xref: /titanic_51/usr/src/uts/sun4v/io/vds.c (revision 26ff1ce9e5494c59fafe62a0c6e3ca41cd0f2a99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/fs/hsfs_isospec.h>
41 #include <sys/mdeg.h>
42 #include <sys/mhd.h>
43 #include <sys/modhash.h>
44 #include <sys/note.h>
45 #include <sys/pathname.h>
46 #include <sys/sdt.h>
47 #include <sys/sunddi.h>
48 #include <sys/sunldi.h>
49 #include <sys/sysmacros.h>
50 #include <sys/vio_common.h>
51 #include <sys/vio_util.h>
52 #include <sys/vdsk_mailbox.h>
53 #include <sys/vdsk_common.h>
54 #include <sys/vtoc.h>
55 #include <sys/vfs.h>
56 #include <sys/stat.h>
57 #include <sys/scsi/impl/uscsi.h>
58 #include <vm/seg_map.h>
59 
60 /* Virtual disk server initialization flags */
61 #define	VDS_LDI			0x01
62 #define	VDS_MDEG		0x02
63 
64 /* Virtual disk server tunable parameters */
65 #define	VDS_RETRIES		5
66 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
67 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
68 #define	VDS_NCHAINS		32
69 
70 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
71 #define	VDS_NAME		"virtual-disk-server"
72 
73 #define	VD_NAME			"vd"
74 #define	VD_VOLUME_NAME		"vdisk"
75 #define	VD_ASCIILABEL		"Virtual Disk"
76 
77 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
78 #define	VD_ID_PROP		"id"
79 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
80 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
81 #define	VD_REG_PROP		"reg"
82 
83 /* Virtual disk initialization flags */
84 #define	VD_DISK_READY		0x01
85 #define	VD_LOCKING		0x02
86 #define	VD_LDC			0x04
87 #define	VD_DRING		0x08
88 #define	VD_SID			0x10
89 #define	VD_SEQ_NUM		0x20
90 #define	VD_SETUP_ERROR		0x40
91 
92 /* Flags for writing to a vdisk which is a file */
93 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
94 
95 /* Number of backup labels */
96 #define	VD_FILE_NUM_BACKUP	5
97 
98 /* Timeout for SCSI I/O */
99 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
100 
101 /* Maximum number of logical partitions */
102 #define	VD_MAXPART	(NDKMAP + 1)
103 
104 /*
105  * By Solaris convention, slice/partition 2 represents the entire disk;
106  * unfortunately, this convention does not appear to be codified.
107  */
108 #define	VD_ENTIRE_DISK_SLICE	2
109 
110 /* Return a cpp token as a string */
111 #define	STRINGIZE(token)	#token
112 
113 /*
114  * Print a message prefixed with the current function name to the message log
115  * (and optionally to the console for verbose boots); these macros use cpp's
116  * concatenation of string literals and C99 variable-length-argument-list
117  * macros
118  */
119 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
120 #define	_PRN(format, ...)					\
121 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
122 
123 /* Return a pointer to the "i"th vdisk dring element */
124 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
125 	    (vd->dring + (i)*vd->descriptor_size))
126 
127 /* Return the virtual disk client's type as a string (for use in messages) */
128 #define	VD_CLIENT(vd)							\
129 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
130 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
131 		(((vd)->xfer_mode == 0) ? "null client" :		\
132 		    "unsupported client")))
133 
134 /* Read disk label from a disk on file */
135 #define	VD_FILE_LABEL_READ(vd, labelp) \
136 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
137 	    0, sizeof (struct dk_label))
138 
139 /* Write disk label to a disk on file */
140 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
141 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
142 	    0, sizeof (struct dk_label))
143 
144 /* Message for disk access rights reset failure */
145 #define	VD_RESET_ACCESS_FAILURE_MSG \
146 	"Fail to reset disk access rights for disk %s"
147 
148 /*
149  * Specification of an MD node passed to the MDEG to filter any
150  * 'vport' nodes that do not belong to the specified node. This
151  * template is copied for each vds instance and filled in with
152  * the appropriate 'cfg-handle' value before being passed to the MDEG.
153  */
154 static mdeg_prop_spec_t	vds_prop_template[] = {
155 	{ MDET_PROP_STR,	"name",		VDS_NAME },
156 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
157 	{ MDET_LIST_END,	NULL, 		NULL }
158 };
159 
160 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
161 
162 /*
163  * Matching criteria passed to the MDEG to register interest
164  * in changes to 'virtual-device-port' nodes identified by their
165  * 'id' property.
166  */
167 static md_prop_match_t	vd_prop_match[] = {
168 	{ MDET_PROP_VAL,	VD_ID_PROP },
169 	{ MDET_LIST_END,	NULL }
170 };
171 
172 static mdeg_node_match_t vd_match = {"virtual-device-port",
173 				    vd_prop_match};
174 
175 /*
176  * Options for the VD_BLOCK_DEVICE_OPTS property.
