xref: /titanic_51/usr/src/uts/sun4v/io/vds.c (revision 30a5e8fa1253cb33980ee4514743cf683f584b4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vdsk_mailbox.h>
50 #include <sys/vdsk_common.h>
51 #include <sys/vtoc.h>
52 #include <sys/vfs.h>
53 #include <sys/stat.h>
54 #include <sys/scsi/impl/uscsi.h>
55 #include <vm/seg_map.h>
56 
57 /* Virtual disk server initialization flags */
58 #define	VDS_LDI			0x01
59 #define	VDS_MDEG		0x02
60 
61 /* Virtual disk server tunable parameters */
62 #define	VDS_RETRIES		5
63 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
64 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
65 #define	VDS_NCHAINS		32
66 
67 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
68 #define	VDS_NAME		"virtual-disk-server"
69 
70 #define	VD_NAME			"vd"
71 #define	VD_VOLUME_NAME		"vdisk"
72 #define	VD_ASCIILABEL		"Virtual Disk"
73 
74 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
75 #define	VD_ID_PROP		"id"
76 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
77 #define	VD_REG_PROP		"reg"
78 
79 /* Virtual disk initialization flags */
80 #define	VD_DISK_READY		0x01
81 #define	VD_LOCKING		0x02
82 #define	VD_LDC			0x04
83 #define	VD_DRING		0x08
84 #define	VD_SID			0x10
85 #define	VD_SEQ_NUM		0x20
86 
87 /* Flags for opening/closing backing devices via LDI */
88 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
89 
90 /* Flags for writing to a vdisk which is a file */
91 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
92 
93 /* Number of backup labels */
94 #define	VD_FILE_NUM_BACKUP	5
95 
96 /* Timeout for SCSI I/O */
97 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
98 
99 /*
100  * By Solaris convention, slice/partition 2 represents the entire disk;
101  * unfortunately, this convention does not appear to be codified.
102  */
103 #define	VD_ENTIRE_DISK_SLICE	2
104 
105 /* Return a cpp token as a string */
106 #define	STRINGIZE(token)	#token
107 
108 /*
109  * Print a message prefixed with the current function name to the message log
110  * (and optionally to the console for verbose boots); these macros use cpp's
111  * concatenation of string literals and C99 variable-length-argument-list
112  * macros
113  */
114 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
115 #define	_PRN(format, ...)					\
116 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
117 
118 /* Return a pointer to the "i"th vdisk dring element */
119 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
120 	    (vd->dring + (i)*vd->descriptor_size))
121 
122 /* Return the virtual disk client's type as a string (for use in messages) */
123 #define	VD_CLIENT(vd)							\
124 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
125 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
126 		(((vd)->xfer_mode == 0) ? "null client" :		\
127 		    "unsupported client")))
128 
129 /* Read disk label from a disk on file */
130 #define	VD_FILE_LABEL_READ(vd, labelp) \
131 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
132 	    0, sizeof (struct dk_label))
133 
134 /* Write disk label to a disk on file */
135 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
136 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
137 	    0, sizeof (struct dk_label))
138 
139 /*
140  * Specification of an MD node passed to the MDEG to filter any
141  * 'vport' nodes that do not belong to the specified node. This
142  * template is copied for each vds instance and filled in with
143  * the appropriate 'cfg-handle' value before being passed to the MDEG.
144  */
145 static mdeg_prop_spec_t	vds_prop_template[] = {
146 	{ MDET_PROP_STR,	"name",		VDS_NAME },
147 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
148 	{ MDET_LIST_END,	NULL, 		NULL }
149 };
150 
151 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
152 
153 /*
154  * Matching criteria passed to the MDEG to register interest
155  * in changes to 'virtual-device-port' nodes identified by their
156  * 'id' property.
157  */
158 static md_prop_match_t	vd_prop_match[] = {
159 	{ MDET_PROP_VAL,	VD_ID_PROP },
160 	{ MDET_LIST_END,	NULL }
161 };
162 
163 static mdeg_node_match_t vd_match = {"virtual-device-port",
164 				    vd_prop_match};
165 
166 /* Debugging macros */
167 #ifdef DEBUG
168 
169 static int	vd_msglevel = 0;
170 
171 #define	PR0 if (vd_msglevel > 0)	PRN
172 #define	PR1 if (vd_msglevel > 1)	PRN
173 #define	PR2 if (vd_msglevel > 2)	PRN
174 
175 #define	VD_DUMP_DRING_ELEM(elem)					\
176 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
177 	    elem->hdr.dstate,						\
178 	    elem->payload.operation,					\
179 	    elem->payload.status,					\
180 	    elem->payload.nbytes,					\
181 	    elem->payload.addr,						\
182 	    elem->payload.ncookies);
183 
184 char *
185 vd_decode_state(int state)
186 {
187 	char *str;
188 
189 #define	CASE_STATE(_s)	case _s: str = #_s; break;
190 
191 	switch (state) {
192 	CASE_STATE(VD_STATE_INIT)
193 	CASE_STATE(VD_STATE_VER)
194 	CASE_STATE(VD_STATE_ATTR)
195 	CASE_STATE(VD_STATE_DRING)
196 	CASE_STATE(VD_STATE_RDX)
197 	CASE_STATE(VD_STATE_DATA)
198 	default: str = "unknown"; break;
199 	}
200 
201 #undef CASE_STATE
202 
203 	return (str);
204 }
205 
206 void
207 vd_decode_tag(vio_msg_t *msg)
208 {
209 	char *tstr, *sstr, *estr;
210 
211 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
212 
213 	switch (msg->tag.vio_msgtype) {
214 	CASE_TYPE(VIO_TYPE_CTRL)
215 	CASE_TYPE(VIO_TYPE_DATA)
216 	CASE_TYPE(VIO_TYPE_ERR)
217 	default: tstr = "unknown"; break;
218 	}
219 
220 #undef CASE_TYPE
221 
222 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
223 
224 	switch (msg->tag.vio_subtype) {
225 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
226 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
227 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
228 	default: sstr = "unknown"; break;
229 	}
230 
231 #undef CASE_SUBTYPE
232 
233 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
234 
235 	switch (msg->tag.vio_subtype_env) {
236 	CASE_ENV(VIO_VER_INFO)
237 	CASE_ENV(VIO_ATTR_INFO)
238 	CASE_ENV(VIO_DRING_REG)
239 	CASE_ENV(VIO_DRING_UNREG)
240 	CASE_ENV(VIO_RDX)
241 	CASE_ENV(VIO_PKT_DATA)
242 	CASE_ENV(VIO_DESC_DATA)
243 	CASE_ENV(VIO_DRING_DATA)
244 	default: estr = "unknown"; break;
245 	}
246 
247 #undef CASE_ENV
248 
249 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
250 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
251 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
252 }
253 
254 #else	/* !DEBUG */
255 
256 #define	PR0(...)
257 #define	PR1(...)
258 #define	PR2(...)
259 
260 #define	VD_DUMP_DRING_ELEM(elem)
261 
262 #define	vd_decode_state(_s)	(NULL)
263 #define	vd_decode_tag(_s)	(NULL)
264 
265 #endif	/* DEBUG */
266 
267 
268 /*
269  * Soft state structure for a vds instance
270  */
271 typedef struct vds {
272 	uint_t		initialized;	/* driver inst initialization flags */
273 	dev_info_t	*dip;		/* driver inst devinfo pointer */
274 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
275 	mod_hash_t	*vd_table;	/* table of virtual disks served */
276 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
277 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
278 } vds_t;
279 
280 /*
281  * Types of descriptor-processing tasks
282  */
283 typedef enum vd_task_type {
284 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
285 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
286 } vd_task_type_t;
287 
288 /*
289  * Structure describing the task for processing a descriptor
290  */
291 typedef struct vd_task {
292 	struct vd		*vd;		/* vd instance task is for */
293 	vd_task_type_t		type;		/* type of descriptor task */
294 	int			index;		/* dring elem index for task */
295 	vio_msg_t		*msg;		/* VIO message task is for */
296 	size_t			msglen;		/* length of message content */
297 	vd_dring_payload_t	*request;	/* request task will perform */
298 	struct buf		buf;		/* buf(9s) for I/O request */
299 	ldc_mem_handle_t	mhdl;		/* task memory handle */
300 	int			status;		/* status of processing task */
301 	int	(*completef)(struct vd_task *task); /* completion func ptr */
302 } vd_task_t;
303 
304 /*
305  * Soft state structure for a virtual disk instance
306  */
307 typedef struct vd {
308 	uint_t			initialized;	/* vdisk initialization flags */
309 	vds_t			*vds;		/* server for this vdisk */
310 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
311 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
312 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
313 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
314 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
315 	uint_t			nslices;	/* number of slices */
316 	size_t			vdisk_size;	/* number of blocks in vdisk */
317 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
318 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
319 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
320 	boolean_t		pseudo;		/* underlying pseudo dev */
321 	boolean_t		file;		/* underlying file */
322 	vnode_t			*file_vnode;	/* file vnode */
323 	size_t			file_size;	/* file size */
324 	ddi_devid_t		file_devid;	/* devid for disk image */
325 	struct dk_efi		dk_efi;		/* synthetic for slice type */
326 	struct dk_geom		dk_geom;	/* synthetic for slice type */
327 	struct vtoc		vtoc;		/* synthetic for slice type */
328 	ldc_status_t		ldc_state;	/* LDC connection state */
329 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
330 	size_t			max_msglen;	/* largest LDC message len */
331 	vd_state_t		state;		/* client handshake state */
332 	uint8_t			xfer_mode;	/* transfer mode with client */
333 	uint32_t		sid;		/* client's session ID */
334 	uint64_t		seq_num;	/* message sequence number */
335 	uint64_t		dring_ident;	/* identifier of dring */
336 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
337 	uint32_t		descriptor_size;	/* num bytes in desc */
338 	uint32_t		dring_len;	/* number of dring elements */
339 	caddr_t			dring;		/* address of dring */
340 	caddr_t			vio_msgp;	/* vio msg staging buffer */
341 	vd_task_t		inband_task;	/* task for inband descriptor */
342 	vd_task_t		*dring_task;	/* tasks dring elements */
343 
344 	kmutex_t		lock;		/* protects variables below */
345 	boolean_t		enabled;	/* is vdisk enabled? */
346 	boolean_t		reset_state;	/* reset connection state? */
347 	boolean_t		reset_ldc;	/* reset LDC channel? */
348 } vd_t;
349 
350 typedef struct vds_operation {
351 	char	*namep;
352 	uint8_t	operation;
353 	int	(*start)(vd_task_t *task);
354 	int	(*complete)(vd_task_t *task);
355 } vds_operation_t;
356 
357 typedef struct vd_ioctl {
358 	uint8_t		operation;		/* vdisk operation */
359 	const char	*operation_name;	/* vdisk operation name */
360 	size_t		nbytes;			/* size of operation buffer */
361 	int		cmd;			/* corresponding ioctl cmd */
362 	const char	*cmd_name;		/* ioctl cmd name */
363 	void		*arg;			/* ioctl cmd argument */
364 	/* convert input vd_buf to output ioctl_arg */
365 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
366 	/* convert input ioctl_arg to output vd_buf */
367 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
368 } vd_ioctl_t;
369 
370 /* Define trivial copyin/copyout conversion function flag */
371 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
372 
373 
374 static int	vds_ldc_retries = VDS_RETRIES;
375 static int	vds_ldc_delay = VDS_LDC_DELAY;
376 static int	vds_dev_retries = VDS_RETRIES;
377 static int	vds_dev_delay = VDS_DEV_DELAY;
378 static void	*vds_state;
379 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
380 
381 static int	vd_open_flags = VD_OPEN_FLAGS;
382 
383 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
384 
385 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
386 
387 /*
388  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
389  *
390  * Each supported major version should appear only once, paired with (and only
391  * with) its highest supported minor version number (as the protocol requires
392  * supporting all lower minor version numbers as well)
393  */
394 static const vio_ver_t	vds_version[] = {{1, 0}};
395 static const size_t	vds_num_versions =
396     sizeof (vds_version)/sizeof (vds_version[0]);
397 
398 static void vd_free_dring_task(vd_t *vdp);
399 static int vd_setup_vd(vd_t *vd);
400 static boolean_t vd_enabled(vd_t *vd);
401 static ushort_t vd_lbl2cksum(struct dk_label *label);
402 static int vd_file_validate_geometry(vd_t *vd);
403 /*
404  * Function:
405  *	vd_file_rw
406  *
407  * Description:
408  * 	Read or write to a disk on file.
409  *
410  * Parameters:
411  *	vd		- disk on which the operation is performed.
412  *	slice		- slice on which the operation is performed,
413  *			  VD_SLICE_NONE indicates that the operation
414  *			  is done using an absolute disk offset.
415  *	operation	- operation to execute: read (VD_OP_BREAD) or
416  *			  write (VD_OP_BWRITE).
417  *	data		- buffer where data are read to or written from.
418  *	blk		- starting block for the operation.
419  *	len		- number of bytes to read or write.
420  *
421  * Return Code:
422  *	n >= 0		- success, n indicates the number of bytes read
423  *			  or written.
424  *	-1		- error.
425  */
426 static ssize_t
427 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
428     size_t len)
429 {
430 	caddr_t	maddr;
431 	size_t offset, maxlen, moffset, mlen, n;
432 	uint_t smflags;
433 	enum seg_rw srw;
434 
435 	ASSERT(vd->file);
436 	ASSERT(len > 0);
437 
438 	if (slice == VD_SLICE_NONE) {
439 		/* raw disk access */
440 		offset = blk * DEV_BSIZE;
441 	} else {
442 		ASSERT(slice >= 0 && slice < V_NUMPAR);
443 
444 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
445 		    vd_file_validate_geometry(vd) != 0) {
446 			PR0("Unknown disk label, can't do I/O from slice %d",
447 			    slice);
448 			return (-1);
449 		}
450 
451 		if (blk >= vd->vtoc.v_part[slice].p_size) {
452 			/* address past the end of the slice */
453 			PR0("req_addr (0x%lx) > psize (0x%lx)",
454 			    blk, vd->vtoc.v_part[slice].p_size);
455 			return (0);
456 		}
457 
458 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
459 
460 		/*
461 		 * If the requested size is greater than the size
462 		 * of the partition, truncate the read/write.
463 		 */
464 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
465 
466 		if (len > maxlen) {
467 			PR0("I/O size truncated to %lu bytes from %lu bytes",
468 			    maxlen, len);
469 			len = maxlen;
470 		}
471 	}
472 
473 	/*
474 	 * We have to ensure that we are reading/writing into the mmap
475 	 * range. If we have a partial disk image (e.g. an image of
476 	 * s0 instead s2) the system can try to access slices that
477 	 * are not included into the disk image.
478 	 */
479 	if ((offset + len) >= vd->file_size) {
480 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
481 		    "file_size (0x%lx)", offset, len, vd->file_size);
482 		return (-1);
483 	}
484 
485 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
486 	smflags = (operation == VD_OP_BREAD)? 0 :
487 	    (SM_WRITE | vd_file_write_flags);
488 	n = len;
489 
490 	do {
491 		/*
492 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
493 		 * MAXBSIZE aligned.
494 		 */
495 		moffset = offset & MAXBOFFSET;
496 		mlen = MIN(MAXBSIZE - moffset, n);
497 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
498 		    mlen, 1, srw);
499 		/*
500 		 * Fault in the pages so we can check for error and ensure
501 		 * that we can safely used the mapped address.
502 		 */
503 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
504 		    F_SOFTLOCK, srw) != 0) {
505 			(void) segmap_release(segkmap, maddr, 0);
506 			return (-1);
507 		}
508 
509 		if (operation == VD_OP_BREAD)
510 			bcopy(maddr + moffset, data, mlen);
511 		else
512 			bcopy(data, maddr + moffset, mlen);
513 
514 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
515 		    F_SOFTUNLOCK, srw) != 0) {
516 			(void) segmap_release(segkmap, maddr, 0);
517 			return (-1);
518 		}
519 		if (segmap_release(segkmap, maddr, smflags) != 0)
520 			return (-1);
521 		n -= mlen;
522 		offset += mlen;
523 		data += mlen;
524 
525 	} while (n > 0);
526 
527 	return (len);
528 }
529 
530 /*
531  * Function:
532  *	vd_file_build_default_label
533  *
534  * Description:
535  *	Return a default label for the given disk. This is used when the disk
536  *	does not have a valid VTOC so that the user can get a valid default
537  *	configuration. The default label have all slices size set to 0 (except
538  *	slice 2 which is the entire disk) to force the user to write a valid
539  *	label onto the disk image.
540  *
541  * Parameters:
542  *	vd		- disk on which the operation is performed.
543  *	label		- the returned default label.
544  *
545  * Return Code:
546  *	none.
547  */
548 static void
549 vd_file_build_default_label(vd_t *vd, struct dk_label *label)
550 {
551 	size_t size;
552 	char prefix;
553 
554 	ASSERT(vd->file);
555 
556 	/*
557 	 * We must have a resonable number of cylinders and sectors so
558 	 * that newfs can run using default values.
559 	 *
560 	 * if (disk_size < 2MB)
561 	 * 	phys_cylinders = disk_size / 100K
562 	 * else
563 	 * 	phys_cylinders = disk_size / 300K
564 	 *
565 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
566 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
567 	 * data_cylinders = phys_cylinders - alt_cylinders
568 	 *
569 	 * sectors = disk_size / (phys_cylinders * blk_size)
570 	 *
571 	 * The file size test is an attempt to not have too few cylinders
572 	 * for a small file, or so many on a big file that you waste space
573 	 * for backup superblocks or cylinder group structures.
