744  *	lenp		- pointer to the number of bytes requested; return
745  *			  the number of bytes that can effectively be used.
746  *
747  * Return Code:
748  *	0		- I/O parameters have been successfully converted;
749  *			  blkp and lenp point to the converted values.
750  *	ENODATA		- no data are available for the given I/O parameters;
751  *			  This occurs if the starting block is past the limit
752  *			  of the slice.
753  *	EINVAL		- I/O parameters are invalid.
754  */
755 static int
756 vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
757 {
758 	size_t blk = *blkp;
759 	size_t len = *lenp;
760 	size_t offset, maxlen;
761 
762 	ASSERT(vd->file || VD_DSKIMG(vd));
763 	ASSERT(len > 0);
764 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
765 
766 	/*
767 	 * If a file is exported as a slice then we don't care about the vtoc.
768 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
769 	 * handle any I/O as a raw disk access so that we can have access to the
770 	 * entire backend.
771 	 */
772 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
773 		/* raw disk access */
774 		offset = blk * DEV_BSIZE;
775 		if (offset >= vd->dskimg_size) {
776 			/* offset past the end of the disk */
777 			PR0("offset (0x%lx) >= size (0x%lx)",
778 			    offset, vd->dskimg_size);
779 			return (ENODATA);
780 		}
781 		maxlen = vd->dskimg_size - offset;
782 	} else {
783 		ASSERT(slice >= 0 && slice < V_NUMPAR);
784 
785 		/*
786 		 * v1.0 vDisk clients depended on the server not verifying
787 		 * the label of a unformatted disk.  This "feature" is
788 		 * maintained for backward compatibility but all versions
789 		 * from v1.1 onwards must do the right thing.
790 		 */
791 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
792 		    vio_ver_is_supported(vd->version, 1, 1)) {
793 			(void) vd_dskimg_validate_geometry(vd);
794 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
795 				PR0("Unknown disk label, can't do I/O "
796 				    "from slice %d", slice);
797 				return (EINVAL);
798 			}
799 		}
800 
801 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
802 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
803 		} else {
804 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
805 		}
806 
807 		if (blk >= vd->slices[slice].nblocks) {
808 			/* address past the end of the slice */
809 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
810 			    blk, vd->slices[slice].nblocks);
811 			return (ENODATA);
812 		}
813 
814 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
815 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
816 	}
817 
818 	/*
819 	 * If the requested size is greater than the size
820 	 * of the partition, truncate the read/write.
821 	 */
822 	if (len > maxlen) {
823 		PR0("I/O size truncated to %lu bytes from %lu bytes",
824 		    maxlen, len);
825 		len = maxlen;
826 	}
827 
828 	/*
829 	 * We have to ensure that we are reading/writing into the mmap
830 	 * range. If we have a partial disk image (e.g. an image of
831 	 * s0 instead s2) the system can try to access slices that
832 	 * are not included into the disk image.
833 	 */
834 	if ((offset + len) > vd->dskimg_size) {
835 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
836 		    "dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
837 		return (EINVAL);
838 	}
839 
840 	*blkp = offset / DEV_BSIZE;
841 	*lenp = len;
842 
843 	return (0);
844 }
845 
846 /*
847  * Function:
848  *	vd_dskimg_rw
849  *
850  * Description:
851  * 	Read or write to a disk image. It handles the case where the disk
852  *	image is a file or a volume exported as a full disk or a file
853  *	exported as single-slice disk. Read or write to volumes exported as
854  *	single slice disks are done by directly using the ldi interface.
855  *
856  * Parameters:
857  *	vd		- disk on which the operation is performed.
858  *	slice		- slice on which the operation is performed,
859  *			  VD_SLICE_NONE indicates that the operation
860  *			  is done using an absolute disk offset.
861  *	operation	- operation to execute: read (VD_OP_BREAD) or
862  *			  write (VD_OP_BWRITE).
863  *	data		- buffer where data are read to or written from.
864  *	blk		- starting block for the operation.
865  *	len		- number of bytes to read or write.
866  *
867  * Return Code:
868  *	n >= 0		- success, n indicates the number of bytes read
869  *			  or written.
870  *	-1		- error.
871  */
872 static ssize_t
873 vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
874     size_t len)
875 {
876 	ssize_t resid;
877 	struct buf buf;
878 	int status;
879 
880 	ASSERT(vd->file || VD_DSKIMG(vd));
881 	ASSERT(len > 0);
882 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
883 
884 	if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
885 		return ((status == ENODATA)? 0: -1);
886 
887 	if (vd->volume) {
888 
889 		bioinit(&buf);
890 		buf.b_flags	= B_BUSY |
891 		    ((operation == VD_OP_BREAD)? B_READ : B_WRITE);
892 		buf.b_bcount	= len;
893 		buf.b_lblkno	= offset;
894 		buf.b_edev 	= vd->dev[0];
895 		buf.b_un.b_addr = data;
896 
897 		/*
898 		 * We use ldi_strategy() and not ldi_read()/ldi_write() because
899 		 * the read/write functions of the underlying driver may try to
900 		 * lock pages of the data buffer, and this requires the data
901 		 * buffer to be kmem_alloc'ed (and not allocated on the stack).
902 		 *
903 		 * Also using ldi_strategy() ensures that writes are immediatly
904 		 * commited and not cached as this may be the case with
905 		 * ldi_write() (for example with a ZFS volume).
906 		 */
907 		if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
908 			biofini(&buf);
909 			return (-1);
910 		}
911 
912 		if (biowait(&buf) != 0) {
913 			biofini(&buf);
914 			return (-1);
915 		}
916 
917 		resid = buf.b_resid;
918 		biofini(&buf);
919 
920 		ASSERT(resid <= len);
921 		return (len - resid);
922 	}
923 
924 	ASSERT(vd->file);
925 
926 	status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE,
927 	    vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC,
928 	    RLIM64_INFINITY, kcred, &resid);
929 
930 	if (status != 0)
931 		return (-1);
932 
933 	return (len);
934 }
935 
936 /*
937  * Function:
938  *	vd_build_default_label
939  *
940  * Description:
941  *	Return a default label for a given disk size. This is used when the disk
942  *	does not have a valid VTOC so that the user can get a valid default
943  *	configuration. The default label has all slice sizes set to 0 (except
944  *	slice 2 which is the entire disk) to force the user to write a valid
945  *	label onto the disk image.
946  *
947  * Parameters:
948  *	disk_size	- the disk size in bytes
949  *	bsize		- the disk block size in bytes
950  *	label		- the returned default label.
951  *
952  * Return Code:
953  *	none.
954  */
955 static void
956 vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label)
957 {
958 	size_t size;
959 	char unit;
960 
961 	bzero(label, sizeof (struct dk_label));
962 
963 	/*
964 	 * Ideally we would like the cylinder size (nsect * nhead) to be the
965 	 * same whatever the disk size is. That way the VTOC label could be
966 	 * easily updated in case the disk size is increased (keeping the
967 	 * same cylinder size allows to preserve the existing partitioning
968 	 * when updating the VTOC label). But it is not possible to have
969 	 * a fixed cylinder size and to cover all disk size.
970 	 *
971 	 * So we define different cylinder sizes depending on the disk size.
972 	 * The cylinder size is chosen so that we don't have too few cylinders
973 	 * for a small disk image, or so many on a big disk image that you
974 	 * waste space for backup superblocks or cylinder group structures.
975 	 * Also we must have a resonable number of cylinders and sectors so
976 	 * that newfs can run using default values.
977 	 *
978 	 *	+-----------+--------+---------+--------+
979 	 *	| disk_size |  < 2MB | 2MB-4GB | >= 8GB |
980 	 *	+-----------+--------+---------+--------+
981 	 *	| nhead	    |	 1   |	   1   |    96  |
982 	 *	| nsect	    |  200   |   600   |   768  |
983 	 *	+-----------+--------+---------+--------+
984 	 *
985 	 * Other parameters are computed from these values:
986 	 *
987 	 * 	pcyl = disk_size / (nhead * nsect * 512)
988 	 * 	acyl = (pcyl > 2)? 2 : 0
989 	 * 	ncyl = pcyl - acyl
990 	 *
991 	 * The maximum number of cylinder is 65535 so this allows to define a
992 	 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
993 	 * which is more than enough to cover the maximum size allowed by the
994 	 * extended VTOC format (2TB).
995 	 */
996 
997 	if (disk_size >= 8 * ONE_GIGABYTE) {
998 
999 		label->dkl_nhead = 96;
1000 		label->dkl_nsect = 768;
1001 
1002 	} else if (disk_size >= 2 * ONE_MEGABYTE) {
1003 
1004 		label->dkl_nhead = 1;
1005 		label->dkl_nsect = 600;
1006 
1007 	} else {
1008 
1009 		label->dkl_nhead = 1;
1010 		label->dkl_nsect = 200;
1011 	}
1012 
1013 	label->dkl_pcyl = disk_size /
1014 	    (label->dkl_nsect * label->dkl_nhead * bsize);
1015 
1016 	if (label->dkl_pcyl == 0)
1017 		label->dkl_pcyl = 1;
1018 
1019 	label->dkl_acyl = 0;
1020 
1021 	if (label->dkl_pcyl > 2)
1022 		label->dkl_acyl = 2;
1023 
1024 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
1025 	label->dkl_write_reinstruct = 0;
1026 	label->dkl_read_reinstruct = 0;
1027 	label->dkl_rpm = 7200;
1028 	label->dkl_apc = 0;
1029 	label->dkl_intrlv = 0;
1030 
1031 	PR0("requested disk size: %ld bytes\n", disk_size);
1032 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
1033 	    label->dkl_nhead, label->dkl_nsect);
1034 	PR0("provided disk size: %ld bytes\n", (uint64_t)
1035 	    (label->dkl_pcyl * label->dkl_nhead *
1036 	    label->dkl_nsect * bsize));
1037 
1038 	vd_get_readable_size(disk_size, &size, &unit);
1039 
1040 	/*
1041 	 * We must have a correct label name otherwise format(1m) will
1042 	 * not recognized the disk as labeled.
1043 	 */
1044 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
1045 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
1046 	    size, unit,
1047 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
1048 	    label->dkl_nsect);
1049 
1050 	/* default VTOC */
1051 	label->dkl_vtoc.v_version = V_EXTVERSION;
1052 	label->dkl_vtoc.v_nparts = V_NUMPAR;
1053 	label->dkl_vtoc.v_sanity = VTOC_SANE;
1054 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
1055 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
1056 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
1057 	    label->dkl_nhead * label->dkl_nsect;
1058 	label->dkl_magic = DKL_MAGIC;
1059 	label->dkl_cksum = vd_lbl2cksum(label);
1060 }
1061 
1062 /*
1063  * Function:
1064  *	vd_dskimg_set_vtoc
1065  *
1066  * Description:
1067  *	Set the vtoc of a disk image by writing the label and backup
1068  *	labels into the disk image backend.
1069  *
1070  * Parameters:
1071  *	vd		- disk on which the operation is performed.
1072  *	label		- the data to be written.
1073  *
1074  * Return Code:
1075  *	0		- success.
1076  *	n > 0		- error, n indicates the errno code.
1077  */
1078 static int
1079 vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
1080 {
1081 	size_t blk, sec, cyl, head, cnt;
1082 
1083 	ASSERT(VD_DSKIMG(vd));
1084 
1085 	if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
1086 		PR0("fail to write disk label");
1087 		return (EIO);
1088 	}
1089 
1090 	/*
1091 	 * Backup labels are on the last alternate cylinder's
1092 	 * first five odd sectors.
1093 	 */
1094 	if (label->dkl_acyl == 0) {
1095 		PR0("no alternate cylinder, can not store backup labels");
1096 		return (0);
1097 	}
1098 
1099 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
1100 	head = label->dkl_nhead - 1;
1101 
1102 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
1103 	    (head * label->dkl_nsect);
1104 
1105 	/*
1106 	 * Write the backup labels. Make sure we don't try to write past
1107 	 * the last cylinder.
1108 	 */
1109 	sec = 1;
1110 
1111 	for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
1112 
1113 		if (sec >= label->dkl_nsect) {
1114 			PR0("not enough sector to store all backup labels");
1115 			return (0);
1116 		}
1117 
1118 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1119 		    (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
1120 			PR0("error writing backup label at block %lu\n",
1121 			    blk + sec);
1122 			return (EIO);
1123 		}
1124 
1125 		PR1("wrote backup label at block %lu\n", blk + sec);
1126 
1127 		sec += 2;
1128 	}
1129 
1130 	return (0);
1131 }
1132 
1133 /*
1134  * Function:
1135  *	vd_dskimg_get_devid_block
1136  *
1137  * Description:
1138  *	Return the block number where the device id is stored.
1139  *
1140  * Parameters:
1141  *	vd		- disk on which the operation is performed.
1142  *	blkp		- pointer to the block number
1143  *
1144  * Return Code:
1145  *	0		- success
1146  *	ENOSPC		- disk has no space to store a device id
1147  */
1148 static int
1149 vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
1150 {
1151 	diskaddr_t spc, head, cyl;
1152 
1153 	ASSERT(VD_DSKIMG(vd));
1154 
1155 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1156 		/*
1157 		 * If no label is defined we don't know where to find
1158 		 * a device id.
1159 		 */
1160 		return (ENOSPC);
1161 	}
1162 
1163 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1164 		/*
1165 		 * For an EFI disk, the devid is at the beginning of
1166 		 * the reserved slice
1167 		 */
1168 		if (vd->efi_reserved == -1) {
1169 			PR0("EFI disk has no reserved slice");
1170 			return (ENOSPC);
1171 		}
1172 
1173 		*blkp = vd->slices[vd->efi_reserved].start;
1174 		return (0);
1175 	}
1176 
1177 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1178 
1179 	/* this geometry doesn't allow us to have a devid */
1180 	if (vd->dk_geom.dkg_acyl < 2) {
1181 		PR0("not enough alternate cylinder available for devid "
1182 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1183 		return (ENOSPC);
1184 	}
1185 
1186 	/* the devid is in on the track next to the last cylinder */
1187 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1188 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1189 	head = vd->dk_geom.dkg_nhead - 1;
1190 
1191 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1192 	    (head * vd->dk_geom.dkg_nsect) + 1;
1193 
1194 	return (0);
1195 }
1196 
1197 /*
1198  * Return the checksum of a disk block containing an on-disk devid.
1199  */
1200 static uint_t
1201 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1202 {
1203 	uint_t chksum, *ip;
1204 	int i;
1205 
1206 	chksum = 0;
1207 	ip = (void *)dkdevid;
1208 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1209 		chksum ^= ip[i];
1210 
1211 	return (chksum);
1212 }
1213 
1214 /*
1215  * Function:
1216  *	vd_dskimg_read_devid
1217  *
1218  * Description:
1219  *	Read the device id stored on a disk image.
1220  *
1221  * Parameters:
1222  *	vd		- disk on which the operation is performed.
1223  *	devid		- the return address of the device ID.
1224  *
1225  * Return Code:
1226  *	0		- success
1227  *	EIO		- I/O error while trying to access the disk image
1228  *	EINVAL		- no valid device id was found
1229  *	ENOSPC		- disk has no space to store a device id
1230  */
1231 static int
1232 vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
1233 {
1234 	struct dk_devid *dkdevid;
1235 	size_t blk;
1236 	uint_t chksum;
1237 	int status, sz;
1238 
1239 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1240 
1241 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1242 		return (status);
1243 
1244 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1245 
1246 	/* get the devid */
1247 	if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1248 	    DEV_BSIZE)) < 0) {
1249 		PR0("error reading devid block at %lu", blk);
1250 		status = EIO;
1251 		goto done;
1252 	}
1253 
1254 	/* validate the revision */
1255 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1256 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1257 		PR0("invalid devid found at block %lu (bad revision)", blk);
1258 		status = EINVAL;
1259 		goto done;
1260 	}
1261 
1262 	/* compute checksum */
1263 	chksum = vd_dkdevid2cksum(dkdevid);
1264 
1265 	/* compare the checksums */
1266 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1267 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1268 		status = EINVAL;
1269 		goto done;
1270 	}
1271 
1272 	/* validate the device id */
1273 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1274 		PR0("invalid devid found at block %lu", blk);
1275 		status = EINVAL;
1276 		goto done;
1277 	}
1278 
1279 	PR1("devid read at block %lu", blk);
1280 
1281 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1282 	*devid = kmem_alloc(sz, KM_SLEEP);
1283 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1284 
1285 done:
1286 	kmem_free(dkdevid, DEV_BSIZE);
1287 	return (status);
1288 
1289 }
1290 
1291 /*
1292  * Function:
1293  *	vd_dskimg_write_devid
1294  *
1295  * Description:
1296  *	Write a device id into disk image.
1297  *
1298  * Parameters:
1299  *	vd		- disk on which the operation is performed.
1300  *	devid		- the device ID to store.
1301  *
1302  * Return Code:
1303  *	0		- success
1304  *	EIO		- I/O error while trying to access the disk image
1305  *	ENOSPC		- disk has no space to store a device id
1306  */
1307 static int
1308 vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
1309 {
1310 	struct dk_devid *dkdevid;
1311 	uint_t chksum;
1312 	size_t blk;
1313 	int status;
1314 
1315 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1316 
1317 	if (devid == NULL) {
1318 		/* nothing to write */
1319 		return (0);
1320 	}
1321 
1322 	if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
1323 		return (status);
1324 
1325 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1326 
1327 	/* set revision */
1328 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1329 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1330 
1331 	/* copy devid */
1332 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1333 
1334 	/* compute checksum */
1335 	chksum = vd_dkdevid2cksum(dkdevid);
1336 
1337 	/* set checksum */
1338 	DKD_FORMCHKSUM(chksum, dkdevid);
1339 
1340 	/* store the devid */
1341 	if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1342 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1343 		PR0("Error writing devid block at %lu", blk);
1344 		status = EIO;
1345 	} else {
1346 		PR1("devid written at block %lu", blk);
1347 		status = 0;
1348 	}
1349 
1350 	kmem_free(dkdevid, DEV_BSIZE);
1351 	return (status);
1352 }
1353 
1354 /*
1355  * Function:
1356  *	vd_do_scsi_rdwr
1357  *
1358  * Description:
1359  * 	Read or write to a SCSI disk using an absolute disk offset.
1360  *
1361  * Parameters:
1362  *	vd		- disk on which the operation is performed.
1363  *	operation	- operation to execute: read (VD_OP_BREAD) or
1364  *			  write (VD_OP_BWRITE).
1365  *	data		- buffer where data are read to or written from.
1366  *	blk		- starting block for the operation.
1367  *	len		- number of bytes to read or write.
1368  *
1369  * Return Code:
1370  *	0		- success
1371  *	n != 0		- error.
1372  */
1373 static int
1374 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1375 {
1376 	struct uscsi_cmd ucmd;
1377 	union scsi_cdb cdb;
1378 	int nsectors, nblk;
1379 	int max_sectors;
1380 	int status, rval;
1381 
1382 	ASSERT(!vd->file);
1383 	ASSERT(!vd->volume);
1384 	ASSERT(vd->vdisk_bsize > 0);
1385 
1386 	max_sectors = vd->max_xfer_sz;
1387 	nblk = (len / vd->vdisk_bsize);
1388 
1389 	if (len % vd->vdisk_bsize != 0)
1390 		return (EINVAL);
1391 
1392 	/*
1393 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1394 	 * or group4 command as necessary, since some targets
1395 	 * do not support group1 commands.
1396 	 */
1397 	while (nblk) {
1398 
1399 		bzero(&ucmd, sizeof (ucmd));
1400 		bzero(&cdb, sizeof (cdb));
1401 
1402 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1403 
1404 		/*
1405 		 * Some of the optical drives on sun4v machines are ATAPI
1406 		 * devices which use Group 1 Read/Write commands so we need
1407 		 * to explicitly check a flag which is set when a domain
1408 		 * is bound.
1409 		 */
1410 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1411 			FORMG0ADDR(&cdb, blk);
1412 			FORMG0COUNT(&cdb, (uchar_t)nsectors);
1413 			ucmd.uscsi_cdblen = CDB_GROUP0;
1414 		} else if (blk > 0xffffffff) {
1415 			FORMG4LONGADDR(&cdb, blk);
1416 			FORMG4COUNT(&cdb, nsectors);
1417 			ucmd.uscsi_cdblen = CDB_GROUP4;
1418 			cdb.scc_cmd |= SCMD_GROUP4;
1419 		} else {
1420 			FORMG1ADDR(&cdb, blk);
1421 			FORMG1COUNT(&cdb, nsectors);
1422 			ucmd.uscsi_cdblen = CDB_GROUP1;
1423 			cdb.scc_cmd |= SCMD_GROUP1;
1424 		}
1425 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1426 		ucmd.uscsi_bufaddr = data;
1427 		ucmd.uscsi_buflen = nsectors * vd->backend_bsize;
1428 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1429 		/*
1430 		 * Set flags so that the command is isolated from normal
1431 		 * commands and no error message is printed.
1432 		 */
1433 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1434 
1435 		if (operation == VD_OP_BREAD) {
1436 			cdb.scc_cmd |= SCMD_READ;
1437 			ucmd.uscsi_flags |= USCSI_READ;
1438 		} else {
1439 			cdb.scc_cmd |= SCMD_WRITE;
1440 		}
1441 
1442 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1443 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1444 		    kcred, &rval);
1445 
1446 		if (status == 0)
1447 			status = ucmd.uscsi_status;
1448 
1449 		if (status != 0)
1450 			break;
1451 
1452 		/*
1453 		 * Check if partial DMA breakup is required. If so, reduce
1454 		 * the request size by half and retry the last request.
1455 		 */
1456 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1457 			max_sectors >>= 1;
1458 			if (max_sectors <= 0) {
1459 				status = EIO;
1460 				break;
1461 			}
1462 			continue;
1463 		}
1464 
1465 		if (ucmd.uscsi_resid != 0) {
1466 			status = EIO;
1467 			break;
1468 		}
1469 
1470 		blk += nsectors;
1471 		nblk -= nsectors;
1472 		data += nsectors * vd->vdisk_bsize;
1473 	}
1474 
1475 	return (status);
1476 }
1477 
1478 /*
1479  * Function:
1480  *	vd_scsi_rdwr
1481  *
1482  * Description:
1483  * 	Wrapper function to read or write to a SCSI disk using an absolute
1484  *	disk offset. It checks the blocksize of the underlying device and,
1485  *	if necessary, adjusts the buffers accordingly before calling
1486  *	vd_do_scsi_rdwr() to do the actual read or write.
1487  *
1488  * Parameters:
1489  *	vd		- disk on which the operation is performed.
1490  *	operation	- operation to execute: read (VD_OP_BREAD) or
1491  *			  write (VD_OP_BWRITE).
1492  *	data		- buffer where data are read to or written from.
1493  *	blk		- starting block for the operation.
1494  *	len		- number of bytes to read or write.
1495  *
1496  * Return Code:
1497  *	0		- success
1498  *	n != 0		- error.
1499  */
1500 static int
1501 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1502 {
1503 	int	rv;
1504 
1505 	size_t	pblk;	/* physical device block number of data on device */
1506 	size_t	delta;	/* relative offset between pblk and vblk */
1507 	size_t	pnblk;	/* number of physical blocks to be read from device */
1508 	size_t	plen;	/* length of data to be read from physical device */
1509 	char	*buf;	/* buffer area to fit physical device's block size */
1510 
1511 	if (vd->backend_bsize == 0) {
1512 		/*
1513 		 * The block size was not available during the attach,
1514 		 * try to update it now.
1515 		 */
1516 		if (vd_backend_check_size(vd) != 0)
1517 			return (EIO);
1518 	}
1519 
1520 	/*
1521 	 * If the vdisk block size and the block size of the underlying device
1522 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1523 	 * to create a buffer large enough to handle the device's block size
1524 	 * and adjust the block to be read from and the amount of data to
1525 	 * read to correspond with the device's block size.
1526 	 */
1527 	if (vd->vdisk_bsize == vd->backend_bsize)
1528 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1529 
1530 	if (vd->vdisk_bsize > vd->backend_bsize)
1531 		return (EINVAL);
1532 
1533 	/*
1534 	 * Writing of physical block sizes larger than the virtual block size
1535 	 * is not supported. This would be added if/when support for guests
1536 	 * writing to DVDs is implemented.
1537 	 */
1538 	if (operation == VD_OP_BWRITE)
1539 		return (ENOTSUP);
1540 
1541 	/* BEGIN CSTYLED */
1542 	/*
1543 	 * Below is a diagram showing the relationship between the physical
1544 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1545 	 * requested, then the physical blocks denoted by 'Y' are read.
1546 	 *
1547 	 *           vblk
1548 	 *             |      vlen
1549 	 *             |<--------------->|
1550 	 *             v                 v
1551 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1552 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1553 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   vd->vdisk_bsize
1554 	 *          :  :                 :  :
1555 	 *         >:==:< delta          :  :
1556 	 *          :  :                 :  :
1557 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1558 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1559 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->backend_bsize
1560 	 *          ^                       ^
1561 	 *          |<--------------------->|
1562 	 *          |         plen
1563 	 *         pblk
1564 	 */
1565 	/* END CSTYLED */
1566 	pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize;
1567 	delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize);
1568 	pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1;
1569 	plen = pnblk * vd->backend_bsize;
1570 
1571 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1572 
1573 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1574 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1575 	bcopy(buf + delta, data, vlen);
1576 
1577 	kmem_free(buf, sizeof (caddr_t) * plen);
1578 
1579 	return (rv);
1580 }
1581 
1582 /*
1583  * Function:
1584  *	vd_slice_flabel_read
1585  *
1586  * Description:
1587  *	This function simulates a read operation from the fake label of
1588  *	a single-slice disk.