177  */
178 #define	VD_OPT_RDONLY		0x1	/* read-only  */
179 #define	VD_OPT_SLICE		0x2	/* single slice */
180 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
181 
182 #define	VD_OPTION_NLEN	128
183 
184 typedef struct vd_option {
185 	char vdo_name[VD_OPTION_NLEN];
186 	uint64_t vdo_value;
187 } vd_option_t;
188 
189 vd_option_t vd_bdev_options[] = {
190 	{ "ro",		VD_OPT_RDONLY },
191 	{ "slice", 	VD_OPT_SLICE },
192 	{ "excl",	VD_OPT_EXCLUSIVE }
193 };
194 
195 /* Debugging macros */
196 #ifdef DEBUG
197 
198 static int	vd_msglevel = 0;
199 
200 #define	PR0 if (vd_msglevel > 0)	PRN
201 #define	PR1 if (vd_msglevel > 1)	PRN
202 #define	PR2 if (vd_msglevel > 2)	PRN
203 
204 #define	VD_DUMP_DRING_ELEM(elem)					\
205 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
206 	    elem->hdr.dstate,						\
207 	    elem->payload.operation,					\
208 	    elem->payload.status,					\
209 	    elem->payload.nbytes,					\
210 	    elem->payload.addr,						\
211 	    elem->payload.ncookies);
212 
213 char *
214 vd_decode_state(int state)
215 {
216 	char *str;
217 
218 #define	CASE_STATE(_s)	case _s: str = #_s; break;
219 
220 	switch (state) {
221 	CASE_STATE(VD_STATE_INIT)
222 	CASE_STATE(VD_STATE_VER)
223 	CASE_STATE(VD_STATE_ATTR)
224 	CASE_STATE(VD_STATE_DRING)
225 	CASE_STATE(VD_STATE_RDX)
226 	CASE_STATE(VD_STATE_DATA)
227 	default: str = "unknown"; break;
228 	}
229 
230 #undef CASE_STATE
231 
232 	return (str);
233 }
234 
235 void
236 vd_decode_tag(vio_msg_t *msg)
237 {
238 	char *tstr, *sstr, *estr;
239 
240 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
241 
242 	switch (msg->tag.vio_msgtype) {
243 	CASE_TYPE(VIO_TYPE_CTRL)
244 	CASE_TYPE(VIO_TYPE_DATA)
245 	CASE_TYPE(VIO_TYPE_ERR)
246 	default: tstr = "unknown"; break;
247 	}
248 
249 #undef CASE_TYPE
250 
251 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
252 
253 	switch (msg->tag.vio_subtype) {
254 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
255 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
256 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
257 	default: sstr = "unknown"; break;
258 	}
259 
260 #undef CASE_SUBTYPE
261 
262 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
263 
264 	switch (msg->tag.vio_subtype_env) {
265 	CASE_ENV(VIO_VER_INFO)
266 	CASE_ENV(VIO_ATTR_INFO)
267 	CASE_ENV(VIO_DRING_REG)
268 	CASE_ENV(VIO_DRING_UNREG)
269 	CASE_ENV(VIO_RDX)
270 	CASE_ENV(VIO_PKT_DATA)
271 	CASE_ENV(VIO_DESC_DATA)
272 	CASE_ENV(VIO_DRING_DATA)
273 	default: estr = "unknown"; break;
274 	}
275 
276 #undef CASE_ENV
277 
278 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
279 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
280 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
281 }
282 
283 #else	/* !DEBUG */
284 
285 #define	PR0(...)
286 #define	PR1(...)
287 #define	PR2(...)