574 	 */
575 	if (vd->file_size < (2 * 1024 * 1024))
576 		label->dkl_pcyl = vd->file_size / (100 * 1024);
577 	else
578 		label->dkl_pcyl = vd->file_size / (300 * 1024);
579 
580 	if (label->dkl_pcyl == 0)
581 		label->dkl_pcyl = 1;
582 
583 	if (label->dkl_pcyl > 2)
584 		label->dkl_acyl = 2;
585 	else
586 		label->dkl_acyl = 0;
587 
588 	label->dkl_nsect = vd->file_size /
589 	    (DEV_BSIZE * label->dkl_pcyl);
590 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
591 	label->dkl_nhead = 1;
592 	label->dkl_write_reinstruct = 0;
593 	label->dkl_read_reinstruct = 0;
594 	label->dkl_rpm = 7200;
595 	label->dkl_apc = 0;
596 	label->dkl_intrlv = 0;
597 
598 	PR0("requested disk size: %ld bytes\n", vd->file_size);
599 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
600 	    label->dkl_nhead, label->dkl_nsect);
601 	PR0("provided disk size: %ld bytes\n", (uint64_t)
602 	    (label->dkl_pcyl * label->dkl_nhead *
603 	    label->dkl_nsect * DEV_BSIZE));
604 
605 	if (vd->file_size < (1ULL << 20)) {
606 		size = vd->file_size >> 10;
607 		prefix = 'K'; /* Kilobyte */
608 	} else if (vd->file_size < (1ULL << 30)) {
609 		size = vd->file_size >> 20;
610 		prefix = 'M'; /* Megabyte */
611 	} else if (vd->file_size < (1ULL << 40)) {
612 		size = vd->file_size >> 30;
613 		prefix = 'G'; /* Gigabyte */
614 	} else {
615 		size = vd->file_size >> 40;
616 		prefix = 'T'; /* Terabyte */
617 	}
618 
619 	/*
620 	 * We must have a correct label name otherwise format(1m) will
621 	 * not recognized the disk as labeled.
622 	 */
623 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
624 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
625 	    size, prefix,
626 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
627 	    label->dkl_nsect);
628 
629 	/* default VTOC */
630 	label->dkl_vtoc.v_version = V_VERSION;
631 	label->dkl_vtoc.v_nparts = V_NUMPAR;
632 	label->dkl_vtoc.v_sanity = VTOC_SANE;
633 	label->dkl_vtoc.v_part[2].p_tag = V_BACKUP;
634 	label->dkl_map[2].dkl_cylno = 0;
635 	label->dkl_map[2].dkl_nblk = label->dkl_ncyl *
636 	    label->dkl_nhead * label->dkl_nsect;
637 	label->dkl_cksum = vd_lbl2cksum(label);
638 }
639 
640 /*
641  * Function:
642  *	vd_file_set_vtoc
643  *
644  * Description:
645  *	Set the vtoc of a disk image by writing the label and backup
646  *	labels into the disk image backend.
647  *
648  * Parameters:
649  *	vd		- disk on which the operation is performed.
650  *	label		- the data to be written.
651  *
652  * Return Code:
653  *	0		- success.
654  *	n > 0		- error, n indicates the errno code.
655  */
656 static int
657 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
658 {
659 	int blk, sec, cyl, head, cnt;
660 
661 	ASSERT(vd->file);
662 
663 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
664 		PR0("fail to write disk label");
665 		return (EIO);
666 	}
667 
668 	/*
669 	 * Backup labels are on the last alternate cylinder's
670 	 * first five odd sectors.
671 	 */
672 	if (label->dkl_acyl == 0) {
673 		PR0("no alternate cylinder, can not store backup labels");
674 		return (0);
675 	}
676 
677 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
678 	head = label->dkl_nhead - 1;
679 
680 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
681 	    (head * label->dkl_nsect);
682 
683 	/*
684 	 * Write the backup labels. Make sure we don't try to write past
685 	 * the last cylinder.
686 	 */
687 	sec = 1;
688 
689 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
690 
691 		if (sec >= label->dkl_nsect) {
692 			PR0("not enough sector to store all backup labels");
693 			return (0);
694 		}
695 
696 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
697 		    blk + sec, sizeof (struct dk_label)) < 0) {
698 			PR0("error writing backup label at block %d\n",
699 			    blk + sec);
700 			return (EIO);
701 		}
702 
703 		PR1("wrote backup label at block %d\n", blk + sec);
704 
705 		sec += 2;
706 	}
707 
708 	return (0);
709 }
710 
711 /*
712  * Function:
713  *	vd_file_get_devid_block
714  *
715  * Description:
716  *	Return the block number where the device id is stored.
717  *
718  * Parameters:
719  *	vd		- disk on which the operation is performed.
720  *	blkp		- pointer to the block number
721  *
722  * Return Code:
723  *	0		- success
724  *	ENOSPC		- disk has no space to store a device id
725  */
726 static int
727 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
728 {
729 	diskaddr_t spc, head, cyl;
730 
731 	ASSERT(vd->file);
732 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
733 
734 	/* this geometry doesn't allow us to have a devid */
735 	if (vd->dk_geom.dkg_acyl < 2) {
736 		PR0("not enough alternate cylinder available for devid "
737 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
738 		return (ENOSPC);
739 	}
740 
741 	/* the devid is in on the track next to the last cylinder */
742 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
743 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
744 	head = vd->dk_geom.dkg_nhead - 1;
745 
746 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
747 	    (head * vd->dk_geom.dkg_nsect) + 1;
748 
749 	return (0);
750 }
751 
752 /*
753  * Return the checksum of a disk block containing an on-disk devid.
754  */
755 static uint_t
756 vd_dkdevid2cksum(struct dk_devid *dkdevid)
757 {
758 	uint_t chksum, *ip;
759 	int i;
760 
761 	chksum = 0;
762 	ip = (uint_t *)dkdevid;
763 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
764 		chksum ^= ip[i];
765 
766 	return (chksum);
767 }
768 
769 /*
770  * Function:
771  *	vd_file_read_devid
772  *
773  * Description:
774  *	Read the device id stored on a disk image.
775  *
776  * Parameters:
777  *	vd		- disk on which the operation is performed.
778  *	devid		- the return address of the device ID.
779  *
780  * Return Code:
781  *	0		- success
782  *	EIO		- I/O error while trying to access the disk image
783  *	EINVAL		- no valid device id was found
784  *	ENOSPC		- disk has no space to store a device id
785  */
786 static int
787 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
788 {
789 	struct dk_devid *dkdevid;
790 	size_t blk;
791 	uint_t chksum;
792 	int status, sz;
793 
794 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
795 		return (status);
796 
797 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
798 
799 	/* get the devid */
800 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
801 	    DEV_BSIZE)) < 0) {
802 		PR0("error reading devid block at %lu", blk);
803 		status = EIO;
804 		goto done;
805 	}
806 
807 	/* validate the revision */
808 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
809 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
810 		PR0("invalid devid found at block %lu (bad revision)", blk);
811 		status = EINVAL;
812 		goto done;
813 	}
814 
815 	/* compute checksum */
816 	chksum = vd_dkdevid2cksum(dkdevid);
817 
818 	/* compare the checksums */
819 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
820 		PR0("invalid devid found at block %lu (bad checksum)", blk);
821 		status = EINVAL;
822 		goto done;
823 	}
824 
825 	/* validate the device id */
826 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
827 		PR0("invalid devid found at block %lu", blk);
828 		status = EINVAL;
829 		goto done;
830 	}
831 
832 	PR1("devid read at block %lu", blk);
833 
834 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
835 	*devid = kmem_alloc(sz, KM_SLEEP);
836 	bcopy(&dkdevid->dkd_devid, *devid, sz);
837 
838 done:
839 	kmem_free(dkdevid, DEV_BSIZE);
840 	return (status);
841 
842 }
843 
844 /*
845  * Function:
846  *	vd_file_write_devid
847  *
848  * Description:
849  *	Write a device id into disk image.
850  *
851  * Parameters:
852  *	vd		- disk on which the operation is performed.
853  *	devid		- the device ID to store.
854  *
855  * Return Code:
856  *	0		- success
857  *	EIO		- I/O error while trying to access the disk image
858  *	ENOSPC		- disk has no space to store a device id
859  */
860 static int
861 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
862 {
863 	struct dk_devid *dkdevid;
864 	uint_t chksum;
865 	size_t blk;
866 	int status;
867 
868 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
869 		return (status);
870 
871 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
872 
873 	/* set revision */
874 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
875 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
876 
877 	/* copy devid */
878 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
879 
880 	/* compute checksum */
881 	chksum = vd_dkdevid2cksum(dkdevid);
882 
883 	/* set checksum */
884 	DKD_FORMCHKSUM(chksum, dkdevid);
885 
886 	/* store the devid */
887 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
888 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
889 		PR0("Error writing devid block at %lu", blk);
890 		status = EIO;
891 	} else {
892 		PR1("devid written at block %lu", blk);
893 		status = 0;
894 	}
895 
896 	kmem_free(dkdevid, DEV_BSIZE);
897 	return (status);
898 }
899 
900 /*
901  * Function:
902  *	vd_scsi_rdwr
903  *
904  * Description:
905  * 	Read or write to a SCSI disk using an absolute disk offset.
906  *
907  * Parameters:
908  *	vd		- disk on which the operation is performed.
909  *	operation	- operation to execute: read (VD_OP_BREAD) or
910  *			  write (VD_OP_BWRITE).
911  *	data		- buffer where data are read to or written from.
912  *	blk		- starting block for the operation.
913  *	len		- number of bytes to read or write.
914  *
915  * Return Code:
916  *	0		- success
917  *	n != 0		- error.
918  */
919 static int
920 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
921 {
922 	struct uscsi_cmd ucmd;
923 	union scsi_cdb cdb;
924 	int nsectors, nblk;
925 	int max_sectors;
926 	int status, rval;
927 
928 	ASSERT(!vd->file);
929 
930 	max_sectors = vd->max_xfer_sz;
931 	nblk = (len / DEV_BSIZE);
932 
933 	if (len % DEV_BSIZE != 0)
934 		return (EINVAL);
935 
936 	/*
937 	 * Build and execute the uscsi ioctl.  We build a group0, group1
938 	 * or group4 command as necessary, since some targets
939 	 * do not support group1 commands.
940 	 */
941 	while (nblk) {
942 
943 		bzero(&ucmd, sizeof (ucmd));
944 		bzero(&cdb, sizeof (cdb));
945 
946 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
947 
948 		if (blk < (2 << 20) && nsectors <= 0xff) {
949 			FORMG0ADDR(&cdb, blk);
950 			FORMG0COUNT(&cdb, nsectors);
951 			ucmd.uscsi_cdblen = CDB_GROUP0;
952 		} else if (blk > 0xffffffff) {
953 			FORMG4LONGADDR(&cdb, blk);
954 			FORMG4COUNT(&cdb, nsectors);
955 			ucmd.uscsi_cdblen = CDB_GROUP4;
956 			cdb.scc_cmd |= SCMD_GROUP4;
957 		} else {
958 			FORMG1ADDR(&cdb, blk);
959 			FORMG1COUNT(&cdb, nsectors);
960 			ucmd.uscsi_cdblen = CDB_GROUP1;
961 			cdb.scc_cmd |= SCMD_GROUP1;
962 		}
963 
964 		ucmd.uscsi_cdb = (caddr_t)&cdb;
965 		ucmd.uscsi_bufaddr = data;
966 		ucmd.uscsi_buflen = nsectors * DEV_BSIZE;
967 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
968 		/*
969 		 * Set flags so that the command is isolated from normal
970 		 * commands and no error message is printed.
971 		 */
972 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
973 
974 		if (operation == VD_OP_BREAD) {
975 			cdb.scc_cmd |= SCMD_READ;
976 			ucmd.uscsi_flags |= USCSI_READ;
977 		} else {
978 			cdb.scc_cmd |= SCMD_WRITE;
979 		}
980 
981 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
982 		    USCSICMD, (intptr_t)&ucmd, (vd_open_flags | FKIOCTL),
983 		    kcred, &rval);
984 
985 		if (status == 0)
986 			status = ucmd.uscsi_status;
987 
988 		if (status != 0)
989 			break;
990 
991 		/*
992 		 * Check if partial DMA breakup is required. If so, reduce
993 		 * the request size by half and retry the last request.
994 		 */
995 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
996 			max_sectors >>= 1;
997 			if (max_sectors <= 0) {
998 				status = EIO;
999 				break;
1000 			}
1001 			continue;
1002 		}
1003 
1004 		if (ucmd.uscsi_resid != 0) {
1005 			status = EIO;
1006 			break;
1007 		}
1008 
1009 		blk += nsectors;
1010 		nblk -= nsectors;
1011 		data += nsectors * DEV_BSIZE; /* SECSIZE */
1012 	}
1013 
1014 	return (status);
1015 }
1016 
1017 /*
1018  * Return Values
1019  *	EINPROGRESS	- operation was successfully started
1020  *	EIO		- encountered LDC (aka. task error)
1021  *	0		- operation completed successfully
1022  *
1023  * Side Effect
1024  *     sets request->status = <disk operation status>
1025  */
1026 static int
1027 vd_start_bio(vd_task_t *task)
1028 {
1029 	int			rv, status = 0;
1030 	vd_t			*vd		= task->vd;
1031 	vd_dring_payload_t	*request	= task->request;
1032 	struct buf		*buf		= &task->buf;
1033 	uint8_t			mtype;
1034 	int 			slice;
1035 
1036 	ASSERT(vd != NULL);
1037 	ASSERT(request != NULL);
1038 
1039 	slice = request->slice;
1040 
1041 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1042 	ASSERT((request->operation == VD_OP_BREAD) ||
1043 	    (request->operation == VD_OP_BWRITE));
1044 
1045 	if (request->nbytes == 0) {
1046 		/* no service for trivial requests */
1047 		request->status = EINVAL;
1048 		return (0);
1049 	}
1050 
1051 	PR1("%s %lu bytes at block %lu",
1052 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1053 	    request->nbytes, request->addr);
1054 
1055 	bioinit(buf);
1056 	buf->b_flags		= B_BUSY;
1057 	buf->b_bcount		= request->nbytes;
1058 	buf->b_lblkno		= request->addr;
1059 	buf->b_edev = (slice == VD_SLICE_NONE)? NODEV : vd->dev[slice];
1060 
1061 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1062 
1063 	/* Map memory exported by client */
1064 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1065 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1066 	    &(buf->b_un.b_addr), NULL);
1067 	if (status != 0) {
1068 		PR0("ldc_mem_map() returned err %d ", status);
1069 		biofini(buf);
1070 		return (EIO);
1071 	}
1072 
1073 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
1074 	if (status != 0) {
1075 		(void) ldc_mem_unmap(task->mhdl);
1076 		PR0("ldc_mem_acquire() returned err %d ", status);
1077 		biofini(buf);
1078 		return (EIO);
1079 	}
1080 
1081 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
1082 
1083 	/* Start the block I/O */
1084 	if (vd->file) {
1085 		rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr,
1086 		    request->addr, request->nbytes);
1087 		if (rv < 0) {
1088 			request->nbytes = 0;
1089 			request->status = EIO;
1090 		} else {
1091 			request->nbytes = rv;
1092 			request->status = 0;
1093 		}
1094 	} else {
1095 		if (slice == VD_SLICE_NONE) {
1096 			/*
1097 			 * This is not a disk image so it is a real disk. We
1098 			 * assume that the underlying device driver supports
1099 			 * USCSICMD ioctls. This is the case of all SCSI devices
1100 			 * (sd, ssd...).
1101 			 *
1102 			 * In the future if we have non-SCSI disks we would need
1103 			 * to invoke the appropriate function to do I/O using an
1104 			 * absolute disk offset (for example using DKIOCTL_RWCMD
1105 			 * for IDE disks).
1106 			 */
1107 			rv = vd_scsi_rdwr(vd, request->operation,
1108 			    buf->b_un.b_addr, request->addr, request->nbytes);
1109 			if (rv != 0) {
1110 				request->nbytes = 0;
1111 				request->status = EIO;
1112 			} else {
1113 				request->status = 0;
1114 			}
1115 		} else {
1116 			request->status =
1117 			    ldi_strategy(vd->ldi_handle[slice], buf);
1118 
1119 			/*
1120 			 * This is to indicate to the caller that the request
1121 			 * needs to be finished by vd_complete_bio() by calling
1122 			 * biowait() there and waiting for that to return before
1123 			 * triggering the notification of the vDisk client.
1124 			 *
1125 			 * This is necessary when writing to real disks as
1126 			 * otherwise calls to ldi_strategy() would be serialized
1127 			 * behind the calls to biowait() and performance would
1128 			 * suffer.
1129 			 */
1130 			if (request->status == 0)
1131 				return (EINPROGRESS);
1132 		}
1133 	}
1134 
1135 	/* Clean up after error */
1136 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1137 	if (rv) {
1138 		PR0("ldc_mem_release() returned err %d ", rv);
1139 		status = EIO;
1140 	}
1141 	rv = ldc_mem_unmap(task->mhdl);
1142 	if (rv) {
1143 		PR0("ldc_mem_unmap() returned err %d ", rv);
1144 		status = EIO;
1145 	}
1146 
1147 	biofini(buf);
1148 
1149 	return (status);
1150 }
1151 
1152 /*
1153  * This function should only be called from vd_notify to ensure that requests
1154  * are responded to in the order that they are received.