1589  *
1590  * Parameters:
1591  *	vd		- single-slice disk to read from
1592  *	data		- buffer where data should be read to
1593  *	offset		- offset in byte where the read should start
1594  *	length		- number of bytes to read
1595  *
1596  * Return Code:
1597  *	n >= 0		- success, n indicates the number of bytes read
1598  *	-1		- error
1599  */
1600 static ssize_t
1601 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1602 {
1603 	size_t n = 0;
1604 	uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1605 
1606 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1607 	ASSERT(vd->flabel != NULL);
1608 
1609 	/* if offset is past the fake label limit there's nothing to read */
1610 	if (offset >= limit)
1611 		return (0);
1612 
1613 	/* data with offset 0 to flabel_size are read from flabel */
1614 	if (offset < vd->flabel_size) {
1615 
1616 		if (offset + length <= vd->flabel_size) {
1617 			bcopy(vd->flabel + offset, data, length);
1618 			return (length);
1619 		}
1620 
1621 		n = vd->flabel_size - offset;
1622 		bcopy(vd->flabel + offset, data, n);
1623 		data += n;
1624 	}
1625 
1626 	/* data with offset from flabel_size to flabel_limit are all zeros */
1627 	if (offset + length <= limit) {
1628 		bzero(data, length - n);
1629 		return (length);
1630 	}
1631 
1632 	bzero(data, limit - offset - n);
1633 	return (limit - offset);
1634 }
1635 
1636 /*
1637  * Function:
1638  *	vd_slice_flabel_write
1639  *
1640  * Description:
1641  *	This function simulates a write operation to the fake label of
1642  *	a single-slice disk. Write operations are actually faked and return
1643  *	success although the label is never changed. This is mostly to
1644  *	simulate a successful label update.
1645  *
1646  * Parameters:
1647  *	vd		- single-slice disk to write to
1648  *	data		- buffer where data should be written from
1649  *	offset		- offset in byte where the write should start
1650  *	length		- number of bytes to written
1651  *
1652  * Return Code:
1653  *	n >= 0		- success, n indicates the number of bytes written
1654  *	-1		- error
1655  */
1656 static ssize_t
1657 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1658 {
1659 	uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
1660 	struct dk_label *label;
1661 	struct dk_geom geom;
1662 	struct extvtoc vtoc;
1663 
1664 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1665 	ASSERT(vd->flabel != NULL);
1666 
1667 	if (offset >= limit)
1668 		return (0);
1669 
1670 	/*
1671 	 * If this is a request to overwrite the VTOC disk label, check that
1672 	 * the new label is similar to the previous one and return that the
1673 	 * write was successful, but note that nothing is actually overwritten.
1674 	 */
1675 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1676 	    offset == 0 && length == vd->vdisk_bsize) {
1677 		label = (void *)data;
1678 
1679 		/* check that this is a valid label */
1680 		if (label->dkl_magic != DKL_MAGIC ||
1681 		    label->dkl_cksum != vd_lbl2cksum(label))
1682 			return (-1);
1683 
1684 		/* check the vtoc and geometry */
1685 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1686 		if (vd_slice_geom_isvalid(vd, &geom) &&
1687 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1688 			return (length);
1689 	}
1690 
1691 	/* fail any other write */
1692 	return (-1);
1693 }
1694 
1695 /*
1696  * Function:
1697  *	vd_slice_fake_rdwr
1698  *
1699  * Description:
1700  *	This function simulates a raw read or write operation to a single-slice
1701  *	disk. It only handles the faked part of the operation i.e. I/Os to
1702  *	blocks which have no mapping with the vdisk backend (I/Os to the
1703  *	beginning and to the end of the vdisk).
1704  *
1705  *	The function returns 0 is the operation	is completed and it has been
1706  *	entirely handled as a fake read or write. In that case, lengthp points
1707  *	to the number of bytes not read or written. Values returned by datap
1708  *	and blkp are undefined.
1709  *
1710  *	If the fake operation has succeeded but the read or write is not
1711  *	complete (i.e. the read/write operation extends beyond the blocks
1712  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1713  *	pointers points to the parameters for completing the operation.
1714  *
1715  *	In case of an error, for example if the slice is empty or parameters
1716  *	are invalid, then the function returns a non-zero value different
1717  *	from EAGAIN. In that case, the returned values of datap, blkp and
1718  *	lengthp are undefined.
1719  *
1720  * Parameters:
1721  *	vd		- single-slice disk on which the operation is performed
1722  *	slice		- slice on which the operation is performed,
1723  *			  VD_SLICE_NONE indicates that the operation
1724  *			  is done using an absolute disk offset.
1725  *	operation	- operation to execute: read (VD_OP_BREAD) or
1726  *			  write (VD_OP_BWRITE).
1727  *	datap		- pointer to the buffer where data are read to
1728  *			  or written from. Return the pointer where remaining
1729  *			  data have to be read to or written from.
1730  *	blkp		- pointer to the starting block for the operation.
1731  *			  Return the starting block relative to the vdisk
1732  *			  backend for the remaining operation.
1733  *	lengthp		- pointer to the number of bytes to read or write.
1734  *			  This should be a multiple of vdisk_bsize. Return the
1735  *			  remaining number of bytes to read or write.
1736  *
1737  * Return Code:
1738  *	0		- read/write operation is completed
1739  *	EAGAIN		- read/write operation is not completed
1740  *	other values	- error
1741  */
1742 static int
1743 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1744     size_t *blkp, size_t *lengthp)
1745 {
1746 	struct dk_label *label;
1747 	caddr_t data;
1748 	size_t blk, length, csize;
1749 	size_t ablk, asize, aoff, alen;
1750 	ssize_t n;
1751 	int sec, status;
1752 	size_t bsize = vd->vdisk_bsize;
1753 
1754 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1755 	ASSERT(slice != 0);
1756 
1757 	data = *datap;
1758 	blk = *blkp;
1759 	length = *lengthp;
1760 
1761 	/*
1762 	 * If this is not a raw I/O or an I/O from a full disk slice then
1763 	 * this is an I/O to/from an empty slice.
1764 	 */
1765 	if (slice != VD_SLICE_NONE &&
1766 	    (slice != VD_ENTIRE_DISK_SLICE ||
1767 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1768 	    (slice != VD_EFI_WD_SLICE ||
1769 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1770 		return (EIO);
1771 	}
1772 
1773 	if (length % bsize != 0)
1774 		return (EINVAL);
1775 
1776 	/* handle any I/O with the fake label */
1777 	if (operation == VD_OP_BWRITE)
1778 		n = vd_slice_flabel_write(vd, data, blk * bsize, length);
1779 	else
1780 		n = vd_slice_flabel_read(vd, data, blk * bsize, length);
1781 
1782 	if (n == -1)
1783 		return (EINVAL);
1784 
1785 	ASSERT(n % bsize == 0);
1786 
1787 	/* adjust I/O arguments */
1788 	data += n;
1789 	blk += n / bsize;
1790 	length -= n;
1791 
1792 	/* check if there's something else to process */
1793 	if (length == 0) {
1794 		status = 0;
1795 		goto done;
1796 	}
1797 
1798 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1799 	    slice == VD_ENTIRE_DISK_SLICE) {
1800 		status = EAGAIN;
1801 		goto done;
1802 	}
1803 
1804 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1805 		asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1;
1806 		ablk = vd->vdisk_size - asize;
1807 	} else {
1808 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1809 		ASSERT(vd->dk_geom.dkg_apc == 0);
1810 
1811 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1812 		ablk = vd->dk_geom.dkg_ncyl * csize;
1813 		asize = vd->dk_geom.dkg_acyl * csize;
1814 	}
1815 
1816 	alen = length / bsize;
1817 	aoff = blk;
1818 
1819 	/* if we have reached the last block then the I/O is completed */
1820 	if (aoff == ablk + asize) {
1821 		status = 0;
1822 		goto done;
1823 	}
1824 
1825 	/* if we are past the last block then return an error */
1826 	if (aoff > ablk + asize)
1827 		return (EIO);
1828 
1829 	/* check if there is any I/O to end of the disk */
1830 	if (aoff + alen < ablk) {
1831 		status = EAGAIN;
1832 		goto done;
1833 	}
1834 
1835 	/* we don't allow any write to the end of the disk */
1836 	if (operation == VD_OP_BWRITE)
1837 		return (EIO);
1838 
1839 	if (aoff < ablk) {
1840 		alen -= (ablk - aoff);
1841 		aoff = ablk;
1842 	}
1843 
1844 	if (aoff + alen > ablk + asize) {
1845 		alen = ablk + asize - aoff;
1846 	}
1847 
1848 	alen *= bsize;
1849 
1850 	if (operation == VD_OP_BREAD) {
1851 		bzero(data + (aoff - blk) * bsize, alen);
1852 
1853 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1854 			/* check if we read backup labels */
1855 			label = VD_LABEL_VTOC(vd);
1856 			ablk += (label->dkl_acyl - 1) * csize +
1857 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1858 
1859 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1860 
1861 				if (ablk + sec >= blk &&
1862 				    ablk + sec < blk + (length / bsize)) {
1863 					bcopy(label, data +
1864 					    (ablk + sec - blk) * bsize,
1865 					    sizeof (struct dk_label));
1866 				}
1867 			}
1868 		}
1869 	}
1870 
1871 	length -= alen;
1872 
1873 	status = (length == 0)? 0: EAGAIN;
1874 
1875 done:
1876 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1877 
1878 	/*
1879 	 * Return the parameters for the remaining I/O. The starting block is
1880 	 * adjusted so that it is relative to the vdisk backend.
1881 	 */
1882 	*datap = data;
1883 	*blkp = blk - vd->flabel_limit;
1884 	*lengthp = length;
1885 
1886 	return (status);
1887 }
1888 
1889 static int
1890 vd_flush_write(vd_t *vd)
1891 {
1892 	int status, rval;
1893 
1894 	if (vd->file) {
1895 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1896 	} else {
1897 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE,
1898 		    NULL, vd->open_flags | FKIOCTL, kcred, &rval);
1899 	}
1900 
1901 	return (status);
1902 }
1903 
1904 static void
1905 vd_bio_task(void *arg)
1906 {
1907 	struct buf *buf = (struct buf *)arg;
1908 	vd_task_t *task = (vd_task_t *)buf->b_private;
1909 	vd_t *vd = task->vd;
1910 	ssize_t resid;
1911 	int status;
1912 
1913 	ASSERT(vd->vdisk_bsize == DEV_BSIZE);
1914 
1915 	if (vd->zvol) {
1916 
1917 		status = ldi_strategy(vd->ldi_handle[0], buf);
1918 
1919 	} else {
1920 
1921 		ASSERT(vd->file);
1922 
1923 		status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE,
1924 		    vd->file_vnode, buf->b_un.b_addr, buf->b_bcount,
1925 		    buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0,
1926 		    RLIM64_INFINITY, kcred, &resid);
1927 
1928 		if (status == 0) {
1929 			buf->b_resid = resid;
1930 			biodone(buf);
1931 			return;
1932 		}
1933 	}
1934 
1935 	if (status != 0) {
1936 		bioerror(buf, status);
1937 		biodone(buf);
1938 	}
1939 }
1940 
1941 /*
1942  * We define our own biodone function so that buffers used for
1943  * asynchronous writes are not released when biodone() is called.
1944  */
1945 static int
1946 vd_biodone(struct buf *bp)
1947 {
1948 	ASSERT((bp->b_flags & B_DONE) == 0);
1949 	ASSERT(SEMA_HELD(&bp->b_sem));
1950 
1951 	bp->b_flags |= B_DONE;
1952 	sema_v(&bp->b_io);
1953 
1954 	return (0);
1955 }
1956 
1957 /*
1958  * Return Values
1959  *	EINPROGRESS	- operation was successfully started
1960  *	EIO		- encountered LDC (aka. task error)
1961  *	0		- operation completed successfully
1962  *
1963  * Side Effect
1964  *     sets request->status = <disk operation status>
1965  */
1966 static int
1967 vd_start_bio(vd_task_t *task)
1968 {
1969 	int			rv, status = 0;
1970 	vd_t			*vd		= task->vd;
1971 	vd_dring_payload_t	*request	= task->request;
1972 	struct buf		*buf		= &task->buf;
1973 	uint8_t			mtype;
1974 	int 			slice;
1975 	char			*bufaddr = 0;
1976 	size_t			buflen;
1977 	size_t			offset, length, nbytes;
1978 
1979 	ASSERT(vd != NULL);
1980 	ASSERT(request != NULL);
1981 
1982 	slice = request->slice;
1983 
1984 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1985 	ASSERT((request->operation == VD_OP_BREAD) ||
1986 	    (request->operation == VD_OP_BWRITE));
1987 
1988 	if (request->nbytes == 0) {
1989 		/* no service for trivial requests */
1990 		request->status = EINVAL;
1991 		return (0);
1992 	}
1993 
1994 	PR1("%s %lu bytes at block %lu",
1995 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1996 	    request->nbytes, request->addr);
1997 
1998 	/*
1999 	 * We have to check the open flags because the functions processing
2000 	 * the read/write request will not do it.
2001 	 */
2002 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
2003 		PR0("write fails because backend is opened read-only");
2004 		request->nbytes = 0;
2005 		request->status = EROFS;
2006 		return (0);
2007 	}
2008 
2009 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
2010 
2011 	/* Map memory exported by client */
2012 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
2013 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
2014 	    &bufaddr, NULL);
2015 	if (status != 0) {
2016 		PR0("ldc_mem_map() returned err %d ", status);
2017 		return (EIO);
2018 	}
2019 
2020 	/*
2021 	 * The buffer size has to be 8-byte aligned, so the client should have
2022 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
2023 	 */
2024 	buflen = P2ROUNDUP(request->nbytes, 8);
2025 
2026 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
2027 	if (status != 0) {
2028 		(void) ldc_mem_unmap(task->mhdl);
2029 		PR0("ldc_mem_acquire() returned err %d ", status);
2030 		return (EIO);
2031 	}
2032 
2033 	offset = request->addr;
2034 	nbytes = request->nbytes;
2035 	length = nbytes;
2036 
2037 	/* default number of byte returned by the I/O */
2038 	request->nbytes = 0;
2039 
2040 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2041 
2042 		if (slice != 0) {
2043 			/* handle any fake I/O */
2044 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
2045 			    &bufaddr, &offset, &length);
2046 
2047 			/* record the number of bytes from the fake I/O */
2048 			request->nbytes = nbytes - length;
2049 
2050 			if (rv == 0) {
2051 				request->status = 0;
2052 				goto io_done;
2053 			}
2054 
2055 			if (rv != EAGAIN) {
2056 				request->nbytes = 0;
2057 				request->status = EIO;
2058 				goto io_done;
2059 			}
2060 
2061 			/*
2062 			 * If we return with EAGAIN then this means that there
2063 			 * are still data to read or write.
2064 			 */
2065 			ASSERT(length != 0);
2066 
2067 			/*
2068 			 * We need to continue the I/O from the slice backend to
2069 			 * complete the request. The variables bufaddr, offset
2070 			 * and length have been adjusted to have the right
2071 			 * information to do the remaining I/O from the backend.
2072 			 * The backend is entirely mapped to slice 0 so we just
2073 			 * have to complete the I/O from that slice.
2074 			 */
2075 			slice = 0;
2076 		}
2077 
2078 	} else if (vd->volume || vd->file) {
2079 
2080 		rv = vd_dskimg_io_params(vd, slice, &offset, &length);
2081 		if (rv != 0) {
2082 			request->status = (rv == ENODATA)? 0: EIO;
2083 			goto io_done;
2084 		}
2085 		slice = 0;
2086 
2087 	} else if (slice == VD_SLICE_NONE) {
2088 
2089 		/*
2090 		 * This is not a disk image so it is a real disk. We
2091 		 * assume that the underlying device driver supports
2092 		 * USCSICMD ioctls. This is the case of all SCSI devices
2093 		 * (sd, ssd...).
2094 		 *
2095 		 * In the future if we have non-SCSI disks we would need
2096 		 * to invoke the appropriate function to do I/O using an
2097 		 * absolute disk offset (for example using DIOCTL_RWCMD
2098 		 * for IDE disks).
2099 		 */
2100 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
2101 		    length);
2102 		if (rv != 0) {
2103 			request->status = EIO;
2104 		} else {
2105 			request->nbytes = length;
2106 			request->status = 0;
2107 		}
2108 		goto io_done;
2109 	}
2110 
2111 	/* Start the block I/O */
2112 	bioinit(buf);
2113 	buf->b_flags	= B_BUSY;
2114 	buf->b_bcount	= length;
2115 	buf->b_lblkno	= offset;
2116 	buf->b_bufsize	= buflen;
2117 	buf->b_edev 	= vd->dev[slice];
2118 	buf->b_un.b_addr = bufaddr;
2119 	buf->b_iodone	= vd_biodone;
2120 
2121 	if (vd->file || vd->zvol) {
2122 		/*
2123 		 * I/O to a file are dispatched to an I/O queue, so that several
2124 		 * I/Os can be processed in parallel. We also do that for ZFS
2125 		 * volumes because the ZFS volume strategy() function will only
2126 		 * return after the I/O is completed (instead of just starting
2127 		 * the I/O).
2128 		 */
2129 
2130 		if (request->operation == VD_OP_BREAD) {
2131 			buf->b_flags |= B_READ;
2132 		} else {
2133 			/*
2134 			 * For ZFS volumes and files, we do an asynchronous
2135 			 * write and we will wait for the completion of the
2136 			 * write in vd_complete_bio() by flushing the volume
2137 			 * or file.
2138 			 *
2139 			 * This done for performance reasons, so that we can
2140 			 * group together several write requests into a single
2141 			 * flush operation.
2142 			 */
2143 			buf->b_flags |= B_WRITE | B_ASYNC;
2144 
2145 			/*
2146 			 * We keep track of the write so that we can group
2147 			 * requests when flushing. The write queue has the
2148 			 * same number of slots as the dring so this prevents
2149 			 * the write queue from wrapping and overwriting
2150 			 * existing entries: if the write queue gets full
2151 			 * then that means that the dring is full so we stop
2152 			 * receiving new requests until an existing request
2153 			 * is processed, removed from the write queue and
2154 			 * then from the dring.
2155 			 */
2156 			task->write_index = vd->write_index;
2157 			vd->write_queue[task->write_index] = buf;
2158 			vd->write_index =
2159 			    VD_WRITE_INDEX_NEXT(vd, vd->write_index);
2160 		}
2161 
2162 		buf->b_private = task;
2163 
2164 		ASSERT(vd->ioq != NULL);
2165 
2166 		request->status = 0;
2167 		(void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf,
2168 		    DDI_SLEEP);
2169 
2170 	} else {
2171 
2172 		if (request->operation == VD_OP_BREAD) {
2173 			buf->b_flags |= B_READ;
2174 		} else {
2175 			buf->b_flags |= B_WRITE;
2176 		}
2177 
2178 		/* convert VIO block number to buf block number */
2179 		buf->b_lblkno = offset << vd->vio_bshift;
2180 
2181 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
2182 	}
2183 
2184 	/*
2185 	 * This is to indicate to the caller that the request
2186 	 * needs to be finished by vd_complete_bio() by calling
2187 	 * biowait() there and waiting for that to return before
2188 	 * triggering the notification of the vDisk client.
2189 	 *
2190 	 * This is necessary when writing to real disks as
2191 	 * otherwise calls to ldi_strategy() would be serialized
2192 	 * behind the calls to biowait() and performance would
2193 	 * suffer.
2194 	 */
2195 	if (request->status == 0)
2196 		return (EINPROGRESS);
2197 
2198 	biofini(buf);
2199 
2200 io_done:
2201 	/* Clean up after error or completion */
2202 	rv = ldc_mem_release(task->mhdl, 0, buflen);
2203 	if (rv) {
2204 		PR0("ldc_mem_release() returned err %d ", rv);
2205 		status = EIO;
2206 	}
2207 	rv = ldc_mem_unmap(task->mhdl);
2208 	if (rv) {
2209 		PR0("ldc_mem_unmap() returned err %d ", rv);
2210 		status = EIO;
2211 	}
2212 
2213 	return (status);
2214 }
2215 
2216 /*
2217  * This function should only be called from vd_notify to ensure that requests
2218  * are responded to in the order that they are received.
2219  */
2220 static int
2221 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
2222 {
2223 	int	status;
2224 	size_t	nbytes;
2225 
2226 	do {
2227 		nbytes = msglen;
2228 		status = ldc_write(ldc_handle, msg, &nbytes);
2229 		if (status != EWOULDBLOCK)
2230 			break;
2231 		drv_usecwait(vds_ldc_delay);
2232 	} while (status == EWOULDBLOCK);
2233 
2234 	if (status != 0) {
2235 		if (status != ECONNRESET)
2236 			PR0("ldc_write() returned errno %d", status);
2237 		return (status);
2238 	} else if (nbytes != msglen) {
2239 		PR0("ldc_write() performed only partial write");
2240 		return (EIO);
2241 	}
2242 
2243 	PR1("SENT %lu bytes", msglen);
2244 	return (0);
2245 }
2246 
2247 static void
2248 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
2249 {
2250 	mutex_enter(&vd->lock);
2251 	vd->reset_state	= B_TRUE;
2252 	vd->reset_ldc	= reset_ldc;
2253 	mutex_exit(&vd->lock);
2254 }
2255 
2256 /*
2257  * Reset the state of the connection with a client, if needed; reset the LDC
2258  * transport as well, if needed.  This function should only be called from the
2259  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2260  */
2261 static void
2262 vd_reset_if_needed(vd_t *vd)
2263 {
2264 	int	status = 0;
2265 
2266 	mutex_enter(&vd->lock);
2267 	if (!vd->reset_state) {
2268 		ASSERT(!vd->reset_ldc);
2269 		mutex_exit(&vd->lock);
2270 		return;
2271 	}
2272 	mutex_exit(&vd->lock);
2273 
2274 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
2275 
2276 	/*
2277 	 * Let any asynchronous I/O complete before possibly pulling the rug
2278 	 * out from under it; defer checking vd->reset_ldc, as one of the
2279 	 * asynchronous tasks might set it
2280 	 */
2281 	if (vd->ioq != NULL)
2282 		ddi_taskq_wait(vd->ioq);
2283 	ddi_taskq_wait(vd->completionq);
2284 
2285 	status = vd_flush_write(vd);
2286 	if (status) {
2287 		PR0("flushwrite returned error %d", status);
2288 	}
2289 
2290 	if ((vd->initialized & VD_DRING) &&
2291 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2292 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2293 
2294 	vd_free_dring_task(vd);
2295 
2296 	/* Free the staging buffer for msgs */
2297 	if (vd->vio_msgp != NULL) {
2298 		kmem_free(vd->vio_msgp, vd->max_msglen);
2299 		vd->vio_msgp = NULL;
2300 	}
2301 
2302 	/* Free the inband message buffer */
2303 	if (vd->inband_task.msg != NULL) {
2304 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2305 		vd->inband_task.msg = NULL;
2306 	}
2307 
2308 	mutex_enter(&vd->lock);
2309 
2310 	if (vd->reset_ldc)
2311 		PR0("taking down LDC channel");
2312 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2313 		PR0("ldc_down() returned errno %d", status);
2314 
2315 	/* Reset exclusive access rights */
2316 	vd_reset_access(vd);
2317 
2318 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2319 	vd->state	= VD_STATE_INIT;
2320 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2321 
2322 	/* Allocate the staging buffer */
2323 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2324 
2325 	PR0("calling ldc_up\n");
2326 	(void) ldc_up(vd->ldc_handle);
2327 
2328 	vd->reset_state	= B_FALSE;
2329 	vd->reset_ldc	= B_FALSE;
2330 
2331 	mutex_exit(&vd->lock);
2332 }
2333 
2334 static void vd_recv_msg(void *arg);
2335 
2336 static void
2337 vd_mark_in_reset(vd_t *vd)
2338 {
2339 	int status;
2340 
2341 	PR0("vd_mark_in_reset: marking vd in reset\n");
2342 
2343 	vd_need_reset(vd, B_FALSE);
2344 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2345 	if (status == DDI_FAILURE) {
2346 		PR0("cannot schedule task to recv msg\n");
2347 		vd_need_reset(vd, B_TRUE);
2348 		return;
2349 	}
2350 }
2351 
2352 static int
2353 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2354 {
2355 	boolean_t		accepted;
2356 	int			status;
2357 	on_trap_data_t		otd;
2358 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2359 
2360 	if (vd->reset_state)
2361 		return (0);
2362 
2363 	/* Acquire the element */
2364 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2365 	    vd->dring_handle, idx, idx)) != 0) {
2366 		if (status == ECONNRESET) {
2367 			vd_mark_in_reset(vd);
2368 			return (0);
2369 		} else {
2370 			return (status);
2371 		}
2372 	}
2373 
2374 	/* Set the element's status and mark it done */
2375 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2376 	if (accepted) {
2377 		elem->payload.nbytes	= elem_nbytes;
2378 		elem->payload.status	= elem_status;
2379 		elem->hdr.dstate	= VIO_DESC_DONE;
2380 	} else {
2381 		/* Perhaps client timed out waiting for I/O... */
2382 		PR0("element %u no longer \"accepted\"", idx);
2383 		VD_DUMP_DRING_ELEM(elem);
2384 	}
2385 	/* Release the element */
2386 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2387 	    vd->dring_handle, idx, idx)) != 0) {
2388 		if (status == ECONNRESET) {
2389 			vd_mark_in_reset(vd);
2390 			return (0);
2391 		} else {
2392 			PR0("VIO_DRING_RELEASE() returned errno %d",
2393 			    status);
2394 			return (status);
2395 		}
2396 	}
2397 
2398 	return (accepted ? 0 : EINVAL);
2399 }
2400 
2401 /*
2402  * Return Values
2403  *	0	- operation completed successfully
2404  *	EIO	- encountered LDC / task error
2405  *
2406  * Side Effect
2407  *	sets request->status = <disk operation status>
2408  */
2409 static int
2410 vd_complete_bio(vd_task_t *task)
2411 {
2412 	int			status		= 0;
2413 	int			rv		= 0;
2414 	vd_t			*vd		= task->vd;
2415 	vd_dring_payload_t	*request	= task->request;
2416 	struct buf		*buf		= &task->buf;
2417 	int			wid, nwrites;
2418 
2419 
2420 	ASSERT(vd != NULL);
2421 	ASSERT(request != NULL);
2422 	ASSERT(task->msg != NULL);
2423 	ASSERT(task->msglen >= sizeof (*task->msg));
2424 
2425 	if (buf->b_flags & B_DONE) {
2426 		/*
2427 		 * If the I/O is already done then we don't call biowait()
2428 		 * because biowait() might already have been called when
2429 		 * flushing a previous asynchronous write. So we just
2430 		 * retrieve the status of the request.