288 
289 #define	VD_DUMP_DRING_ELEM(elem)
290 
291 #define	vd_decode_state(_s)	(NULL)
292 #define	vd_decode_tag(_s)	(NULL)
293 
294 #endif	/* DEBUG */
295 
296 
297 /*
298  * Soft state structure for a vds instance
299  */
300 typedef struct vds {
301 	uint_t		initialized;	/* driver inst initialization flags */
302 	dev_info_t	*dip;		/* driver inst devinfo pointer */
303 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
304 	mod_hash_t	*vd_table;	/* table of virtual disks served */
305 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
306 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
307 } vds_t;
308 
309 /*
310  * Types of descriptor-processing tasks
311  */
312 typedef enum vd_task_type {
313 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
314 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
315 } vd_task_type_t;
316 
317 /*
318  * Structure describing the task for processing a descriptor
319  */
320 typedef struct vd_task {
321 	struct vd		*vd;		/* vd instance task is for */
322 	vd_task_type_t		type;		/* type of descriptor task */
323 	int			index;		/* dring elem index for task */
324 	vio_msg_t		*msg;		/* VIO message task is for */
325 	size_t			msglen;		/* length of message content */
326 	vd_dring_payload_t	*request;	/* request task will perform */
327 	struct buf		buf;		/* buf(9s) for I/O request */
328 	ldc_mem_handle_t	mhdl;		/* task memory handle */
329 	int			status;		/* status of processing task */
330 	int	(*completef)(struct vd_task *task); /* completion func ptr */
331 } vd_task_t;
332 
333 /*
334  * Soft state structure for a virtual disk instance
335  */
336 typedef struct vd {
337 	uint_t			initialized;	/* vdisk initialization flags */
338 	uint64_t		operations;	/* bitmask of VD_OPs exported */
339 	vio_ver_t		version;	/* ver negotiated with client */
340 	vds_t			*vds;		/* server for this vdisk */
341 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
342 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
343 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
344 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
345 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
346 	int			open_flags;	/* open flags */
347 	uint_t			nslices;	/* number of slices */
348 	size_t			vdisk_size;	/* number of blocks in vdisk */
349 	size_t			vdisk_block_size; /* size of each vdisk block */
350 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
351 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
352 	vd_media_t		vdisk_media;	/* media type of backing dev. */
353 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
354 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
355 	size_t			block_size;	/* blk size of actual device */
356 	boolean_t		pseudo;		/* underlying pseudo dev */
357 	boolean_t		file;		/* is vDisk backed by a file? */
358 	boolean_t		scsi;		/* is vDisk backed by scsi? */
359 	vnode_t			*file_vnode;	/* file vnode */
360 	size_t			file_size;	/* file size */
361 	ddi_devid_t		file_devid;	/* devid for disk image */
362 	efi_gpt_t		efi_gpt;	/* EFI GPT for slice type */
363 	efi_gpe_t		efi_gpe;	/* EFI GPE for slice type */
364 	int			efi_reserved;	/* EFI reserved slice */
365 	struct dk_geom		dk_geom;	/* synthetic for slice type */
366 	struct vtoc		vtoc;		/* synthetic for slice type */
367 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
368 	boolean_t		ownership;	/* disk ownership status */
369 	ldc_status_t		ldc_state;	/* LDC connection state */
370 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
371 	size_t			max_msglen;	/* largest LDC message len */
372 	vd_state_t		state;		/* client handshake state */
373 	uint8_t			xfer_mode;	/* transfer mode with client */
374 	uint32_t		sid;		/* client's session ID */
375 	uint64_t		seq_num;	/* message sequence number */
376 	uint64_t		dring_ident;	/* identifier of dring */
377 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
378 	uint32_t		descriptor_size;	/* num bytes in desc */
379 	uint32_t		dring_len;	/* number of dring elements */
380 	caddr_t			dring;		/* address of dring */
381 	caddr_t			vio_msgp;	/* vio msg staging buffer */
382 	vd_task_t		inband_task;	/* task for inband descriptor */
383 	vd_task_t		*dring_task;	/* tasks dring elements */
384 
385 	kmutex_t		lock;		/* protects variables below */
386 	boolean_t		enabled;	/* is vdisk enabled? */
387 	boolean_t		reset_state;	/* reset connection state? */
388 	boolean_t		reset_ldc;	/* reset LDC channel? */
389 } vd_t;
390 
391 typedef struct vds_operation {
392 	char	*namep;
393 	uint8_t	operation;
394 	int	(*start)(vd_task_t *task);
395 	int	(*complete)(vd_task_t *task);
396 } vds_operation_t;
397 
398 typedef struct vd_ioctl {
399 	uint8_t		operation;		/* vdisk operation */
400 	const char	*operation_name;	/* vdisk operation name */
401 	size_t		nbytes;			/* size of operation buffer */
402 	int		cmd;			/* corresponding ioctl cmd */
403 	const char	*cmd_name;		/* ioctl cmd name */
404 	void		*arg;			/* ioctl cmd argument */
405 	/* convert input vd_buf to output ioctl_arg */
406 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
407 	/* convert input ioctl_arg to output vd_buf */
408 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
409 	/* write is true if the operation writes any data to the backend */
410 	boolean_t	write;
411 } vd_ioctl_t;
412 
413 /* Define trivial copyin/copyout conversion function flag */
414 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
415 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
416 
417 
418 static int	vds_ldc_retries = VDS_RETRIES;
419 static int	vds_ldc_delay = VDS_LDC_DELAY;
420 static int	vds_dev_retries = VDS_RETRIES;
421 static int	vds_dev_delay = VDS_DEV_DELAY;
422 static void	*vds_state;
423 
424 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
425 
426 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
427 static int	vd_scsi_debug = USCSI_SILENT;
428 
429 /*
430  * Tunable to define the behavior of the service domain if the vdisk server
431  * fails to reset disk exclusive access when a LDC channel is reset. When a
432  * LDC channel is reset the vdisk server will try to reset disk exclusive
433  * access by releasing any SCSI-2 reservation or resetting the disk. If these
434  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
435  * print a warning message. This default behavior can be changed by setting
436  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
437  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
438  * the service domain to panic. In both cases, the reset of the service domain
439  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
440  */
441 static int 	vd_reset_access_failure = 0;
442 
443 /*
444  * Tunable for backward compatibility. When this variable is set to B_TRUE,
445  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
446  * slice disks whether or not they have the "slice" option set. This is
447  * to provide a simple backward compatibility mechanism when upgrading
448  * the vds driver and using a domain configuration created before the
449  * "slice" option was available.