1155  */
1156 static int
1157 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1158 {
1159 	int	status;
1160 	size_t	nbytes;
1161 
1162 	do {
1163 		nbytes = msglen;
1164 		status = ldc_write(ldc_handle, msg, &nbytes);
1165 		if (status != EWOULDBLOCK)
1166 			break;
1167 		drv_usecwait(vds_ldc_delay);
1168 	} while (status == EWOULDBLOCK);
1169 
1170 	if (status != 0) {
1171 		if (status != ECONNRESET)
1172 			PR0("ldc_write() returned errno %d", status);
1173 		return (status);
1174 	} else if (nbytes != msglen) {
1175 		PR0("ldc_write() performed only partial write");
1176 		return (EIO);
1177 	}
1178 
1179 	PR1("SENT %lu bytes", msglen);
1180 	return (0);
1181 }
1182 
1183 static void
1184 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1185 {
1186 	mutex_enter(&vd->lock);
1187 	vd->reset_state	= B_TRUE;
1188 	vd->reset_ldc	= reset_ldc;
1189 	mutex_exit(&vd->lock);
1190 }
1191 
1192 /*
1193  * Reset the state of the connection with a client, if needed; reset the LDC
1194  * transport as well, if needed.  This function should only be called from the
1195  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1196  */
1197 static void
1198 vd_reset_if_needed(vd_t *vd)
1199 {
1200 	int	status = 0;
1201 
1202 	mutex_enter(&vd->lock);
1203 	if (!vd->reset_state) {
1204 		ASSERT(!vd->reset_ldc);
1205 		mutex_exit(&vd->lock);
1206 		return;
1207 	}
1208 	mutex_exit(&vd->lock);
1209 
1210 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1211 
1212 	/*
1213 	 * Let any asynchronous I/O complete before possibly pulling the rug
1214 	 * out from under it; defer checking vd->reset_ldc, as one of the
1215 	 * asynchronous tasks might set it
1216 	 */
1217 	ddi_taskq_wait(vd->completionq);
1218 
1219 	if (vd->file) {
1220 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
1221 		if (status) {
1222 			PR0("VOP_FSYNC returned errno %d", status);
1223 		}
1224 	}
1225 
1226 	if ((vd->initialized & VD_DRING) &&
1227 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1228 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1229 
1230 	vd_free_dring_task(vd);
1231 
1232 	/* Free the staging buffer for msgs */
1233 	if (vd->vio_msgp != NULL) {
1234 		kmem_free(vd->vio_msgp, vd->max_msglen);
1235 		vd->vio_msgp = NULL;
1236 	}
1237 
1238 	/* Free the inband message buffer */
1239 	if (vd->inband_task.msg != NULL) {
1240 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1241 		vd->inband_task.msg = NULL;
1242 	}
1243 
1244 	mutex_enter(&vd->lock);
1245 
1246 	if (vd->reset_ldc)
1247 		PR0("taking down LDC channel");
1248 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1249 		PR0("ldc_down() returned errno %d", status);
1250 
1251 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1252 	vd->state	= VD_STATE_INIT;
1253 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1254 
1255 	/* Allocate the staging buffer */
1256 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1257 
1258 	PR0("calling ldc_up\n");
1259 	(void) ldc_up(vd->ldc_handle);
1260 
1261 	vd->reset_state	= B_FALSE;
1262 	vd->reset_ldc	= B_FALSE;
1263 
1264 	mutex_exit(&vd->lock);
1265 }
1266 
1267 static void vd_recv_msg(void *arg);
1268 
1269 static void
1270 vd_mark_in_reset(vd_t *vd)
1271 {
1272 	int status;
1273 
1274 	PR0("vd_mark_in_reset: marking vd in reset\n");
1275 
1276 	vd_need_reset(vd, B_FALSE);
1277 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1278 	if (status == DDI_FAILURE) {
1279 		PR0("cannot schedule task to recv msg\n");
1280 		vd_need_reset(vd, B_TRUE);
1281 		return;
1282 	}
1283 }
1284 
1285 static int
1286 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1287 {
1288 	boolean_t		accepted;
1289 	int			status;
1290 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1291 
1292 	if (vd->reset_state)
1293 		return (0);
1294 
1295 	/* Acquire the element */
1296 	if (!vd->reset_state &&
1297 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1298 		if (status == ECONNRESET) {
1299 			vd_mark_in_reset(vd);
1300 			return (0);
1301 		} else {
1302 			PR0("ldc_mem_dring_acquire() returned errno %d",
1303 			    status);
1304 			return (status);
1305 		}
1306 	}
1307 
1308 	/* Set the element's status and mark it done */
1309 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1310 	if (accepted) {
1311 		elem->payload.nbytes	= elem_nbytes;
1312 		elem->payload.status	= elem_status;
1313 		elem->hdr.dstate	= VIO_DESC_DONE;
1314 	} else {
1315 		/* Perhaps client timed out waiting for I/O... */
1316 		PR0("element %u no longer \"accepted\"", idx);
1317 		VD_DUMP_DRING_ELEM(elem);
1318 	}
1319 	/* Release the element */
1320 	if (!vd->reset_state &&
1321 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1322 		if (status == ECONNRESET) {
1323 			vd_mark_in_reset(vd);
1324 			return (0);
1325 		} else {
1326 			PR0("ldc_mem_dring_release() returned errno %d",
1327 			    status);
1328 			return (status);
1329 		}
1330 	}
1331 
1332 	return (accepted ? 0 : EINVAL);
1333 }
1334 
1335 /*
1336  * Return Values
1337  *	0	- operation completed successfully
1338  *	EIO	- encountered LDC / task error
1339  *
1340  * Side Effect
1341  *	sets request->status = <disk operation status>
1342  */
1343 static int
1344 vd_complete_bio(vd_task_t *task)
1345 {
1346 	int			status		= 0;
1347 	int			rv		= 0;
1348 	vd_t			*vd		= task->vd;
1349 	vd_dring_payload_t	*request	= task->request;
1350 	struct buf		*buf		= &task->buf;
1351 
1352 
1353 	ASSERT(vd != NULL);
1354 	ASSERT(request != NULL);
1355 	ASSERT(task->msg != NULL);
1356 	ASSERT(task->msglen >= sizeof (*task->msg));
1357 	ASSERT(!vd->file);
1358 	ASSERT(request->slice != VD_SLICE_NONE);
1359 
1360 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1361 	request->status = biowait(buf);
1362 
1363 	/* return back the number of bytes read/written */
1364 	request->nbytes = buf->b_bcount - buf->b_resid;
1365 
1366 	/* Release the buffer */
1367 	if (!vd->reset_state)
1368 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1369 	if (status) {
1370 		PR0("ldc_mem_release() returned errno %d copying to "
1371 		    "client", status);
1372 		if (status == ECONNRESET) {
1373 			vd_mark_in_reset(vd);
1374 		}
1375 		rv = EIO;
1376 	}
1377 
1378 	/* Unmap the memory, even if in reset */
1379 	status = ldc_mem_unmap(task->mhdl);
1380 	if (status) {
1381 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1382 		    status);
1383 		if (status == ECONNRESET) {
1384 			vd_mark_in_reset(vd);
1385 		}
1386 		rv = EIO;
1387 	}
1388 
1389 	biofini(buf);
1390 
1391 	return (rv);
1392 }
1393 
1394 /*
1395  * Description:
1396  *	This function is called by the two functions called by a taskq
1397  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1398  *	message to the client.
1399  *
1400  * Parameters:
1401  *	arg 	- opaque pointer to structure containing task to be completed
1402  *
1403  * Return Values
1404  *	None
1405  */
1406 static void
1407 vd_notify(vd_task_t *task)
1408 {
1409 	int	status;
1410 
1411 	ASSERT(task != NULL);
1412 	ASSERT(task->vd != NULL);
1413 
1414 	if (task->vd->reset_state)
1415 		return;
1416 
1417 	/*
1418 	 * Send the "ack" or "nack" back to the client; if sending the message
1419 	 * via LDC fails, arrange to reset both the connection state and LDC
1420 	 * itself
1421 	 */
1422 	PR2("Sending %s",
1423 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1424 
1425 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1426 	switch (status) {
1427 	case 0:
1428 		break;
1429 	case ECONNRESET:
1430 		vd_mark_in_reset(task->vd);
1431 		break;
1432 	default:
1433 		PR0("initiating full reset");
1434 		vd_need_reset(task->vd, B_TRUE);
1435 		break;
1436 	}
1437 
1438 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1439 }
1440 
1441 /*
1442  * Description:
1443  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1444  *	the vDisk client
1445  *
1446  * Parameters:
1447  *	task 		- structure containing the request sent from client
1448  *
1449  * Return Values
1450  *	None
1451  */
1452 static void
1453 vd_complete_notify(vd_task_t *task)
1454 {
1455 	int			status		= 0;
1456 	vd_t			*vd		= task->vd;
1457 	vd_dring_payload_t	*request	= task->request;
1458 
1459 	/* Update the dring element for a dring client */
1460 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
1461 		status = vd_mark_elem_done(vd, task->index,
1462 		    request->status, request->nbytes);
1463 		if (status == ECONNRESET)
1464 			vd_mark_in_reset(vd);
1465 	}
1466 
1467 	/*
1468 	 * If a transport error occurred while marking the element done or
1469 	 * previously while executing the task, arrange to "nack" the message
1470 	 * when the final task in the descriptor element range completes
1471 	 */
1472 	if ((status != 0) || (task->status != 0))
1473 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1474 
1475 	/*
1476 	 * Only the final task for a range of elements will respond to and
1477 	 * free the message
1478 	 */
1479 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1480 		return;
1481 	}
1482 
1483 	vd_notify(task);
1484 }
1485 
1486 /*
1487  * Description:
1488  *	This is the basic completion function called to handle inband data
1489  *	requests and handshake messages. All it needs to do is trigger a
1490  *	message to the client that the request is completed.
1491  *
1492  * Parameters:
1493  *	arg 	- opaque pointer to structure containing task to be completed
1494  *
1495  * Return Values
1496  *	None
1497  */
1498 static void
1499 vd_serial_notify(void *arg)
1500 {
1501 	vd_task_t		*task = (vd_task_t *)arg;
1502 
1503 	ASSERT(task != NULL);
1504 	vd_notify(task);
1505 }
1506 
1507 static void
1508 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
1509 {
1510 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1511 }
1512 
1513 static void
1514 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
1515 {
1516 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1517 }
1518 
1519 static void
1520 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1521 {
1522 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1523 }
1524 
1525 static void
1526 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1527 {
1528 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1529 }
1530 
1531 static void
1532 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
1533 {
1534 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1535 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1536 
1537 	dk_efi->dki_lba = vd_efi->lba;
1538 	dk_efi->dki_length = vd_efi->length;
1539 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1540 }
1541 
1542 static void
1543 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1544 {
1545 	int len;
1546 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1547 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1548 
1549 	len = vd_efi->length;
1550 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1551 	kmem_free(dk_efi->dki_data, len);
1552 }
1553 
1554 static void
1555 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
1556 {
1557 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1558 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1559 
1560 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1561 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1562 }
1563 
1564 static void
1565 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1566 {
1567 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1568 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1569 
1570 	kmem_free(dk_efi->dki_data, vd_efi->length);
1571 }
1572 
1573 static vd_disk_label_t
1574 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc)
1575 {
1576 	int status, rval;
1577 	struct dk_gpt *efi;
1578 	size_t efi_len;
1579 
1580 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
1581 	    (vd_open_flags | FKIOCTL), kcred, &rval);
1582 
1583 	if (status == 0) {
1584 		return (VD_DISK_LABEL_VTOC);
1585 	} else if (status != ENOTSUP) {
1586 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
1587 		return (VD_DISK_LABEL_UNK);
1588 	}
1589 
1590 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
1591 
1592 	if (status) {
1593 		PR0("vds_efi_alloc_and_read returned error %d", status);
1594 		return (VD_DISK_LABEL_UNK);
1595 	}
1596 
1597 	vd_efi_to_vtoc(efi, vtoc);
1598 	vd_efi_free(efi, efi_len);
1599 
1600 	return (VD_DISK_LABEL_EFI);
1601 }
1602 
1603 static ushort_t
1604 vd_lbl2cksum(struct dk_label *label)
1605 {
1606 	int	count;
1607 	ushort_t sum, *sp;
1608 
1609 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1610 	sp = (ushort_t *)label;
1611 	sum = 0;
1612 	while (count--) {
1613 		sum ^= *sp++;
1614 	}
1615 
1616 	return (sum);
1617 }
1618 
1619 /*
1620  * Handle ioctls to a disk slice.
1621  *
1622  * Return Values
1623  *	0	- Indicates that there are no errors in disk operations
1624  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
1625  *	EINVAL	- Not enough room to copy the EFI label
1626  *
1627  */
1628 static int
1629 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1630 {
1631 	dk_efi_t *dk_ioc;
1632 
1633 	switch (vd->vdisk_label) {
1634 
1635 	/* ioctls for a slice from a disk with a VTOC label */
1636 	case VD_DISK_LABEL_VTOC:
1637 
1638 		switch (cmd) {
1639 		case DKIOCGGEOM:
1640 			ASSERT(ioctl_arg != NULL);
1641 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
1642 			return (0);
1643 		case DKIOCGVTOC:
1644 			ASSERT(ioctl_arg != NULL);
1645 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1646 			return (0);
1647 		default:
1648 			return (ENOTSUP);
1649 		}
1650 
1651 	/* ioctls for a slice from a disk with an EFI label */
1652 	case VD_DISK_LABEL_EFI:
1653 
1654 		switch (cmd) {
1655 		case DKIOCGETEFI:
1656 			ASSERT(ioctl_arg != NULL);
1657 			dk_ioc = (dk_efi_t *)ioctl_arg;
1658 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1659 				return (EINVAL);
1660 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1661 			    vd->dk_efi.dki_length);
1662 			return (0);
1663 		default:
1664 			return (ENOTSUP);
1665 		}
1666 
1667 	default:
1668 		/* Unknown disk label type */
1669 		return (ENOTSUP);
1670 	}
1671 }
1672 
1673 /*
1674  * Function:
1675  *	vd_file_validate_geometry
1676  *
1677  * Description:
1678  *	Read the label and validate the geometry of a disk image. The driver
1679  *	label, vtoc and geometry information are updated according to the
1680  *	label read from the disk image.
1681  *
1682  *	If no valid label is found, the label is set to unknown and the
1683  *	function returns EINVAL, but a default vtoc and geometry are provided
1684  *	to the driver.
1685  *
1686  * Parameters:
1687  *	vd	- disk on which the operation is performed.
1688  *
1689  * Return Code:
1690  *	0	- success.
1691  *	EIO	- error reading the label from the disk image.
1692  *	EINVAL	- unknown disk label.
1693  */
1694 static int
1695 vd_file_validate_geometry(vd_t *vd)
1696 {
1697 	struct dk_label label;
1698 	struct dk_geom *geom = &vd->dk_geom;
1699 	struct vtoc *vtoc = &vd->vtoc;
1700 	int i;
1701 	int status = 0;
1702 
1703 	ASSERT(vd->file);
1704 
1705 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
1706 		return (EIO);
1707 
1708 	if (label.dkl_magic != DKL_MAGIC ||
1709 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
1710 	    label.dkl_vtoc.v_sanity != VTOC_SANE ||
1711 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
1712 		vd->vdisk_label = VD_DISK_LABEL_UNK;
1713 		vd_file_build_default_label(vd, &label);
1714 		status = EINVAL;
1715 	} else {
1716 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
1717 	}
1718 
1719 	/* Update the driver geometry */
1720 	bzero(geom, sizeof (struct dk_geom));
1721 
1722 	geom->dkg_ncyl = label.dkl_ncyl;
1723 	geom->dkg_acyl = label.dkl_acyl;
1724 	geom->dkg_nhead = label.dkl_nhead;
1725 	geom->dkg_nsect = label.dkl_nsect;
1726 	geom->dkg_intrlv = label.dkl_intrlv;
1727 	geom->dkg_apc = label.dkl_apc;
1728 	geom->dkg_rpm = label.dkl_rpm;
1729 	geom->dkg_pcyl = label.dkl_pcyl;
1730 	geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
1731 	geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
1732 
1733 	/* Update the driver vtoc */
1734 	bzero(vtoc, sizeof (struct vtoc));
1735 
1736 	vtoc->v_sanity = label.dkl_vtoc.v_sanity;
1737 	vtoc->v_version = label.dkl_vtoc.v_version;
1738 	vtoc->v_sectorsz = DEV_BSIZE;
1739 	vtoc->v_nparts = label.dkl_vtoc.v_nparts;
1740 
1741 	for (i = 0; i < vtoc->v_nparts; i++) {
1742 		vtoc->v_part[i].p_tag =
1743 		    label.dkl_vtoc.v_part[i].p_tag;
1744 		vtoc->v_part[i].p_flag =
1745 		    label.dkl_vtoc.v_part[i].p_flag;
1746 		vtoc->v_part[i].p_start =
1747 		    label.dkl_map[i].dkl_cylno *
1748 		    (label.dkl_nhead * label.dkl_nsect);
1749 		vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
1750 		vtoc->timestamp[i] =
1751 		    label.dkl_vtoc.v_timestamp[i];
1752 	}
1753 	/*
1754 	 * The bootinfo array can not be copied with bcopy() because
1755 	 * elements are of type long in vtoc (so 64-bit) and of type
1756 	 * int in dk_vtoc (so 32-bit).