2431 		 */
2432 		request->status = geterror(buf);
2433 	} else {
2434 		/*
2435 		 * Wait for the I/O. For synchronous I/O, biowait() will return
2436 		 * when the I/O has completed. For asynchronous write, it will
2437 		 * return the write has been submitted to the backend, but it
2438 		 * may not have been committed.
2439 		 */
2440 		request->status = biowait(buf);
2441 	}
2442 
2443 	if (buf->b_flags & B_ASYNC) {
2444 		/*
2445 		 * Asynchronous writes are used when writing to a file or a
2446 		 * ZFS volume. In that case the bio notification indicates
2447 		 * that the write has started. We have to flush the backend
2448 		 * to ensure that the write has been committed before marking
2449 		 * the request as completed.
2450 		 */
2451 		ASSERT(task->request->operation == VD_OP_BWRITE);
2452 
2453 		wid = task->write_index;
2454 
2455 		/* check if write has been already flushed */
2456 		if (vd->write_queue[wid] != NULL) {
2457 
2458 			vd->write_queue[wid] = NULL;
2459 			wid = VD_WRITE_INDEX_NEXT(vd, wid);
2460 
2461 			/*
2462 			 * Because flushing is time consuming, it is worth
2463 			 * waiting for any other writes so that they can be
2464 			 * included in this single flush request.
2465 			 */
2466 			if (vd_awflush & VD_AWFLUSH_GROUP) {
2467 				nwrites = 1;
2468 				while (vd->write_queue[wid] != NULL) {
2469 					(void) biowait(vd->write_queue[wid]);
2470 					vd->write_queue[wid] = NULL;
2471 					wid = VD_WRITE_INDEX_NEXT(vd, wid);
2472 					nwrites++;
2473 				}
2474 				DTRACE_PROBE2(flushgrp, vd_task_t *, task,
2475 				    int, nwrites);
2476 			}
2477 
2478 			if (vd_awflush & VD_AWFLUSH_IMMEDIATE) {
2479 				request->status = vd_flush_write(vd);
2480 			} else if (vd_awflush & VD_AWFLUSH_DEFER) {
2481 				(void) taskq_dispatch(system_taskq,
2482 				    (void (*)(void *))vd_flush_write, vd,
2483 				    DDI_SLEEP);
2484 				request->status = 0;
2485 			}
2486 		}
2487 	}
2488 
2489 	/* Update the number of bytes read/written */
2490 	request->nbytes += buf->b_bcount - buf->b_resid;
2491 
2492 	/* Release the buffer */
2493 	if (!vd->reset_state)
2494 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2495 	if (status) {
2496 		PR0("ldc_mem_release() returned errno %d copying to "
2497 		    "client", status);
2498 		if (status == ECONNRESET) {
2499 			vd_mark_in_reset(vd);
2500 		}
2501 		rv = EIO;
2502 	}
2503 
2504 	/* Unmap the memory, even if in reset */
2505 	status = ldc_mem_unmap(task->mhdl);
2506 	if (status) {
2507 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2508 		    status);
2509 		if (status == ECONNRESET) {
2510 			vd_mark_in_reset(vd);
2511 		}
2512 		rv = EIO;
2513 	}
2514 
2515 	biofini(buf);
2516 
2517 	return (rv);
2518 }
2519 
2520 /*
2521  * Description:
2522  *	This function is called by the two functions called by a taskq
2523  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2524  *	message to the client.
2525  *
2526  * Parameters:
2527  *	arg 	- opaque pointer to structure containing task to be completed
2528  *
2529  * Return Values
2530  *	None
2531  */
2532 static void
2533 vd_notify(vd_task_t *task)
2534 {
2535 	int	status;
2536 
2537 	ASSERT(task != NULL);
2538 	ASSERT(task->vd != NULL);
2539 
2540 	/*
2541 	 * Send the "ack" or "nack" back to the client; if sending the message
2542 	 * via LDC fails, arrange to reset both the connection state and LDC
2543 	 * itself
2544 	 */
2545 	PR2("Sending %s",
2546 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2547 
2548 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2549 	switch (status) {
2550 	case 0:
2551 		break;
2552 	case ECONNRESET:
2553 		vd_mark_in_reset(task->vd);
2554 		break;
2555 	default:
2556 		PR0("initiating full reset");
2557 		vd_need_reset(task->vd, B_TRUE);
2558 		break;
2559 	}
2560 
2561 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2562 }
2563 
2564 /*
2565  * Description:
2566  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2567  *	the vDisk client
2568  *
2569  * Parameters:
2570  *	task 		- structure containing the request sent from client
2571  *
2572  * Return Values
2573  *	None
2574  */
2575 static void
2576 vd_complete_notify(vd_task_t *task)
2577 {
2578 	int			status		= 0;
2579 	vd_t			*vd		= task->vd;
2580 	vd_dring_payload_t	*request	= task->request;
2581 
2582 	/* Update the dring element for a dring client */
2583 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2584 		status = vd_mark_elem_done(vd, task->index,
2585 		    request->status, request->nbytes);
2586 		if (status == ECONNRESET)
2587 			vd_mark_in_reset(vd);
2588 		else if (status == EACCES)
2589 			vd_need_reset(vd, B_TRUE);
2590 	}
2591 
2592 	/*
2593 	 * If a transport error occurred while marking the element done or
2594 	 * previously while executing the task, arrange to "nack" the message
2595 	 * when the final task in the descriptor element range completes
2596 	 */
2597 	if ((status != 0) || (task->status != 0))
2598 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2599 
2600 	/*
2601 	 * Only the final task for a range of elements will respond to and
2602 	 * free the message
2603 	 */
2604 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2605 		return;
2606 	}
2607 
2608 	/*
2609 	 * We should only send an ACK/NACK here if we are not currently in
2610 	 * reset as, depending on how we reset, the dring may have been
2611 	 * blown away and we don't want to ACK/NACK a message that isn't
2612 	 * there.
2613 	 */
2614 	if (!vd->reset_state)
2615 		vd_notify(task);
2616 }
2617 
2618 /*
2619  * Description:
2620  *	This is the basic completion function called to handle inband data
2621  *	requests and handshake messages. All it needs to do is trigger a
2622  *	message to the client that the request is completed.
2623  *
2624  * Parameters:
2625  *	arg 	- opaque pointer to structure containing task to be completed
2626  *
2627  * Return Values
2628  *	None
2629  */
2630 static void
2631 vd_serial_notify(void *arg)
2632 {
2633 	vd_task_t		*task = (vd_task_t *)arg;
2634 
2635 	ASSERT(task != NULL);
2636 	vd_notify(task);
2637 }
2638 
2639 /* ARGSUSED */
2640 static int
2641 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2642 {
2643 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2644 	return (0);
2645 }
2646 
2647 /* ARGSUSED */
2648 static int
2649 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2650 {
2651 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2652 	return (0);
2653 }
2654 
2655 static void
2656 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2657 {
2658 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2659 }
2660 
2661 static void
2662 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2663 {
2664 	VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2665 }
2666 
2667 static int
2668 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2669 {
2670 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2671 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2672 	size_t data_len;
2673 
2674 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2675 	if (vd_efi->length > data_len)
2676 		return (EINVAL);
2677 
2678 	dk_efi->dki_lba = vd_efi->lba;
2679 	dk_efi->dki_length = vd_efi->length;
2680 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2681 	return (0);
2682 }
2683 
2684 static void
2685 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2686 {
2687 	int len;
2688 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2689 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2690 
2691 	len = vd_efi->length;
2692 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2693 	kmem_free(dk_efi->dki_data, len);
2694 }
2695 
2696 static int
2697 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2698 {
2699 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2700 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2701 	size_t data_len;
2702 
2703 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2704 	if (vd_efi->length > data_len)
2705 		return (EINVAL);
2706 
2707 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2708 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2709 	return (0);
2710 }
2711 
2712 static void
2713 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2714 {
2715 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2716 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2717 
2718 	kmem_free(dk_efi->dki_data, vd_efi->length);
2719 }
2720 
2721 static int
2722 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2723 {
2724 	size_t vd_scsi_len;
2725 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2726 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2727 
2728 	/* check buffer size */
2729 	vd_scsi_len = VD_SCSI_SIZE;
2730 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2731 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2732 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2733 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2734 
2735 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2736 
2737 	if (vd_buf_len < vd_scsi_len)
2738 		return (EINVAL);
2739 
2740 	/* set flags */
2741 	uscsi->uscsi_flags = vd_scsi_debug;
2742 
2743 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2744 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2745 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2746 	}
2747 
2748 	/* task attribute */
2749 	switch (vd_scsi->task_attribute) {
2750 	case VD_SCSI_TASK_ACA:
2751 		uscsi->uscsi_flags |= USCSI_HEAD;
2752 		break;
2753 	case VD_SCSI_TASK_HQUEUE:
2754 		uscsi->uscsi_flags |= USCSI_HTAG;
2755 		break;
2756 	case VD_SCSI_TASK_ORDERED:
2757 		uscsi->uscsi_flags |= USCSI_OTAG;
2758 		break;
2759 	default:
2760 		uscsi->uscsi_flags |= USCSI_NOTAG;
2761 		break;
2762 	}
2763 
2764 	/* timeout */
2765 	uscsi->uscsi_timeout = vd_scsi->timeout;
2766 
2767 	/* cdb data */
2768 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2769 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2770 
2771 	/* sense buffer */
2772 	if (vd_scsi->sense_len != 0) {
2773 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2774 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2775 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2776 	}
2777 
2778 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2779 		/* uscsi does not support read/write request */
2780 		return (EINVAL);
2781 	}
2782 
2783 	/* request data-in */
2784 	if (vd_scsi->datain_len != 0) {
2785 		uscsi->uscsi_flags |= USCSI_READ;
2786 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2787 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2788 	}
2789 
2790 	/* request data-out */
2791 	if (vd_scsi->dataout_len != 0) {
2792 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2793 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2794 	}
2795 
2796 	return (0);
2797 }
2798 
2799 static void
2800 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2801 {
2802 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2803 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2804 
2805 	/* output fields */
2806 	vd_scsi->cmd_status = uscsi->uscsi_status;
2807 
2808 	/* sense data */
2809 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2810 	    (uscsi->uscsi_status == STATUS_CHECK ||
2811 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2812 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2813 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2814 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2815 		else
2816 			vd_scsi->sense_len = 0;
2817 	} else {
2818 		vd_scsi->sense_len = 0;
2819 	}
2820 
2821 	if (uscsi->uscsi_status != STATUS_GOOD) {
2822 		vd_scsi->dataout_len = 0;
2823 		vd_scsi->datain_len = 0;
2824 		return;
2825 	}
2826 
2827 	if (uscsi->uscsi_flags & USCSI_READ) {
2828 		/* request data (read) */
2829 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2830 		vd_scsi->dataout_len = 0;
2831 	} else {
2832 		/* request data (write) */
2833 		vd_scsi->datain_len = 0;
2834 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2835 	}
2836 }
2837 
2838 static ushort_t
2839 vd_lbl2cksum(struct dk_label *label)
2840 {
2841 	int	count;
2842 	ushort_t sum, *sp;
2843 
2844 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2845 	sp = (ushort_t *)label;
2846 	sum = 0;
2847 	while (count--) {
2848 		sum ^= *sp++;
2849 	}
2850 
2851 	return (sum);
2852 }
2853 
2854 /*
2855  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2856  */
2857 static void
2858 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2859     struct dk_label *label)
2860 {
2861 	int i;
2862 
2863 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2864 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2865 
2866 	bzero(label, sizeof (struct dk_label));
2867 
2868 	label->dkl_ncyl = geom->dkg_ncyl;
2869 	label->dkl_acyl = geom->dkg_acyl;
2870 	label->dkl_pcyl = geom->dkg_pcyl;
2871 	label->dkl_nhead = geom->dkg_nhead;
2872 	label->dkl_nsect = geom->dkg_nsect;
2873 	label->dkl_intrlv = geom->dkg_intrlv;
2874 	label->dkl_apc = geom->dkg_apc;
2875 	label->dkl_rpm = geom->dkg_rpm;
2876 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2877 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2878 
2879 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2880 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2881 	label->dkl_vtoc.v_version = vtoc->v_version;
2882 	for (i = 0; i < V_NUMPAR; i++) {
2883 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2884 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2885 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2886 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2887 		    (label->dkl_nhead * label->dkl_nsect);
2888 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2889 	}
2890 
2891 	/*
2892 	 * The bootinfo array can not be copied with bcopy() because
2893 	 * elements are of type long in vtoc (so 64-bit) and of type
2894 	 * int in dk_vtoc (so 32-bit).
2895 	 */
2896 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2897 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2898 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2899 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2900 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2901 
2902 	/* re-compute checksum */
2903 	label->dkl_magic = DKL_MAGIC;
2904 	label->dkl_cksum = vd_lbl2cksum(label);
2905 }
2906 
2907 /*
2908  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2909  */
2910 static void
2911 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2912     struct dk_geom *geom)
2913 {
2914 	int i;
2915 
2916 	bzero(vtoc, sizeof (struct vtoc));
2917 	bzero(geom, sizeof (struct dk_geom));
2918 
2919 	geom->dkg_ncyl = label->dkl_ncyl;
2920 	geom->dkg_acyl = label->dkl_acyl;
2921 	geom->dkg_nhead = label->dkl_nhead;
2922 	geom->dkg_nsect = label->dkl_nsect;
2923 	geom->dkg_intrlv = label->dkl_intrlv;
2924 	geom->dkg_apc = label->dkl_apc;
2925 	geom->dkg_rpm = label->dkl_rpm;
2926 	geom->dkg_pcyl = label->dkl_pcyl;
2927 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2928 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2929 
2930 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2931 	vtoc->v_version = label->dkl_vtoc.v_version;
2932 	vtoc->v_sectorsz = DEV_BSIZE;
2933 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2934 
2935 	for (i = 0; i < vtoc->v_nparts; i++) {
2936 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2937 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2938 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2939 		    (label->dkl_nhead * label->dkl_nsect);
2940 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2941 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2942 	}
2943 
2944 	/*
2945 	 * The bootinfo array can not be copied with bcopy() because
2946 	 * elements are of type long in vtoc (so 64-bit) and of type
2947 	 * int in dk_vtoc (so 32-bit).
2948 	 */
2949 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2950 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2951 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2952 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2953 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2954 }
2955 
2956 /*
2957  * Check if a geometry is valid for a single-slice disk. A geometry is
2958  * considered valid if the main attributes of the geometry match with the
2959  * attributes of the fake geometry we have created.
2960  */
2961 static boolean_t
2962 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2963 {
2964 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2965 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2966 
2967 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2968 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2969 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2970 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2971 		return (B_FALSE);
2972 
2973 	return (B_TRUE);
2974 }
2975 
2976 /*
2977  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2978  * valid if the main attributes of the vtoc match with the attributes of the
2979  * fake vtoc we have created.
2980  */
2981 static boolean_t
2982 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2983 {
2984 	size_t csize;
2985 	int i;
2986 
2987 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2988 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2989 
2990 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2991 	    vtoc->v_version != vd->vtoc.v_version ||
2992 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2993 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2994 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2995 		return (B_FALSE);
2996 
2997 	/* slice 2 should be unchanged */
2998 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
2999 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
3000 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
3001 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
3002 		return (B_FALSE);
3003 
3004 	/*
3005 	 * Slice 0 should be mostly unchanged and cover most of the disk.
3006 	 * However we allow some flexibility wrt to the start and the size
3007 	 * of this slice mainly because we can't exactly know how it will
3008 	 * be defined by the OS installer.
3009 	 *
3010 	 * We allow slice 0 to be defined as starting on any of the first
3011 	 * 4 cylinders.
3012 	 */
3013 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
3014 
3015 	if (vtoc->v_part[0].p_start > 4 * csize ||
3016 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
3017 			return (B_FALSE);
3018 
3019 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
3020 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
3021 			return (B_FALSE);
3022 
3023 	/* any other slice should have a size of 0 */
3024 	for (i = 1; i < vtoc->v_nparts; i++) {
3025 		if (i != VD_ENTIRE_DISK_SLICE &&
3026 		    vtoc->v_part[i].p_size != 0)
3027 			return (B_FALSE);
3028 	}
3029 
3030 	return (B_TRUE);
3031 }
3032 
3033 /*
3034  * Handle ioctls to a disk slice.
3035  *
3036  * Return Values
3037  *	0	- Indicates that there are no errors in disk operations
3038  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
3039  *	EINVAL	- Not enough room to copy the EFI label
3040  *
3041  */
3042 static int
3043 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3044 {
3045 	dk_efi_t *dk_ioc;
3046 	struct extvtoc *vtoc;
3047 	struct dk_geom *geom;
3048 	size_t len, lba;
3049 
3050 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
3051 
3052 	if (cmd == DKIOCFLUSHWRITECACHE)
3053 		return (vd_flush_write(vd));
3054 
3055 	switch (vd->vdisk_label) {
3056 
3057 	/* ioctls for a single slice disk with a VTOC label */
3058 	case VD_DISK_LABEL_VTOC:
3059 
3060 		switch (cmd) {
3061 
3062 		case DKIOCGGEOM:
3063 			ASSERT(ioctl_arg != NULL);
3064 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
3065 			return (0);
3066 
3067 		case DKIOCGEXTVTOC:
3068 			ASSERT(ioctl_arg != NULL);
3069 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
3070 			return (0);
3071 
3072 		case DKIOCSGEOM:
3073 			ASSERT(ioctl_arg != NULL);
3074 			if (vd_slice_single_slice)
3075 				return (ENOTSUP);
3076 
3077 			/* fake success only if new geometry is valid */
3078 			geom = (struct dk_geom *)ioctl_arg;
3079 			if (!vd_slice_geom_isvalid(vd, geom))
3080 				return (EINVAL);
3081 
3082 			return (0);
3083 
3084 		case DKIOCSEXTVTOC:
3085 			ASSERT(ioctl_arg != NULL);
3086 			if (vd_slice_single_slice)
3087 				return (ENOTSUP);
3088 
3089 			/* fake sucess only if the new vtoc is valid */
3090 			vtoc = (struct extvtoc *)ioctl_arg;
3091 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
3092 				return (EINVAL);
3093 
3094 			return (0);
3095 
3096 		default:
3097 			return (ENOTSUP);
3098 		}
3099 
3100 	/* ioctls for a single slice disk with an EFI label */
3101 	case VD_DISK_LABEL_EFI:
3102 
3103 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
3104 			return (ENOTSUP);
3105 
3106 		ASSERT(ioctl_arg != NULL);
3107 		dk_ioc = (dk_efi_t *)ioctl_arg;
3108 
3109 		len = dk_ioc->dki_length;
3110 		lba = dk_ioc->dki_lba;
3111 
3112 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
3113 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
3114 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
3115 			return (EINVAL);
3116 
3117 		switch (cmd) {
3118 		case DKIOCGETEFI:
3119 			len = vd_slice_flabel_read(vd,
3120 			    (caddr_t)dk_ioc->dki_data,
3121 			    lba * vd->vdisk_bsize, len);
3122 
3123 			ASSERT(len > 0);
3124 
3125 			return (0);
3126 
3127 		case DKIOCSETEFI:
3128 			if (vd_slice_single_slice)
3129 				return (ENOTSUP);
3130 
3131 			/* we currently don't support writing EFI */
3132 			return (EIO);
3133 		}
3134 
3135 	default:
3136 		/* Unknown disk label type */
3137 		return (ENOTSUP);
3138 	}
3139 }
3140 
3141 static int
3142 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
3143 {
3144 	vd_efi_dev_t edev;
3145 	int status;
3146 
3147 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3148 
3149 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
3150 
3151 	return (status);
3152 }
3153 
3154 static void
3155 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
3156 {
3157 	vd_efi_dev_t edev;
3158 
3159 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
3160 
3161 	vd_efi_free(&edev, gpt, gpe);
3162 }
3163 
3164 static int
3165 vd_dskimg_validate_efi(vd_t *vd)
3166 {
3167 	efi_gpt_t *gpt;
3168 	efi_gpe_t *gpe;
3169 	int i, nparts, status;
3170 	struct uuid efi_reserved = EFI_RESERVED;
3171 
3172 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
3173 		return (status);
3174 
3175 	bzero(&vd->vtoc, sizeof (struct extvtoc));
3176 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
3177 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3178 
3179 	vd->efi_reserved = -1;
3180 
3181 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
3182 
3183 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
3184 
3185 		if (gpe[i].efi_gpe_StartingLBA == 0 &&
3186 		    gpe[i].efi_gpe_EndingLBA == 0) {
3187 			continue;
3188 		}
3189 
3190 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
3191 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
3192 		    gpe[i].efi_gpe_StartingLBA + 1;
3193 
3194 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
3195 		    sizeof (struct uuid)) == 0)
3196 			vd->efi_reserved = i;
3197 
3198 	}
3199 
3200 	ASSERT(vd->vdisk_size != 0);
3201 	vd->slices[VD_EFI_WD_SLICE].start = 0;
3202 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
3203 
3204 	vds_efi_free(vd, gpt, gpe);
3205 
3206 	return (status);
3207 }
3208 
3209 /*
3210  * Function:
3211  *	vd_dskimg_validate_geometry
3212  *
3213  * Description:
3214  *	Read the label and validate the geometry of a disk image. The driver
3215  *	label, vtoc and geometry information are updated according to the
3216  *	label read from the disk image.
3217  *
3218  *	If no valid label is found, the label is set to unknown and the
3219  *	function returns EINVAL, but a default vtoc and geometry are provided
3220  *	to the driver. If an EFI label is found, ENOTSUP is returned.
3221  *
3222  * Parameters:
3223  *	vd	- disk on which the operation is performed.
3224  *
3225  * Return Code:
3226  *	0	- success.
3227  *	EIO	- error reading the label from the disk image.
3228  *	EINVAL	- unknown disk label.
3229  *	ENOTSUP	- geometry not applicable (EFI label).
3230  */
3231 static int
3232 vd_dskimg_validate_geometry(vd_t *vd)
3233 {
3234 	struct dk_label label;
3235 	struct dk_geom *geom = &vd->dk_geom;
3236 	struct extvtoc *vtoc = &vd->vtoc;
3237 	int i;
3238 	int status = 0;
3239 
3240 	ASSERT(VD_DSKIMG(vd));
3241 
3242 	if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
3243 		return (EIO);
3244 
3245 	if (label.dkl_magic != DKL_MAGIC ||
3246 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
3247 	    (vd_dskimg_validate_sanity &&
3248 	    label.dkl_vtoc.v_sanity != VTOC_SANE) ||
3249 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
3250 
3251 		if (vd_dskimg_validate_efi(vd) == 0) {
3252 			vd->vdisk_label = VD_DISK_LABEL_EFI;
3253 			return (ENOTSUP);
3254 		}
3255 
3256 		vd->vdisk_label = VD_DISK_LABEL_UNK;
3257 		vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
3258 		    &label);
3259 		status = EINVAL;
3260 	} else {
3261 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
3262 	}
3263 
3264 	/* Update the driver geometry and vtoc */
3265 	vd_label_to_vtocgeom(&label, vtoc, geom);
3266 
3267 	/* Update logical partitions */
3268 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
3269 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3270 		for (i = 0; i < vtoc->v_nparts; i++) {
3271 			vd->slices[i].start = vtoc->v_part[i].p_start;
3272 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
3273 		}
3274 	}
3275 
3276 	return (status);
3277 }
3278 
3279 /*
3280  * Handle ioctls to a disk image.
3281  *
3282  * Return Values
3283  *	0	- Indicates that there are no errors
3284  *	!= 0	- Disk operation returned an error
3285  */
3286 static int
3287 vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
3288 {
3289 	struct dk_label label;
3290 	struct dk_geom *geom;
3291 	struct extvtoc *vtoc;
3292 	dk_efi_t *efi;
3293 	int rc;
3294 
3295 	ASSERT(VD_DSKIMG(vd));
3296 
3297 	switch (cmd) {
3298 
3299 	case DKIOCGGEOM:
3300 		ASSERT(ioctl_arg != NULL);
3301 		geom = (struct dk_geom *)ioctl_arg;
3302 
3303 		rc = vd_dskimg_validate_geometry(vd);
3304 		if (rc != 0 && rc != EINVAL)
3305 			return (rc);
3306 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3307 		return (0);
3308 
3309 	case DKIOCGEXTVTOC:
3310 		ASSERT(ioctl_arg != NULL);
3311 		vtoc = (struct extvtoc *)ioctl_arg;
3312 
3313 		rc = vd_dskimg_validate_geometry(vd);
3314 		if (rc != 0 && rc != EINVAL)
3315 			return (rc);
3316 		bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3317 		return (0);
3318 
3319 	case DKIOCSGEOM:
3320 		ASSERT(ioctl_arg != NULL);
3321 		geom = (struct dk_geom *)ioctl_arg;
3322 
3323 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3324 			return (EINVAL);
3325 
3326 		/*
3327 		 * The current device geometry is not updated, just the driver
3328 		 * "notion" of it. The device geometry will be effectively
3329 		 * updated when a label is written to the device during a next
3330 		 * DKIOCSEXTVTOC.