450  */
451 static boolean_t vd_volume_force_slice = B_FALSE;
452 
453 /*
454  * The label of disk images created with some earlier versions of the virtual
455  * disk software is not entirely correct and have an incorrect v_sanity field
456  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
457  * these images because we are now validating that the disk label (and the
458  * sanity) is correct when a disk image is opened.
459  *
460  * This tunable is set to false to not validate the sanity field and ensure
461  * compatibility. If the tunable is set to true, we will do a strict checking
462  * of the sanity but this can create compatibility problems with old disk
463  * images.
464  */
465 static boolean_t vd_file_validate_sanity = B_FALSE;
466 
467 /*
468  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
469  *
470  * Each supported major version should appear only once, paired with (and only
471  * with) its highest supported minor version number (as the protocol requires
472  * supporting all lower minor version numbers as well)
473  */
474 static const vio_ver_t	vds_version[] = {{1, 1}};
475 static const size_t	vds_num_versions =
476     sizeof (vds_version)/sizeof (vds_version[0]);
477 
478 static void vd_free_dring_task(vd_t *vdp);
479 static int vd_setup_vd(vd_t *vd);
480 static int vd_setup_single_slice_disk(vd_t *vd);
481 static int vd_setup_mediainfo(vd_t *vd);
482 static boolean_t vd_enabled(vd_t *vd);
483 static ushort_t vd_lbl2cksum(struct dk_label *label);
484 static int vd_file_validate_geometry(vd_t *vd);
485 static boolean_t vd_file_is_iso_image(vd_t *vd);
486 static void vd_set_exported_operations(vd_t *vd);
487 static void vd_reset_access(vd_t *vd);
488 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
489 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
490 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
491 
492 /*
493  * Function:
494  *	vd_file_rw
495  *
496  * Description:
497  * 	Read or write to a disk on file.
498  *
499  * Parameters:
500  *	vd		- disk on which the operation is performed.
501  *	slice		- slice on which the operation is performed,
502  *			  VD_SLICE_NONE indicates that the operation
503  *			  is done using an absolute disk offset.
504  *	operation	- operation to execute: read (VD_OP_BREAD) or
505  *			  write (VD_OP_BWRITE).
506  *	data		- buffer where data are read to or written from.
507  *	blk		- starting block for the operation.
508  *	len		- number of bytes to read or write.
509  *
510  * Return Code:
511  *	n >= 0		- success, n indicates the number of bytes read
512  *			  or written.
513  *	-1		- error.
514  */
515 static ssize_t
516 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
517     size_t len)
518 {
519 	caddr_t	maddr;
520 	size_t offset, maxlen, moffset, mlen, n;
521 	uint_t smflags;
522 	enum seg_rw srw;
523 
524 	ASSERT(vd->file);
525 	ASSERT(len > 0);
526 
527 	/*
528 	 * If a file is exported as a slice then we don't care about the vtoc.
529 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
530 	 * handle any I/O as a raw disk access so that we can have access to the
531 	 * entire backend.
532 	 */
533 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
534 		/* raw disk access */
535 		offset = blk * DEV_BSIZE;
536 	} else {
537 		ASSERT(slice >= 0 && slice < V_NUMPAR);
538 
539 		/*
540 		 * v1.0 vDisk clients depended on the server not verifying
541 		 * the label of a unformatted disk.  This "feature" is
542 		 * maintained for backward compatibility but all versions
543 		 * from v1.1 onwards must do the right thing.
544 		 */
545 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
546 		    vio_ver_is_supported(vd->version, 1, 1)) {
547 			(void) vd_file_validate_geometry(vd);
548 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
549 				PR0("Unknown disk label, can't do I/O "
550 				    "from slice %d", slice);
551 				return (-1);
552 			}
553 		}
554 
555 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
556 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
557 		} else {
558 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
559 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
560 		}
561 
562 		if (blk >= vd->slices[slice].nblocks) {
563 			/* address past the end of the slice */
564 			PR0("req_addr (0x%lx) > psize (0x%lx)",
565 			    blk, vd->slices[slice].nblocks);
566 			return (0);
567 		}
568 
569 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
570 
571 		/*
572 		 * If the requested size is greater than the size
573 		 * of the partition, truncate the read/write.