1757 	 */
1758 	vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
1759 	vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
1760 	vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
1761 	bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
1762 	    LEN_DKL_ASCII);
1763 	bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
1764 	    LEN_DKL_VVOL);
1765 
1766 	return (status);
1767 }
1768 
1769 /*
1770  * Handle ioctls to a disk image (file-based).
1771  *
1772  * Return Values
1773  *	0	- Indicates that there are no errors
1774  *	!= 0	- Disk operation returned an error
1775  */
1776 static int
1777 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1778 {
1779 	struct dk_label label;
1780 	struct dk_geom *geom;
1781 	struct vtoc *vtoc;
1782 	int i, rc;
1783 
1784 	ASSERT(vd->file);
1785 
1786 	switch (cmd) {
1787 
1788 	case DKIOCGGEOM:
1789 		ASSERT(ioctl_arg != NULL);
1790 		geom = (struct dk_geom *)ioctl_arg;
1791 
1792 		rc = vd_file_validate_geometry(vd);
1793 		if (rc != 0 && rc != EINVAL)
1794 			return (rc);
1795 
1796 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
1797 		return (0);
1798 
1799 	case DKIOCGVTOC:
1800 		ASSERT(ioctl_arg != NULL);
1801 		vtoc = (struct vtoc *)ioctl_arg;
1802 
1803 		rc = vd_file_validate_geometry(vd);
1804 		if (rc != 0 && rc != EINVAL)
1805 			return (rc);
1806 
1807 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
1808 		return (0);
1809 
1810 	case DKIOCSGEOM:
1811 		ASSERT(ioctl_arg != NULL);
1812 		geom = (struct dk_geom *)ioctl_arg;
1813 
1814 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
1815 			return (EINVAL);
1816 
1817 		/*
1818 		 * The current device geometry is not updated, just the driver
1819 		 * "notion" of it. The device geometry will be effectively
1820 		 * updated when a label is written to the device during a next
1821 		 * DKIOCSVTOC.
1822 		 */
1823 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
1824 		return (0);
1825 
1826 	case DKIOCSVTOC:
1827 		ASSERT(ioctl_arg != NULL);
1828 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
1829 		    vd->dk_geom.dkg_nsect != 0);
1830 		vtoc = (struct vtoc *)ioctl_arg;
1831 
1832 		if (vtoc->v_sanity != VTOC_SANE ||
1833 		    vtoc->v_sectorsz != DEV_BSIZE ||
1834 		    vtoc->v_nparts != V_NUMPAR)
1835 			return (EINVAL);
1836 
1837 		bzero(&label, sizeof (label));
1838 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1839 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
1840 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1841 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
1842 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
1843 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1844 		label.dkl_apc = vd->dk_geom.dkg_apc;
1845 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
1846 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
1847 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
1848 
1849 		label.dkl_vtoc.v_nparts = V_NUMPAR;
1850 		label.dkl_vtoc.v_sanity = VTOC_SANE;
1851 		label.dkl_vtoc.v_version = vtoc->v_version;
1852 		for (i = 0; i < V_NUMPAR; i++) {
1853 			label.dkl_vtoc.v_timestamp[i] =
1854 			    vtoc->timestamp[i];
1855 			label.dkl_vtoc.v_part[i].p_tag =
1856 			    vtoc->v_part[i].p_tag;
1857 			label.dkl_vtoc.v_part[i].p_flag =
1858 			    vtoc->v_part[i].p_flag;
1859 			label.dkl_map[i].dkl_cylno =
1860 			    vtoc->v_part[i].p_start /
1861 			    (label.dkl_nhead * label.dkl_nsect);
1862 			label.dkl_map[i].dkl_nblk =
1863 			    vtoc->v_part[i].p_size;
1864 		}
1865 		/*
1866 		 * The bootinfo array can not be copied with bcopy() because
1867 		 * elements are of type long in vtoc (so 64-bit) and of type
1868 		 * int in dk_vtoc (so 32-bit).
1869 		 */
1870 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
1871 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
1872 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
1873 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1874 		    LEN_DKL_ASCII);
1875 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1876 		    LEN_DKL_VVOL);
1877 
1878 		/* re-compute checksum */
1879 		label.dkl_magic = DKL_MAGIC;
1880 		label.dkl_cksum = vd_lbl2cksum(&label);
1881 
1882 		/* write label to the disk image */
1883 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
1884 			return (rc);
1885 
1886 		/* check the geometry and update the driver info */
1887 		if ((rc = vd_file_validate_geometry(vd)) != 0)
1888 			return (rc);
1889 
1890 		/*
1891 		 * The disk geometry may have changed, so we need to write
1892 		 * the devid (if there is one) so that it is stored at the
1893 		 * right location.
1894 		 */
1895 		if (vd->file_devid != NULL &&
1896 		    vd_file_write_devid(vd, vd->file_devid) != 0) {
1897 			PR0("Fail to write devid");
1898 		}
1899 
1900 		return (0);
1901 
1902 	default:
1903 		return (ENOTSUP);
1904 	}
1905 }
1906 
1907 /*
1908  * Description:
1909  *	This is the function that processes the ioctl requests (farming it
1910  *	out to functions that handle slices, files or whole disks)
1911  *
1912  * Return Values
1913  *     0		- ioctl operation completed successfully
1914  *     != 0		- The LDC error value encountered
1915  *			  (propagated back up the call stack as a task error)
1916  *
1917  * Side Effect
1918  *     sets request->status to the return value of the ioctl function.
1919  */
1920 static int
1921 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
1922 {
1923 	int	rval = 0, status = 0;
1924 	size_t	nbytes = request->nbytes;	/* modifiable copy */
1925 
1926 
1927 	ASSERT(request->slice < vd->nslices);
1928 	PR0("Performing %s", ioctl->operation_name);
1929 
1930 	/* Get data from client and convert, if necessary */
1931 	if (ioctl->copyin != NULL)  {
1932 		ASSERT(nbytes != 0 && buf != NULL);
1933 		PR1("Getting \"arg\" data from client");
1934 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1935 		    request->cookie, request->ncookies,
1936 		    LDC_COPY_IN)) != 0) {
1937 			PR0("ldc_mem_copy() returned errno %d "
1938 			    "copying from client", status);
1939 			return (status);
1940 		}
1941 
1942 		/* Convert client's data, if necessary */
1943 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
1944 			ioctl->arg = buf;
1945 		else	/* convert client vdisk operation data to ioctl data */
1946 			(ioctl->copyin)(buf, (void *)ioctl->arg);
1947 	}
1948 
1949 	/*
1950 	 * Handle single-slice block devices internally; otherwise, have the
1951 	 * real driver perform the ioctl()
1952 	 */
1953 	if (vd->file) {
1954 		request->status =
1955 		    vd_do_file_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
1956 
1957 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
1958 		request->status =
1959 		    vd_do_slice_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
1960 
1961 	} else {
1962 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
1963 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
1964 		    kcred, &rval);
1965 
1966 #ifdef DEBUG
1967 		if (rval != 0) {
1968 			PR0("%s set rval = %d, which is not being returned to"
1969 			    " client", ioctl->cmd_name, rval);
1970 		}
1971 #endif /* DEBUG */
1972 	}
1973 
1974 	if (request->status != 0) {
1975 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
1976 		return (0);
1977 	}
1978 
1979 	/* Convert data and send to client, if necessary */
1980 	if (ioctl->copyout != NULL)  {
1981 		ASSERT(nbytes != 0 && buf != NULL);
1982 		PR1("Sending \"arg\" data to client");
1983 
1984 		/* Convert ioctl data to vdisk operation data, if necessary */
1985 		if (ioctl->copyout != VD_IDENTITY)
1986 			(ioctl->copyout)((void *)ioctl->arg, buf);
1987 
1988 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
1989 		    request->cookie, request->ncookies,
1990 		    LDC_COPY_OUT)) != 0) {
1991 			PR0("ldc_mem_copy() returned errno %d "
1992 			    "copying to client", status);
1993 			return (status);
1994 		}
1995 	}
1996 
1997 	return (status);
1998 }
1999 
2000 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
2001 
2002 /*
2003  * Description:
2004  *	This generic function is called by the task queue to complete
2005  *	the processing of the tasks. The specific completion function
2006  *	is passed in as a field in the task pointer.
2007  *
2008  * Parameters:
2009  *	arg 	- opaque pointer to structure containing task to be completed
2010  *
2011  * Return Values
2012  *	None
2013  */
2014 static void
2015 vd_complete(void *arg)
2016 {
2017 	vd_task_t	*task = (vd_task_t *)arg;
2018 
2019 	ASSERT(task != NULL);
2020 	ASSERT(task->status == EINPROGRESS);
2021 	ASSERT(task->completef != NULL);
2022 
2023 	task->status = task->completef(task);
2024 	if (task->status)
2025 		PR0("%s: Error %d completing task", __func__, task->status);
2026 
2027 	/* Now notify the vDisk client */
2028 	vd_complete_notify(task);
2029 }
2030 
2031 static int
2032 vd_ioctl(vd_task_t *task)
2033 {
2034 	int			i, status;
2035 	void			*buf = NULL;
2036 	struct dk_geom		dk_geom = {0};
2037 	struct vtoc		vtoc = {0};
2038 	struct dk_efi		dk_efi = {0};
2039 	vd_t			*vd		= task->vd;
2040 	vd_dring_payload_t	*request	= task->request;
2041 	vd_ioctl_t		ioctl[] = {
2042 		/* Command (no-copy) operations */
2043 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
2044 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
2045 		    NULL, NULL, NULL},
2046 
2047 		/* "Get" (copy-out) operations */
2048 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
2049 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
2050 		    NULL, VD_IDENTITY, VD_IDENTITY},
2051 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
2052 		    RNDSIZE(vd_geom_t),
2053 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
2054 		    &dk_geom, NULL, dk_geom2vd_geom},
2055 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
2056 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
2057 		    &vtoc, NULL, vtoc2vd_vtoc},
2058 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
2059 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
2060 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
2061 
2062 		/* "Set" (copy-in) operations */
2063 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
2064 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
2065 		    NULL, VD_IDENTITY, VD_IDENTITY},
2066 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
2067 		    RNDSIZE(vd_geom_t),
2068 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
2069 		    &dk_geom, vd_geom2dk_geom, NULL},
2070 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
2071 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
2072 		    &vtoc, vd_vtoc2vtoc, NULL},
2073 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
2074 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
2075 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
2076 	};
2077 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
2078 
2079 
2080 	ASSERT(vd != NULL);
2081 	ASSERT(request != NULL);
2082 	ASSERT(request->slice < vd->nslices);
2083 
2084 	/*
2085 	 * Determine ioctl corresponding to caller's "operation" and
2086 	 * validate caller's "nbytes"
2087 	 */
2088 	for (i = 0; i < nioctls; i++) {
2089 		if (request->operation == ioctl[i].operation) {
2090 			/* LDC memory operations require 8-byte multiples */
2091 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
2092 
2093 			if (request->operation == VD_OP_GET_EFI ||
2094 			    request->operation == VD_OP_SET_EFI) {
2095 				if (request->nbytes >= ioctl[i].nbytes)
2096 					break;
2097 				PR0("%s:  Expected at least nbytes = %lu, "
2098 				    "got %lu", ioctl[i].operation_name,
2099 				    ioctl[i].nbytes, request->nbytes);
2100 				return (EINVAL);
2101 			}
2102 
2103 			if (request->nbytes != ioctl[i].nbytes) {
2104 				PR0("%s:  Expected nbytes = %lu, got %lu",
2105 				    ioctl[i].operation_name, ioctl[i].nbytes,
2106 				    request->nbytes);
2107 				return (EINVAL);
2108 			}
2109 
2110 			break;
2111 		}
2112 	}
2113 	ASSERT(i < nioctls);	/* because "operation" already validated */
2114 
2115 	if (request->nbytes)
2116 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
2117 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
2118 	if (request->nbytes)
2119 		kmem_free(buf, request->nbytes);
2120 
2121 	return (status);
2122 }
2123 
2124 static int
2125 vd_get_devid(vd_task_t *task)
2126 {
2127 	vd_t *vd = task->vd;
2128 	vd_dring_payload_t *request = task->request;
2129 	vd_devid_t *vd_devid;
2130 	impl_devid_t *devid;
2131 	int status, bufid_len, devid_len, len, sz;
2132 	int bufbytes;
2133 
2134 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
2135 
2136 	if (vd->file) {
2137 		if (vd->file_devid == NULL) {
2138 			PR2("No Device ID");
2139 			request->status = ENOENT;
2140 			return (0);
2141 		} else {
2142 			sz = ddi_devid_sizeof(vd->file_devid);
2143 			devid = kmem_alloc(sz, KM_SLEEP);
2144 			bcopy(vd->file_devid, devid, sz);
2145 		}
2146 	} else {
2147 		if (ddi_lyr_get_devid(vd->dev[request->slice],
2148 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
2149 			PR2("No Device ID");
2150 			request->status = ENOENT;
2151 			return (0);
2152 		}
2153 	}
2154 
2155 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
2156 	devid_len = DEVID_GETLEN(devid);
2157 
2158 	/*
2159 	 * Save the buffer size here for use in deallocation.
2160 	 * The actual number of bytes copied is returned in
2161 	 * the 'nbytes' field of the request structure.
2162 	 */
2163 	bufbytes = request->nbytes;
2164 
2165 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2166 	vd_devid->length = devid_len;
2167 	vd_devid->type = DEVID_GETTYPE(devid);
2168 
2169 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2170 
2171 	bcopy(devid->did_id, vd_devid->id, len);
2172 
2173 	request->status = 0;
2174 
2175 	/* LDC memory operations require 8-byte multiples */
2176 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2177 
2178 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2179 	    &request->nbytes, request->cookie, request->ncookies,
2180 	    LDC_COPY_OUT)) != 0) {
2181 		PR0("ldc_mem_copy() returned errno %d copying to client",
2182 		    status);
2183 	}
2184 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2185 
2186 	kmem_free(vd_devid, bufbytes);
2187 	ddi_devid_free((ddi_devid_t)devid);
2188 
2189 	return (status);
2190 }
2191 
2192 /*
2193  * Define the supported operations once the functions for performing them have
2194  * been defined
2195  */
2196 static const vds_operation_t	vds_operation[] = {
2197 #define	X(_s)	#_s, _s
2198 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
2199 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
2200 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
2201 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
2202 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
2203 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
2204 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
2205 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
2206 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
2207 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
2208 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
2209 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
2210 #undef	X
2211 };
2212 
2213 static const size_t	vds_noperations =
2214 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
2215 
2216 /*
2217  * Process a task specifying a client I/O request
2218  *
2219  * Parameters:
2220  *	task 		- structure containing the request sent from client
2221  *
2222  * Return Value
2223  *	0	- success
2224  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
2225  *	EINVAL	- Invalid disk slice
2226  *	!= 0	- some other non-zero return value from start function
2227  */
2228 static int
2229 vd_do_process_task(vd_task_t *task)
2230 {
2231 	int			i;
2232 	vd_t			*vd		= task->vd;
2233 	vd_dring_payload_t	*request	= task->request;
2234 
2235 	ASSERT(vd != NULL);
2236 	ASSERT(request != NULL);
2237 
2238 	/* Find the requested operation */
2239 	for (i = 0; i < vds_noperations; i++) {
2240 		if (request->operation == vds_operation[i].operation) {
2241 			/* all operations should have a start func */
2242 			ASSERT(vds_operation[i].start != NULL);
2243 
2244 			task->completef = vds_operation[i].complete;
2245 			break;
2246 		}
2247 	}
2248 	if (i == vds_noperations) {
2249 		PR0("Unsupported operation %u", request->operation);
2250 		return (ENOTSUP);
2251 	}
2252 
2253 	/* Range-check slice */
2254 	if (request->slice >= vd->nslices &&
2255 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
2256 	    request->slice != VD_SLICE_NONE)) {
2257 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
2258 		    request->slice, (vd->nslices - 1));
2259 		return (EINVAL);
2260 	}
2261 
2262 	/*
2263 	 * Call the function pointer that starts the operation.
2264 	 */
2265 	return (vds_operation[i].start(task));
2266 }
2267 
2268 /*
2269  * Description:
2270  *	This function is called by both the in-band and descriptor ring
2271  *	message processing functions paths to actually execute the task
2272  *	requested by the vDisk client. It in turn calls its worker
2273  *	function, vd_do_process_task(), to carry our the request.
2274  *
2275  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
2276  *	saved in the 'status' field of the task and are propagated back
2277  *	up the call stack to trigger a NACK
2278  *
2279  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
2280  *	the 'status' field of the request and result in an ACK being sent
2281  *	by the completion handler.
2282  *
2283  * Parameters:
2284  *	task 		- structure containing the request sent from client
2285  *
2286  * Return Value
2287  *	0		- successful synchronous request.
2288  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
2289  *	EINPROGRESS	- task will be finished in a completion handler
2290  */
2291 static int
2292 vd_process_task(vd_task_t *task)
2293 {
2294 	vd_t	*vd = task->vd;
2295 	int	status;
2296 
2297 	DTRACE_PROBE1(task__start, vd_task_t *, task);
2298 
2299 	task->status =  vd_do_process_task(task);
2300 
2301 	/*
2302 	 * If the task processing function returned EINPROGRESS indicating
2303 	 * that the task needs completing then schedule a taskq entry to
2304 	 * finish it now.
2305 	 *
2306 	 * Otherwise the task processing function returned either zero
2307 	 * indicating that the task was finished in the start function (and we
2308 	 * don't need to wait in a completion function) or the start function
2309 	 * returned an error - in both cases all that needs to happen is the
2310 	 * notification to the vDisk client higher up the call stack.