3331 		 */
3332 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3333 		return (0);
3334 
3335 	case DKIOCSEXTVTOC:
3336 		ASSERT(ioctl_arg != NULL);
3337 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3338 		    vd->dk_geom.dkg_nsect != 0);
3339 		vtoc = (struct extvtoc *)ioctl_arg;
3340 
3341 		if (vtoc->v_sanity != VTOC_SANE ||
3342 		    vtoc->v_sectorsz != DEV_BSIZE ||
3343 		    vtoc->v_nparts != V_NUMPAR)
3344 			return (EINVAL);
3345 
3346 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3347 
3348 		/* write label to the disk image */
3349 		if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
3350 			return (rc);
3351 
3352 		break;
3353 
3354 	case DKIOCFLUSHWRITECACHE:
3355 		return (vd_flush_write(vd));
3356 
3357 	case DKIOCGETEFI:
3358 		ASSERT(ioctl_arg != NULL);
3359 		efi = (dk_efi_t *)ioctl_arg;
3360 
3361 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3362 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3363 			return (EIO);
3364 
3365 		return (0);
3366 
3367 	case DKIOCSETEFI:
3368 		ASSERT(ioctl_arg != NULL);
3369 		efi = (dk_efi_t *)ioctl_arg;
3370 
3371 		if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3372 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3373 			return (EIO);
3374 
3375 		break;
3376 
3377 
3378 	default:
3379 		return (ENOTSUP);
3380 	}
3381 
3382 	ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3383 
3384 	/* label has changed, revalidate the geometry */
3385 	(void) vd_dskimg_validate_geometry(vd);
3386 
3387 	/*
3388 	 * The disk geometry may have changed, so we need to write
3389 	 * the devid (if there is one) so that it is stored at the
3390 	 * right location.
3391 	 */
3392 	if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
3393 		PR0("Fail to write devid");
3394 	}
3395 
3396 	return (0);
3397 }
3398 
3399 static int
3400 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3401 {
3402 	int rval = 0, status;
3403 	struct vtoc vtoc;
3404 
3405 	/*
3406 	 * Call the appropriate function to execute the ioctl depending
3407 	 * on the type of vdisk.
3408 	 */
3409 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3410 
3411 		/* slice, file or volume exported as a single slice disk */
3412 		status = vd_do_slice_ioctl(vd, cmd, arg);
3413 
3414 	} else if (VD_DSKIMG(vd)) {
3415 
3416 		/* file or volume exported as a full disk */
3417 		status = vd_do_dskimg_ioctl(vd, cmd, arg);
3418 
3419 	} else {
3420 
3421 		/* disk device exported as a full disk */
3422 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3423 		    vd->open_flags | FKIOCTL, kcred, &rval);
3424 
3425 		/*
3426 		 * By default VTOC ioctls are done using ioctls for the
3427 		 * extended VTOC. Some drivers (in particular non-Sun drivers)
3428 		 * may not support these ioctls. In that case, we fallback to
3429 		 * the regular VTOC ioctls.
3430 		 */
3431 		if (status == ENOTTY) {
3432 			switch (cmd) {
3433 
3434 			case DKIOCGEXTVTOC:
3435 				cmd = DKIOCGVTOC;
3436 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3437 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3438 				    kcred, &rval);
3439 				vtoctoextvtoc(vtoc,
3440 				    (*(struct extvtoc *)(void *)arg));
3441 				break;
3442 
3443 			case DKIOCSEXTVTOC:
3444 				cmd = DKIOCSVTOC;
3445 				extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3446 				    vtoc);
3447 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3448 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3449 				    kcred, &rval);
3450 				break;
3451 			}
3452 		}
3453 	}
3454 
3455 #ifdef DEBUG
3456 	if (rval != 0) {
3457 		PR0("ioctl %x set rval = %d, which is not being returned"
3458 		    " to caller", cmd, rval);
3459 	}
3460 #endif /* DEBUG */
3461 
3462 	return (status);
3463 }
3464 
3465 /*
3466  * Description:
3467  *	This is the function that processes the ioctl requests (farming it
3468  *	out to functions that handle slices, files or whole disks)
3469  *
3470  * Return Values
3471  *     0		- ioctl operation completed successfully
3472  *     != 0		- The LDC error value encountered
3473  *			  (propagated back up the call stack as a task error)
3474  *
3475  * Side Effect
3476  *     sets request->status to the return value of the ioctl function.
3477  */
3478 static int
3479 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3480 {
3481 	int	status = 0;
3482 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3483 
3484 
3485 	ASSERT(request->slice < vd->nslices);
3486 	PR0("Performing %s", ioctl->operation_name);
3487 
3488 	/* Get data from client and convert, if necessary */
3489 	if (ioctl->copyin != NULL)  {
3490 		ASSERT(nbytes != 0 && buf != NULL);
3491 		PR1("Getting \"arg\" data from client");
3492 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3493 		    request->cookie, request->ncookies,
3494 		    LDC_COPY_IN)) != 0) {
3495 			PR0("ldc_mem_copy() returned errno %d "
3496 			    "copying from client", status);
3497 			return (status);
3498 		}
3499 
3500 		/* Convert client's data, if necessary */
3501 		if (ioctl->copyin == VD_IDENTITY_IN) {
3502 			/* use client buffer */
3503 			ioctl->arg = buf;
3504 		} else {
3505 			/* convert client vdisk operation data to ioctl data */
3506 			status = (ioctl->copyin)(buf, nbytes,
3507 			    (void *)ioctl->arg);
3508 			if (status != 0) {
3509 				request->status = status;
3510 				return (0);
3511 			}
3512 		}
3513 	}
3514 
3515 	if (ioctl->operation == VD_OP_SCSICMD) {
3516 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3517 
3518 		/* check write permission */
3519 		if (!(vd->open_flags & FWRITE) &&
3520 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3521 			PR0("uscsi fails because backend is opened read-only");
3522 			request->status = EROFS;
3523 			return (0);
3524 		}
3525 	}
3526 
3527 	/*
3528 	 * Send the ioctl to the disk backend.
3529 	 */
3530 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3531 
3532 	if (request->status != 0) {
3533 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3534 		if (ioctl->operation == VD_OP_SCSICMD &&
3535 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3536 			/*
3537 			 * USCSICMD has reported an error and the uscsi_status
3538 			 * field is not zero. This means that the SCSI command
3539 			 * has completed but it has an error. So we should
3540 			 * mark the VD operation has succesfully completed
3541 			 * and clients can check the SCSI status field for
3542 			 * SCSI errors.
3543 			 */
3544 			request->status = 0;
3545 		else
3546 			return (0);
3547 	}
3548 
3549 	/* Convert data and send to client, if necessary */
3550 	if (ioctl->copyout != NULL)  {
3551 		ASSERT(nbytes != 0 && buf != NULL);
3552 		PR1("Sending \"arg\" data to client");
3553 
3554 		/* Convert ioctl data to vdisk operation data, if necessary */
3555 		if (ioctl->copyout != VD_IDENTITY_OUT)
3556 			(ioctl->copyout)((void *)ioctl->arg, buf);
3557 
3558 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3559 		    request->cookie, request->ncookies,
3560 		    LDC_COPY_OUT)) != 0) {
3561 			PR0("ldc_mem_copy() returned errno %d "
3562 			    "copying to client", status);
3563 			return (status);
3564 		}
3565 	}
3566 
3567 	return (status);
3568 }
3569 
3570 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3571 
3572 /*
3573  * Description:
3574  *	This generic function is called by the task queue to complete
3575  *	the processing of the tasks. The specific completion function
3576  *	is passed in as a field in the task pointer.
3577  *
3578  * Parameters:
3579  *	arg 	- opaque pointer to structure containing task to be completed
3580  *
3581  * Return Values
3582  *	None
3583  */
3584 static void
3585 vd_complete(void *arg)
3586 {
3587 	vd_task_t	*task = (vd_task_t *)arg;
3588 
3589 	ASSERT(task != NULL);
3590 	ASSERT(task->status == EINPROGRESS);
3591 	ASSERT(task->completef != NULL);
3592 
3593 	task->status = task->completef(task);
3594 	if (task->status)
3595 		PR0("%s: Error %d completing task", __func__, task->status);
3596 
3597 	/* Now notify the vDisk client */
3598 	vd_complete_notify(task);
3599 }
3600 
3601 static int
3602 vd_ioctl(vd_task_t *task)
3603 {
3604 	int			i, status;
3605 	void			*buf = NULL;
3606 	struct dk_geom		dk_geom = {0};
3607 	struct extvtoc		vtoc = {0};
3608 	struct dk_efi		dk_efi = {0};
3609 	struct uscsi_cmd	uscsi = {0};
3610 	vd_t			*vd		= task->vd;
3611 	vd_dring_payload_t	*request	= task->request;
3612 	vd_ioctl_t		ioctl[] = {
3613 		/* Command (no-copy) operations */
3614 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3615 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3616 		    NULL, NULL, NULL, B_TRUE},
3617 
3618 		/* "Get" (copy-out) operations */
3619 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3620 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3621 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3622 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3623 		    RNDSIZE(vd_geom_t),
3624 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3625 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3626 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3627 		    DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3628 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3629 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3630 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3631 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3632 
3633 		/* "Set" (copy-in) operations */
3634 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3635 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3636 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3637 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3638 		    RNDSIZE(vd_geom_t),
3639 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3640 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3641 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3642 		    DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3643 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3644 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3645 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3646 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3647 
3648 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3649 		    USCSICMD, STRINGIZE(USCSICMD),
3650 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3651 	};
3652 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3653 
3654 
3655 	ASSERT(vd != NULL);
3656 	ASSERT(request != NULL);
3657 	ASSERT(request->slice < vd->nslices);
3658 
3659 	/*
3660 	 * Determine ioctl corresponding to caller's "operation" and
3661 	 * validate caller's "nbytes"
3662 	 */
3663 	for (i = 0; i < nioctls; i++) {
3664 		if (request->operation == ioctl[i].operation) {
3665 			/* LDC memory operations require 8-byte multiples */
3666 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3667 
3668 			if (request->operation == VD_OP_GET_EFI ||
3669 			    request->operation == VD_OP_SET_EFI ||
3670 			    request->operation == VD_OP_SCSICMD) {
3671 				if (request->nbytes >= ioctl[i].nbytes)
3672 					break;
3673 				PR0("%s:  Expected at least nbytes = %lu, "
3674 				    "got %lu", ioctl[i].operation_name,
3675 				    ioctl[i].nbytes, request->nbytes);
3676 				return (EINVAL);
3677 			}
3678 
3679 			if (request->nbytes != ioctl[i].nbytes) {
3680 				PR0("%s:  Expected nbytes = %lu, got %lu",
3681 				    ioctl[i].operation_name, ioctl[i].nbytes,
3682 				    request->nbytes);
3683 				return (EINVAL);
3684 			}
3685 
3686 			break;
3687 		}
3688 	}
3689 	ASSERT(i < nioctls);	/* because "operation" already validated */
3690 
3691 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3692 		PR0("%s fails because backend is opened read-only",
3693 		    ioctl[i].operation_name);
3694 		request->status = EROFS;
3695 		return (0);
3696 	}
3697 
3698 	if (request->nbytes)
3699 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3700 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3701 	if (request->nbytes)
3702 		kmem_free(buf, request->nbytes);
3703 
3704 	return (status);
3705 }
3706 
3707 static int
3708 vd_get_devid(vd_task_t *task)
3709 {
3710 	vd_t *vd = task->vd;
3711 	vd_dring_payload_t *request = task->request;
3712 	vd_devid_t *vd_devid;
3713 	impl_devid_t *devid;
3714 	int status, bufid_len, devid_len, len, sz;
3715 	int bufbytes;
3716 
3717 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3718 
3719 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3720 		/*
3721 		 * We don't support devid for single-slice disks because we
3722 		 * have no space to store a fabricated devid and for physical
3723 		 * disk slices, we can't use the devid of the disk otherwise
3724 		 * exporting multiple slices from the same disk will produce
3725 		 * the same devids.
3726 		 */
3727 		PR2("No Device ID for slices");
3728 		request->status = ENOTSUP;
3729 		return (0);
3730 	}
3731 
3732 	if (VD_DSKIMG(vd)) {
3733 		if (vd->dskimg_devid == NULL) {
3734 			PR2("No Device ID");
3735 			request->status = ENOENT;
3736 			return (0);
3737 		} else {
3738 			sz = ddi_devid_sizeof(vd->dskimg_devid);
3739 			devid = kmem_alloc(sz, KM_SLEEP);
3740 			bcopy(vd->dskimg_devid, devid, sz);
3741 		}
3742 	} else {
3743 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3744 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3745 			PR2("No Device ID");
3746 			request->status = ENOENT;
3747 			return (0);
3748 		}
3749 	}
3750 
3751 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3752 	devid_len = DEVID_GETLEN(devid);
3753 
3754 	/*
3755 	 * Save the buffer size here for use in deallocation.
3756 	 * The actual number of bytes copied is returned in
3757 	 * the 'nbytes' field of the request structure.
3758 	 */
3759 	bufbytes = request->nbytes;
3760 
3761 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3762 	vd_devid->length = devid_len;
3763 	vd_devid->type = DEVID_GETTYPE(devid);
3764 
3765 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3766 
3767 	bcopy(devid->did_id, vd_devid->id, len);
3768 
3769 	request->status = 0;
3770 
3771 	/* LDC memory operations require 8-byte multiples */
3772 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3773 
3774 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3775 	    &request->nbytes, request->cookie, request->ncookies,
3776 	    LDC_COPY_OUT)) != 0) {
3777 		PR0("ldc_mem_copy() returned errno %d copying to client",
3778 		    status);
3779 	}
3780 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3781 
3782 	kmem_free(vd_devid, bufbytes);
3783 	ddi_devid_free((ddi_devid_t)devid);
3784 
3785 	return (status);
3786 }
3787 
3788 static int
3789 vd_scsi_reset(vd_t *vd)
3790 {
3791 	int rval, status;
3792 	struct uscsi_cmd uscsi = { 0 };
3793 
3794 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3795 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3796 
3797 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3798 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3799 
3800 	return (status);
3801 }
3802 
3803 static int
3804 vd_reset(vd_task_t *task)
3805 {
3806 	vd_t *vd = task->vd;
3807 	vd_dring_payload_t *request = task->request;
3808 
3809 	ASSERT(request->operation == VD_OP_RESET);
3810 	ASSERT(vd->scsi);
3811 
3812 	PR0("Performing VD_OP_RESET");
3813 
3814 	if (request->nbytes != 0) {
3815 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3816 		    request->nbytes);
3817 		return (EINVAL);
3818 	}
3819 
3820 	request->status = vd_scsi_reset(vd);
3821 
3822 	return (0);
3823 }
3824 
3825 static int
3826 vd_get_capacity(vd_task_t *task)
3827 {
3828 	int rv;
3829 	size_t nbytes;
3830 	vd_t *vd = task->vd;
3831 	vd_dring_payload_t *request = task->request;
3832 	vd_capacity_t vd_cap = { 0 };
3833 
3834 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3835 
3836 	PR0("Performing VD_OP_GET_CAPACITY");
3837 
3838 	nbytes = request->nbytes;
3839 
3840 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3841 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3842 		    RNDSIZE(vd_capacity_t), nbytes);
3843 		return (EINVAL);
3844 	}
3845 
3846 	/*
3847 	 * Check the backend size in case it has changed. If the check fails
3848 	 * then we will return the last known size.
3849 	 */
3850 
3851 	(void) vd_backend_check_size(vd);
3852 	ASSERT(vd->vdisk_size != 0);
3853 
3854 	request->status = 0;
3855 
3856 	vd_cap.vdisk_block_size = vd->vdisk_bsize;
3857 	vd_cap.vdisk_size = vd->vdisk_size;
3858 
3859 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3860 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3861 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3862 		return (rv);
3863 	}
3864 
3865 	return (0);
3866 }
3867 
3868 static int
3869 vd_get_access(vd_task_t *task)
3870 {
3871 	uint64_t access;
3872 	int rv, rval = 0;
3873 	size_t nbytes;
3874 	vd_t *vd = task->vd;
3875 	vd_dring_payload_t *request = task->request;
3876 
3877 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3878 	ASSERT(vd->scsi);
3879 
3880 	PR0("Performing VD_OP_GET_ACCESS");
3881 
3882 	nbytes = request->nbytes;
3883 
3884 	if (nbytes != sizeof (uint64_t)) {
3885 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3886 		    sizeof (uint64_t), nbytes);
3887 		return (EINVAL);
3888 	}
3889 
3890 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3891 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3892 
3893 	if (request->status != 0)
3894 		return (0);
3895 
3896 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3897 
3898 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3899 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3900 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3901 		return (rv);
3902 	}
3903 
3904 	return (0);
3905 }
3906 
3907 static int
3908 vd_set_access(vd_task_t *task)
3909 {
3910 	uint64_t flags;
3911 	int rv, rval;
3912 	size_t nbytes;
3913 	vd_t *vd = task->vd;
3914 	vd_dring_payload_t *request = task->request;
3915 
3916 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3917 	ASSERT(vd->scsi);
3918 
3919 	nbytes = request->nbytes;
3920 
3921 	if (nbytes != sizeof (uint64_t)) {
3922 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3923 		    sizeof (uint64_t), nbytes);
3924 		return (EINVAL);
3925 	}
3926 
3927 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3928 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3929 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3930 		return (rv);
3931 	}
3932 
3933 	if (flags == VD_ACCESS_SET_CLEAR) {
3934 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3935 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3936 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3937 		    &rval);
3938 		if (request->status == 0)
3939 			vd->ownership = B_FALSE;
3940 		return (0);
3941 	}
3942 
3943 	/*
3944 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3945 	 * when the EXCLUSIVE flag is set.
3946 	 */
3947 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3948 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3949 		request->status = EINVAL;
3950 		return (0);
3951 	}
3952 
3953 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3954 
3955 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3956 		/*
3957 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3958 		 * acquire exclusive access rights, preserve them and we
3959 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3960 		 */
3961 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3962 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3963 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3964 		break;
3965 
3966 	case VD_ACCESS_SET_PRESERVE:
3967 		/*
3968 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3969 		 * access rights and preserve them, but not preempt any other
3970 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3971 		 * "preserve" feature but we can not called it directly
3972 		 * because it uses preemption. So before that, we use the
3973 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3974 		 * without preempting anyone.
3975 		 */
3976 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3977 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3978 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3979 		    &rval);
3980 		if (request->status != 0)
3981 			break;
3982 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3983 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3984 		break;
3985 
3986 	case VD_ACCESS_SET_PREEMPT:
3987 		/*
3988 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3989 		 * access rights and we can use preemption. So we try to do
3990 		 * a SCSI reservation, if it fails we reset the disk to clear
3991 		 * any reservation and we try to reserve again.
3992 		 */
3993 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3994 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3995 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3996 		    &rval);
3997 		if (request->status == 0)
3998 			break;
3999 
4000 		/* reset the disk */
4001 		(void) vd_scsi_reset(vd);
4002 
4003 		/* try again even if the reset has failed */
4004 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4005 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4006 		    &rval);
4007 		break;
4008 
4009 	case 0:
4010 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
4011 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
4012 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
4013 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
4014 		    &rval);
4015 		break;
4016 	}
4017 
4018 	if (request->status == 0)
4019 		vd->ownership = B_TRUE;
4020 	else
4021 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
4022 
4023 	return (0);
4024 }
4025 
4026 static void
4027 vd_reset_access(vd_t *vd)
4028 {
4029 	int status, rval;
4030 
4031 	if (vd->file || vd->volume || !vd->ownership)
4032 		return;
4033 
4034 	PR0("Releasing disk ownership");
4035 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4036 	    (vd->open_flags | FKIOCTL), kcred, &rval);
4037 
4038 	/*
4039 	 * An EACCES failure means that there is a reservation conflict,
4040 	 * so we are not the owner of the disk anymore.
4041 	 */
4042 	if (status == 0 || status == EACCES) {
4043 		vd->ownership = B_FALSE;
4044 		return;
4045 	}
4046 
4047 	PR0("Fail to release ownership, error %d", status);
4048 
4049 	/*
4050 	 * We have failed to release the ownership, try to reset the disk
4051 	 * to release reservations.
4052 	 */
4053 	PR0("Resetting disk");
4054 	status = vd_scsi_reset(vd);
4055 
4056 	if (status != 0)
4057 		PR0("Fail to reset disk, error %d", status);
4058 
4059 	/* whatever the result of the reset is, we try the release again */
4060 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
4061 	    (vd->open_flags | FKIOCTL), kcred, &rval);
4062 
4063 	if (status == 0 || status == EACCES) {
4064 		vd->ownership = B_FALSE;
4065 		return;
4066 	}
4067 
4068 	PR0("Fail to release ownership, error %d", status);
4069 
4070 	/*
4071 	 * At this point we have done our best to try to reset the
4072 	 * access rights to the disk and we don't know if we still
4073 	 * own a reservation and if any mechanism to preserve the
4074 	 * ownership is still in place. The ultimate solution would
4075 	 * be to reset the system but this is usually not what we
4076 	 * want to happen.
4077 	 */
4078 
4079 	if (vd_reset_access_failure == A_REBOOT) {
4080 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
4081 		    ", rebooting the system", vd->device_path);
4082 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
4083 	} else if (vd_reset_access_failure == A_DUMP) {
4084 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4085 	}
4086 
4087 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
4088 }
4089 
4090 /*
4091  * Define the supported operations once the functions for performing them have
4092  * been defined
4093  */
4094 static const vds_operation_t	vds_operation[] = {
4095 #define	X(_s)	#_s, _s
4096 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
4097 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
4098 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
4099 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
4100 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
4101 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
4102 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
4103 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
4104 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
4105 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
4106 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
4107 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
4108 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
4109 	{X(VD_OP_RESET),	vd_reset,	NULL},
4110 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
4111 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
4112 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
4113 #undef	X
4114 };
4115 
4116 static const size_t	vds_noperations =
4117 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
4118 
4119 /*
4120  * Process a task specifying a client I/O request
4121  *
4122  * Parameters:
4123  *	task 		- structure containing the request sent from client
4124  *
4125  * Return Value
4126  *	0	- success
4127  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
4128  *	EINVAL	- Invalid disk slice
4129  *	!= 0	- some other non-zero return value from start function
4130  */
4131 static int
4132 vd_do_process_task(vd_task_t *task)
4133 {
4134 	int			i;
4135 	vd_t			*vd		= task->vd;
4136 	vd_dring_payload_t	*request	= task->request;
4137 
4138 	ASSERT(vd != NULL);
4139 	ASSERT(request != NULL);
4140 
4141 	/* Find the requested operation */
4142 	for (i = 0; i < vds_noperations; i++) {
4143 		if (request->operation == vds_operation[i].operation) {
4144 			/* all operations should have a start func */
4145 			ASSERT(vds_operation[i].start != NULL);
4146 
4147 			task->completef = vds_operation[i].complete;
4148 			break;
4149 		}
4150 	}
4151 
4152 	/*
4153 	 * We need to check that the requested operation is permitted
4154 	 * for the particular client that sent it or that the loop above
4155 	 * did not complete without finding the operation type (indicating
4156 	 * that the requested operation is unknown/unimplemented)
4157 	 */
4158 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
4159 	    (i == vds_noperations)) {
4160 		PR0("Unsupported operation %u", request->operation);
4161 		request->status = ENOTSUP;
4162 		return (0);
4163 	}
4164 
4165 	/* Range-check slice */
4166 	if (request->slice >= vd->nslices &&
4167 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
4168 	    request->slice != VD_SLICE_NONE)) {
4169 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
4170 		    request->slice, (vd->nslices - 1));
4171 		request->status = EINVAL;
4172 		return (0);
4173 	}
4174 
4175 	/*
4176 	 * Call the function pointer that starts the operation.
4177 	 */
4178 	return (vds_operation[i].start(task));
4179 }
4180 
4181 /*
4182  * Description:
4183  *	This function is called by both the in-band and descriptor ring
4184  *	message processing functions paths to actually execute the task
4185  *	requested by the vDisk client. It in turn calls its worker
4186  *	function, vd_do_process_task(), to carry our the request.
4187  *
4188  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
4189  *	saved in the 'status' field of the task and are propagated back
4190  *	up the call stack to trigger a NACK
4191  *
4192  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
4193  *	the 'status' field of the request and result in an ACK being sent
4194  *	by the completion handler.
4195  *
4196  * Parameters:
4197  *	task 		- structure containing the request sent from client
4198  *
4199  * Return Value
4200  *	0		- successful synchronous request.
4201  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
4202  *	EINPROGRESS	- task will be finished in a completion handler
4203  */
4204 static int
4205 vd_process_task(vd_task_t *task)
4206 {
4207 	vd_t	*vd = task->vd;
4208 	int	status;
4209 
4210 	DTRACE_PROBE1(task__start, vd_task_t *, task);
4211 
4212 	task->status =  vd_do_process_task(task);
4213 
4214 	/*
4215 	 * If the task processing function returned EINPROGRESS indicating
4216 	 * that the task needs completing then schedule a taskq entry to
4217 	 * finish it now.
4218 	 *
4219 	 * Otherwise the task processing function returned either zero
4220 	 * indicating that the task was finished in the start function (and we
4221 	 * don't need to wait in a completion function) or the start function
4222 	 * returned an error - in both cases all that needs to happen is the
4223 	 * notification to the vDisk client higher up the call stack.
4224 	 * If the task was using a Descriptor Ring, we need to mark it as done
4225 	 * at this stage.