574 		 */
575 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
576 
577 		if (len > maxlen) {
578 			PR0("I/O size truncated to %lu bytes from %lu bytes",
579 			    maxlen, len);
580 			len = maxlen;
581 		}
582 	}
583 
584 	/*
585 	 * We have to ensure that we are reading/writing into the mmap
586 	 * range. If we have a partial disk image (e.g. an image of
587 	 * s0 instead s2) the system can try to access slices that
588 	 * are not included into the disk image.
589 	 */
590 	if ((offset + len) > vd->file_size) {
591 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
592 		    "file_size (0x%lx)", offset, len, vd->file_size);
593 		return (-1);
594 	}
595 
596 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
597 	smflags = (operation == VD_OP_BREAD)? 0 :
598 	    (SM_WRITE | vd_file_write_flags);
599 	n = len;
600 
601 	do {
602 		/*
603 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
604 		 * MAXBSIZE aligned.
605 		 */
606 		moffset = offset & MAXBOFFSET;
607 		mlen = MIN(MAXBSIZE - moffset, n);
608 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
609 		    mlen, 1, srw);
610 		/*
611 		 * Fault in the pages so we can check for error and ensure
612 		 * that we can safely used the mapped address.
613 		 */
614 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
615 		    F_SOFTLOCK, srw) != 0) {
616 			(void) segmap_release(segkmap, maddr, 0);
617 			return (-1);
618 		}
619 
620 		if (operation == VD_OP_BREAD)
621 			bcopy(maddr + moffset, data, mlen);
622 		else
623 			bcopy(data, maddr + moffset, mlen);
624 
625 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
626 		    F_SOFTUNLOCK, srw) != 0) {
627 			(void) segmap_release(segkmap, maddr, 0);
628 			return (-1);
629 		}
630 		if (segmap_release(segkmap, maddr, smflags) != 0)
631 			return (-1);
632 		n -= mlen;
633 		offset += mlen;
634 		data += mlen;
635 
636 	} while (n > 0);
637 
638 	return (len);
639 }
640 
641 /*
642  * Function:
643  *	vd_file_build_default_label
644  *
645  * Description:
646  *	Return a default label for the given disk. This is used when the disk
647  *	does not have a valid VTOC so that the user can get a valid default
648  *	configuration. The default label has all slice sizes set to 0 (except
649  *	slice 2 which is the entire disk) to force the user to write a valid
650  *	label onto the disk image.
651  *
652  * Parameters:
653  *	vd		- disk on which the operation is performed.
654  *	label		- the returned default label.
655  *
656  * Return Code:
657  *	none.
658  */
659 static void
660 vd_file_build_default_label(vd_t *vd, struct dk_label *label)
661 {
662 	size_t size;
663 	char prefix;
664 
665 	ASSERT(vd->file);
666 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
667 
668 	bzero(label, sizeof (struct dk_label));
669 
670 	/*
671 	 * We must have a resonable number of cylinders and sectors so
672 	 * that newfs can run using default values.
673 	 *
674 	 * if (disk_size < 2MB)
675 	 * 	phys_cylinders = disk_size / 100K
676 	 * else
677 	 * 	phys_cylinders = disk_size / 300K
678 	 *
679 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
680 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
681 	 * data_cylinders = phys_cylinders - alt_cylinders
682 	 *
683 	 * sectors = disk_size / (phys_cylinders * blk_size)
684 	 *
685 	 * The file size test is an attempt to not have too few cylinders
686 	 * for a small file, or so many on a big file that you waste space
687 	 * for backup superblocks or cylinder group structures.