2311 	 * If the task was using a Descriptor Ring, we need to mark it as done
2312 	 * at this stage.
2313 	 */
2314 	if (task->status == EINPROGRESS) {
2315 		/* Queue a task to complete the operation */
2316 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
2317 		    task, DDI_SLEEP);
2318 
2319 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
2320 		/* Update the dring element if it's a dring client */
2321 		status = vd_mark_elem_done(vd, task->index,
2322 		    task->request->status, task->request->nbytes);
2323 		if (status == ECONNRESET)
2324 			vd_mark_in_reset(vd);
2325 	}
2326 
2327 	return (task->status);
2328 }
2329 
2330 /*
2331  * Return true if the "type", "subtype", and "env" fields of the "tag" first
2332  * argument match the corresponding remaining arguments; otherwise, return false
2333  */
2334 boolean_t
2335 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
2336 {
2337 	return ((tag->vio_msgtype == type) &&
2338 	    (tag->vio_subtype == subtype) &&
2339 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
2340 }
2341 
2342 /*
2343  * Check whether the major/minor version specified in "ver_msg" is supported
2344  * by this server.
2345  */
2346 static boolean_t
2347 vds_supported_version(vio_ver_msg_t *ver_msg)
2348 {
2349 	for (int i = 0; i < vds_num_versions; i++) {
2350 		ASSERT(vds_version[i].major > 0);
2351 		ASSERT((i == 0) ||
2352 		    (vds_version[i].major < vds_version[i-1].major));
2353 
2354 		/*
2355 		 * If the major versions match, adjust the minor version, if
2356 		 * necessary, down to the highest value supported by this
2357 		 * server and return true so this message will get "ack"ed;
2358 		 * the client should also support all minor versions lower
2359 		 * than the value it sent
2360 		 */
2361 		if (ver_msg->ver_major == vds_version[i].major) {
2362 			if (ver_msg->ver_minor > vds_version[i].minor) {
2363 				PR0("Adjusting minor version from %u to %u",
2364 				    ver_msg->ver_minor, vds_version[i].minor);
2365 				ver_msg->ver_minor = vds_version[i].minor;
2366 			}
2367 			return (B_TRUE);
2368 		}
2369 
2370 		/*
2371 		 * If the message contains a higher major version number, set
2372 		 * the message's major/minor versions to the current values
2373 		 * and return false, so this message will get "nack"ed with
2374 		 * these values, and the client will potentially try again
2375 		 * with the same or a lower version
2376 		 */
2377 		if (ver_msg->ver_major > vds_version[i].major) {
2378 			ver_msg->ver_major = vds_version[i].major;
2379 			ver_msg->ver_minor = vds_version[i].minor;
2380 			return (B_FALSE);
2381 		}
2382 
2383 		/*
2384 		 * Otherwise, the message's major version is less than the
2385 		 * current major version, so continue the loop to the next
2386 		 * (lower) supported version
2387 		 */
2388 	}
2389 
2390 	/*
2391 	 * No common version was found; "ground" the version pair in the
2392 	 * message to terminate negotiation
2393 	 */
2394 	ver_msg->ver_major = 0;
2395 	ver_msg->ver_minor = 0;
2396 	return (B_FALSE);
2397 }
2398 
2399 /*
2400  * Process a version message from a client.  vds expects to receive version
2401  * messages from clients seeking service, but never issues version messages
2402  * itself; therefore, vds can ACK or NACK client version messages, but does
2403  * not expect to receive version-message ACKs or NACKs (and will treat such
2404  * messages as invalid).
2405  */
2406 static int
2407 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2408 {
2409 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
2410 
2411 
2412 	ASSERT(msglen >= sizeof (msg->tag));
2413 
2414 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2415 	    VIO_VER_INFO)) {
2416 		return (ENOMSG);	/* not a version message */
2417 	}
2418 
2419 	if (msglen != sizeof (*ver_msg)) {
2420 		PR0("Expected %lu-byte version message; "
2421 		    "received %lu bytes", sizeof (*ver_msg), msglen);
2422 		return (EBADMSG);
2423 	}
2424 
2425 	if (ver_msg->dev_class != VDEV_DISK) {
2426 		PR0("Expected device class %u (disk); received %u",
2427 		    VDEV_DISK, ver_msg->dev_class);
2428 		return (EBADMSG);
2429 	}
2430 
2431 	/*
2432 	 * We're talking to the expected kind of client; set our device class
2433 	 * for "ack/nack" back to the client
2434 	 */
2435 	ver_msg->dev_class = VDEV_DISK_SERVER;
2436 
2437 	/*
2438 	 * Check whether the (valid) version message specifies a version
2439 	 * supported by this server.  If the version is not supported, return
2440 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
2441 	 * will have updated the message with a supported version for the
2442 	 * client to consider
2443 	 */
2444 	if (!vds_supported_version(ver_msg))
2445 		return (EBADMSG);
2446 
2447 
2448 	/*
2449 	 * A version has been agreed upon; use the client's SID for
2450 	 * communication on this channel now
2451 	 */
2452 	ASSERT(!(vd->initialized & VD_SID));
2453 	vd->sid = ver_msg->tag.vio_sid;
2454 	vd->initialized |= VD_SID;
2455 
2456 	/*
2457 	 * When multiple versions are supported, this function should store
2458 	 * the negotiated major and minor version values in the "vd" data
2459 	 * structure to govern further communication; in particular, note that
2460 	 * the client might have specified a lower minor version for the
2461 	 * agreed major version than specifed in the vds_version[] array.  The
2462 	 * following assertions should help remind future maintainers to make
2463 	 * the appropriate changes to support multiple versions.
2464 	 */
2465 	ASSERT(vds_num_versions == 1);
2466 	ASSERT(ver_msg->ver_major == vds_version[0].major);
2467 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
2468 
2469 	PR0("Using major version %u, minor version %u",
2470 	    ver_msg->ver_major, ver_msg->ver_minor);
2471 	return (0);
2472 }
2473 
2474 static int
2475 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2476 {
2477 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
2478 	int		status, retry = 0;
2479 
2480 
2481 	ASSERT(msglen >= sizeof (msg->tag));
2482 
2483 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2484 	    VIO_ATTR_INFO)) {
2485 		PR0("Message is not an attribute message");
2486 		return (ENOMSG);
2487 	}
2488 
2489 	if (msglen != sizeof (*attr_msg)) {
2490 		PR0("Expected %lu-byte attribute message; "
2491 		    "received %lu bytes", sizeof (*attr_msg), msglen);
2492 		return (EBADMSG);
2493 	}
2494 
2495 	if (attr_msg->max_xfer_sz == 0) {
2496 		PR0("Received maximum transfer size of 0 from client");
2497 		return (EBADMSG);
2498 	}
2499 
2500 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
2501 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
2502 		PR0("Client requested unsupported transfer mode");
2503 		return (EBADMSG);
2504 	}
2505 
2506 	/*
2507 	 * check if the underlying disk is ready, if not try accessing
2508 	 * the device again. Open the vdisk device and extract info
2509 	 * about it, as this is needed to respond to the attr info msg
2510 	 */
2511 	if ((vd->initialized & VD_DISK_READY) == 0) {
2512 		PR0("Retry setting up disk (%s)", vd->device_path);
2513 		do {
2514 			status = vd_setup_vd(vd);
2515 			if (status != EAGAIN || ++retry > vds_dev_retries)
2516 				break;
2517 
2518 			/* incremental delay */
2519 			delay(drv_usectohz(vds_dev_delay));
2520 
2521 			/* if vdisk is no longer enabled - return error */
2522 			if (!vd_enabled(vd))
2523 				return (ENXIO);
2524 
2525 		} while (status == EAGAIN);
2526 
2527 		if (status)
2528 			return (ENXIO);
2529 
2530 		vd->initialized |= VD_DISK_READY;
2531 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2532 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
2533 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2534 		    (vd->pseudo ? "yes" : "no"),
2535 		    (vd->file ? "yes" : "no"),
2536 		    vd->nslices);
2537 	}
2538 
2539 	/* Success:  valid message and transfer mode */
2540 	vd->xfer_mode = attr_msg->xfer_mode;
2541 
2542 	if (vd->xfer_mode == VIO_DESC_MODE) {
2543 
2544 		/*
2545 		 * The vd_dring_inband_msg_t contains one cookie; need room
2546 		 * for up to n-1 more cookies, where "n" is the number of full
2547 		 * pages plus possibly one partial page required to cover
2548 		 * "max_xfer_sz".  Add room for one more cookie if
2549 		 * "max_xfer_sz" isn't an integral multiple of the page size.
2550 		 * Must first get the maximum transfer size in bytes.
2551 		 */
2552 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
2553 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
2554 		    attr_msg->max_xfer_sz;
2555 		size_t	max_inband_msglen =
2556 		    sizeof (vd_dring_inband_msg_t) +
2557 		    ((max_xfer_bytes/PAGESIZE +
2558 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
2559 		    (sizeof (ldc_mem_cookie_t)));
2560 
2561 		/*
2562 		 * Set the maximum expected message length to
2563 		 * accommodate in-band-descriptor messages with all
2564 		 * their cookies
2565 		 */
2566 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
2567 
2568 		/*
2569 		 * Initialize the data structure for processing in-band I/O
2570 		 * request descriptors
2571 		 */
2572 		vd->inband_task.vd	= vd;
2573 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
2574 		vd->inband_task.index	= 0;
2575 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
2576 	}
2577 
2578 	/* Return the device's block size and max transfer size to the client */
2579 	attr_msg->vdisk_block_size	= DEV_BSIZE;
2580 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
2581 
2582 	attr_msg->vdisk_size = vd->vdisk_size;
2583 	attr_msg->vdisk_type = vd->vdisk_type;
2584 	attr_msg->operations = vds_operations;
2585 	PR0("%s", VD_CLIENT(vd));
2586 
2587 	ASSERT(vd->dring_task == NULL);
2588 
2589 	return (0);
2590 }
2591 
2592 static int
2593 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2594 {
2595 	int			status;
2596 	size_t			expected;
2597 	ldc_mem_info_t		dring_minfo;
2598 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
2599 
2600 
2601 	ASSERT(msglen >= sizeof (msg->tag));
2602 
2603 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2604 	    VIO_DRING_REG)) {
2605 		PR0("Message is not a register-dring message");
2606 		return (ENOMSG);
2607 	}
2608 
2609 	if (msglen < sizeof (*reg_msg)) {
2610 		PR0("Expected at least %lu-byte register-dring message; "
2611 		    "received %lu bytes", sizeof (*reg_msg), msglen);
2612 		return (EBADMSG);
2613 	}
2614 
2615 	expected = sizeof (*reg_msg) +
2616 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
2617 	if (msglen != expected) {
2618 		PR0("Expected %lu-byte register-dring message; "
2619 		    "received %lu bytes", expected, msglen);
2620 		return (EBADMSG);
2621 	}
2622 
2623 	if (vd->initialized & VD_DRING) {
2624 		PR0("A dring was previously registered; only support one");
2625 		return (EBADMSG);
2626 	}
2627 
2628 	if (reg_msg->num_descriptors > INT32_MAX) {
2629 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
2630 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
2631 		return (EBADMSG);
2632 	}
2633 
2634 	if (reg_msg->ncookies != 1) {
2635 		/*
2636 		 * In addition to fixing the assertion in the success case
2637 		 * below, supporting drings which require more than one
2638 		 * "cookie" requires increasing the value of vd->max_msglen
2639 		 * somewhere in the code path prior to receiving the message
2640 		 * which results in calling this function.  Note that without
2641 		 * making this change, the larger message size required to
2642 		 * accommodate multiple cookies cannot be successfully
2643 		 * received, so this function will not even get called.
2644 		 * Gracefully accommodating more dring cookies might
2645 		 * reasonably demand exchanging an additional attribute or
2646 		 * making a minor protocol adjustment
2647 		 */
2648 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
2649 		return (EBADMSG);
2650 	}
2651 
2652 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
2653 	    reg_msg->ncookies, reg_msg->num_descriptors,
2654 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
2655 	if (status != 0) {
2656 		PR0("ldc_mem_dring_map() returned errno %d", status);
2657 		return (status);
2658 	}
2659 
2660 	/*
2661 	 * To remove the need for this assertion, must call
2662 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
2663 	 * successful call to ldc_mem_dring_map()
2664 	 */
2665 	ASSERT(reg_msg->ncookies == 1);
2666 
2667 	if ((status =
2668 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
2669 		PR0("ldc_mem_dring_info() returned errno %d", status);
2670 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
2671 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
2672 		return (status);
2673 	}
2674 
2675 	if (dring_minfo.vaddr == NULL) {
2676 		PR0("Descriptor ring virtual address is NULL");
2677 		return (ENXIO);
2678 	}
2679 
2680 
2681 	/* Initialize for valid message and mapped dring */
2682 	PR1("descriptor size = %u, dring length = %u",
2683 	    vd->descriptor_size, vd->dring_len);
2684 	vd->initialized |= VD_DRING;
2685 	vd->dring_ident = 1;	/* "There Can Be Only One" */
2686 	vd->dring = dring_minfo.vaddr;
2687 	vd->descriptor_size = reg_msg->descriptor_size;
2688 	vd->dring_len = reg_msg->num_descriptors;
2689 	reg_msg->dring_ident = vd->dring_ident;
2690 
2691 	/*
2692 	 * Allocate and initialize a "shadow" array of data structures for
2693 	 * tasks to process I/O requests in dring elements
2694 	 */
2695 	vd->dring_task =
2696 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
2697 	for (int i = 0; i < vd->dring_len; i++) {
2698 		vd->dring_task[i].vd		= vd;
2699 		vd->dring_task[i].index		= i;
2700 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
2701 
2702 		status = ldc_mem_alloc_handle(vd->ldc_handle,
2703 		    &(vd->dring_task[i].mhdl));
2704 		if (status) {
2705 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
2706 			return (ENXIO);
2707 		}
2708 
2709 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
2710 	}
2711 
2712 	return (0);
2713 }
2714 
2715 static int
2716 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2717 {
2718 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
2719 
2720 
2721 	ASSERT(msglen >= sizeof (msg->tag));
2722 
2723 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2724 	    VIO_DRING_UNREG)) {
2725 		PR0("Message is not an unregister-dring message");
2726 		return (ENOMSG);
2727 	}
2728 
2729 	if (msglen != sizeof (*unreg_msg)) {
2730 		PR0("Expected %lu-byte unregister-dring message; "
2731 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
2732 		return (EBADMSG);
2733 	}
2734 
2735 	if (unreg_msg->dring_ident != vd->dring_ident) {
2736 		PR0("Expected dring ident %lu; received %lu",
2737 		    vd->dring_ident, unreg_msg->dring_ident);
2738 		return (EBADMSG);
2739 	}
2740 
2741 	return (0);
2742 }
2743 
2744 static int
2745 process_rdx_msg(vio_msg_t *msg, size_t msglen)
2746 {
2747 	ASSERT(msglen >= sizeof (msg->tag));
2748 
2749 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
2750 		PR0("Message is not an RDX message");
2751 		return (ENOMSG);
2752 	}
2753 
2754 	if (msglen != sizeof (vio_rdx_msg_t)) {
2755 		PR0("Expected %lu-byte RDX message; received %lu bytes",
2756 		    sizeof (vio_rdx_msg_t), msglen);
2757 		return (EBADMSG);
2758 	}
2759 
2760 	PR0("Valid RDX message");
2761 	return (0);
2762 }
2763 
2764 static int
2765 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
2766 {
2767 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
2768 		PR0("Received seq_num %lu; expected %lu",
2769 		    seq_num, (vd->seq_num + 1));
2770 		PR0("initiating soft reset");
2771 		vd_need_reset(vd, B_FALSE);
2772 		return (1);
2773 	}
2774 
2775 	vd->seq_num = seq_num;
2776 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
2777 	return (0);
2778 }
2779 
2780 /*
2781  * Return the expected size of an inband-descriptor message with all the
2782  * cookies it claims to include
2783  */
2784 static size_t
2785 expected_inband_size(vd_dring_inband_msg_t *msg)
2786 {
2787 	return ((sizeof (*msg)) +
2788 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
2789 }
2790 
2791 /*
2792  * Process an in-band descriptor message:  used with clients like OBP, with
2793  * which vds exchanges descriptors within VIO message payloads, rather than
2794  * operating on them within a descriptor ring
2795  */
2796 static int
2797 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2798 {
2799 	size_t			expected;
2800 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
2801 
2802 
2803 	ASSERT(msglen >= sizeof (msg->tag));
2804 
2805 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2806 	    VIO_DESC_DATA)) {
2807 		PR1("Message is not an in-band-descriptor message");
2808 		return (ENOMSG);
2809 	}
2810 
2811 	if (msglen < sizeof (*desc_msg)) {
2812 		PR0("Expected at least %lu-byte descriptor message; "
2813 		    "received %lu bytes", sizeof (*desc_msg), msglen);
2814 		return (EBADMSG);
2815 	}
2816 
2817 	if (msglen != (expected = expected_inband_size(desc_msg))) {
2818 		PR0("Expected %lu-byte descriptor message; "
2819 		    "received %lu bytes", expected, msglen);
2820 		return (EBADMSG);
2821 	}
2822 
2823 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
2824 		return (EBADMSG);
2825 
2826 	/*
2827 	 * Valid message:  Set up the in-band descriptor task and process the
2828 	 * request.  Arrange to acknowledge the client's message, unless an
2829 	 * error processing the descriptor task results in setting
2830 	 * VIO_SUBTYPE_NACK
2831 	 */
2832 	PR1("Valid in-band-descriptor message");
2833 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2834 
2835 	ASSERT(vd->inband_task.msg != NULL);
2836 
2837 	bcopy(msg, vd->inband_task.msg, msglen);
2838 	vd->inband_task.msglen	= msglen;
2839 
2840 	/*
2841 	 * The task request is now the payload of the message
2842 	 * that was just copied into the body of the task.