4226 	 */
4227 	if (task->status == EINPROGRESS) {
4228 		/* Queue a task to complete the operation */
4229 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
4230 		    task, DDI_SLEEP);
4231 		return (EINPROGRESS);
4232 	}
4233 
4234 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
4235 		/* Update the dring element if it's a dring client */
4236 		status = vd_mark_elem_done(vd, task->index,
4237 		    task->request->status, task->request->nbytes);
4238 		if (status == ECONNRESET)
4239 			vd_mark_in_reset(vd);
4240 		else if (status == EACCES)
4241 			vd_need_reset(vd, B_TRUE);
4242 	}
4243 
4244 	return (task->status);
4245 }
4246 
4247 /*
4248  * Return true if the "type", "subtype", and "env" fields of the "tag" first
4249  * argument match the corresponding remaining arguments; otherwise, return false
4250  */
4251 boolean_t
4252 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
4253 {
4254 	return ((tag->vio_msgtype == type) &&
4255 	    (tag->vio_subtype == subtype) &&
4256 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
4257 }
4258 
4259 /*
4260  * Check whether the major/minor version specified in "ver_msg" is supported
4261  * by this server.
4262  */
4263 static boolean_t
4264 vds_supported_version(vio_ver_msg_t *ver_msg)
4265 {
4266 	for (int i = 0; i < vds_num_versions; i++) {
4267 		ASSERT(vds_version[i].major > 0);
4268 		ASSERT((i == 0) ||
4269 		    (vds_version[i].major < vds_version[i-1].major));
4270 
4271 		/*
4272 		 * If the major versions match, adjust the minor version, if
4273 		 * necessary, down to the highest value supported by this
4274 		 * server and return true so this message will get "ack"ed;
4275 		 * the client should also support all minor versions lower
4276 		 * than the value it sent
4277 		 */
4278 		if (ver_msg->ver_major == vds_version[i].major) {
4279 			if (ver_msg->ver_minor > vds_version[i].minor) {
4280 				PR0("Adjusting minor version from %u to %u",
4281 				    ver_msg->ver_minor, vds_version[i].minor);
4282 				ver_msg->ver_minor = vds_version[i].minor;
4283 			}
4284 			return (B_TRUE);
4285 		}
4286 
4287 		/*
4288 		 * If the message contains a higher major version number, set
4289 		 * the message's major/minor versions to the current values
4290 		 * and return false, so this message will get "nack"ed with
4291 		 * these values, and the client will potentially try again
4292 		 * with the same or a lower version
4293 		 */
4294 		if (ver_msg->ver_major > vds_version[i].major) {
4295 			ver_msg->ver_major = vds_version[i].major;
4296 			ver_msg->ver_minor = vds_version[i].minor;
4297 			return (B_FALSE);
4298 		}
4299 
4300 		/*
4301 		 * Otherwise, the message's major version is less than the
4302 		 * current major version, so continue the loop to the next
4303 		 * (lower) supported version
4304 		 */
4305 	}
4306 
4307 	/*
4308 	 * No common version was found; "ground" the version pair in the
4309 	 * message to terminate negotiation
4310 	 */
4311 	ver_msg->ver_major = 0;
4312 	ver_msg->ver_minor = 0;
4313 	return (B_FALSE);
4314 }
4315 
4316 /*
4317  * Process a version message from a client.  vds expects to receive version
4318  * messages from clients seeking service, but never issues version messages
4319  * itself; therefore, vds can ACK or NACK client version messages, but does
4320  * not expect to receive version-message ACKs or NACKs (and will treat such
4321  * messages as invalid).
4322  */
4323 static int
4324 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4325 {
4326 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
4327 
4328 
4329 	ASSERT(msglen >= sizeof (msg->tag));
4330 
4331 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4332 	    VIO_VER_INFO)) {
4333 		return (ENOMSG);	/* not a version message */
4334 	}
4335 
4336 	if (msglen != sizeof (*ver_msg)) {
4337 		PR0("Expected %lu-byte version message; "
4338 		    "received %lu bytes", sizeof (*ver_msg), msglen);
4339 		return (EBADMSG);
4340 	}
4341 
4342 	if (ver_msg->dev_class != VDEV_DISK) {
4343 		PR0("Expected device class %u (disk); received %u",
4344 		    VDEV_DISK, ver_msg->dev_class);
4345 		return (EBADMSG);
4346 	}
4347 
4348 	/*
4349 	 * We're talking to the expected kind of client; set our device class
4350 	 * for "ack/nack" back to the client
4351 	 */
4352 	ver_msg->dev_class = VDEV_DISK_SERVER;
4353 
4354 	/*
4355 	 * Check whether the (valid) version message specifies a version
4356 	 * supported by this server.  If the version is not supported, return
4357 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
4358 	 * will have updated the message with a supported version for the
4359 	 * client to consider
4360 	 */
4361 	if (!vds_supported_version(ver_msg))
4362 		return (EBADMSG);
4363 
4364 
4365 	/*
4366 	 * A version has been agreed upon; use the client's SID for
4367 	 * communication on this channel now
4368 	 */
4369 	ASSERT(!(vd->initialized & VD_SID));
4370 	vd->sid = ver_msg->tag.vio_sid;
4371 	vd->initialized |= VD_SID;
4372 
4373 	/*
4374 	 * Store the negotiated major and minor version values in the "vd" data
4375 	 * structure so that we can check if certain operations are supported
4376 	 * by the client.
4377 	 */
4378 	vd->version.major = ver_msg->ver_major;
4379 	vd->version.minor = ver_msg->ver_minor;
4380 
4381 	PR0("Using major version %u, minor version %u",
4382 	    ver_msg->ver_major, ver_msg->ver_minor);
4383 	return (0);
4384 }
4385 
4386 static void
4387 vd_set_exported_operations(vd_t *vd)
4388 {
4389 	vd->operations = 0;	/* clear field */
4390 
4391 	/*
4392 	 * We need to check from the highest version supported to the
4393 	 * lowest because versions with a higher minor number implicitly
4394 	 * support versions with a lower minor number.
4395 	 */
4396 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4397 		ASSERT(vd->open_flags & FREAD);
4398 		vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4399 
4400 		if (vd->open_flags & FWRITE)
4401 			vd->operations |= VD_OP_MASK_WRITE;
4402 
4403 		if (vd->scsi)
4404 			vd->operations |= VD_OP_MASK_SCSI;
4405 
4406 		if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
4407 			/*
4408 			 * can't write to ISO images, make sure that write
4409 			 * support is not set in case administrator did not
4410 			 * use "options=ro" when doing an ldm add-vdsdev
4411 			 */
4412 			vd->operations &= ~VD_OP_MASK_WRITE;
4413 		}
4414 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4415 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4416 	}
4417 
4418 	/* we should have already agreed on a version */
4419 	ASSERT(vd->operations != 0);
4420 }
4421 
4422 static int
4423 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4424 {
4425 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4426 	int		status, retry = 0;
4427 
4428 
4429 	ASSERT(msglen >= sizeof (msg->tag));
4430 
4431 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4432 	    VIO_ATTR_INFO)) {
4433 		PR0("Message is not an attribute message");
4434 		return (ENOMSG);
4435 	}
4436 
4437 	if (msglen != sizeof (*attr_msg)) {
4438 		PR0("Expected %lu-byte attribute message; "
4439 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4440 		return (EBADMSG);
4441 	}
4442 
4443 	if (attr_msg->max_xfer_sz == 0) {
4444 		PR0("Received maximum transfer size of 0 from client");
4445 		return (EBADMSG);
4446 	}
4447 
4448 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4449 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4450 		PR0("Client requested unsupported transfer mode");
4451 		return (EBADMSG);
4452 	}
4453 
4454 	/*
4455 	 * check if the underlying disk is ready, if not try accessing
4456 	 * the device again. Open the vdisk device and extract info
4457 	 * about it, as this is needed to respond to the attr info msg
4458 	 */
4459 	if ((vd->initialized & VD_DISK_READY) == 0) {
4460 		PR0("Retry setting up disk (%s)", vd->device_path);
4461 		do {
4462 			status = vd_setup_vd(vd);
4463 			if (status != EAGAIN || ++retry > vds_dev_retries)
4464 				break;
4465 
4466 			/* incremental delay */
4467 			delay(drv_usectohz(vds_dev_delay));
4468 
4469 			/* if vdisk is no longer enabled - return error */
4470 			if (!vd_enabled(vd))
4471 				return (ENXIO);
4472 
4473 		} while (status == EAGAIN);
4474 
4475 		if (status)
4476 			return (ENXIO);
4477 
4478 		vd->initialized |= VD_DISK_READY;
4479 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4480 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4481 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4482 		    (vd->volume ? "yes" : "no"),
4483 		    (vd->file ? "yes" : "no"),
4484 		    vd->nslices);
4485 	}
4486 
4487 	/* Success:  valid message and transfer mode */
4488 	vd->xfer_mode = attr_msg->xfer_mode;
4489 
4490 	if (vd->xfer_mode == VIO_DESC_MODE) {
4491 
4492 		/*
4493 		 * The vd_dring_inband_msg_t contains one cookie; need room
4494 		 * for up to n-1 more cookies, where "n" is the number of full
4495 		 * pages plus possibly one partial page required to cover
4496 		 * "max_xfer_sz".  Add room for one more cookie if
4497 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4498 		 * Must first get the maximum transfer size in bytes.
4499 		 */
4500 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4501 		    attr_msg->vdisk_block_size * attr_msg->max_xfer_sz :
4502 		    attr_msg->max_xfer_sz;
4503 		size_t	max_inband_msglen =
4504 		    sizeof (vd_dring_inband_msg_t) +
4505 		    ((max_xfer_bytes/PAGESIZE +
4506 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4507 		    (sizeof (ldc_mem_cookie_t)));
4508 
4509 		/*
4510 		 * Set the maximum expected message length to
4511 		 * accommodate in-band-descriptor messages with all
4512 		 * their cookies
4513 		 */
4514 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4515 
4516 		/*
4517 		 * Initialize the data structure for processing in-band I/O
4518 		 * request descriptors
4519 		 */
4520 		vd->inband_task.vd	= vd;
4521 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4522 		vd->inband_task.index	= 0;
4523 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4524 	}
4525 
4526 	/* Return the device's block size and max transfer size to the client */
4527 	attr_msg->vdisk_block_size	= vd->vdisk_bsize;
4528 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4529 
4530 	attr_msg->vdisk_size = vd->vdisk_size;
4531 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4532 	    VD_DISK_TYPE_DISK;
4533 	attr_msg->vdisk_media = vd->vdisk_media;
4534 
4535 	/* Discover and save the list of supported VD_OP_XXX operations */
4536 	vd_set_exported_operations(vd);
4537 	attr_msg->operations = vd->operations;
4538 
4539 	PR0("%s", VD_CLIENT(vd));
4540 
4541 	ASSERT(vd->dring_task == NULL);
4542 
4543 	return (0);
4544 }
4545 
4546 static int
4547 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4548 {
4549 	int			status;
4550 	size_t			expected;
4551 	ldc_mem_info_t		dring_minfo;
4552 	uint8_t			mtype;
4553 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4554 
4555 
4556 	ASSERT(msglen >= sizeof (msg->tag));
4557 
4558 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4559 	    VIO_DRING_REG)) {
4560 		PR0("Message is not a register-dring message");
4561 		return (ENOMSG);
4562 	}
4563 
4564 	if (msglen < sizeof (*reg_msg)) {
4565 		PR0("Expected at least %lu-byte register-dring message; "
4566 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4567 		return (EBADMSG);
4568 	}
4569 
4570 	expected = sizeof (*reg_msg) +
4571 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4572 	if (msglen != expected) {
4573 		PR0("Expected %lu-byte register-dring message; "
4574 		    "received %lu bytes", expected, msglen);
4575 		return (EBADMSG);
4576 	}
4577 
4578 	if (vd->initialized & VD_DRING) {
4579 		PR0("A dring was previously registered; only support one");
4580 		return (EBADMSG);
4581 	}
4582 
4583 	if (reg_msg->num_descriptors > INT32_MAX) {
4584 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4585 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4586 		return (EBADMSG);
4587 	}
4588 
4589 	if (reg_msg->ncookies != 1) {
4590 		/*
4591 		 * In addition to fixing the assertion in the success case
4592 		 * below, supporting drings which require more than one
4593 		 * "cookie" requires increasing the value of vd->max_msglen
4594 		 * somewhere in the code path prior to receiving the message
4595 		 * which results in calling this function.  Note that without
4596 		 * making this change, the larger message size required to
4597 		 * accommodate multiple cookies cannot be successfully
4598 		 * received, so this function will not even get called.
4599 		 * Gracefully accommodating more dring cookies might
4600 		 * reasonably demand exchanging an additional attribute or
4601 		 * making a minor protocol adjustment
4602 		 */
4603 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4604 		return (EBADMSG);
4605 	}
4606 
4607 	if (vd_direct_mapped_drings)
4608 		mtype = LDC_DIRECT_MAP;
4609 	else
4610 		mtype = LDC_SHADOW_MAP;
4611 
4612 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4613 	    reg_msg->ncookies, reg_msg->num_descriptors,
4614 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4615 	if (status != 0) {
4616 		PR0("ldc_mem_dring_map() returned errno %d", status);
4617 		return (status);
4618 	}
4619 
4620 	/*
4621 	 * To remove the need for this assertion, must call
4622 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4623 	 * successful call to ldc_mem_dring_map()
4624 	 */
4625 	ASSERT(reg_msg->ncookies == 1);
4626 
4627 	if ((status =
4628 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4629 		PR0("ldc_mem_dring_info() returned errno %d", status);
4630 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4631 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4632 		return (status);
4633 	}
4634 
4635 	if (dring_minfo.vaddr == NULL) {
4636 		PR0("Descriptor ring virtual address is NULL");
4637 		return (ENXIO);
4638 	}
4639 
4640 
4641 	/* Initialize for valid message and mapped dring */
4642 	vd->initialized |= VD_DRING;
4643 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4644 	vd->dring = dring_minfo.vaddr;
4645 	vd->descriptor_size = reg_msg->descriptor_size;
4646 	vd->dring_len = reg_msg->num_descriptors;
4647 	vd->dring_mtype = dring_minfo.mtype;
4648 	reg_msg->dring_ident = vd->dring_ident;
4649 	PR1("descriptor size = %u, dring length = %u",
4650 	    vd->descriptor_size, vd->dring_len);
4651 
4652 	/*
4653 	 * Allocate and initialize a "shadow" array of data structures for
4654 	 * tasks to process I/O requests in dring elements
4655 	 */
4656 	vd->dring_task =
4657 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4658 	for (int i = 0; i < vd->dring_len; i++) {
4659 		vd->dring_task[i].vd		= vd;
4660 		vd->dring_task[i].index		= i;
4661 
4662 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4663 		    &(vd->dring_task[i].mhdl));
4664 		if (status) {
4665 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4666 			return (ENXIO);
4667 		}
4668 
4669 		/*
4670 		 * The descriptor payload varies in length. Calculate its
4671 		 * size by subtracting the header size from the total
4672 		 * descriptor size.
4673 		 */
4674 		vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4675 		    sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4676 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4677 	}
4678 
4679 	if (vd->file || vd->zvol) {
4680 		vd->write_queue =
4681 		    kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP);
4682 	}
4683 
4684 	return (0);
4685 }
4686 
4687 static int
4688 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4689 {
4690 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4691 
4692 
4693 	ASSERT(msglen >= sizeof (msg->tag));
4694 
4695 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4696 	    VIO_DRING_UNREG)) {
4697 		PR0("Message is not an unregister-dring message");
4698 		return (ENOMSG);
4699 	}
4700 
4701 	if (msglen != sizeof (*unreg_msg)) {
4702 		PR0("Expected %lu-byte unregister-dring message; "
4703 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4704 		return (EBADMSG);
4705 	}
4706 
4707 	if (unreg_msg->dring_ident != vd->dring_ident) {
4708 		PR0("Expected dring ident %lu; received %lu",
4709 		    vd->dring_ident, unreg_msg->dring_ident);
4710 		return (EBADMSG);
4711 	}
4712 
4713 	return (0);
4714 }
4715 
4716 static int
4717 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4718 {
4719 	ASSERT(msglen >= sizeof (msg->tag));
4720 
4721 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4722 		PR0("Message is not an RDX message");
4723 		return (ENOMSG);
4724 	}
4725 
4726 	if (msglen != sizeof (vio_rdx_msg_t)) {
4727 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4728 		    sizeof (vio_rdx_msg_t), msglen);
4729 		return (EBADMSG);
4730 	}
4731 
4732 	PR0("Valid RDX message");
4733 	return (0);
4734 }
4735 
4736 static int
4737 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4738 {
4739 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4740 		PR0("Received seq_num %lu; expected %lu",
4741 		    seq_num, (vd->seq_num + 1));
4742 		PR0("initiating soft reset");
4743 		vd_need_reset(vd, B_FALSE);
4744 		return (1);
4745 	}
4746 
4747 	vd->seq_num = seq_num;
4748 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4749 	return (0);
4750 }
4751 
4752 /*
4753  * Return the expected size of an inband-descriptor message with all the
4754  * cookies it claims to include
4755  */
4756 static size_t
4757 expected_inband_size(vd_dring_inband_msg_t *msg)
4758 {
4759 	return ((sizeof (*msg)) +
4760 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4761 }
4762 
4763 /*
4764  * Process an in-band descriptor message:  used with clients like OBP, with
4765  * which vds exchanges descriptors within VIO message payloads, rather than
4766  * operating on them within a descriptor ring
4767  */
4768 static int
4769 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4770 {
4771 	size_t			expected;
4772 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4773 
4774 
4775 	ASSERT(msglen >= sizeof (msg->tag));
4776 
4777 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4778 	    VIO_DESC_DATA)) {
4779 		PR1("Message is not an in-band-descriptor message");
4780 		return (ENOMSG);
4781 	}
4782 
4783 	if (msglen < sizeof (*desc_msg)) {
4784 		PR0("Expected at least %lu-byte descriptor message; "
4785 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4786 		return (EBADMSG);
4787 	}
4788 
4789 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4790 		PR0("Expected %lu-byte descriptor message; "
4791 		    "received %lu bytes", expected, msglen);
4792 		return (EBADMSG);
4793 	}
4794 
4795 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4796 		return (EBADMSG);
4797 
4798 	/*
4799 	 * Valid message:  Set up the in-band descriptor task and process the
4800 	 * request.  Arrange to acknowledge the client's message, unless an
4801 	 * error processing the descriptor task results in setting
4802 	 * VIO_SUBTYPE_NACK
4803 	 */
4804 	PR1("Valid in-band-descriptor message");
4805 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4806 
4807 	ASSERT(vd->inband_task.msg != NULL);
4808 
4809 	bcopy(msg, vd->inband_task.msg, msglen);
4810 	vd->inband_task.msglen	= msglen;
4811 
4812 	/*
4813 	 * The task request is now the payload of the message
4814 	 * that was just copied into the body of the task.
4815 	 */
4816 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4817 	vd->inband_task.request	= &desc_msg->payload;
4818 
4819 	return (vd_process_task(&vd->inband_task));
4820 }
4821 
4822 static int
4823 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4824     vio_msg_t *msg, size_t msglen)
4825 {
4826 	int			status;
4827 	boolean_t		ready;
4828 	on_trap_data_t		otd;
4829 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4830 
4831 	/* Accept the updated dring element */
4832 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4833 	    vd->dring_handle, idx, idx)) != 0) {
4834 		return (status);
4835 	}
4836 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4837 	if (ready) {
4838 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4839 		bcopy(&elem->payload, vd->dring_task[idx].request,
4840 		    (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4841 	} else {
4842 		PR0("descriptor %u not ready", idx);
4843 		VD_DUMP_DRING_ELEM(elem);
4844 	}
4845 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4846 	    vd->dring_handle, idx, idx)) != 0) {
4847 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4848 		return (status);
4849 	}
4850 	if (!ready)
4851 		return (EBUSY);
4852 
4853 
4854 	/* Initialize a task and process the accepted element */
4855 	PR1("Processing dring element %u", idx);
4856 	vd->dring_task[idx].type	= type;
4857 
4858 	/* duplicate msg buf for cookies etc. */
4859 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4860 
4861 	vd->dring_task[idx].msglen	= msglen;
4862 	return (vd_process_task(&vd->dring_task[idx]));
4863 }
4864 
4865 static int
4866 vd_process_element_range(vd_t *vd, int start, int end,
4867     vio_msg_t *msg, size_t msglen)
4868 {
4869 	int		i, n, nelem, status = 0;
4870 	boolean_t	inprogress = B_FALSE;
4871 	vd_task_type_t	type;
4872 
4873 
4874 	ASSERT(start >= 0);
4875 	ASSERT(end >= 0);
4876 
4877 	/*
4878 	 * Arrange to acknowledge the client's message, unless an error
4879 	 * processing one of the dring elements results in setting
4880 	 * VIO_SUBTYPE_NACK
4881 	 */
4882 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4883 
4884 	/*
4885 	 * Process the dring elements in the range
4886 	 */
4887 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4888 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4889 		((vio_dring_msg_t *)msg)->end_idx = i;
4890 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4891 		status = vd_process_element(vd, type, i, msg, msglen);
4892 		if (status == EINPROGRESS)
4893 			inprogress = B_TRUE;
4894 		else if (status != 0)
4895 			break;
4896 	}
4897 
4898 	/*
4899 	 * If some, but not all, operations of a multi-element range are in
4900 	 * progress, wait for other operations to complete before returning
4901 	 * (which will result in "ack" or "nack" of the message).  Note that
4902 	 * all outstanding operations will need to complete, not just the ones
4903 	 * corresponding to the current range of dring elements; howevever, as
4904 	 * this situation is an error case, performance is less critical.