688 	 */
689 	if (vd->file_size < (2 * 1024 * 1024))
690 		label->dkl_pcyl = vd->file_size / (100 * 1024);
691 	else
692 		label->dkl_pcyl = vd->file_size / (300 * 1024);
693 
694 	if (label->dkl_pcyl == 0)
695 		label->dkl_pcyl = 1;
696 
697 	label->dkl_acyl = 0;
698 
699 	if (label->dkl_pcyl > 2)
700 		label->dkl_acyl = 2;
701 
702 	label->dkl_nsect = vd->file_size /
703 	    (DEV_BSIZE * label->dkl_pcyl);
704 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
705 	label->dkl_nhead = 1;
706 	label->dkl_write_reinstruct = 0;
707 	label->dkl_read_reinstruct = 0;
708 	label->dkl_rpm = 7200;
709 	label->dkl_apc = 0;
710 	label->dkl_intrlv = 0;
711 
712 	PR0("requested disk size: %ld bytes\n", vd->file_size);
713 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
714 	    label->dkl_nhead, label->dkl_nsect);
715 	PR0("provided disk size: %ld bytes\n", (uint64_t)
716 	    (label->dkl_pcyl * label->dkl_nhead *
717 	    label->dkl_nsect * DEV_BSIZE));
718 
719 	if (vd->file_size < (1ULL << 20)) {
720 		size = vd->file_size >> 10;
721 		prefix = 'K'; /* Kilobyte */
722 	} else if (vd->file_size < (1ULL << 30)) {
723 		size = vd->file_size >> 20;
724 		prefix = 'M'; /* Megabyte */
725 	} else if (vd->file_size < (1ULL << 40)) {
726 		size = vd->file_size >> 30;
727 		prefix = 'G'; /* Gigabyte */
728 	} else {
729 		size = vd->file_size >> 40;
730 		prefix = 'T'; /* Terabyte */
731 	}
732 
733 	/*
734 	 * We must have a correct label name otherwise format(1m) will
735 	 * not recognized the disk as labeled.
736 	 */
737 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
738 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
739 	    size, prefix,
740 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
741 	    label->dkl_nsect);
742 
743 	/* default VTOC */
744 	label->dkl_vtoc.v_version = V_VERSION;
745 	label->dkl_vtoc.v_nparts = V_NUMPAR;
746 	label->dkl_vtoc.v_sanity = VTOC_SANE;
747 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
748 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
749 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
750 	    label->dkl_nhead * label->dkl_nsect;
751 	label->dkl_magic = DKL_MAGIC;
752 	label->dkl_cksum = vd_lbl2cksum(label);
753 }
754 
755 /*
756  * Function:
757  *	vd_file_set_vtoc
758  *
759  * Description:
760  *	Set the vtoc of a disk image by writing the label and backup
761  *	labels into the disk image backend.
762  *
763  * Parameters:
764  *	vd		- disk on which the operation is performed.
765  *	label		- the data to be written.
766  *
767  * Return Code:
768  *	0		- success.
769  *	n > 0		- error, n indicates the errno code.
770  */
771 static int
772 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
773 {
774 	int blk, sec, cyl, head, cnt;
775 
776 	ASSERT(vd->file);
777 
778 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
779 		PR0("fail to write disk label");
780 		return (EIO);
781 	}
782 
783 	/*
784 	 * Backup labels are on the last alternate cylinder's
785 	 * first five odd sectors.
786 	 */
787 	if (label->dkl_acyl == 0) {
788 		PR0("no alternate cylinder, can not store backup labels");
789 		return (0);
790 	}
791 
792 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
793 	head = label->dkl_nhead - 1;
794 
795 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
796 	    (head * label->dkl_nsect);
797 
798 	/*
799 	 * Write the backup labels. Make sure we don't try to write past
800 	 * the last cylinder.
801 	 */
802 	sec = 1;
803 
804 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
805 
806 		if (sec >= label->dkl_nsect) {
807 			PR0("not enough sector to store all backup labels");
808 			return (0);
809 		}
810 
811 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
812 		    blk + sec, sizeof (struct dk_label)) < 0) {
813 			PR0("error writing backup label at block %d\n",
814 			    blk + sec);
815 			return (EIO);
816 		}
817 
818 		PR1("wrote backup label at block %d\n", blk + sec);
819 
820 		sec += 2;
821 	}
822 
823 	return (0);
824 }
825 
826 /*
827  * Function:
828  *	vd_file_get_devid_block
829  *
830  * Description:
831  *	Return the block number where the device id is stored.
832  *
833  * Parameters:
834  *	vd		- disk on which the operation is performed.
835  *	blkp		- pointer to the block number
836  *
837  * Return Code:
838  *	0		- success
839  *	ENOSPC		- disk has no space to store a device id
840  */
841 static int
842 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
843 {
844 	diskaddr_t spc, head, cyl;
845 
846 	ASSERT(vd->file);
847 
848 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
849 		/*
850 		 * If no label is defined we don't know where to find
851 		 * a device id.
852 		 */
853 		return (ENOSPC);
854 	}
855 
856 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
857 		/*
858 		 * For an EFI disk, the devid is at the beginning of
859 		 * the reserved slice
860 		 */
861 		if (vd->efi_reserved == -1) {
862 			PR0("EFI disk has no reserved slice");
863 			return (ENOSPC);
864 		}
865 
866 		*blkp = vd->slices[vd->efi_reserved].start;
867 		return (0);
868 	}
869 
870 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
871 
872 	/* this geometry doesn't allow us to have a devid */
873 	if (vd->dk_geom.dkg_acyl < 2) {
874 		PR0("not enough alternate cylinder available for devid "
875 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
876 		return (ENOSPC);
877 	}
878 
879 	/* the devid is in on the track next to the last cylinder */
880 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
881 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
882 	head = vd->dk_geom.dkg_nhead - 1;
883 
884 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
885 	    (head * vd->dk_geom.dkg_nsect) + 1;
886 
887 	return (0);
888 }
889 
890 /*
891  * Return the checksum of a disk block containing an on-disk devid.