2843 	 */
2844 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
2845 	vd->inband_task.request	= &desc_msg->payload;
2846 
2847 	return (vd_process_task(&vd->inband_task));
2848 }
2849 
2850 static int
2851 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
2852     vio_msg_t *msg, size_t msglen)
2853 {
2854 	int			status;
2855 	boolean_t		ready;
2856 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2857 
2858 
2859 	/* Accept the updated dring element */
2860 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
2861 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
2862 		return (status);
2863 	}
2864 	ready = (elem->hdr.dstate == VIO_DESC_READY);
2865 	if (ready) {
2866 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
2867 	} else {
2868 		PR0("descriptor %u not ready", idx);
2869 		VD_DUMP_DRING_ELEM(elem);
2870 	}
2871 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
2872 		PR0("ldc_mem_dring_release() returned errno %d", status);
2873 		return (status);
2874 	}
2875 	if (!ready)
2876 		return (EBUSY);
2877 
2878 
2879 	/* Initialize a task and process the accepted element */
2880 	PR1("Processing dring element %u", idx);
2881 	vd->dring_task[idx].type	= type;
2882 
2883 	/* duplicate msg buf for cookies etc. */
2884 	bcopy(msg, vd->dring_task[idx].msg, msglen);
2885 
2886 	vd->dring_task[idx].msglen	= msglen;
2887 	return (vd_process_task(&vd->dring_task[idx]));
2888 }
2889 
2890 static int
2891 vd_process_element_range(vd_t *vd, int start, int end,
2892     vio_msg_t *msg, size_t msglen)
2893 {
2894 	int		i, n, nelem, status = 0;
2895 	boolean_t	inprogress = B_FALSE;
2896 	vd_task_type_t	type;
2897 
2898 
2899 	ASSERT(start >= 0);
2900 	ASSERT(end >= 0);
2901 
2902 	/*
2903 	 * Arrange to acknowledge the client's message, unless an error
2904 	 * processing one of the dring elements results in setting
2905 	 * VIO_SUBTYPE_NACK
2906 	 */
2907 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2908 
2909 	/*
2910 	 * Process the dring elements in the range
2911 	 */
2912 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
2913 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
2914 		((vio_dring_msg_t *)msg)->end_idx = i;
2915 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
2916 		status = vd_process_element(vd, type, i, msg, msglen);
2917 		if (status == EINPROGRESS)
2918 			inprogress = B_TRUE;
2919 		else if (status != 0)
2920 			break;
2921 	}
2922 
2923 	/*
2924 	 * If some, but not all, operations of a multi-element range are in
2925 	 * progress, wait for other operations to complete before returning
2926 	 * (which will result in "ack" or "nack" of the message).  Note that
2927 	 * all outstanding operations will need to complete, not just the ones
2928 	 * corresponding to the current range of dring elements; howevever, as
2929 	 * this situation is an error case, performance is less critical.
2930 	 */
2931 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
2932 		ddi_taskq_wait(vd->completionq);
2933 
2934 	return (status);
2935 }
2936 
2937 static int
2938 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2939 {
2940 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
2941 
2942 
2943 	ASSERT(msglen >= sizeof (msg->tag));
2944 
2945 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2946 	    VIO_DRING_DATA)) {
2947 		PR1("Message is not a dring-data message");
2948 		return (ENOMSG);
2949 	}
2950 
2951 	if (msglen != sizeof (*dring_msg)) {
2952 		PR0("Expected %lu-byte dring message; received %lu bytes",
2953 		    sizeof (*dring_msg), msglen);
2954 		return (EBADMSG);
2955 	}
2956 
2957 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
2958 		return (EBADMSG);
2959 
2960 	if (dring_msg->dring_ident != vd->dring_ident) {
2961 		PR0("Expected dring ident %lu; received ident %lu",
2962 		    vd->dring_ident, dring_msg->dring_ident);
2963 		return (EBADMSG);
2964 	}
2965 
2966 	if (dring_msg->start_idx >= vd->dring_len) {
2967 		PR0("\"start_idx\" = %u; must be less than %u",
2968 		    dring_msg->start_idx, vd->dring_len);
2969 		return (EBADMSG);
2970 	}
2971 
2972 	if ((dring_msg->end_idx < 0) ||
2973 	    (dring_msg->end_idx >= vd->dring_len)) {
2974 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
2975 		    dring_msg->end_idx, vd->dring_len);
2976 		return (EBADMSG);
2977 	}
2978 
2979 	/* Valid message; process range of updated dring elements */
2980 	PR1("Processing descriptor range, start = %u, end = %u",
2981 	    dring_msg->start_idx, dring_msg->end_idx);
2982 	return (vd_process_element_range(vd, dring_msg->start_idx,
2983 	    dring_msg->end_idx, msg, msglen));
2984 }
2985 
2986 static int
2987 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
2988 {
2989 	int	retry, status;
2990 	size_t	size = *nbytes;
2991 
2992 
2993 	for (retry = 0, status = ETIMEDOUT;
2994 	    retry < vds_ldc_retries && status == ETIMEDOUT;
2995 	    retry++) {
2996 		PR1("ldc_read() attempt %d", (retry + 1));
2997 		*nbytes = size;
2998 		status = ldc_read(ldc_handle, msg, nbytes);
2999 	}
3000 
3001 	if (status) {
3002 		PR0("ldc_read() returned errno %d", status);
3003 		if (status != ECONNRESET)
3004 			return (ENOMSG);
3005 		return (status);
3006 	} else if (*nbytes == 0) {
3007 		PR1("ldc_read() returned 0 and no message read");
3008 		return (ENOMSG);
3009 	}
3010 
3011 	PR1("RCVD %lu-byte message", *nbytes);
3012 	return (0);
3013 }
3014 
3015 static int
3016 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3017 {
3018 	int		status;
3019 
3020 
3021 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
3022 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
3023 #ifdef	DEBUG
3024 	vd_decode_tag(msg);
3025 #endif
3026 
3027 	/*
3028 	 * Validate session ID up front, since it applies to all messages
3029 	 * once set
3030 	 */
3031 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
3032 		PR0("Expected SID %u, received %u", vd->sid,
3033 		    msg->tag.vio_sid);
3034 		return (EBADMSG);
3035 	}
3036 
3037 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
3038 
3039 	/*
3040 	 * Process the received message based on connection state
3041 	 */
3042 	switch (vd->state) {
3043 	case VD_STATE_INIT:	/* expect version message */
3044 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
3045 			return (status);
3046 
3047 		/* Version negotiated, move to that state */
3048 		vd->state = VD_STATE_VER;
3049 		return (0);
3050 
3051 	case VD_STATE_VER:	/* expect attribute message */
3052 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
3053 			return (status);
3054 
3055 		/* Attributes exchanged, move to that state */
3056 		vd->state = VD_STATE_ATTR;
3057 		return (0);
3058 
3059 	case VD_STATE_ATTR:
3060 		switch (vd->xfer_mode) {
3061 		case VIO_DESC_MODE:	/* expect RDX message */
3062 			if ((status = process_rdx_msg(msg, msglen)) != 0)
3063 				return (status);
3064 
3065 			/* Ready to receive in-band descriptors */
3066 			vd->state = VD_STATE_DATA;
3067 			return (0);
3068 
3069 		case VIO_DRING_MODE:	/* expect register-dring message */
3070 			if ((status =
3071 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
3072 				return (status);
3073 
3074 			/* One dring negotiated, move to that state */
3075 			vd->state = VD_STATE_DRING;
3076 			return (0);
3077 
3078 		default:
3079 			ASSERT("Unsupported transfer mode");
3080 			PR0("Unsupported transfer mode");
3081 			return (ENOTSUP);
3082 		}
3083 
3084 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
3085 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
3086 			/* Ready to receive data */
3087 			vd->state = VD_STATE_DATA;
3088 			return (0);
3089 		} else if (status != ENOMSG) {
3090 			return (status);
3091 		}
3092 
3093 
3094 		/*
3095 		 * If another register-dring message is received, stay in
3096 		 * dring state in case the client sends RDX; although the
3097 		 * protocol allows multiple drings, this server does not
3098 		 * support using more than one
3099 		 */
3100 		if ((status =
3101 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
3102 			return (status);
3103 
3104 		/*
3105 		 * Acknowledge an unregister-dring message, but reset the
3106 		 * connection anyway:  Although the protocol allows
3107 		 * unregistering drings, this server cannot serve a vdisk
3108 		 * without its only dring
3109 		 */
3110 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
3111 		return ((status == 0) ? ENOTSUP : status);
3112 
3113 	case VD_STATE_DATA:
3114 		switch (vd->xfer_mode) {
3115 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
3116 			return (vd_process_desc_msg(vd, msg, msglen));
3117 
3118 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
3119 			/*
3120 			 * Typically expect dring-data messages, so handle
3121 			 * them first
3122 			 */
3123 			if ((status = vd_process_dring_msg(vd, msg,
3124 			    msglen)) != ENOMSG)
3125 				return (status);
3126 
3127 			/*
3128 			 * Acknowledge an unregister-dring message, but reset
3129 			 * the connection anyway:  Although the protocol
3130 			 * allows unregistering drings, this server cannot
3131 			 * serve a vdisk without its only dring
3132 			 */
3133 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
3134 			return ((status == 0) ? ENOTSUP : status);
3135 
3136 		default:
3137 			ASSERT("Unsupported transfer mode");
3138 			PR0("Unsupported transfer mode");
3139 			return (ENOTSUP);
3140 		}
3141 
3142 	default:
3143 		ASSERT("Invalid client connection state");
3144 		PR0("Invalid client connection state");
3145 		return (ENOTSUP);
3146 	}
3147 }
3148 
3149 static int
3150 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3151 {
3152 	int		status;
3153 	boolean_t	reset_ldc = B_FALSE;
3154 	vd_task_t	task;
3155 
3156 	/*
3157 	 * Check that the message is at least big enough for a "tag", so that
3158 	 * message processing can proceed based on tag-specified message type
3159 	 */
3160 	if (msglen < sizeof (vio_msg_tag_t)) {
3161 		PR0("Received short (%lu-byte) message", msglen);
3162 		/* Can't "nack" short message, so drop the big hammer */
3163 		PR0("initiating full reset");
3164 		vd_need_reset(vd, B_TRUE);
3165 		return (EBADMSG);
3166 	}
3167 
3168 	/*
3169 	 * Process the message
3170 	 */
3171 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
3172 	case 0:
3173 		/* "ack" valid, successfully-processed messages */
3174 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3175 		break;
3176 
3177 	case EINPROGRESS:
3178 		/* The completion handler will "ack" or "nack" the message */
3179 		return (EINPROGRESS);
3180 	case ENOMSG:
3181 		PR0("Received unexpected message");
3182 		_NOTE(FALLTHROUGH);
3183 	case EBADMSG:
3184 	case ENOTSUP:
3185 		/* "transport" error will cause NACK of invalid messages */
3186 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3187 		break;
3188 
3189 	default:
3190 		/* "transport" error will cause NACK of invalid messages */
3191 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3192 		/* An LDC error probably occurred, so try resetting it */
3193 		reset_ldc = B_TRUE;
3194 		break;
3195 	}
3196 
3197 	PR1("\tResulting in state %d (%s)", vd->state,
3198 	    vd_decode_state(vd->state));
3199 
3200 	/* populate the task so we can dispatch it on the taskq */
3201 	task.vd = vd;
3202 	task.msg = msg;
3203 	task.msglen = msglen;
3204 
3205 	/*
3206 	 * Queue a task to send the notification that the operation completed.
3207 	 * We need to ensure that requests are responded to in the correct
3208 	 * order and since the taskq is processed serially this ordering
3209 	 * is maintained.
3210 	 */
3211 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
3212 	    &task, DDI_SLEEP);
3213 
3214 	/*
3215 	 * To ensure handshake negotiations do not happen out of order, such
3216 	 * requests that come through this path should not be done in parallel
3217 	 * so we need to wait here until the response is sent to the client.
3218 	 */
3219 	ddi_taskq_wait(vd->completionq);
3220 
3221 	/* Arrange to reset the connection for nack'ed or failed messages */
3222 	if ((status != 0) || reset_ldc) {
3223 		PR0("initiating %s reset",
3224 		    (reset_ldc) ? "full" : "soft");
3225 		vd_need_reset(vd, reset_ldc);
3226 	}
3227 
3228 	return (status);
3229 }
3230 
3231 static boolean_t
3232 vd_enabled(vd_t *vd)
3233 {
3234 	boolean_t	enabled;
3235 
3236 	mutex_enter(&vd->lock);
3237 	enabled = vd->enabled;
3238 	mutex_exit(&vd->lock);
3239 	return (enabled);
3240 }
3241 
3242 static void
3243 vd_recv_msg(void *arg)
3244 {
3245 	vd_t	*vd = (vd_t *)arg;
3246 	int	rv = 0, status = 0;
3247 
3248 	ASSERT(vd != NULL);
3249 
3250 	PR2("New task to receive incoming message(s)");
3251 
3252 
3253 	while (vd_enabled(vd) && status == 0) {
3254 		size_t		msglen, msgsize;
3255 		ldc_status_t	lstatus;
3256 
3257 		/*
3258 		 * Receive and process a message
3259 		 */
3260 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
3261 
3262 		/*
3263 		 * check if channel is UP - else break out of loop
3264 		 */
3265 		status = ldc_status(vd->ldc_handle, &lstatus);
3266 		if (lstatus != LDC_UP) {
3267 			PR0("channel not up (status=%d), exiting recv loop\n",
3268 			    lstatus);
3269 			break;
3270 		}
3271 
3272 		ASSERT(vd->max_msglen != 0);
3273 
3274 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
3275 		msglen	= msgsize;	  /* actual len after recv_msg() */
3276 
3277 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
3278 		switch (status) {
3279 		case 0:
3280 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
3281 			    msglen);
3282 			/* check if max_msglen changed */
3283 			if (msgsize != vd->max_msglen) {
3284 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
3285 				    msgsize, vd->max_msglen);
3286 				kmem_free(vd->vio_msgp, msgsize);
3287 				vd->vio_msgp =
3288 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
3289 			}
3290 			if (rv == EINPROGRESS)
3291 				continue;
3292 			break;
3293 
3294 		case ENOMSG:
3295 			break;
3296 
3297 		case ECONNRESET:
3298 			PR0("initiating soft reset (ECONNRESET)\n");
3299 			vd_need_reset(vd, B_FALSE);
3300 			status = 0;
3301 			break;
3302 
3303 		default:
3304 			/* Probably an LDC failure; arrange to reset it */
3305 			PR0("initiating full reset (status=0x%x)", status);
3306 			vd_need_reset(vd, B_TRUE);
3307 			break;
3308 		}
3309 	}
3310 
3311 	PR2("Task finished");
3312 }
3313 
3314 static uint_t
3315 vd_handle_ldc_events(uint64_t event, caddr_t arg)
3316 {
3317 	vd_t	*vd = (vd_t *)(void *)arg;
3318 	int	status;
3319 
3320 	ASSERT(vd != NULL);
3321 
3322 	if (!vd_enabled(vd))
3323 		return (LDC_SUCCESS);
3324 
3325 	if (event & LDC_EVT_DOWN) {
3326 		PR0("LDC_EVT_DOWN: LDC channel went down");
3327 
3328 		vd_need_reset(vd, B_TRUE);
3329 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3330 		    DDI_SLEEP);
3331 		if (status == DDI_FAILURE) {
3332 			PR0("cannot schedule task to recv msg\n");
3333 			vd_need_reset(vd, B_TRUE);
3334 		}
3335 	}
3336 
3337 	if (event & LDC_EVT_RESET) {
3338 		PR0("LDC_EVT_RESET: LDC channel was reset");
3339 
3340 		if (vd->state != VD_STATE_INIT) {
3341 			PR0("scheduling full reset");
3342 			vd_need_reset(vd, B_FALSE);
3343 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3344 			    vd, DDI_SLEEP);
3345 			if (status == DDI_FAILURE) {
3346 				PR0("cannot schedule task to recv msg\n");
3347 				vd_need_reset(vd, B_TRUE);
3348 			}
3349 
3350 		} else {
3351 			PR0("channel already reset, ignoring...\n");
3352 			PR0("doing ldc up...\n");
3353 			(void) ldc_up(vd->ldc_handle);
3354 		}
3355 
3356 		return (LDC_SUCCESS);
3357 	}
3358 
3359 	if (event & LDC_EVT_UP) {
3360 		PR0("EVT_UP: LDC is up\nResetting client connection state");
3361 		PR0("initiating soft reset");
3362 		vd_need_reset(vd, B_FALSE);
3363 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3364 		    vd, DDI_SLEEP);
3365 		if (status == DDI_FAILURE) {
3366 			PR0("cannot schedule task to recv msg\n");
3367 			vd_need_reset(vd, B_TRUE);
3368 			return (LDC_SUCCESS);
3369 		}
3370 	}
3371 
3372 	if (event & LDC_EVT_READ) {
3373 		int	status;
3374 
3375 		PR1("New data available");
3376 		/* Queue a task to receive the new data */
3377 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3378 		    DDI_SLEEP);
3379 
3380 		if (status == DDI_FAILURE) {
3381 			PR0("cannot schedule task to recv msg\n");
3382 			vd_need_reset(vd, B_TRUE);
3383 		}
3384 	}
3385 
3386 	return (LDC_SUCCESS);
3387 }
3388 
3389 static uint_t
3390 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3391 {
3392 	_NOTE(ARGUNUSED(key, val))
3393 	(*((uint_t *)arg))++;
3394 	return (MH_WALK_TERMINATE);
3395 }
3396 
3397 
3398 static int
3399 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3400 {
3401 	uint_t	vd_present = 0;
3402 	minor_t	instance;
3403 	vds_t	*vds;
3404 
3405 
3406 	switch (cmd) {
3407 	case DDI_DETACH:
3408 		/* the real work happens below */
3409 		break;
3410 	case DDI_SUSPEND:
3411 		PR0("No action required for DDI_SUSPEND");
3412 		return (DDI_SUCCESS);
3413 	default:
3414 		PR0("Unrecognized \"cmd\"");
3415 		return (DDI_FAILURE);
3416 	}
3417 
3418 	ASSERT(cmd == DDI_DETACH);
3419 	instance = ddi_get_instance(dip);
3420 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3421 		PR0("Could not get state for instance %u", instance);
3422 		ddi_soft_state_free(vds_state, instance);
3423 		return (DDI_FAILURE);
3424 	}
3425 
3426 	/* Do no detach when serving any vdisks */
3427 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
3428 	if (vd_present) {
3429 		PR0("Not detaching because serving vdisks");
3430 		return (DDI_FAILURE);
3431 	}
3432 
3433 	PR0("Detaching");
3434 	if (vds->initialized & VDS_MDEG) {
3435 		(void) mdeg_unregister(vds->mdeg);
3436 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
3437 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
3438 		vds->ispecp = NULL;
3439 		vds->mdeg = NULL;
3440 	}
3441 
3442 	if (vds->initialized & VDS_LDI)
3443 		(void) ldi_ident_release(vds->ldi_ident);
3444 	mod_hash_destroy_hash(vds->vd_table);
3445 	ddi_soft_state_free(vds_state, instance);
3446 	return (DDI_SUCCESS);
3447 }
3448 
3449 static boolean_t
3450 is_pseudo_device(dev_info_t *dip)
3451 {
3452 	dev_info_t	*parent, *root = ddi_root_node();
3453 
3454 
3455 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
3456 	    parent = ddi_get_parent(parent)) {
3457 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
3458 			return (B_TRUE);
3459 	}
3460 
3461 	return (B_FALSE);
3462 }
3463 
3464 static int
3465 vd_setup_full_disk(vd_t *vd)
3466 {
3467 	int		rval, status;
3468 	major_t		major = getmajor(vd->dev[0]);
3469 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
3470 	struct dk_minfo	dk_minfo;
3471 
3472 	/*
3473 	 * At this point, vdisk_size is set to the size of partition 2 but
3474 	 * this does not represent the size of the disk because partition 2
3475 	 * may not cover the entire disk and its size does not include reserved
3476 	 * blocks. So we update vdisk_size to be the size of the entire disk.