4905 	 */
4906 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress) {
4907 		if (vd->ioq != NULL)
4908 			ddi_taskq_wait(vd->ioq);
4909 		ddi_taskq_wait(vd->completionq);
4910 	}
4911 
4912 	return (status);
4913 }
4914 
4915 static int
4916 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4917 {
4918 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4919 
4920 
4921 	ASSERT(msglen >= sizeof (msg->tag));
4922 
4923 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4924 	    VIO_DRING_DATA)) {
4925 		PR1("Message is not a dring-data message");
4926 		return (ENOMSG);
4927 	}
4928 
4929 	if (msglen != sizeof (*dring_msg)) {
4930 		PR0("Expected %lu-byte dring message; received %lu bytes",
4931 		    sizeof (*dring_msg), msglen);
4932 		return (EBADMSG);
4933 	}
4934 
4935 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4936 		return (EBADMSG);
4937 
4938 	if (dring_msg->dring_ident != vd->dring_ident) {
4939 		PR0("Expected dring ident %lu; received ident %lu",
4940 		    vd->dring_ident, dring_msg->dring_ident);
4941 		return (EBADMSG);
4942 	}
4943 
4944 	if (dring_msg->start_idx >= vd->dring_len) {
4945 		PR0("\"start_idx\" = %u; must be less than %u",
4946 		    dring_msg->start_idx, vd->dring_len);
4947 		return (EBADMSG);
4948 	}
4949 
4950 	if ((dring_msg->end_idx < 0) ||
4951 	    (dring_msg->end_idx >= vd->dring_len)) {
4952 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4953 		    dring_msg->end_idx, vd->dring_len);
4954 		return (EBADMSG);
4955 	}
4956 
4957 	/* Valid message; process range of updated dring elements */
4958 	PR1("Processing descriptor range, start = %u, end = %u",
4959 	    dring_msg->start_idx, dring_msg->end_idx);
4960 	return (vd_process_element_range(vd, dring_msg->start_idx,
4961 	    dring_msg->end_idx, msg, msglen));
4962 }
4963 
4964 static int
4965 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4966 {
4967 	int	retry, status;
4968 	size_t	size = *nbytes;
4969 
4970 
4971 	for (retry = 0, status = ETIMEDOUT;
4972 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4973 	    retry++) {
4974 		PR1("ldc_read() attempt %d", (retry + 1));
4975 		*nbytes = size;
4976 		status = ldc_read(ldc_handle, msg, nbytes);
4977 	}
4978 
4979 	if (status) {
4980 		PR0("ldc_read() returned errno %d", status);
4981 		if (status != ECONNRESET)
4982 			return (ENOMSG);
4983 		return (status);
4984 	} else if (*nbytes == 0) {
4985 		PR1("ldc_read() returned 0 and no message read");
4986 		return (ENOMSG);
4987 	}
4988 
4989 	PR1("RCVD %lu-byte message", *nbytes);
4990 	return (0);
4991 }
4992 
4993 static int
4994 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4995 {
4996 	int		status;
4997 
4998 
4999 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
5000 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
5001 #ifdef	DEBUG
5002 	vd_decode_tag(msg);
5003 #endif
5004 
5005 	/*
5006 	 * Validate session ID up front, since it applies to all messages
5007 	 * once set
5008 	 */
5009 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
5010 		PR0("Expected SID %u, received %u", vd->sid,
5011 		    msg->tag.vio_sid);
5012 		return (EBADMSG);
5013 	}
5014 
5015 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
5016 
5017 	/*
5018 	 * Process the received message based on connection state
5019 	 */
5020 	switch (vd->state) {
5021 	case VD_STATE_INIT:	/* expect version message */
5022 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
5023 			return (status);
5024 
5025 		/* Version negotiated, move to that state */
5026 		vd->state = VD_STATE_VER;
5027 		return (0);
5028 
5029 	case VD_STATE_VER:	/* expect attribute message */
5030 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
5031 			return (status);
5032 
5033 		/* Attributes exchanged, move to that state */
5034 		vd->state = VD_STATE_ATTR;
5035 		return (0);
5036 
5037 	case VD_STATE_ATTR:
5038 		switch (vd->xfer_mode) {
5039 		case VIO_DESC_MODE:	/* expect RDX message */
5040 			if ((status = process_rdx_msg(msg, msglen)) != 0)
5041 				return (status);
5042 
5043 			/* Ready to receive in-band descriptors */
5044 			vd->state = VD_STATE_DATA;
5045 			return (0);
5046 
5047 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
5048 			if ((status =
5049 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
5050 				return (status);
5051 
5052 			/* One dring negotiated, move to that state */
5053 			vd->state = VD_STATE_DRING;
5054 			return (0);
5055 
5056 		default:
5057 			ASSERT("Unsupported transfer mode");
5058 			PR0("Unsupported transfer mode");
5059 			return (ENOTSUP);
5060 		}
5061 
5062 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
5063 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
5064 			/* Ready to receive data */
5065 			vd->state = VD_STATE_DATA;
5066 			return (0);
5067 		} else if (status != ENOMSG) {
5068 			return (status);
5069 		}
5070 
5071 
5072 		/*
5073 		 * If another register-dring message is received, stay in
5074 		 * dring state in case the client sends RDX; although the
5075 		 * protocol allows multiple drings, this server does not
5076 		 * support using more than one
5077 		 */
5078 		if ((status =
5079 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
5080 			return (status);
5081 
5082 		/*
5083 		 * Acknowledge an unregister-dring message, but reset the
5084 		 * connection anyway:  Although the protocol allows
5085 		 * unregistering drings, this server cannot serve a vdisk
5086 		 * without its only dring
5087 		 */
5088 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
5089 		return ((status == 0) ? ENOTSUP : status);
5090 
5091 	case VD_STATE_DATA:
5092 		switch (vd->xfer_mode) {
5093 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
5094 			return (vd_process_desc_msg(vd, msg, msglen));
5095 
5096 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
5097 			/*
5098 			 * Typically expect dring-data messages, so handle
5099 			 * them first
5100 			 */
5101 			if ((status = vd_process_dring_msg(vd, msg,
5102 			    msglen)) != ENOMSG)
5103 				return (status);
5104 
5105 			/*
5106 			 * Acknowledge an unregister-dring message, but reset
5107 			 * the connection anyway:  Although the protocol
5108 			 * allows unregistering drings, this server cannot
5109 			 * serve a vdisk without its only dring
5110 			 */
5111 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
5112 			return ((status == 0) ? ENOTSUP : status);
5113 
5114 		default:
5115 			ASSERT("Unsupported transfer mode");
5116 			PR0("Unsupported transfer mode");
5117 			return (ENOTSUP);
5118 		}
5119 
5120 	default:
5121 		ASSERT("Invalid client connection state");
5122 		PR0("Invalid client connection state");
5123 		return (ENOTSUP);
5124 	}
5125 }
5126 
5127 static int
5128 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
5129 {
5130 	int		status;
5131 	boolean_t	reset_ldc = B_FALSE;
5132 	vd_task_t	task;
5133 
5134 	/*
5135 	 * Check that the message is at least big enough for a "tag", so that
5136 	 * message processing can proceed based on tag-specified message type
5137 	 */
5138 	if (msglen < sizeof (vio_msg_tag_t)) {
5139 		PR0("Received short (%lu-byte) message", msglen);
5140 		/* Can't "nack" short message, so drop the big hammer */
5141 		PR0("initiating full reset");
5142 		vd_need_reset(vd, B_TRUE);
5143 		return (EBADMSG);
5144 	}
5145 
5146 	/*
5147 	 * Process the message
5148 	 */
5149 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
5150 	case 0:
5151 		/* "ack" valid, successfully-processed messages */
5152 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
5153 		break;
5154 
5155 	case EINPROGRESS:
5156 		/* The completion handler will "ack" or "nack" the message */
5157 		return (EINPROGRESS);
5158 	case ENOMSG:
5159 		PR0("Received unexpected message");
5160 		_NOTE(FALLTHROUGH);
5161 	case EBADMSG:
5162 	case ENOTSUP:
5163 		/* "transport" error will cause NACK of invalid messages */
5164 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5165 		break;
5166 
5167 	default:
5168 		/* "transport" error will cause NACK of invalid messages */
5169 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
5170 		/* An LDC error probably occurred, so try resetting it */
5171 		reset_ldc = B_TRUE;
5172 		break;
5173 	}
5174 
5175 	PR1("\tResulting in state %d (%s)", vd->state,
5176 	    vd_decode_state(vd->state));
5177 
5178 	/* populate the task so we can dispatch it on the taskq */
5179 	task.vd = vd;
5180 	task.msg = msg;
5181 	task.msglen = msglen;
5182 
5183 	/*
5184 	 * Queue a task to send the notification that the operation completed.
5185 	 * We need to ensure that requests are responded to in the correct
5186 	 * order and since the taskq is processed serially this ordering
5187 	 * is maintained.
5188 	 */
5189 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
5190 	    &task, DDI_SLEEP);
5191 
5192 	/*
5193 	 * To ensure handshake negotiations do not happen out of order, such
5194 	 * requests that come through this path should not be done in parallel
5195 	 * so we need to wait here until the response is sent to the client.
5196 	 */
5197 	ddi_taskq_wait(vd->completionq);
5198 
5199 	/* Arrange to reset the connection for nack'ed or failed messages */
5200 	if ((status != 0) || reset_ldc) {
5201 		PR0("initiating %s reset",
5202 		    (reset_ldc) ? "full" : "soft");
5203 		vd_need_reset(vd, reset_ldc);
5204 	}
5205 
5206 	return (status);
5207 }
5208 
5209 static boolean_t
5210 vd_enabled(vd_t *vd)
5211 {
5212 	boolean_t	enabled;
5213 
5214 	mutex_enter(&vd->lock);
5215 	enabled = vd->enabled;
5216 	mutex_exit(&vd->lock);
5217 	return (enabled);
5218 }
5219 
5220 static void
5221 vd_recv_msg(void *arg)
5222 {
5223 	vd_t	*vd = (vd_t *)arg;
5224 	int	rv = 0, status = 0;
5225 
5226 	ASSERT(vd != NULL);
5227 
5228 	PR2("New task to receive incoming message(s)");
5229 
5230 
5231 	while (vd_enabled(vd) && status == 0) {
5232 		size_t		msglen, msgsize;
5233 		ldc_status_t	lstatus;
5234 
5235 		/*
5236 		 * Receive and process a message
5237 		 */
5238 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
5239 
5240 		/*
5241 		 * check if channel is UP - else break out of loop
5242 		 */
5243 		status = ldc_status(vd->ldc_handle, &lstatus);
5244 		if (lstatus != LDC_UP) {
5245 			PR0("channel not up (status=%d), exiting recv loop\n",
5246 			    lstatus);
5247 			break;
5248 		}
5249 
5250 		ASSERT(vd->max_msglen != 0);
5251 
5252 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
5253 		msglen	= msgsize;	  /* actual len after recv_msg() */
5254 
5255 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
5256 		switch (status) {
5257 		case 0:
5258 			rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
5259 			/* check if max_msglen changed */
5260 			if (msgsize != vd->max_msglen) {
5261 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
5262 				    msgsize, vd->max_msglen);
5263 				kmem_free(vd->vio_msgp, msgsize);
5264 				vd->vio_msgp =
5265 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
5266 			}
5267 			if (rv == EINPROGRESS)
5268 				continue;
5269 			break;
5270 
5271 		case ENOMSG:
5272 			break;
5273 
5274 		case ECONNRESET:
5275 			PR0("initiating soft reset (ECONNRESET)\n");
5276 			vd_need_reset(vd, B_FALSE);
5277 			status = 0;
5278 			break;
5279 
5280 		default:
5281 			/* Probably an LDC failure; arrange to reset it */
5282 			PR0("initiating full reset (status=0x%x)", status);
5283 			vd_need_reset(vd, B_TRUE);
5284 			break;
5285 		}
5286 	}
5287 
5288 	PR2("Task finished");
5289 }
5290 
5291 static uint_t
5292 vd_handle_ldc_events(uint64_t event, caddr_t arg)
5293 {
5294 	vd_t	*vd = (vd_t *)(void *)arg;
5295 	int	status;
5296 
5297 	ASSERT(vd != NULL);
5298 
5299 	if (!vd_enabled(vd))
5300 		return (LDC_SUCCESS);
5301 
5302 	if (event & LDC_EVT_DOWN) {
5303 		PR0("LDC_EVT_DOWN: LDC channel went down");
5304 
5305 		vd_need_reset(vd, B_TRUE);
5306 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5307 		    DDI_SLEEP);
5308 		if (status == DDI_FAILURE) {
5309 			PR0("cannot schedule task to recv msg\n");
5310 			vd_need_reset(vd, B_TRUE);
5311 		}
5312 	}
5313 
5314 	if (event & LDC_EVT_RESET) {
5315 		PR0("LDC_EVT_RESET: LDC channel was reset");
5316 
5317 		if (vd->state != VD_STATE_INIT) {
5318 			PR0("scheduling full reset");
5319 			vd_need_reset(vd, B_FALSE);
5320 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5321 			    vd, DDI_SLEEP);
5322 			if (status == DDI_FAILURE) {
5323 				PR0("cannot schedule task to recv msg\n");
5324 				vd_need_reset(vd, B_TRUE);
5325 			}
5326 
5327 		} else {
5328 			PR0("channel already reset, ignoring...\n");
5329 			PR0("doing ldc up...\n");
5330 			(void) ldc_up(vd->ldc_handle);
5331 		}
5332 
5333 		return (LDC_SUCCESS);
5334 	}
5335 
5336 	if (event & LDC_EVT_UP) {
5337 		PR0("EVT_UP: LDC is up\nResetting client connection state");
5338 		PR0("initiating soft reset");
5339 		vd_need_reset(vd, B_FALSE);
5340 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5341 		    vd, DDI_SLEEP);
5342 		if (status == DDI_FAILURE) {
5343 			PR0("cannot schedule task to recv msg\n");
5344 			vd_need_reset(vd, B_TRUE);
5345 			return (LDC_SUCCESS);
5346 		}
5347 	}
5348 
5349 	if (event & LDC_EVT_READ) {
5350 		int	status;
5351 
5352 		PR1("New data available");
5353 		/* Queue a task to receive the new data */
5354 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5355 		    DDI_SLEEP);
5356 
5357 		if (status == DDI_FAILURE) {
5358 			PR0("cannot schedule task to recv msg\n");
5359 			vd_need_reset(vd, B_TRUE);
5360 		}
5361 	}
5362 
5363 	return (LDC_SUCCESS);
5364 }
5365 
5366 static uint_t
5367 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5368 {
5369 	_NOTE(ARGUNUSED(key, val))
5370 	(*((uint_t *)arg))++;
5371 	return (MH_WALK_TERMINATE);
5372 }
5373 
5374 
5375 static int
5376 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5377 {
5378 	uint_t	vd_present = 0;
5379 	minor_t	instance;
5380 	vds_t	*vds;
5381 
5382 
5383 	switch (cmd) {
5384 	case DDI_DETACH:
5385 		/* the real work happens below */
5386 		break;
5387 	case DDI_SUSPEND:
5388 		PR0("No action required for DDI_SUSPEND");
5389 		return (DDI_SUCCESS);
5390 	default:
5391 		PR0("Unrecognized \"cmd\"");
5392 		return (DDI_FAILURE);
5393 	}
5394 
5395 	ASSERT(cmd == DDI_DETACH);
5396 	instance = ddi_get_instance(dip);
5397 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5398 		PR0("Could not get state for instance %u", instance);
5399 		ddi_soft_state_free(vds_state, instance);
5400 		return (DDI_FAILURE);
5401 	}
5402 
5403 	/* Do no detach when serving any vdisks */
5404 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5405 	if (vd_present) {
5406 		PR0("Not detaching because serving vdisks");
5407 		return (DDI_FAILURE);
5408 	}
5409 
5410 	PR0("Detaching");
5411 	if (vds->initialized & VDS_MDEG) {
5412 		(void) mdeg_unregister(vds->mdeg);
5413 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5414 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5415 		vds->ispecp = NULL;
5416 		vds->mdeg = NULL;
5417 	}
5418 
5419 	vds_driver_types_free(vds);
5420 
5421 	if (vds->initialized & VDS_LDI)
5422 		(void) ldi_ident_release(vds->ldi_ident);
5423 	mod_hash_destroy_hash(vds->vd_table);
5424 	ddi_soft_state_free(vds_state, instance);
5425 	return (DDI_SUCCESS);
5426 }
5427 
5428 /*
5429  * Description:
5430  *	This function checks to see if the disk image being used as a
5431  *	virtual disk is an ISO image. An ISO image is a special case
5432  *	which can be booted/installed from like a CD/DVD.
5433  *
5434  * Parameters:
5435  *	vd		- disk on which the operation is performed.
5436  *
5437  * Return Code:
5438  *	B_TRUE		- The disk image is an ISO 9660 compliant image
5439  *	B_FALSE		- just a regular disk image
5440  */
5441 static boolean_t
5442 vd_dskimg_is_iso_image(vd_t *vd)
5443 {
5444 	char	iso_buf[ISO_SECTOR_SIZE];
5445 	int	i, rv;
5446 	uint_t	sec;
5447 
5448 	ASSERT(VD_DSKIMG(vd));
5449 
5450 	/*
5451 	 * If we have already discovered and saved this info we can
5452 	 * short-circuit the check and avoid reading the disk image.
5453 	 */
5454 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5455 		return (B_TRUE);
5456 
5457 	/*
5458 	 * We wish to read the sector that should contain the 2nd ISO volume
5459 	 * descriptor. The second field in this descriptor is called the
5460 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5461 	 * to the ISO 9660 standard.
5462 	 */
5463 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize;
5464 	rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5465 	    sec, ISO_SECTOR_SIZE);
5466 
5467 	if (rv < 0)
5468 		return (B_FALSE);
5469 
5470 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5471 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5472 			return (B_FALSE);
5473 	}
5474 
5475 	return (B_TRUE);
5476 }
5477 
5478 /*
5479  * Description:
5480  *	This function checks to see if the virtual device is an ATAPI
5481  *	device. ATAPI devices use Group 1 Read/Write commands, so
5482  *	any USCSI calls vds makes need to take this into account.
5483  *
5484  * Parameters:
5485  *	vd		- disk on which the operation is performed.
5486  *
5487  * Return Code:
5488  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5489  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5490  */
5491 static boolean_t
5492 vd_is_atapi_device(vd_t *vd)
5493 {
5494 	boolean_t	is_atapi = B_FALSE;
5495 	char		*variantp;
5496 	int		rv;
5497 
5498 	ASSERT(vd->ldi_handle[0] != NULL);
5499 	ASSERT(!vd->file);
5500 
5501 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5502 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5503 	if (rv == DDI_PROP_SUCCESS) {
5504 		PR0("'variant' property exists for %s", vd->device_path);
5505 		if (strcmp(variantp, "atapi") == 0)
5506 			is_atapi = B_TRUE;
5507 		ddi_prop_free(variantp);
5508 	}
5509 
5510 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5511 	if (rv) {
5512 		PR0("'atapi' property exists for %s", vd->device_path);
5513 		is_atapi = B_TRUE;
5514 	}
5515 
5516 	return (is_atapi);
5517 }
5518 
5519 static int
5520 vd_setup_full_disk(vd_t *vd)
5521 {
5522 	int		status;
5523 	major_t		major = getmajor(vd->dev[0]);
5524 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5525 
5526 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5527 
5528 	/* set the disk size, block size and the media type of the disk */
5529 	status = vd_backend_check_size(vd);
5530 
5531 	if (status != 0) {
5532 		if (!vd->scsi) {
5533 			/* unexpected failure */
5534 			PRN("Failed to check backend size (errno %d)", status);
5535 			return (status);
5536 		}
5537 
5538 		/*
5539 		 * The function can fail for SCSI disks which are present but
5540 		 * reserved by another system. In that case, we don't know the
5541 		 * size of the disk and the block size.
5542 		 */
5543 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5544 		vd->vdisk_bsize = 0;
5545 		vd->backend_bsize = 0;
5546 		vd->vdisk_media = VD_MEDIA_FIXED;
5547 	}
5548 
5549 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5550 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5551 	vd->dev[0]				= 0;
5552 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5553 	vd->ldi_handle[0]			= NULL;
5554 
5555 	/* Initialize device numbers for remaining slices and open them */
5556 	for (int slice = 0; slice < vd->nslices; slice++) {
5557 		/*
5558 		 * Skip the entire-disk slice, as it's already open and its
5559 		 * device known
5560 		 */
5561 		if (slice == VD_ENTIRE_DISK_SLICE)
5562 			continue;
5563 		ASSERT(vd->dev[slice] == 0);
5564 		ASSERT(vd->ldi_handle[slice] == NULL);
5565 
5566 		/*
5567 		 * Construct the device number for the current slice
5568 		 */
5569 		vd->dev[slice] = makedevice(major, (minor + slice));
5570 
5571 		/*
5572 		 * Open all slices of the disk to serve them to the client.
5573 		 * Slices are opened exclusively to prevent other threads or
5574 		 * processes in the service domain from performing I/O to
5575 		 * slices being accessed by a client.  Failure to open a slice
5576 		 * results in vds not serving this disk, as the client could
5577 		 * attempt (and should be able) to access any slice immediately.
5578 		 * Any slices successfully opened before a failure will get
5579 		 * closed by vds_destroy_vd() as a result of the error returned
5580 		 * by this function.
5581 		 *
5582 		 * We need to do the open with FNDELAY so that opening an empty
5583 		 * slice does not fail.
5584 		 */
5585 		PR0("Opening device major %u, minor %u = slice %u",
5586 		    major, minor, slice);
5587 
5588 		/*
5589 		 * Try to open the device. This can fail for example if we are
5590 		 * opening an empty slice. So in case of a failure, we try the
5591 		 * open again but this time with the FNDELAY flag.
5592 		 */
5593 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5594 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5595 		    vd->vds->ldi_ident);
5596 
5597 		if (status != 0) {
5598 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5599 			    vd->open_flags | FNDELAY, kcred,
5600 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5601 		}
5602 
5603 		if (status != 0) {
5604 			PRN("ldi_open_by_dev() returned errno %d "
5605 			    "for slice %u", status, slice);
5606 			/* vds_destroy_vd() will close any open slices */
5607 			vd->ldi_handle[slice] = NULL;
5608 			return (status);
5609 		}
5610 	}
5611 
5612 	return (0);
5613 }
5614 
5615 /*
5616  * When a slice or a volume is exported as a single-slice disk, we want
5617  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5618  * a slice without the addition of any metadata.
5619  *
5620  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5621  * layout:
5622  *                flabel +--- flabel_limit
5623  *                 <->   V
5624  *                 0 1   C                          D  E
5625  *                 +-+---+--------------------------+--+
5626  *  virtual disk:  |L|XXX|           slice 0        |AA|
5627  *                 +-+---+--------------------------+--+
5628  *                  ^    :                          :
5629  *                  |    :                          :
5630  *      VTOC LABEL--+    :                          :
5631  *                       +--------------------------+
5632  *  disk backend:        |     slice/volume/file    |
5633  *                       +--------------------------+
5634  *                       0                          N
5635  *
5636  * N is the number of blocks in the slice/volume/file.
5637  *
5638  * We simulate a disk with N+M blocks, where M is the number of blocks
5639  * simluated at the beginning and at the end of the disk (blocks 0-C
5640  * and D-E).
5641  *
5642  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5643  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5644  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5645  *
5646  * - block 0 (L) returns a fake VTOC label
5647  * - blocks 1 to C-1 (X) are unused and return 0
5648  * - blocks C to D-1 are mapped to the exported slice or volume
5649  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5650  *
5651  * Note: because we define a fake disk geometry, it is possible that the length
5652  * of the backend is not a multiple of the size of cylinder, in that case the
5653  * very end of the backend will not map to any block of the virtual disk.
5654  */
5655 static int
5656 vd_setup_partition_vtoc(vd_t *vd)
5657 {
5658 	char *device_path = vd->device_path;
5659 	char unit;
5660 	size_t size, csize;
5661 
5662 	/* Initialize dk_geom structure for single-slice device */
5663 	if (vd->dk_geom.dkg_nsect == 0) {
5664 		PRN("%s geometry claims 0 sectors per track", device_path);
5665 		return (EIO);
5666 	}
5667 	if (vd->dk_geom.dkg_nhead == 0) {
5668 		PRN("%s geometry claims 0 heads", device_path);
5669 		return (EIO);
5670 	}
5671 
5672 	/* size of a cylinder in block */
5673 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5674 
5675 	/*
5676 	 * Add extra cylinders: we emulate the first cylinder (which contains
5677 	 * the disk label).
5678 	 */
5679 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5680 
5681 	/* we emulate 2 alternate cylinders */
5682 	vd->dk_geom.dkg_acyl = 2;
5683 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5684 
5685 
5686 	/* Initialize vtoc structure for single-slice device */
5687 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5688 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5689 	vd->vtoc.v_part[0].p_flag = 0;
5690 	/*
5691 	 * Partition 0 starts on cylinder 1 and its size has to be
5692 	 * a multiple of a number of cylinder.
5693 	 */
5694 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5695 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5696 
5697 	if (vd_slice_single_slice) {
5698 		vd->vtoc.v_nparts = 1;
5699 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5700 		    MIN(sizeof (VD_ASCIILABEL),
5701 		    sizeof (vd->vtoc.v_asciilabel)));
5702 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5703 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5704 	} else {
5705 		/* adjust the number of slices */
5706 		vd->nslices = V_NUMPAR;
5707 		vd->vtoc.v_nparts = V_NUMPAR;
5708 
5709 		/* define slice 2 representing the entire disk */
5710 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5711 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5712 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5713 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5714 		    vd->dk_geom.dkg_ncyl * csize;
5715 
5716 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize,
5717 		    &size, &unit);
5718 
5719 		/*
5720 		 * Set some attributes of the geometry to what format(1m) uses
5721 		 * so that writing a default label using format(1m) does not
5722 		 * produce any error.
5723 		 */
5724 		vd->dk_geom.dkg_bcyl = 0;
5725 		vd->dk_geom.dkg_intrlv = 1;
5726 		vd->dk_geom.dkg_write_reinstruct = 0;
5727 		vd->dk_geom.dkg_read_reinstruct = 0;
5728 
5729 		/*
5730 		 * We must have a correct label name otherwise format(1m) will
5731 		 * not recognized the disk as labeled.
5732 		 */
5733 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5734 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5735 		    size, unit,
5736 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5737 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5738 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5739 
5740 		/* create a fake label from the vtoc and geometry */
5741 		vd->flabel_limit = (uint_t)csize;
5742 		vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize);
5743 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5744 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5745 		    VD_LABEL_VTOC(vd));
5746 	}
5747 
5748 	/* adjust the vdisk_size, we emulate 3 cylinders */
5749 	vd->vdisk_size += csize * 3;
5750 
5751 	return (0);
5752 }
5753 
5754 /*
5755  * When a slice, volume or file is exported as a single-slice disk, we want
5756  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5757  * as a slice without the addition of any metadata.
5758  *
5759  * So when exporting the disk as an EFI disk, we fake a disk with the following
5760  * layout: (assuming the block size is 512 bytes)
5761  *
5762  *                  flabel        +--- flabel_limit
5763  *                 <------>       v
5764  *                 0 1 2  L      34                        34+N      P
5765  *                 +-+-+--+-------+--------------------------+-------+
5766  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5767  *                 +-+-+--+-------+--------------------------+-------+
5768  *                    ^ ^         :                          :
5769  *                    | |         :                          :
5770  *                GPT-+ +-GPE     :                          :
5771  *                                +--------------------------+
5772  *  disk backend:                 |     slice/volume/file    |
5773  *                                +--------------------------+
5774  *                                0                          N
5775  *
5776  * N is the number of blocks in the slice/volume/file.
5777  *
5778  * We simulate a disk with N+M blocks, where M is the number of blocks
5779  * simluated at the beginning and at the end of the disk (blocks 0-34
5780  * and 34+N-P).
5781  *
5782  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5783  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5784  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5785  * reserved partition.
5786  *
5787  * - block 0 (X) is unused and return 0
5788  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5789  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5790  * - blocks L to 33 (X) are unused and return 0
5791  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5792  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5793  *   returns 0
5794  *
5795  * Note: if the backend size is not a multiple of the vdisk block size then
5796  * the very end of the backend will not map to any block of the virtual disk.
5797  */
5798 static int
5799 vd_setup_partition_efi(vd_t *vd)
5800 {
5801 	efi_gpt_t *gpt;
5802 	efi_gpe_t *gpe;
5803 	struct uuid uuid = EFI_USR;
5804 	struct uuid efi_reserved = EFI_RESERVED;
5805 	uint32_t crc;
5806 	uint64_t s0_start, s0_end, first_u_lba;
5807 	size_t bsize;
5808 
5809 	ASSERT(vd->vdisk_bsize > 0);
5810 
5811 	bsize = vd->vdisk_bsize;
5812 	/*
5813 	 * The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE)
5814 	 * for GPEs plus one block for the GPT and one for PMBR.
5815 	 */
5816 	first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2;
5817 	vd->flabel_limit = (uint_t)first_u_lba;
5818 	vd->flabel_size = VD_LABEL_EFI_SIZE(bsize);
5819 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5820 	gpt = VD_LABEL_EFI_GPT(vd, bsize);
5821 	gpe = VD_LABEL_EFI_GPE(vd, bsize);
5822 
5823 	/*
5824 	 * Adjust the vdisk_size, we emulate the first few blocks
5825 	 * for the disk label.