892  */
893 static uint_t
894 vd_dkdevid2cksum(struct dk_devid *dkdevid)
895 {
896 	uint_t chksum, *ip;
897 	int i;
898 
899 	chksum = 0;
900 	ip = (uint_t *)dkdevid;
901 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
902 		chksum ^= ip[i];
903 
904 	return (chksum);
905 }
906 
907 /*
908  * Function:
909  *	vd_file_read_devid
910  *
911  * Description:
912  *	Read the device id stored on a disk image.
913  *
914  * Parameters:
915  *	vd		- disk on which the operation is performed.
916  *	devid		- the return address of the device ID.
917  *
918  * Return Code:
919  *	0		- success
920  *	EIO		- I/O error while trying to access the disk image
921  *	EINVAL		- no valid device id was found
922  *	ENOSPC		- disk has no space to store a device id
923  */
924 static int
925 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
926 {
927 	struct dk_devid *dkdevid;
928 	size_t blk;
929 	uint_t chksum;
930 	int status, sz;
931 
932 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
933 		return (status);
934 
935 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
936 
937 	/* get the devid */
938 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
939 	    DEV_BSIZE)) < 0) {
940 		PR0("error reading devid block at %lu", blk);
941 		status = EIO;
942 		goto done;
943 	}
944 
945 	/* validate the revision */
946 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
947 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
948 		PR0("invalid devid found at block %lu (bad revision)", blk);
949 		status = EINVAL;
950 		goto done;
951 	}
952 
953 	/* compute checksum */
954 	chksum = vd_dkdevid2cksum(dkdevid);
955 
956 	/* compare the checksums */
957 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
958 		PR0("invalid devid found at block %lu (bad checksum)", blk);
959 		status = EINVAL;
960 		goto done;
961 	}
962 
963 	/* validate the device id */
964 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
965 		PR0("invalid devid found at block %lu", blk);
966 		status = EINVAL;
967 		goto done;
968 	}
969 
970 	PR1("devid read at block %lu", blk);
971 
972 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
973 	*devid = kmem_alloc(sz, KM_SLEEP);
974 	bcopy(&dkdevid->dkd_devid, *devid, sz);
975 
976 done:
977 	kmem_free(dkdevid, DEV_BSIZE);
978 	return (status);
979 
980 }
981 
982 /*
983  * Function:
984  *	vd_file_write_devid
985  *
986  * Description:
987  *	Write a device id into disk image.
988  *
989  * Parameters:
990  *	vd		- disk on which the operation is performed.
991  *	devid		- the device ID to store.
992  *
993  * Return Code:
994  *	0		- success
995  *	EIO		- I/O error while trying to access the disk image
996  *	ENOSPC		- disk has no space to store a device id
997  */
998 static int
999 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
1000 {
1001 	struct dk_devid *dkdevid;
1002 	uint_t chksum;
1003 	size_t blk;
1004 	int status;
1005 
1006 	if (devid == NULL) {
1007 		/* nothing to write */
1008 		return (0);
1009 	}
1010 
1011 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1012 		return (status);
1013 
1014 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1015 
1016 	/* set revision */
1017 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1018 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1019 
1020 	/* copy devid */
1021 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1022 
1023 	/* compute checksum */
1024 	chksum = vd_dkdevid2cksum(dkdevid);
1025 
1026 	/* set checksum */
1027 	DKD_FORMCHKSUM(chksum, dkdevid);
1028 
1029 	/* store the devid */
1030 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1031 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1032 		PR0("Error writing devid block at %lu", blk);
1033 		status = EIO;
1034 	} else {
1035 		PR1("devid written at block %lu", blk);
1036 		status = 0;
1037 	}
1038 
1039 	kmem_free(dkdevid, DEV_BSIZE);
1040 	return (status);
1041 }
1042 
1043 /*
1044  * Function:
1045  *	vd_do_scsi_rdwr
1046  *
1047  * Description:
1048  * 	Read or write to a SCSI disk using an absolute disk offset.
1049  *
1050  * Parameters:
1051  *	vd		- disk on which the operation is performed.
1052  *	operation	- operation to execute: read (VD_OP_BREAD) or
1053  *			  write (VD_OP_BWRITE).
1054  *	data		- buffer where data are read to or written from.