3477 	 */
3478 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
3479 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
3480 	    kcred, &rval)) != 0) {
3481 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
3482 		    status);
3483 		return (status);
3484 	}
3485 	vd->vdisk_size = dk_minfo.dki_capacity;
3486 
3487 	/* Set full-disk parameters */
3488 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
3489 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
3490 
3491 	/* Move dev number and LDI handle to entire-disk-slice array elements */
3492 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
3493 	vd->dev[0]				= 0;
3494 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
3495 	vd->ldi_handle[0]			= NULL;
3496 
3497 	/* Initialize device numbers for remaining slices and open them */
3498 	for (int slice = 0; slice < vd->nslices; slice++) {
3499 		/*
3500 		 * Skip the entire-disk slice, as it's already open and its
3501 		 * device known
3502 		 */
3503 		if (slice == VD_ENTIRE_DISK_SLICE)
3504 			continue;
3505 		ASSERT(vd->dev[slice] == 0);
3506 		ASSERT(vd->ldi_handle[slice] == NULL);
3507 
3508 		/*
3509 		 * Construct the device number for the current slice
3510 		 */
3511 		vd->dev[slice] = makedevice(major, (minor + slice));
3512 
3513 		/*
3514 		 * Open all slices of the disk to serve them to the client.
3515 		 * Slices are opened exclusively to prevent other threads or
3516 		 * processes in the service domain from performing I/O to
3517 		 * slices being accessed by a client.  Failure to open a slice
3518 		 * results in vds not serving this disk, as the client could
3519 		 * attempt (and should be able) to access any slice immediately.
3520 		 * Any slices successfully opened before a failure will get
3521 		 * closed by vds_destroy_vd() as a result of the error returned
3522 		 * by this function.
3523 		 *
3524 		 * We need to do the open with FNDELAY so that opening an empty
3525 		 * slice does not fail.
3526 		 */
3527 		PR0("Opening device major %u, minor %u = slice %u",
3528 		    major, minor, slice);
3529 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3530 		    vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice],
3531 		    vd->vds->ldi_ident)) != 0) {
3532 			PRN("ldi_open_by_dev() returned errno %d "
3533 			    "for slice %u", status, slice);
3534 			/* vds_destroy_vd() will close any open slices */
3535 			vd->ldi_handle[slice] = NULL;
3536 			return (status);
3537 		}
3538 	}
3539 
3540 	return (0);
3541 }
3542 
3543 static int
3544 vd_setup_partition_vtoc(vd_t *vd)
3545 {
3546 	int rval, status;
3547 	char *device_path = vd->device_path;
3548 
3549 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
3550 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL), kcred, &rval);
3551 
3552 	if (status != 0) {
3553 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
3554 		    status, device_path);
3555 		return (status);
3556 	}
3557 
3558 	/* Initialize dk_geom structure for single-slice device */
3559 	if (vd->dk_geom.dkg_nsect == 0) {
3560 		PRN("%s geometry claims 0 sectors per track", device_path);
3561 		return (EIO);
3562 	}
3563 	if (vd->dk_geom.dkg_nhead == 0) {
3564 		PRN("%s geometry claims 0 heads", device_path);
3565 		return (EIO);
3566 	}
3567 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / vd->dk_geom.dkg_nsect /
3568 	    vd->dk_geom.dkg_nhead;
3569 	vd->dk_geom.dkg_acyl = 0;
3570 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3571 
3572 
3573 	/* Initialize vtoc structure for single-slice device */
3574 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3575 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3576 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3577 	vd->vtoc.v_nparts = 1;
3578 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3579 	vd->vtoc.v_part[0].p_flag = 0;
3580 	vd->vtoc.v_part[0].p_start = 0;
3581 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3582 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3583 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3584 
3585 	return (0);
3586 }
3587 
3588 static int
3589 vd_setup_partition_efi(vd_t *vd)
3590 {
3591 	efi_gpt_t *gpt;
3592 	efi_gpe_t *gpe;
3593 	struct uuid uuid = EFI_RESERVED;
3594 	uint32_t crc;
3595 	int length;
3596 
3597 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
3598 
3599 	gpt = kmem_zalloc(length, KM_SLEEP);
3600 	gpe = (efi_gpe_t *)(gpt + 1);
3601 
3602 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
3603 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
3604 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
3605 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
3606 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
3607 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
3608 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
3609 
3610 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
3611 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
3612 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
3613 
3614 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
3615 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
3616 
3617 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
3618 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
3619 
3620 	vd->dk_efi.dki_lba = 0;
3621 	vd->dk_efi.dki_length = length;
3622 	vd->dk_efi.dki_data = gpt;
3623 
3624 	return (0);
3625 }
3626 
3627 static int
3628 vd_setup_file(vd_t *vd)
3629 {
3630 	int 		rval, status;
3631 	vattr_t		vattr;
3632 	dev_t		dev;
3633 	char		*file_path = vd->device_path;
3634 	char		dev_path[MAXPATHLEN + 1];
3635 	ldi_handle_t	lhandle;
3636 	struct dk_cinfo	dk_cinfo;
3637 
3638 	/* make sure the file is valid */
3639 	if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW,
3640 	    NULLVPP, &vd->file_vnode)) != 0) {
3641 		PRN("Cannot lookup file(%s) errno %d", file_path, status);
3642 		return (status);
3643 	}
3644 
3645 	if (vd->file_vnode->v_type != VREG) {
3646 		PRN("Invalid file type (%s)\n", file_path);
3647 		VN_RELE(vd->file_vnode);
3648 		return (EBADF);
3649 	}
3650 	VN_RELE(vd->file_vnode);
3651 
3652 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX,
3653 	    0, &vd->file_vnode, 0, 0)) != 0) {
3654 		PRN("vn_open(%s) = errno %d", file_path, status);
3655 		return (status);
3656 	}
3657 
3658 	/*
3659 	 * We set vd->file now so that vds_destroy_vd will take care of
3660 	 * closing the file and releasing the vnode in case of an error.
3661 	 */
3662 	vd->file = B_TRUE;
3663 	vd->pseudo = B_FALSE;
3664 
3665 	vattr.va_mask = AT_SIZE;
3666 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
3667 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
3668 		return (EIO);
3669 	}
3670 
3671 	vd->file_size = vattr.va_size;
3672 	/* size should be at least sizeof(dk_label) */
3673 	if (vd->file_size < sizeof (struct dk_label)) {
3674 		PRN("Size of file has to be at least %ld bytes",
3675 		    sizeof (struct dk_label));
3676 		return (EIO);
3677 	}
3678 
3679 	if (vd->file_vnode->v_flag & VNOMAP) {
3680 		PRN("File %s cannot be mapped", file_path);
3681 		return (EIO);
3682 	}
3683 
3684 	/* find and validate the geometry of the disk image */
3685 	status = vd_file_validate_geometry(vd);
3686 	if (status != 0 && status != EINVAL) {
3687 		PRN("Fail to read label from %s", file_path);
3688 		return (EIO);
3689 	}
3690 
3691 	vd->nslices = V_NUMPAR;
3692 	/* sector size = block size = DEV_BSIZE */
3693 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
3694 	vd->vdisk_type = VD_DISK_TYPE_DISK;
3695 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
3696 
3697 	/* Get max_xfer_sz from the device where the file is */
3698 	dev = vd->file_vnode->v_vfsp->vfs_dev;
3699 	dev_path[0] = NULL;
3700 	if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
3701 		PR0("underlying device = %s\n", dev_path);
3702 	}
3703 
3704 	if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD,
3705 	    kcred, &lhandle, vd->vds->ldi_ident)) != 0) {
3706 		PR0("ldi_open_by_dev() returned errno %d for device %s",
3707 		    status, dev_path);
3708 	} else {
3709 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
3710 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3711 		    &rval)) != 0) {
3712 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3713 			    status, dev_path);
3714 		} else {
3715 			/*
3716 			 * Store the device's max transfer size for
3717 			 * return to the client
3718 			 */
3719 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3720 		}
3721 
3722 		PR0("close the device %s", dev_path);
3723 		(void) ldi_close(lhandle, FREAD, kcred);
3724 	}
3725 
3726 	PR0("using file %s, dev %s, max_xfer = %u blks",
3727 	    file_path, dev_path, vd->max_xfer_sz);
3728 
3729 	/* Setup devid for the disk image */
3730 
3731 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3732 
3733 		status = vd_file_read_devid(vd, &vd->file_devid);
3734 
3735 		if (status == 0) {
3736 			/* a valid devid was found */
3737 			return (0);
3738 		}
3739 
3740 		if (status != EINVAL) {
3741 			/*
3742 			 * There was an error while trying to read the devid.
3743 			 * So this disk image may have a devid but we are
3744 			 * unable to read it.
3745 			 */
3746 			PR0("can not read devid for %s", file_path);
3747 			vd->file_devid = NULL;
3748 			return (0);
3749 		}
3750 	}
3751 
3752 	/*
3753 	 * No valid device id was found so we create one. Note that a failure
3754 	 * to create a device id is not fatal and does not prevent the disk
3755 	 * image from being attached.
3756 	 */
3757 	PR1("creating devid for %s", file_path);
3758 
3759 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
3760 	    &vd->file_devid) != DDI_SUCCESS) {
3761 		PR0("fail to create devid for %s", file_path);
3762 		vd->file_devid = NULL;
3763 		return (0);
3764 	}
3765 
3766 	/*
3767 	 * Write devid to the disk image. The devid is stored into the disk
3768 	 * image if we have a valid label; otherwise the devid will be stored
3769 	 * when the user writes a valid label.
3770 	 */
3771 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3772 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3773 			PR0("fail to write devid for %s", file_path);
3774 			ddi_devid_free(vd->file_devid);
3775 			vd->file_devid = NULL;
3776 		}
3777 	}
3778 
3779 	return (0);
3780 }
3781 
3782 static int
3783 vd_setup_vd(vd_t *vd)
3784 {
3785 	int		rval, status;
3786 	dev_info_t	*dip;
3787 	struct dk_cinfo	dk_cinfo;
3788 	char		*device_path = vd->device_path;
3789 
3790 	/*
3791 	 * We need to open with FNDELAY so that opening an empty partition
3792 	 * does not fail.
3793 	 */
3794 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
3795 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
3796 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
3797 		vd->ldi_handle[0] = NULL;
3798 
3799 		/* this may not be a device try opening as a file */
3800 		if (status == ENXIO || status == ENODEV)
3801 			status = vd_setup_file(vd);
3802 		if (status) {
3803 			PRN("Cannot use device/file (%s), errno=%d\n",
3804 			    device_path, status);
3805 			if (status == ENXIO || status == ENODEV ||
3806 			    status == ENOENT || status == EROFS) {
3807 				return (EAGAIN);
3808 			}
3809 		}
3810 		return (status);
3811 	}
3812 
3813 	/*
3814 	 * nslices must be updated now so that vds_destroy_vd() will close
3815 	 * the slice we have just opened in case of an error.
3816 	 */
3817 	vd->nslices = 1;
3818 	vd->file = B_FALSE;
3819 
3820 	/* Get device number and size of backing device */
3821 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
3822 		PRN("ldi_get_dev() returned errno %d for %s",
3823 		    status, device_path);
3824 		return (status);
3825 	}
3826 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
3827 		PRN("ldi_get_size() failed for %s", device_path);
3828 		return (EIO);
3829 	}
3830 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
3831 
3832 	/* Verify backing device supports dk_cinfo */
3833 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
3834 	    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
3835 	    &rval)) != 0) {
3836 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3837 		    status, device_path);
3838 		return (status);
3839 	}
3840 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
3841 		PRN("slice %u >= maximum slice %u for %s",
3842 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
3843 		return (EIO);
3844 	}
3845 
3846 	vd->vdisk_label = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc);
3847 
3848 	/* Store the device's max transfer size for return to the client */
3849 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3850 
3851 	/* Determine if backing device is a pseudo device */
3852 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
3853 	    dev_to_instance(vd->dev[0]), 0))  == NULL) {
3854 		PRN("%s is no longer accessible", device_path);
3855 		return (EIO);
3856 	}
3857 	vd->pseudo = is_pseudo_device(dip);
3858 	ddi_release_devi(dip);
3859 	if (vd->pseudo) {
3860 		/*
3861 		 * Currently we only support exporting pseudo devices which
3862 		 * provide a valid disk label.