5826 	 */
5827 	vd->vdisk_size += first_u_lba;
5828 	s0_start = first_u_lba;
5829 	s0_end = vd->vdisk_size - 1;
5830 
5831 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5832 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5833 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5834 	gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba);
5835 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5836 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5837 
5838 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5839 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5840 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5841 
5842 	if (vd_slice_single_slice) {
5843 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5844 	} else {
5845 		/* adjust the number of slices */
5846 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5847 		vd->nslices = V_NUMPAR;
5848 
5849 		/* define a fake reserved partition */
5850 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5851 		    efi_reserved);
5852 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5853 		    LE_64(s0_end + 1);
5854 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5855 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5856 
5857 		/* adjust the vdisk_size to include the reserved slice */
5858 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5859 	}
5860 
5861 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5862 
5863 	/* adjust the vdisk size for the backup GPT and GPE */
5864 	vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1;
5865 	gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1);
5866 
5867 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5868 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5869 
5870 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5871 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5872 
5873 	return (0);
5874 }
5875 
5876 /*
5877  * Setup for a virtual disk whose backend is a file (exported as a single slice
5878  * or as a full disk). In that case, the backend is accessed using the vnode
5879  * interface.
5880  */
5881 static int
5882 vd_setup_backend_vnode(vd_t *vd)
5883 {
5884 	int 		rval, status;
5885 	dev_t		dev;
5886 	char		*file_path = vd->device_path;
5887 	ldi_handle_t	lhandle;
5888 	struct dk_cinfo	dk_cinfo;
5889 
5890 	ASSERT(!vd->volume);
5891 
5892 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5893 	    0, &vd->file_vnode, 0, 0)) != 0) {
5894 		PRN("vn_open(%s) = errno %d", file_path, status);
5895 		return (status);
5896 	}
5897 
5898 	/*
5899 	 * We set vd->file now so that vds_destroy_vd will take care of
5900 	 * closing the file and releasing the vnode in case of an error.
5901 	 */
5902 	vd->file = B_TRUE;
5903 
5904 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5905 
5906 	/*
5907 	 * Get max_xfer_sz from the device where the file is.
5908 	 */
5909 	dev = vd->file_vnode->v_vfsp->vfs_dev;
5910 	PR0("underlying device of %s = (%d, %d)\n", file_path,
5911 	    getmajor(dev), getminor(dev));
5912 
5913 	status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5914 	    vd->vds->ldi_ident);
5915 
5916 	if (status != 0) {
5917 		PR0("ldi_open() returned errno %d for underlying device",
5918 		    status);
5919 	} else {
5920 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5921 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5922 		    &rval)) != 0) {
5923 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5924 			    "underlying device", status);
5925 		} else {
5926 			/*
5927 			 * Store the device's max transfer size for
5928 			 * return to the client
5929 			 */
5930 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5931 		}
5932 
5933 		PR0("close the underlying device");
5934 		(void) ldi_close(lhandle, FREAD, kcred);
5935 	}
5936 
5937 	PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5938 	    file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5939 
5940 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
5941 		status = vd_setup_slice_image(vd);
5942 	else
5943 		status = vd_setup_disk_image(vd);
5944 
5945 	return (status);
5946 }
5947 
5948 static int
5949 vd_setup_slice_image(vd_t *vd)
5950 {
5951 	struct dk_label label;
5952 	int status;
5953 
5954 	vd->vdisk_media = VD_MEDIA_FIXED;
5955 	vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5956 	    vd_file_slice_label : vd_slice_label;
5957 
5958 	if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5959 	    vd->dskimg_size >= 2 * ONE_TERABYTE) {
5960 		status = vd_setup_partition_efi(vd);
5961 	} else {
5962 		/*
5963 		 * We build a default label to get a geometry for
5964 		 * the vdisk. Then the partition setup function will
5965 		 * adjust the vtoc so that it defines a single-slice
5966 		 * disk.
5967 		 */
5968 		vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
5969 		    &label);
5970 		vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5971 		status = vd_setup_partition_vtoc(vd);
5972 	}
5973 
5974 	return (status);
5975 }
5976 
5977 static int
5978 vd_setup_disk_image(vd_t *vd)
5979 {
5980 	int status;
5981 	char *backend_path = vd->device_path;
5982 
5983 	if ((status = vd_backend_check_size(vd)) != 0) {
5984 		PRN("Fail to check size of %s (errno %d)",
5985 		    backend_path, status);
5986 		return (EIO);
5987 	}
5988 
5989 	/* size should be at least sizeof(dk_label) */
5990 	if (vd->dskimg_size < sizeof (struct dk_label)) {
5991 		PRN("Size of file has to be at least %ld bytes",
5992 		    sizeof (struct dk_label));
5993 		return (EIO);
5994 	}
5995 
5996 	/*
5997 	 * Find and validate the geometry of a disk image.
5998 	 */
5999 	status = vd_dskimg_validate_geometry(vd);
6000 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
6001 		PRN("Failed to read label from %s", backend_path);
6002 		return (EIO);
6003 	}
6004 
6005 	if (vd_dskimg_is_iso_image(vd)) {
6006 		/*
6007 		 * Indicate whether to call this a CD or DVD from the size
6008 		 * of the ISO image (images for both drive types are stored
6009 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
6010 		 */
6011 		if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE)
6012 			vd->vdisk_media = VD_MEDIA_DVD;
6013 		else
6014 			vd->vdisk_media = VD_MEDIA_CD;
6015 	} else {
6016 		vd->vdisk_media = VD_MEDIA_FIXED;
6017 	}
6018 
6019 	/* Setup devid for the disk image */
6020 
6021 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6022 
6023 		status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
6024 
6025 		if (status == 0) {
6026 			/* a valid devid was found */
6027 			return (0);
6028 		}
6029 
6030 		if (status != EINVAL) {
6031 			/*
6032 			 * There was an error while trying to read the devid.
6033 			 * So this disk image may have a devid but we are
6034 			 * unable to read it.
6035 			 */
6036 			PR0("can not read devid for %s", backend_path);
6037 			vd->dskimg_devid = NULL;
6038 			return (0);
6039 		}
6040 	}
6041 
6042 	/*
6043 	 * No valid device id was found so we create one. Note that a failure
6044 	 * to create a device id is not fatal and does not prevent the disk
6045 	 * image from being attached.
6046 	 */
6047 	PR1("creating devid for %s", backend_path);
6048 
6049 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
6050 	    &vd->dskimg_devid) != DDI_SUCCESS) {
6051 		PR0("fail to create devid for %s", backend_path);
6052 		vd->dskimg_devid = NULL;
6053 		return (0);
6054 	}
6055 
6056 	/*
6057 	 * Write devid to the disk image. The devid is stored into the disk
6058 	 * image if we have a valid label; otherwise the devid will be stored
6059 	 * when the user writes a valid label.
6060 	 */
6061 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
6062 		if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
6063 			PR0("fail to write devid for %s", backend_path);
6064 			ddi_devid_free(vd->dskimg_devid);
6065 			vd->dskimg_devid = NULL;
6066 		}
6067 	}
6068 
6069 	return (0);
6070 }
6071 
6072 
6073 /*
6074  * Description:
6075  *	Open a device using its device path (supplied by ldm(1m))
6076  *
6077  * Parameters:
6078  *	vd 	- pointer to structure containing the vDisk info
6079  *	flags	- open flags
6080  *
6081  * Return Value
6082  *	0	- success
6083  *	!= 0	- some other non-zero return value from ldi(9F) functions
6084  */
6085 static int
6086 vd_open_using_ldi_by_name(vd_t *vd, int flags)
6087 {
6088 	int		status;
6089 	char		*device_path = vd->device_path;
6090 
6091 	/* Attempt to open device */
6092 	status = ldi_open_by_name(device_path, flags, kcred,
6093 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
6094 
6095 	/*
6096 	 * The open can fail for example if we are opening an empty slice.
6097 	 * In case of a failure, we try the open again but this time with
6098 	 * the FNDELAY flag.
6099 	 */
6100 	if (status != 0)
6101 		status = ldi_open_by_name(device_path, flags | FNDELAY,
6102 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
6103 
6104 	if (status != 0) {
6105 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
6106 		vd->ldi_handle[0] = NULL;
6107 		return (status);
6108 	}
6109 
6110 	return (0);
6111 }
6112 
6113 /*
6114  * Setup for a virtual disk which backend is a device (a physical disk,
6115  * slice or volume device) exported as a full disk or as a slice. In these
6116  * cases, the backend is accessed using the LDI interface.
6117  */
6118 static int
6119 vd_setup_backend_ldi(vd_t *vd)
6120 {
6121 	int		rval, status;
6122 	struct dk_cinfo	dk_cinfo;
6123 	char		*device_path = vd->device_path;
6124 
6125 	/* device has been opened by vd_identify_dev() */
6126 	ASSERT(vd->ldi_handle[0] != NULL);
6127 	ASSERT(vd->dev[0] != NULL);
6128 
6129 	vd->file = B_FALSE;
6130 
6131 	/* Verify backing device supports dk_cinfo */
6132 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
6133 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
6134 	    &rval)) != 0) {
6135 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
6136 		    status, device_path);
6137 		return (status);
6138 	}
6139 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
6140 		PRN("slice %u >= maximum slice %u for %s",
6141 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
6142 		return (EIO);
6143 	}
6144 
6145 	/*
6146 	 * The device has been opened read-only by vd_identify_dev(), re-open
6147 	 * it read-write if the write flag is set and we don't have an optical
6148 	 * device such as a CD-ROM, which, for now, we do not permit writes to
6149 	 * and thus should not export write operations to the client.
6150 	 *
6151 	 * Future: if/when we implement support for guest domains writing to
6152 	 * optical devices we will need to do further checking of the media type
6153 	 * to distinguish between read-only and writable discs.
6154 	 */
6155 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
6156 
6157 		vd->open_flags &= ~FWRITE;
6158 
6159 	} else if (vd->open_flags & FWRITE) {
6160 
6161 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
6162 		    kcred);
6163 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
6164 		if (status != 0) {
6165 			PR0("Failed to open (%s) = errno %d",
6166 			    device_path, status);
6167 			return (status);
6168 		}
6169 	}
6170 
6171 	/* Store the device's max transfer size for return to the client */
6172 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
6173 
6174 	/*
6175 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
6176 	 * that we can use the correct CDB group when sending USCSI commands.
6177 	 */
6178 	vd->is_atapi_dev = vd_is_atapi_device(vd);
6179 
6180 	/*
6181 	 * Export a full disk.
6182 	 *
6183 	 * The exported device can be either a volume, a disk or a CD/DVD
6184 	 * device.  We export a device as a full disk if we have an entire
6185 	 * disk slice (slice 2) and if this slice is exported as a full disk
6186 	 * and not as a single slice disk. A CD or DVD device is exported
6187 	 * as a full disk (even if it isn't s2). A volume is exported as a
6188 	 * full disk as long as the "slice" option is not specified.
6189 	 */
6190 	if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6191 
6192 		if (vd->volume) {
6193 			/* setup disk image */
6194 			return (vd_setup_disk_image(vd));
6195 		}
6196 
6197 		if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
6198 		    dk_cinfo.dki_ctype == DKC_CDROM) {
6199 			ASSERT(!vd->volume);
6200 			if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
6201 				vd->scsi = B_TRUE;
6202 			return (vd_setup_full_disk(vd));
6203 		}
6204 	}
6205 
6206 	/*
6207 	 * Export a single slice disk.
6208 	 *
6209 	 * The exported device can be either a volume device or a disk slice. If
6210 	 * it is a disk slice different from slice 2 then it is always exported
6211 	 * as a single slice disk even if the "slice" option is not specified.
6212 	 * If it is disk slice 2 or a volume device then it is exported as a
6213 	 * single slice disk only if the "slice" option is specified.
6214 	 */
6215 	return (vd_setup_single_slice_disk(vd));
6216 }
6217 
6218 static int
6219 vd_setup_single_slice_disk(vd_t *vd)
6220 {
6221 	int status, rval;
6222 	struct dk_label label;
6223 	char *device_path = vd->device_path;
6224 	struct vtoc vtoc;
6225 
6226 	vd->vdisk_media = VD_MEDIA_FIXED;
6227 
6228 	if (vd->volume) {
6229 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
6230 	}
6231 
6232 	/*
6233 	 * We export the slice as a single slice disk even if the "slice"
6234 	 * option was not specified.
6235 	 */
6236 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
6237 	vd->nslices	= 1;
6238 
6239 	/* Get size of backing device */
6240 	if ((status = vd_backend_check_size(vd)) != 0) {
6241 		PRN("Fail to check size of %s (errno %d)", device_path, status);
6242 		return (EIO);
6243 	}
6244 
6245 	/*
6246 	 * When exporting a slice or a device as a single slice disk, we don't
6247 	 * care about any partitioning exposed by the backend. The goal is just
6248 	 * to export the backend as a flat storage. We provide a fake partition
6249 	 * table (either a VTOC or EFI), which presents only one slice, to
6250 	 * accommodate tools expecting a disk label. The selection of the label
6251 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
6252 	 * variable.
6253 	 */
6254 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
6255 	    vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) {
6256 		vd->vdisk_label = VD_DISK_LABEL_EFI;
6257 	} else {
6258 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
6259 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
6260 		    kcred, &rval);
6261 
6262 		if (status == ENOTTY) {
6263 			/* try with the non-extended vtoc ioctl */
6264 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
6265 			    (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
6266 			    kcred, &rval);
6267 			vtoctoextvtoc(vtoc, vd->vtoc);
6268 		}
6269 
6270 		if (status == 0) {
6271 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
6272 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
6273 			    kcred, &rval);
6274 
6275 			if (status != 0) {
6276 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
6277 				    "for %s", status, device_path);
6278 				return (status);
6279 			}
6280 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6281 
6282 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
6283 
6284 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
6285 			vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize,
6286 			    vd->vdisk_bsize, &label);
6287 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
6288 
6289 		} else {
6290 			vd->vdisk_label = VD_DISK_LABEL_EFI;
6291 		}
6292 	}
6293 
6294 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6295 		/* export with a fake VTOC label */
6296 		status = vd_setup_partition_vtoc(vd);
6297 
6298 	} else {
6299 		/* export with a fake EFI label */
6300 		status = vd_setup_partition_efi(vd);
6301 	}
6302 
6303 	return (status);
6304 }
6305 
6306 /*
6307  * This function is invoked when setting up the vdisk backend and to process
6308  * the VD_OP_GET_CAPACITY operation. It checks the backend size and set the
6309  * following attributes of the vd structure:
6310  *
6311  * - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its
6312  *   value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a
6313  *   CD/DVD. When the backend is a disk or a disk slice then it has the value
6314  *   of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO
6315  *   ioctl). This block size is expected to be a power of 2 and a multiple of
6316  *   512.
6317  *
6318  * - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize
6319  *   blocks.
6320  *
6321  * vdisk_size and vdisk_bsize are sent to the vdisk client during the connection
6322  * handshake and in the result of a VD_OP_GET_CAPACITY operation.
6323  *
6324  * - backend_bsize: block size of the backend device. backend_bsize has the same
6325  *   value as vdisk_bsize except when the backend is a CD/DVD. In that case,
6326  *   vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the
6327  *   effective logical block size of the CD/DVD (usually 2048).
6328  *
6329  * - dskimg_size: size of the backend when the backend is a disk image. This
6330  *   attribute is set only when the backend is a file or a volume, otherwise it
6331  *   is unused.
6332  *
6333  * - vio_bshift: number of bit to shift to convert a VIO block number (which
6334  *   uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a
6335  *   block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift
6336  *
6337  * - vdisk_media: media of the virtual disk. This function only sets this
6338  *   attribute for physical disk and CD/DVD. For other backend types, this
6339  *   attribute is set in the setup function of the backend.
6340  */
6341 static int
6342 vd_backend_check_size(vd_t *vd)
6343 {
6344 	size_t backend_size, backend_bsize, vdisk_bsize;
6345 	size_t old_size, new_size;
6346 	struct dk_minfo minfo;
6347 	vattr_t vattr;
6348 	int rval, rv, media, nshift = 0;
6349 	uint32_t n;
6350 
6351 	if (vd->file) {
6352 
6353 		/* file (slice or full disk) */
6354 		vattr.va_mask = AT_SIZE;
6355 		rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
6356 		if (rv != 0) {
6357 			PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
6358 			return (rv);
6359 		}
6360 		backend_size = vattr.va_size;
6361 		backend_bsize = DEV_BSIZE;
6362 		vdisk_bsize = DEV_BSIZE;
6363 
6364 	} else if (vd->volume) {
6365 
6366 		/* volume (slice or full disk) */
6367 		rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6368 		if (rv != DDI_SUCCESS) {
6369 			PR0("ldi_get_size() failed for %s", vd->device_path);
6370 			return (EIO);
6371 		}
6372 		backend_bsize = DEV_BSIZE;
6373 		vdisk_bsize = DEV_BSIZE;
6374 
6375 	} else {
6376 
6377 		/* physical disk or slice */
6378 		rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6379 		    (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6380 		    kcred, &rval);
6381 		if (rv != 0) {
6382 			PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6383 			    vd->device_path, rv);
6384 			return (rv);
6385 		}
6386 
6387 		if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6388 			rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6389 			if (rv != DDI_SUCCESS) {
6390 				PR0("ldi_get_size() failed for %s",
6391 				    vd->device_path);
6392 				return (EIO);
6393 			}
6394 		} else {
6395 			ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6396 			backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6397 		}
6398 
6399 		backend_bsize = minfo.dki_lbsize;
6400 		media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6401 
6402 		/*
6403 		 * If the device is a CD or a DVD then we force the vdisk block
6404 		 * size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can
6405 		 * be different from backend_size.
6406 		 */
6407 		if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD)
6408 			vdisk_bsize = DEV_BSIZE;
6409 		else
6410 			vdisk_bsize = backend_bsize;
6411 	}
6412 
6413 	/* check vdisk block size */
6414 	if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0)
6415 		return (EINVAL);
6416 
6417 	old_size = vd->vdisk_size;
6418 	new_size = backend_size / vdisk_bsize;
6419 
6420 	/* check if size has changed */
6421 	if (old_size != VD_SIZE_UNKNOWN && old_size == new_size &&
6422 	    vd->vdisk_bsize == vdisk_bsize)
6423 		return (0);
6424 
6425 	/* cache info for blk conversion */
6426 	for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) {
6427 		if ((n & 0x1) != 0) {
6428 			/* blk_size is not a power of 2 */
6429 			return (EINVAL);
6430 		}
6431 		nshift++;
6432 	}
6433 
6434 	vd->vio_bshift = nshift;
6435 	vd->vdisk_size = new_size;
6436 	vd->vdisk_bsize = vdisk_bsize;
6437 	vd->backend_bsize = backend_bsize;
6438 
6439 	if (vd->file || vd->volume)
6440 		vd->dskimg_size = backend_size;
6441 
6442 	/*
6443 	 * If we are exporting a single-slice disk and the size of the backend
6444 	 * has changed then we regenerate the partition setup so that the
6445 	 * partitioning matches with the new disk backend size.
6446 	 */
6447 
6448 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6449 		/* slice or file or device exported as a slice */
6450 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6451 			rv = vd_setup_partition_vtoc(vd);
6452 			if (rv != 0) {
6453 				PR0("vd_setup_partition_vtoc() failed for %s "
6454 				    "(err = %d)", vd->device_path, rv);
6455 				return (rv);
6456 			}
6457 		} else {
6458 			rv = vd_setup_partition_efi(vd);
6459 			if (rv != 0) {
6460 				PR0("vd_setup_partition_efi() failed for %s "
6461 				    "(err = %d)", vd->device_path, rv);
6462 				return (rv);
6463 			}
6464 		}
6465 
6466 	} else if (!vd->file && !vd->volume) {
6467 		/* physical disk */
6468 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6469 		vd->vdisk_media = media;
6470 	}
6471 
6472 	return (0);
6473 }
6474 
6475 /*
6476  * Description:
6477  *	Open a device using its device path and identify if this is
6478  *	a disk device or a volume device.
6479  *
6480  * Parameters:
6481  *	vd 	- pointer to structure containing the vDisk info
6482  *	dtype	- return the driver type of the device
6483  *
6484  * Return Value
6485  *	0	- success
6486  *	!= 0	- some other non-zero return value from ldi(9F) functions
6487  */
6488 static int
6489 vd_identify_dev(vd_t *vd, int *dtype)
6490 {
6491 	int status, i;
6492 	char *device_path = vd->device_path;
6493 	char *drv_name;
6494 	int drv_type;
6495 	vds_t *vds = vd->vds;
6496 
6497 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6498 	if (status != 0) {
6499 		PR0("Failed to open (%s) = errno %d", device_path, status);
6500 		return (status);
6501 	}
6502 
6503 	/* Get device number of backing device */
6504 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6505 		PRN("ldi_get_dev() returned errno %d for %s",
6506 		    status, device_path);
6507 		return (status);
6508 	}
6509 
6510 	/*
6511 	 * We start by looking if the driver is in the list from vds.conf
6512 	 * so that we can override the built-in list using vds.conf.
6513 	 */
6514 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6515 	drv_type = VD_DRIVER_UNKNOWN;
6516 
6517 	/* check vds.conf list */
6518 	for (i = 0; i < vds->num_drivers; i++) {
6519 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6520 			/* ignore invalid entries */
6521 			continue;
6522 		}
6523 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6524 			drv_type = vds->driver_types[i].type;
6525 			goto done;
6526 		}
6527 	}
6528 
6529 	/* check built-in list */
6530 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6531 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6532 			drv_type = vds_driver_types[i].type;
6533 			goto done;
6534 		}
6535 	}
6536 
6537 done:
6538 	PR0("driver %s identified as %s", drv_name,
6539 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6540 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6541 
6542 	if (strcmp(drv_name, "zfs") == 0)
6543 		vd->zvol = B_TRUE;
6544 
6545 	*dtype = drv_type;
6546 
6547 	return (0);
6548 }
6549 
6550 static int
6551 vd_setup_vd(vd_t *vd)
6552 {
6553 	int		status, drv_type, pseudo;
6554 	dev_info_t	*dip;
6555 	vnode_t 	*vnp;
6556 	char		*path = vd->device_path;
6557 	char		tq_name[TASKQ_NAMELEN];
6558 
6559 	/* make sure the vdisk backend is valid */
6560 	if ((status = lookupname(path, UIO_SYSSPACE,
6561 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6562 		PR0("Cannot lookup %s errno %d", path, status);
6563 		goto done;
6564 	}
6565 
6566 	switch (vnp->v_type) {
6567 	case VREG:
6568 		/*
6569 		 * Backend is a file so it is exported as a full disk or as a
6570 		 * single slice disk using the vnode interface.
6571 		 */
6572 		VN_RELE(vnp);
6573 		vd->volume = B_FALSE;
6574 		status = vd_setup_backend_vnode(vd);
6575 		break;
6576 
6577 	case VBLK:
6578 	case VCHR:
6579 		/*
6580 		 * Backend is a device. In that case, it is exported using the
6581 		 * LDI interface, and it is exported either as a single-slice
6582 		 * disk or as a full disk depending on the "slice" option and
6583 		 * on the type of device.
6584 		 *
6585 		 * - A volume device is exported as a single-slice disk if the
6586 		 *   "slice" is specified, otherwise it is exported as a full
6587 		 *   disk.
6588 		 *
6589 		 * - A disk slice (different from slice 2) is always exported
6590 		 *   as a single slice disk using the LDI interface.
6591 		 *
6592 		 * - The slice 2 of a disk is exported as a single slice disk
6593 		 *   if the "slice" option is specified, otherwise the entire
6594 		 *   disk will be exported.
6595 		 *
6596 		 * - The slice of a CD or DVD is exported as single slice disk
6597 		 *   if the "slice" option is specified, otherwise the entire
6598 		 *   disk will be exported.
6599 		 */
6600 
6601 		/* check if this is a pseudo device */
6602 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6603 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6604 			PRN("%s is no longer accessible", path);
6605 			VN_RELE(vnp);
6606 			status = EIO;
6607 			break;
6608 		}
6609 		pseudo = is_pseudo_device(dip);
6610 		ddi_release_devi(dip);
6611 		VN_RELE(vnp);
6612 
6613 		if ((status = vd_identify_dev(vd, &drv_type)) != 0) {
6614 			if (status != ENODEV && status != ENXIO &&
6615 			    status != ENOENT && status != EROFS) {
6616 				PRN("%s identification failed with status %d",
6617 				    path, status);
6618 				status = EIO;
6619 			}
6620 			break;
6621 		}
6622 
6623 		/*
6624 		 * If the driver hasn't been identified then we consider that
6625 		 * pseudo devices are volumes and other devices are disks.
6626 		 */
6627 		if (drv_type == VD_DRIVER_VOLUME ||
6628 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6629 			vd->volume = B_TRUE;
6630 		}
6631 
6632 		/*
6633 		 * If this is a volume device then its usage depends if the
6634 		 * "slice" option is set or not. If the "slice" option is set
6635 		 * then the volume device will be exported as a single slice,
6636 		 * otherwise it will be exported as a full disk.
6637 		 *
6638 		 * For backward compatibility, if vd_volume_force_slice is set
6639 		 * then we always export volume devices as slices.
6640 		 */
6641 		if (vd->volume && vd_volume_force_slice) {
6642 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6643 			vd->nslices = 1;
6644 		}
6645 
6646 		status = vd_setup_backend_ldi(vd);
6647 		break;
6648 
6649 	default:
6650 		PRN("Unsupported vdisk backend %s", path);
6651 		VN_RELE(vnp);
6652 		status = EBADF;
6653 	}
6654 
6655 done:
6656 	if (status != 0) {
6657 		/*
6658 		 * If the error is retryable print an error message only
6659 		 * during the first try.
6660 		 */
6661 		if (status == ENXIO || status == ENODEV ||
6662 		    status == ENOENT || status == EROFS) {
6663 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6664 				PRN("%s is currently inaccessible (error %d)",
6665 				    path, status);
6666 			}
6667 			status = EAGAIN;
6668 		} else {
6669 			PRN("%s can not be exported as a virtual disk "
6670 			    "(error %d)", path, status);
6671 		}
6672 		vd->initialized |= VD_SETUP_ERROR;
6673 
6674 	} else if (vd->initialized & VD_SETUP_ERROR) {
6675 		/* print a message only if we previously had an error */
6676 		PRN("%s is now online", path);
6677 		vd->initialized &= ~VD_SETUP_ERROR;
6678 	}
6679 
6680 	/*
6681 	 * For file or ZFS volume we also need an I/O queue.
6682 	 *
6683 	 * The I/O task queue is initialized here and not in vds_do_init_vd()
6684 	 * (as the start and completion queues) because vd_setup_vd() will be
6685 	 * call again if the backend is not available, and we need to know if
6686 	 * the backend is a ZFS volume or a file.
6687 	 */
6688 	if ((vd->file || vd->zvol) && vd->ioq == NULL) {
6689 		(void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id);
6690 
6691 		if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name,
6692 		    vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) {
6693 			PRN("Could not create io task queue");
6694 			return (EIO);
6695 		}
6696 	}
6697 
6698 	return (status);
6699 }
6700 
6701 static int
6702 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6703     uint64_t ldc_id, vd_t **vdp)
6704 {
6705 	char			tq_name[TASKQ_NAMELEN];
6706 	int			status;
6707 	ddi_iblock_cookie_t	iblock = NULL;
6708 	ldc_attr_t		ldc_attr;
6709 	vd_t			*vd;
6710 
6711 
6712 	ASSERT(vds != NULL);
6713 	ASSERT(device_path != NULL);
6714 	ASSERT(vdp != NULL);
6715 	PR0("Adding vdisk for %s", device_path);
6716 
6717 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6718 		PRN("No memory for virtual disk");
6719 		return (EAGAIN);
6720 	}
6721 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6722 	vd->id = id;
6723 	vd->vds = vds;
6724 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6725 
6726 	/* Setup open flags */
6727 	vd->open_flags = FREAD;
6728 
6729 	if (!(options & VD_OPT_RDONLY))
6730 		vd->open_flags |= FWRITE;
6731 
6732 	if (options & VD_OPT_EXCLUSIVE)
6733 		vd->open_flags |= FEXCL;
6734 
6735 	/* Setup disk type */
6736 	if (options & VD_OPT_SLICE) {
6737 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6738 		vd->nslices = 1;
6739 	} else {
6740 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6741 		vd->nslices = V_NUMPAR;
6742 	}
6743 
6744 	/* default disk label */
6745 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6746 
6747 	/* Open vdisk and initialize parameters */
6748 	if ((status = vd_setup_vd(vd)) == 0) {
6749 		vd->initialized |= VD_DISK_READY;
6750 
6751 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6752 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6753 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6754 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6755 		    vd->nslices);
6756 	} else {
6757 		if (status != EAGAIN)
6758 			return (status);
6759 	}
6760 
6761 	/* Initialize locking */
6762 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6763 	    &iblock) != DDI_SUCCESS) {
6764 		PRN("Could not get iblock cookie.");
6765 		return (EIO);
6766 	}
6767 
6768 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6769 	vd->initialized |= VD_LOCKING;
6770 
6771 
6772 	/* Create start and completion task queues for the vdisk */
6773 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6774 	PR1("tq_name = %s", tq_name);
6775 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6776 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6777 		PRN("Could not create task queue");
6778 		return (EIO);
6779 	}
6780 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6781 	PR1("tq_name = %s", tq_name);
6782 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6783 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6784 		PRN("Could not create task queue");
6785 		return (EIO);
6786 	}
6787 
6788 	/* Allocate the staging buffer */
6789 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6790 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6791 
6792 	vd->enabled = 1;	/* before callback can dispatch to startq */
6793 
6794 
6795 	/* Bring up LDC */
6796 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6797 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6798 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6799 	ldc_attr.mtu		= VD_LDC_MTU;
6800 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6801 		PRN("Could not initialize LDC channel %lx, "
6802 		    "init failed with error %d", ldc_id, status);
6803 		return (status);
6804 	}
6805 	vd->initialized |= VD_LDC;
6806 
6807 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6808 	    (caddr_t)vd)) != 0) {
6809 		PRN("Could not initialize LDC channel %lu,"
6810 		    "reg_callback failed with error %d", ldc_id, status);
6811 		return (status);
6812 	}
6813 
6814 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6815 		PRN("Could not initialize LDC channel %lu,"
6816 		    "open failed with error %d", ldc_id, status);
6817 		return (status);
6818 	}
6819 
6820 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6821 		PR0("ldc_up() returned errno %d", status);
6822 	}
6823 
6824 	/* Allocate the inband task memory handle */
6825 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6826 	if (status) {
6827 		PRN("Could not initialize LDC channel %lu,"
6828 		    "alloc_handle failed with error %d", ldc_id, status);
6829 		return (ENXIO);
6830 	}
6831 
6832 	/* Add the successfully-initialized vdisk to the server's table */
6833 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6834 		PRN("Error adding vdisk ID %lu to table", id);
6835 		return (EIO);
6836 	}
6837 
6838 	/* store initial state */
6839 	vd->state = VD_STATE_INIT;
6840 
6841 	return (0);
6842 }
6843 
6844 static void
6845 vd_free_dring_task(vd_t *vdp)
6846 {
6847 	if (vdp->dring_task != NULL) {
6848 		ASSERT(vdp->dring_len != 0);
6849 		/* Free all dring_task memory handles */
6850 		for (int i = 0; i < vdp->dring_len; i++) {
6851 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6852 			kmem_free(vdp->dring_task[i].request,
6853 			    (vdp->descriptor_size -
6854 			    sizeof (vio_dring_entry_hdr_t)));
6855 			vdp->dring_task[i].request = NULL;
6856 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6857 			vdp->dring_task[i].msg = NULL;
6858 		}
6859 		kmem_free(vdp->dring_task,
6860 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6861 		vdp->dring_task = NULL;
6862 	}
6863 
6864 	if (vdp->write_queue != NULL) {
6865 		kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len);
6866 		vdp->write_queue = NULL;
6867 	}
6868 }
6869 
6870 /*
6871  * Destroy the state associated with a virtual disk
6872  */
6873 static void
6874 vds_destroy_vd(void *arg)
6875 {
6876 	vd_t	*vd = (vd_t *)arg;
6877 	int	retry = 0, rv;
6878 
6879 	if (vd == NULL)
6880 		return;
6881 
6882 	PR0("Destroying vdisk state");
6883 
6884 	/* Disable queuing requests for the vdisk */
6885 	if (vd->initialized & VD_LOCKING) {
6886 		mutex_enter(&vd->lock);
6887 		vd->enabled = 0;
6888 		mutex_exit(&vd->lock);
6889 	}
6890 
6891 	/* Drain and destroy start queue (*before* destroying ioq) */
6892 	if (vd->startq != NULL)
6893 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6894 
6895 	/* Drain and destroy the I/O queue (*before* destroying completionq) */
6896 	if (vd->ioq != NULL)
6897 		ddi_taskq_destroy(vd->ioq);
6898 
6899 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6900 	if (vd->completionq != NULL)
6901 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6902 
6903 	vd_free_dring_task(vd);
6904 
6905 	/* Free the inband task memory handle */
6906 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6907 
6908 	/* Shut down LDC */
6909 	if (vd->initialized & VD_LDC) {
6910 		/* unmap the dring */
6911 		if (vd->initialized & VD_DRING)
6912 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6913 
6914 		/* close LDC channel - retry on EAGAIN */
6915 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6916 			if (++retry > vds_ldc_retries) {
6917 				PR0("Timed out closing channel");
6918 				break;
6919 			}
6920 			drv_usecwait(vds_ldc_delay);
6921 		}
6922 		if (rv == 0) {
6923 			(void) ldc_unreg_callback(vd->ldc_handle);
6924 			(void) ldc_fini(vd->ldc_handle);
6925 		} else {
6926 			/*
6927 			 * Closing the LDC channel has failed. Ideally we should
6928 			 * fail here but there is no Zeus level infrastructure
6929 			 * to handle this. The MD has already been changed and
6930 			 * we have to do the close. So we try to do as much
6931 			 * clean up as we can.
6932 			 */
6933 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6934 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6935 				drv_usecwait(vds_ldc_delay);
6936 		}
6937 	}
6938 
6939 	/* Free the staging buffer for msgs */
6940 	if (vd->vio_msgp != NULL) {
6941 		kmem_free(vd->vio_msgp, vd->max_msglen);
6942 		vd->vio_msgp = NULL;
6943 	}
6944 
6945 	/* Free the inband message buffer */
6946 	if (vd->inband_task.msg != NULL) {
6947 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6948 		vd->inband_task.msg = NULL;
6949 	}
6950 
6951 	if (vd->file) {
6952 		/* Close file */
6953 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6954 		    0, kcred, NULL);
6955 		VN_RELE(vd->file_vnode);
6956 	} else {
6957 		/* Close any open backing-device slices */
6958 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6959 			if (vd->ldi_handle[slice] != NULL) {
6960 				PR0("Closing slice %u", slice);
6961 				(void) ldi_close(vd->ldi_handle[slice],
6962 				    vd->open_flags, kcred);
6963 			}
6964 		}
6965 	}
6966 
6967 	/* Free disk image devid */
6968 	if (vd->dskimg_devid != NULL)
6969 		ddi_devid_free(vd->dskimg_devid);
6970 
6971 	/* Free any fake label */
6972 	if (vd->flabel) {
6973 		kmem_free(vd->flabel, vd->flabel_size);
6974 		vd->flabel = NULL;
6975 		vd->flabel_size = 0;
6976 	}
6977 
6978 	/* Free lock */
6979 	if (vd->initialized & VD_LOCKING)
6980 		mutex_destroy(&vd->lock);
6981 
6982 	/* Finally, free the vdisk structure itself */
6983 	kmem_free(vd, sizeof (*vd));
6984 }
6985 
6986 static int
6987 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6988     uint64_t ldc_id)
6989 {
6990 	int	status;
6991 	vd_t	*vd = NULL;
6992 
6993 
6994 	if ((status = vds_do_init_vd(vds, id, device_path, options,
6995 	    ldc_id, &vd)) != 0)
6996 		vds_destroy_vd(vd);
6997 
6998 	return (status);
6999 }
7000 
7001 static int
7002 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
7003     uint64_t *ldc_id)
7004 {
7005 	int	num_channels;
7006 
7007 
7008 	/* Look for channel endpoint child(ren) of the vdisk MD node */
7009 	if ((num_channels = md_scan_dag(md, vd_node,
7010 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
7011 	    md_find_name(md, "fwd"), channel)) <= 0) {
7012 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
7013 		return (-1);
7014 	}
7015 
7016 	/* Get the "id" value for the first channel endpoint node */
7017 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
7018 		PRN("No \"%s\" property found for \"%s\" of vdisk",
7019 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
7020 		return (-1);
7021 	}
7022 
7023 	if (num_channels > 1) {
7024 		PRN("Using ID of first of multiple channels for this vdisk");
7025 	}
7026 
7027 	return (0);
7028 }
7029 
7030 static int
7031 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
7032 {
7033 	int		num_nodes, status;
7034 	size_t		size;
7035 	mde_cookie_t	*channel;
7036 
7037 
7038 	if ((num_nodes = md_node_count(md)) <= 0) {
7039 		PRN("Invalid node count in Machine Description subtree");
7040 		return (-1);
7041 	}
7042 	size = num_nodes*(sizeof (*channel));
7043 	channel = kmem_zalloc(size, KM_SLEEP);
7044 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
7045 	kmem_free(channel, size);
7046 
7047 	return (status);
7048 }
7049 
7050 /*
7051  * Function:
7052  *	vds_get_options
7053  *
7054  * Description:
7055  * 	Parse the options of a vds node. Options are defined as an array
7056  *	of strings in the vds-block-device-opts property of the vds node
7057  *	in the machine description. Options are returned as a bitmask. The
7058  *	mapping between the bitmask options and the options strings from the
7059  *	machine description is defined in the vd_bdev_options[] array.
7060  *
7061  *	The vds-block-device-opts property is optional. If a vds has no such
7062  *	property then no option is defined.
7063  *
7064  * Parameters:
7065  *	md		- machine description.
7066  *	vd_node		- vds node in the machine description for which
7067  *			  options have to be parsed.
7068  *	options		- the returned options.
7069  *
7070  * Return Code:
7071  *	none.
7072  */
7073 static void
7074 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
7075 {
7076 	char	*optstr, *opt;
7077 	int	len, n, i;
7078 
7079 	*options = 0;
7080 
7081 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
7082 	    (uint8_t **)&optstr, &len) != 0) {
7083 		PR0("No options found");
7084 		return;
7085 	}
7086 
7087 	/* parse options */
7088 	opt = optstr;
7089 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
7090 
7091 	while (opt < optstr + len) {
7092 		for (i = 0; i < n; i++) {
7093 			if (strncmp(vd_bdev_options[i].vdo_name,
7094 			    opt, VD_OPTION_NLEN) == 0) {
7095 				*options |= vd_bdev_options[i].vdo_value;
7096 				break;
7097 			}
7098 		}
7099 
7100 		if (i < n) {
7101 			PR0("option: %s", opt);
7102 		} else {
7103 			PRN("option %s is unknown or unsupported", opt);
7104 		}
7105 
7106 		opt += strlen(opt) + 1;
7107 	}
7108 }
7109 
7110 static void
7111 vds_driver_types_free(vds_t *vds)
7112 {
7113 	if (vds->driver_types != NULL) {
7114 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
7115 		    vds->num_drivers);
7116 		vds->driver_types = NULL;
7117 		vds->num_drivers = 0;
7118 	}
7119 }
7120 
7121 /*
7122  * Update the driver type list with information from vds.conf.
7123  */
7124 static void
7125 vds_driver_types_update(vds_t *vds)
7126 {
7127 	char **list, *s;
7128 	uint_t i, num, count = 0, len;
7129 
7130 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
7131 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
7132 	    DDI_PROP_SUCCESS)
7133 		return;
7134 
7135 	/*
7136 	 * We create a driver_types list with as many as entries as there
7137 	 * is in the driver-type-list from vds.conf. However only valid
7138 	 * entries will be populated (i.e. entries from driver-type-list
7139 	 * with a valid syntax). Invalid entries will be left blank so
7140 	 * they will have no driver name and the driver type will be
7141 	 * VD_DRIVER_UNKNOWN (= 0).
7142 	 */
7143 	vds->num_drivers = num;
7144 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
7145 	    KM_SLEEP);
7146 
7147 	for (i = 0; i < num; i++) {
7148 
7149 		s = strchr(list[i], ':');
7150 
7151 		if (s == NULL) {
7152 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7153 			    "a colon is expected in the entry",
7154 			    i, list[i]);
7155 			continue;
7156 		}
7157 
7158 		len = (uintptr_t)s - (uintptr_t)list[i];
7159 
7160 		if (len == 0) {
7161 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7162 			    "the driver name is empty",
7163 			    i, list[i]);
7164 			continue;
7165 		}
7166 
7167 		if (len >= VD_DRIVER_NAME_LEN) {
7168 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7169 			    "the driver name is too long",
7170 			    i, list[i]);
7171 			continue;
7172 		}
7173 
7174 		if (strcmp(s + 1, "disk") == 0) {
7175 
7176 			vds->driver_types[i].type = VD_DRIVER_DISK;
7177 
7178 		} else if (strcmp(s + 1, "volume") == 0) {
7179 
7180 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
7181 
7182 		} else {
7183 			PRN("vds.conf: driver-type-list, entry %d (%s): "
7184 			    "the driver type is invalid",
7185 			    i, list[i]);
7186 			continue;
7187 		}
7188 
7189 		(void) strncpy(vds->driver_types[i].name, list[i], len);
7190 
7191 		PR0("driver-type-list, entry %d (%s) added",
7192 		    i, list[i]);
7193 
7194 		count++;
7195 	}
7196 
7197 	ddi_prop_free(list);
7198 
7199 	if (count == 0) {
7200 		/* nothing was added, clean up */
7201 		vds_driver_types_free(vds);
7202 	}
7203 }
7204 
7205 static void
7206 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7207 {
7208 	char		*device_path = NULL;
7209 	uint64_t	id = 0, ldc_id = 0, options = 0;
7210 
7211 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7212 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
7213 		return;
7214 	}
7215 	PR0("Adding vdisk ID %lu", id);
7216 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
7217 	    &device_path) != 0) {
7218 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7219 		return;
7220 	}
7221 
7222 	vds_get_options(md, vd_node, &options);
7223 
7224 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
7225 		PRN("Error getting LDC ID for vdisk %lu", id);
7226 		return;
7227 	}
7228 
7229 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
7230 		PRN("Failed to add vdisk ID %lu", id);
7231 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7232 			PRN("No vDisk entry found for vdisk ID %lu", id);
7233 		return;
7234 	}
7235 }
7236 
7237 static void
7238 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
7239 {
7240 	uint64_t	id = 0;
7241 
7242 
7243 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
7244 		PRN("Unable to get \"%s\" property from vdisk's MD node",
7245 		    VD_ID_PROP);
7246 		return;
7247 	}
7248 	PR0("Removing vdisk ID %lu", id);
7249 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
7250 		PRN("No vdisk entry found for vdisk ID %lu", id);
7251 }
7252 
7253 static void
7254 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
7255     md_t *curr_md, mde_cookie_t curr_vd_node)
7256 {
7257 	char		*curr_dev, *prev_dev;
7258 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
7259 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
7260 	size_t		len;
7261 
7262 
7263 	/* Validate that vdisk ID has not changed */
7264 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
7265 		PRN("Error getting previous vdisk \"%s\" property",
7266 		    VD_ID_PROP);
7267 		return;
7268 	}
7269 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
7270 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
7271 		return;
7272 	}
7273 	if (curr_id != prev_id) {
7274 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
7275 		    prev_id, curr_id);
7276 		return;
7277 	}
7278 
7279 	/* Validate that LDC ID has not changed */
7280 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
7281 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
7282 		return;
7283 	}
7284 
7285 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
7286 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
7287 		return;
7288 	}
7289 	if (curr_ldc_id != prev_ldc_id) {
7290 		_NOTE(NOTREACHED);	/* lint is confused */
7291 		PRN("Not changing vdisk:  "
7292 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
7293 		return;
7294 	}
7295 
7296 	/* Determine whether device path has changed */
7297 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
7298 	    &prev_dev) != 0) {
7299 		PRN("Error getting previous vdisk \"%s\"",
7300 		    VD_BLOCK_DEVICE_PROP);
7301 		return;
7302 	}
7303 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
7304 	    &curr_dev) != 0) {
7305 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
7306 		return;
7307 	}
7308 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
7309 	    (strncmp(curr_dev, prev_dev, len) == 0))
7310 		return;	/* no relevant (supported) change */
7311 
7312 	/* Validate that options have not changed */
7313 	vds_get_options(prev_md, prev_vd_node, &prev_options);
7314 	vds_get_options(curr_md, curr_vd_node, &curr_options);
7315 	if (prev_options != curr_options) {
7316 		PRN("Not changing vdisk:  options changed from %lx to %lx",
7317 		    prev_options, curr_options);
7318 		return;
7319 	}
7320 
7321 	PR0("Changing vdisk ID %lu", prev_id);
7322 
7323 	/* Remove old state, which will close vdisk and reset */
7324 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
7325 		PRN("No entry found for vdisk ID %lu", prev_id);
7326 
7327 	/* Re-initialize vdisk with new state */
7328 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
7329 	    curr_ldc_id) != 0) {
7330 		PRN("Failed to change vdisk ID %lu", curr_id);
7331 		return;
7332 	}
7333 }
7334 
7335 static int
7336 vds_process_md(void *arg, mdeg_result_t *md)
7337 {
7338 	int	i;
7339 	vds_t	*vds = arg;
7340 
7341 
7342 	if (md == NULL)
7343 		return (MDEG_FAILURE);
7344 	ASSERT(vds != NULL);
7345 
7346 	for (i = 0; i < md->removed.nelem; i++)
7347 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
7348 	for (i = 0; i < md->match_curr.nelem; i++)
7349 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
7350 		    md->match_curr.mdp, md->match_curr.mdep[i]);
7351 	for (i = 0; i < md->added.nelem; i++)
7352 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
7353 
7354 	return (MDEG_SUCCESS);
7355 }
7356 
7357 
7358 static int
7359 vds_do_attach(dev_info_t *dip)
7360 {
7361 	int			status, sz;
7362 	int			cfg_handle;
7363 	minor_t			instance = ddi_get_instance(dip);
7364 	vds_t			*vds;
7365 	mdeg_prop_spec_t	*pspecp;
7366 	mdeg_node_spec_t	*ispecp;
7367 
7368 	/*
7369 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
7370 	 * notion of "instance", or unique identifier, for that node; OBP
7371 	 * stores the value of the "cfg-handle" MD property as the value of
7372 	 * the "reg" property on the node in the device tree it builds from
7373 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
7374 	 * "reg" property value to uniquely identify this device instance when
7375 	 * registering with the MD event-generation framework.  If the "reg"
7376 	 * property cannot be found, the device tree state is presumably so
7377 	 * broken that there is no point in continuing.
7378 	 */
7379 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7380 	    VD_REG_PROP)) {
7381 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
7382 		return (DDI_FAILURE);
7383 	}
7384 
7385 	/* Get the MD instance for later MDEG registration */
7386 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
7387 	    VD_REG_PROP, -1);
7388 
7389 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
7390 		PRN("Could not allocate state for instance %u", instance);
7391 		return (DDI_FAILURE);
7392 	}
7393 
7394 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
7395 		PRN("Could not get state for instance %u", instance);
7396 		ddi_soft_state_free(vds_state, instance);
7397 		return (DDI_FAILURE);
7398 	}
7399 
7400 	vds->dip	= dip;
7401 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
7402 	    vds_destroy_vd, sizeof (void *));
7403 
7404 	ASSERT(vds->vd_table != NULL);
7405 
7406 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
7407 		PRN("ldi_ident_from_dip() returned errno %d", status);
7408 		return (DDI_FAILURE);
7409 	}
7410 	vds->initialized |= VDS_LDI;
7411 
7412 	/* Register for MD updates */
7413 	sz = sizeof (vds_prop_template);
7414 	pspecp = kmem_alloc(sz, KM_SLEEP);
7415 	bcopy(vds_prop_template, pspecp, sz);
7416 
7417 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
7418 
7419 	/* initialize the complete prop spec structure */
7420 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
7421 	ispecp->namep = "virtual-device";
7422 	ispecp->specp = pspecp;
7423 
7424 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
7425 	    &vds->mdeg) != MDEG_SUCCESS) {
7426 		PRN("Unable to register for MD updates");
7427 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
7428 		kmem_free(pspecp, sz);
7429 		return (DDI_FAILURE);
7430 	}
7431 
7432 	vds->ispecp = ispecp;
7433 	vds->initialized |= VDS_MDEG;
7434 
7435 	/* Prevent auto-detaching so driver is available whenever MD changes */
7436 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7437 	    DDI_PROP_SUCCESS) {
7438 		PRN("failed to set \"%s\" property for instance %u",
7439 		    DDI_NO_AUTODETACH, instance);
7440 	}
7441 
7442 	/* read any user defined driver types from conf file and update list */
7443 	vds_driver_types_update(vds);
7444 
7445 	ddi_report_dev(dip);
7446 	return (DDI_SUCCESS);
7447 }
7448 
7449 static int
7450 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7451 {
7452 	int	status;
7453 
7454 	switch (cmd) {
7455 	case DDI_ATTACH:
7456 		PR0("Attaching");
7457 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7458 			(void) vds_detach(dip, DDI_DETACH);
7459 		return (status);
7460 	case DDI_RESUME:
7461 		PR0("No action required for DDI_RESUME");
7462 		return (DDI_SUCCESS);
7463 	default:
7464 		return (DDI_FAILURE);
7465 	}
7466 }
7467 
7468 static struct dev_ops vds_ops = {
7469 	DEVO_REV,	/* devo_rev */
7470 	0,		/* devo_refcnt */
7471 	ddi_no_info,	/* devo_getinfo */
7472 	nulldev,	/* devo_identify */
7473 	nulldev,	/* devo_probe */
7474 	vds_attach,	/* devo_attach */
7475 	vds_detach,	/* devo_detach */
7476 	nodev,		/* devo_reset */
7477 	NULL,		/* devo_cb_ops */
7478 	NULL,		/* devo_bus_ops */
7479 	nulldev,	/* devo_power */
7480 	ddi_quiesce_not_needed,	/* devo_quiesce */
7481 };
7482 
7483 static struct modldrv modldrv = {
7484 	&mod_driverops,
7485 	"virtual disk server",
7486 	&vds_ops,
7487 };
7488 
7489 static struct modlinkage modlinkage = {
7490 	MODREV_1,
7491 	&modldrv,
7492 	NULL
7493 };
7494 
7495 
7496 int
7497 _init(void)
7498 {
7499 	int		status;
7500 
7501 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7502 		return (status);
7503 
7504 	if ((status = mod_install(&modlinkage)) != 0) {
7505 		ddi_soft_state_fini(&vds_state);
7506 		return (status);
7507 	}
7508 
7509 	return (0);
7510 }
7511 
7512 int
7513 _info(struct modinfo *modinfop)
7514 {
7515 	return (mod_info(&modlinkage, modinfop));
7516 }
7517 
7518 int
7519 _fini(void)
7520 {
7521 	int	status;
7522 
7523 	if ((status = mod_remove(&modlinkage)) != 0)
7524 		return (status);
7525 	ddi_soft_state_fini(&vds_state);
7526 	return (0);
7527 }
7528