3863 		 */
3864 		if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
3865 			PRN("%s is a pseudo device with an invalid disk "
3866 			    "label\n", device_path);
3867 			return (EINVAL);
3868 		}
3869 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3870 		vd->nslices	= 1;
3871 		return (0);	/* ...and we're done */
3872 	}
3873 
3874 	/* If slice is entire-disk slice, initialize for full disk */
3875 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
3876 		return (vd_setup_full_disk(vd));
3877 
3878 	/* We can only export a slice if the disk has a valid label */
3879 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
3880 		PRN("%s is a slice from a disk with an unknown disk label\n",
3881 		    device_path);
3882 		return (EINVAL);
3883 	}
3884 
3885 	/* Otherwise, we have a non-entire slice of a device */
3886 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
3887 	vd->nslices	= 1;
3888 
3889 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
3890 		/* Slice from a disk with an EFI label */
3891 		status = vd_setup_partition_efi(vd);
3892 	} else {
3893 		/* Slice from a disk with a VTOC label */
3894 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
3895 		status = vd_setup_partition_vtoc(vd);
3896 	}
3897 
3898 	return (status);
3899 }
3900 
3901 static int
3902 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
3903     vd_t **vdp)
3904 {
3905 	char			tq_name[TASKQ_NAMELEN];
3906 	int			status;
3907 	ddi_iblock_cookie_t	iblock = NULL;
3908 	ldc_attr_t		ldc_attr;
3909 	vd_t			*vd;
3910 
3911 
3912 	ASSERT(vds != NULL);
3913 	ASSERT(device_path != NULL);
3914 	ASSERT(vdp != NULL);
3915 	PR0("Adding vdisk for %s", device_path);
3916 
3917 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
3918 		PRN("No memory for virtual disk");
3919 		return (EAGAIN);
3920 	}
3921 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
3922 	vd->vds = vds;
3923 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
3924 
3925 	/* Open vdisk and initialize parameters */
3926 	if ((status = vd_setup_vd(vd)) == 0) {
3927 		vd->initialized |= VD_DISK_READY;
3928 
3929 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3930 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3931 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3932 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
3933 		    vd->nslices);
3934 	} else {
3935 		if (status != EAGAIN)
3936 			return (status);
3937 	}
3938 
3939 	/* Initialize locking */
3940 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
3941 	    &iblock) != DDI_SUCCESS) {
3942 		PRN("Could not get iblock cookie.");
3943 		return (EIO);
3944 	}
3945 
3946 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
3947 	vd->initialized |= VD_LOCKING;
3948 
3949 
3950 	/* Create start and completion task queues for the vdisk */
3951 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
3952 	PR1("tq_name = %s", tq_name);
3953 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
3954 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3955 		PRN("Could not create task queue");
3956 		return (EIO);
3957 	}
3958 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
3959 	PR1("tq_name = %s", tq_name);
3960 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
3961 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
3962 		PRN("Could not create task queue");
3963 		return (EIO);
3964 	}
3965 	vd->enabled = 1;	/* before callback can dispatch to startq */
3966 
3967 
3968 	/* Bring up LDC */
3969 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
3970 	ldc_attr.instance	= ddi_get_instance(vds->dip);
3971 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
3972 	ldc_attr.mtu		= VD_LDC_MTU;
3973 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
3974 		PRN("Could not initialize LDC channel %lu, "
3975 		    "init failed with error %d", ldc_id, status);
3976 		return (status);
3977 	}
3978 	vd->initialized |= VD_LDC;
3979 
3980 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
3981 	    (caddr_t)vd)) != 0) {
3982 		PRN("Could not initialize LDC channel %lu,"
3983 		    "reg_callback failed with error %d", ldc_id, status);
3984 		return (status);
3985 	}
3986 
3987 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
3988 		PRN("Could not initialize LDC channel %lu,"
3989 		    "open failed with error %d", ldc_id, status);
3990 		return (status);
3991 	}
3992 
3993 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
3994 		PR0("ldc_up() returned errno %d", status);
3995 	}
3996 
3997 	/* Allocate the inband task memory handle */
3998 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
3999 	if (status) {
4000 		PRN("Could not initialize LDC channel %lu,"
4001 		    "alloc_handle failed with error %d", ldc_id, status);
4002 		return (ENXIO);
4003 	}
4004 
4005 	/* Add the successfully-initialized vdisk to the server's table */
4006 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
4007 		PRN("Error adding vdisk ID %lu to table", id);
4008 		return (EIO);
4009 	}
4010 
4011 	/* Allocate the staging buffer */
4012 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
4013 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
4014 
4015 	/* store initial state */
4016 	vd->state = VD_STATE_INIT;
4017 
4018 	return (0);
4019 }
4020 
4021 static void
4022 vd_free_dring_task(vd_t *vdp)
4023 {
4024 	if (vdp->dring_task != NULL) {
4025 		ASSERT(vdp->dring_len != 0);
4026 		/* Free all dring_task memory handles */
4027 		for (int i = 0; i < vdp->dring_len; i++) {
4028 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
4029 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
4030 			vdp->dring_task[i].msg = NULL;
4031 		}
4032 		kmem_free(vdp->dring_task,
4033 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
4034 		vdp->dring_task = NULL;
4035 	}
4036 }
4037 
4038 /*
4039  * Destroy the state associated with a virtual disk
4040  */
4041 static void
4042 vds_destroy_vd(void *arg)
4043 {
4044 	vd_t	*vd = (vd_t *)arg;
4045 	int	retry = 0, rv;
4046 
4047 	if (vd == NULL)
4048 		return;
4049 
4050 	PR0("Destroying vdisk state");
4051 
4052 	if (vd->dk_efi.dki_data != NULL)
4053 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
4054 
4055 	/* Disable queuing requests for the vdisk */
4056 	if (vd->initialized & VD_LOCKING) {
4057 		mutex_enter(&vd->lock);
4058 		vd->enabled = 0;
4059 		mutex_exit(&vd->lock);
4060 	}
4061 
4062 	/* Drain and destroy start queue (*before* destroying completionq) */
4063 	if (vd->startq != NULL)
4064 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
4065 
4066 	/* Drain and destroy completion queue (*before* shutting down LDC) */
4067 	if (vd->completionq != NULL)
4068 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
4069 
4070 	vd_free_dring_task(vd);
4071 
4072 	/* Free the inband task memory handle */
4073 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
4074 
4075 	/* Shut down LDC */
4076 	if (vd->initialized & VD_LDC) {
4077 		/* unmap the dring */
4078 		if (vd->initialized & VD_DRING)
4079 			(void) ldc_mem_dring_unmap(vd->dring_handle);
4080 
4081 		/* close LDC channel - retry on EAGAIN */
4082 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
4083 			if (++retry > vds_ldc_retries) {
4084 				PR0("Timed out closing channel");
4085 				break;
4086 			}
4087 			drv_usecwait(vds_ldc_delay);
4088 		}
4089 		if (rv == 0) {
4090 			(void) ldc_unreg_callback(vd->ldc_handle);
4091 			(void) ldc_fini(vd->ldc_handle);
4092 		} else {
4093 			/*
4094 			 * Closing the LDC channel has failed. Ideally we should
4095 			 * fail here but there is no Zeus level infrastructure
4096 			 * to handle this. The MD has already been changed and
4097 			 * we have to do the close. So we try to do as much
4098 			 * clean up as we can.
4099 			 */
4100 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
4101 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
4102 				drv_usecwait(vds_ldc_delay);
4103 		}
4104 	}
4105 
4106 	/* Free the staging buffer for msgs */
4107 	if (vd->vio_msgp != NULL) {
4108 		kmem_free(vd->vio_msgp, vd->max_msglen);
4109 		vd->vio_msgp = NULL;
4110 	}
4111 
4112 	/* Free the inband message buffer */
4113 	if (vd->inband_task.msg != NULL) {
4114 		kmem_free(vd->inband_task.msg, vd->max_msglen);
4115 		vd->inband_task.msg = NULL;
4116 	}
4117 	if (vd->file) {
4118 		/* Close file */
4119 		(void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1,
4120 		    0, kcred);
4121 		VN_RELE(vd->file_vnode);
4122 		if (vd->file_devid != NULL)
4123 			ddi_devid_free(vd->file_devid);
4124 	} else {
4125 		/* Close any open backing-device slices */
4126 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
4127 			if (vd->ldi_handle[slice] != NULL) {
4128 				PR0("Closing slice %u", slice);
4129 				(void) ldi_close(vd->ldi_handle[slice],
4130 				    vd_open_flags | FNDELAY, kcred);
4131 			}
4132 		}
4133 	}
4134 
4135 	/* Free lock */
4136 	if (vd->initialized & VD_LOCKING)
4137 		mutex_destroy(&vd->lock);
4138 
4139 	/* Finally, free the vdisk structure itself */
4140 	kmem_free(vd, sizeof (*vd));
4141 }
4142 
4143 static int
4144 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
4145 {
4146 	int	status;
4147 	vd_t	*vd = NULL;
4148 
4149 
4150 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
4151 		vds_destroy_vd(vd);
4152 
4153 	return (status);
4154 }
4155 
4156 static int
4157 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
4158     uint64_t *ldc_id)
4159 {
4160 	int	num_channels;
4161 
4162 
4163 	/* Look for channel endpoint child(ren) of the vdisk MD node */
4164 	if ((num_channels = md_scan_dag(md, vd_node,
4165 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
4166 	    md_find_name(md, "fwd"), channel)) <= 0) {
4167 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
4168 		return (-1);
4169 	}
4170 
4171 	/* Get the "id" value for the first channel endpoint node */
4172 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
4173 		PRN("No \"%s\" property found for \"%s\" of vdisk",
4174 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
4175 		return (-1);
4176 	}
4177 
4178 	if (num_channels > 1) {
4179 		PRN("Using ID of first of multiple channels for this vdisk");
4180 	}
4181 
4182 	return (0);
4183 }
4184 
4185 static int
4186 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
4187 {
4188 	int		num_nodes, status;
4189 	size_t		size;
4190 	mde_cookie_t	*channel;
4191 
4192 
4193 	if ((num_nodes = md_node_count(md)) <= 0) {
4194 		PRN("Invalid node count in Machine Description subtree");
4195 		return (-1);
4196 	}
4197 	size = num_nodes*(sizeof (*channel));
4198 	channel = kmem_zalloc(size, KM_SLEEP);
4199 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
4200 	kmem_free(channel, size);
4201 
4202 	return (status);
4203 }
4204 
4205 static void
4206 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4207 {
4208 	char		*device_path = NULL;
4209 	uint64_t	id = 0, ldc_id = 0;
4210 
4211 
4212 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4213 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
4214 		return;
4215 	}
4216 	PR0("Adding vdisk ID %lu", id);
4217 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
4218 	    &device_path) != 0) {
4219 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4220 		return;
4221 	}
4222 
4223 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
4224 		PRN("Error getting LDC ID for vdisk %lu", id);
4225 		return;
4226 	}
4227 
4228 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
4229 		PRN("Failed to add vdisk ID %lu", id);
4230 		return;
4231 	}
4232 }
4233 
4234 static void
4235 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4236 {
4237 	uint64_t	id = 0;
4238 
4239 
4240 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4241 		PRN("Unable to get \"%s\" property from vdisk's MD node",
4242 		    VD_ID_PROP);
4243 		return;
4244 	}
4245 	PR0("Removing vdisk ID %lu", id);
4246 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
4247 		PRN("No vdisk entry found for vdisk ID %lu", id);
4248 }
4249 
4250 static void
4251 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
4252     md_t *curr_md, mde_cookie_t curr_vd_node)
4253 {
4254 	char		*curr_dev, *prev_dev;
4255 	uint64_t	curr_id = 0, curr_ldc_id = 0;
4256 	uint64_t	prev_id = 0, prev_ldc_id = 0;
4257 	size_t		len;
4258 
4259 
4260 	/* Validate that vdisk ID has not changed */
4261 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
4262 		PRN("Error getting previous vdisk \"%s\" property",
4263 		    VD_ID_PROP);
4264 		return;
4265 	}
4266 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
4267 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
4268 		return;
4269 	}
4270 	if (curr_id != prev_id) {
4271 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
4272 		    prev_id, curr_id);
4273 		return;
4274 	}
4275 
4276 	/* Validate that LDC ID has not changed */
4277 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
4278 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
4279 		return;
4280 	}
4281 
4282 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
4283 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
4284 		return;
4285 	}
4286 	if (curr_ldc_id != prev_ldc_id) {
4287 		_NOTE(NOTREACHED);	/* lint is confused */
4288 		PRN("Not changing vdisk:  "
4289 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
4290 		return;
4291 	}
4292 
4293 	/* Determine whether device path has changed */
4294 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
4295 	    &prev_dev) != 0) {
4296 		PRN("Error getting previous vdisk \"%s\"",
4297 		    VD_BLOCK_DEVICE_PROP);
4298 		return;
4299 	}
4300 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
4301 	    &curr_dev) != 0) {
4302 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4303 		return;
4304 	}
4305 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
4306 	    (strncmp(curr_dev, prev_dev, len) == 0))
4307 		return;	/* no relevant (supported) change */
4308 
4309 	PR0("Changing vdisk ID %lu", prev_id);
4310 
4311 	/* Remove old state, which will close vdisk and reset */
4312 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
4313 		PRN("No entry found for vdisk ID %lu", prev_id);
4314 
4315 	/* Re-initialize vdisk with new state */
4316 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
4317 		PRN("Failed to change vdisk ID %lu", curr_id);
4318 		return;
4319 	}
4320 }
4321 
4322 static int
4323 vds_process_md(void *arg, mdeg_result_t *md)
4324 {
4325 	int	i;
4326 	vds_t	*vds = arg;
4327 
4328 
4329 	if (md == NULL)
4330 		return (MDEG_FAILURE);
4331 	ASSERT(vds != NULL);
4332 
4333 	for (i = 0; i < md->removed.nelem; i++)
4334 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
4335 	for (i = 0; i < md->match_curr.nelem; i++)
4336 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
4337 		    md->match_curr.mdp, md->match_curr.mdep[i]);
4338 	for (i = 0; i < md->added.nelem; i++)
4339 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
4340 
4341 	return (MDEG_SUCCESS);
4342 }
4343 
4344 
4345 static int
4346 vds_do_attach(dev_info_t *dip)
4347 {
4348 	int			status, sz;
4349 	int			cfg_handle;
4350 	minor_t			instance = ddi_get_instance(dip);
4351 	vds_t			*vds;
4352 	mdeg_prop_spec_t	*pspecp;
4353 	mdeg_node_spec_t	*ispecp;
4354 
4355 	/*
4356 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
4357 	 * notion of "instance", or unique identifier, for that node; OBP
4358 	 * stores the value of the "cfg-handle" MD property as the value of
4359 	 * the "reg" property on the node in the device tree it builds from
4360 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
4361 	 * "reg" property value to uniquely identify this device instance when
4362 	 * registering with the MD event-generation framework.  If the "reg"
4363 	 * property cannot be found, the device tree state is presumably so
4364 	 * broken that there is no point in continuing.
4365 	 */
4366 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4367 	    VD_REG_PROP)) {
4368 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
4369 		return (DDI_FAILURE);
4370 	}
4371 
4372 	/* Get the MD instance for later MDEG registration */
4373 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4374 	    VD_REG_PROP, -1);
4375 
4376 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
4377 		PRN("Could not allocate state for instance %u", instance);
4378 		return (DDI_FAILURE);
4379 	}
4380 
4381 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4382 		PRN("Could not get state for instance %u", instance);
4383 		ddi_soft_state_free(vds_state, instance);
4384 		return (DDI_FAILURE);
4385 	}
4386 
4387 	vds->dip	= dip;
4388 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
4389 	    vds_destroy_vd, sizeof (void *));
4390 
4391 	ASSERT(vds->vd_table != NULL);
4392 
4393 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
4394 		PRN("ldi_ident_from_dip() returned errno %d", status);
4395 		return (DDI_FAILURE);
4396 	}
4397 	vds->initialized |= VDS_LDI;
4398 
4399 	/* Register for MD updates */
4400 	sz = sizeof (vds_prop_template);
4401 	pspecp = kmem_alloc(sz, KM_SLEEP);
4402 	bcopy(vds_prop_template, pspecp, sz);
4403 
4404 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
4405 
4406 	/* initialize the complete prop spec structure */
4407 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
4408 	ispecp->namep = "virtual-device";
4409 	ispecp->specp = pspecp;
4410 
4411 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
4412 	    &vds->mdeg) != MDEG_SUCCESS) {
4413 		PRN("Unable to register for MD updates");
4414 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
4415 		kmem_free(pspecp, sz);
4416 		return (DDI_FAILURE);
4417 	}
4418 
4419 	vds->ispecp = ispecp;
4420 	vds->initialized |= VDS_MDEG;
4421 
4422 	/* Prevent auto-detaching so driver is available whenever MD changes */
4423 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
4424 	    DDI_PROP_SUCCESS) {
4425 		PRN("failed to set \"%s\" property for instance %u",
4426 		    DDI_NO_AUTODETACH, instance);
4427 	}
4428 
4429 	ddi_report_dev(dip);
4430 	return (DDI_SUCCESS);
4431 }
4432 
4433 static int
4434 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4435 {
4436 	int	status;
4437 
4438 	switch (cmd) {
4439 	case DDI_ATTACH:
4440 		PR0("Attaching");
4441 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
4442 			(void) vds_detach(dip, DDI_DETACH);
4443 		return (status);
4444 	case DDI_RESUME:
4445 		PR0("No action required for DDI_RESUME");
4446 		return (DDI_SUCCESS);
4447 	default:
4448 		return (DDI_FAILURE);
4449 	}
4450 }
4451 
4452 static struct dev_ops vds_ops = {
4453 	DEVO_REV,	/* devo_rev */
4454 	0,		/* devo_refcnt */
4455 	ddi_no_info,	/* devo_getinfo */
4456 	nulldev,	/* devo_identify */
4457 	nulldev,	/* devo_probe */
4458 	vds_attach,	/* devo_attach */
4459 	vds_detach,	/* devo_detach */
4460 	nodev,		/* devo_reset */
4461 	NULL,		/* devo_cb_ops */
4462 	NULL,		/* devo_bus_ops */
4463 	nulldev		/* devo_power */
4464 };
4465 
4466 static struct modldrv modldrv = {
4467 	&mod_driverops,
4468 	"virtual disk server",
4469 	&vds_ops,
4470 };
4471 
4472 static struct modlinkage modlinkage = {
4473 	MODREV_1,
4474 	&modldrv,
4475 	NULL
4476 };
4477 
4478 
4479 int
4480 _init(void)
4481 {
4482 	int		i, status;
4483 
4484 
4485 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
4486 		return (status);
4487 	if ((status = mod_install(&modlinkage)) != 0) {
4488 		ddi_soft_state_fini(&vds_state);
4489 		return (status);
4490 	}
4491 
4492 	/* Fill in the bit-mask of server-supported operations */
4493 	for (i = 0; i < vds_noperations; i++)
4494 		vds_operations |= 1 << (vds_operation[i].operation - 1);
4495 
4496 	return (0);
4497 }
4498 
4499 int
4500 _info(struct modinfo *modinfop)
4501 {
4502 	return (mod_info(&modlinkage, modinfop));
4503 }
4504 
4505 int
4506 _fini(void)
4507 {
4508 	int	status;
4509 
4510 
4511 	if ((status = mod_remove(&modlinkage)) != 0)
4512 		return (status);
4513 	ddi_soft_state_fini(&vds_state);
4514 	return (0);
4515 }
4516