1055  *	blk		- starting block for the operation.
1056  *	len		- number of bytes to read or write.
1057  *
1058  * Return Code:
1059  *	0		- success
1060  *	n != 0		- error.
1061  */
1062 static int
1063 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1064 {
1065 	struct uscsi_cmd ucmd;
1066 	union scsi_cdb cdb;
1067 	int nsectors, nblk;
1068 	int max_sectors;
1069 	int status, rval;
1070 
1071 	ASSERT(!vd->file);
1072 	ASSERT(vd->vdisk_block_size > 0);
1073 
1074 	max_sectors = vd->max_xfer_sz;
1075 	nblk = (len / vd->vdisk_block_size);
1076 
1077 	if (len % vd->vdisk_block_size != 0)
1078 		return (EINVAL);
1079 
1080 	/*
1081 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1082 	 * or group4 command as necessary, since some targets
1083 	 * do not support group1 commands.
1084 	 */
1085 	while (nblk) {
1086 
1087 		bzero(&ucmd, sizeof (ucmd));
1088 		bzero(&cdb, sizeof (cdb));
1089 
1090 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1091 
1092 		/*
1093 		 * Some of the optical drives on sun4v machines are ATAPI
1094 		 * devices which use Group 1 Read/Write commands so we need
1095 		 * to explicitly check a flag which is set when a domain
1096 		 * is bound.
1097 		 */
1098 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1099 			FORMG0ADDR(&cdb, blk);
1100 			FORMG0COUNT(&cdb, nsectors);
1101 			ucmd.uscsi_cdblen = CDB_GROUP0;
1102 		} else if (blk > 0xffffffff) {
1103 			FORMG4LONGADDR(&cdb, blk);
1104 			FORMG4COUNT(&cdb, nsectors);
1105 			ucmd.uscsi_cdblen = CDB_GROUP4;
1106 			cdb.scc_cmd |= SCMD_GROUP4;
1107 		} else {
1108 			FORMG1ADDR(&cdb, blk);
1109 			FORMG1COUNT(&cdb, nsectors);
1110 			ucmd.uscsi_cdblen = CDB_GROUP1;
1111 			cdb.scc_cmd |= SCMD_GROUP1;
1112 		}
1113 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1114 		ucmd.uscsi_bufaddr = data;
1115 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1116 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1117 		/*
1118 		 * Set flags so that the command is isolated from normal
1119 		 * commands and no error message is printed.
1120 		 */
1121 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1122 
1123 		if (operation == VD_OP_BREAD) {
1124 			cdb.scc_cmd |= SCMD_READ;
1125 			ucmd.uscsi_flags |= USCSI_READ;
1126 		} else {
1127 			cdb.scc_cmd |= SCMD_WRITE;
1128 		}
1129 
1130 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1131 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1132 		    kcred, &rval);
1133 
1134 		if (status == 0)
1135 			status = ucmd.uscsi_status;
1136 
1137 		if (status != 0)
1138 			break;
1139 
1140 		/*
1141 		 * Check if partial DMA breakup is required. If so, reduce
1142 		 * the request size by half and retry the last request.
1143 		 */
1144 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1145 			max_sectors >>= 1;
1146 			if (max_sectors <= 0) {
1147 				status = EIO;
1148 				break;
1149 			}
1150 			continue;
1151 		}
1152 
1153 		if (ucmd.uscsi_resid != 0) {
1154 			status = EIO;
1155 			break;
1156 		}
1157 
1158 		blk += nsectors;
1159 		nblk -= nsectors;
1160 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1161 	}
1162 
1163 	return (status);
1164 }
1165 
1166 /*
1167  * Function:
1168  *	vd_scsi_rdwr
1169  *
1170  * Description:
1171  * 	Wrapper function to read or write to a SCSI disk using an absolute
1172  *	disk offset. It checks the blocksize of the underlying device and,
1173  *	if necessary, adjusts the buffers accordingly before calling
1174  *	vd_do_scsi_rdwr() to do the actual read or write.
1175  *
1176  * Parameters:
1177  *	vd		- disk on which the operation is performed.
1178  *	operation	- operation to execute: read (VD_OP_BREAD) or
1179  *			  write (VD_OP_BWRITE).
1180  *	data		- buffer where data are read to or written from.
1181  *	blk		- starting block for the operation.
1182  *	len		- number of bytes to read or write.
1183  *
1184  * Return Code:
1185  *	0		- success
1186  *	n != 0		- error.
1187  */
1188 static int
1189 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1190 {
1191 	int	rv;
1192 
1193 	size_t	pblk;	/* physical device block number of data on device */
1194 	size_t	delta;	/* relative offset between pblk and vblk */
1195 	size_t	pnblk;	/* number of physical blocks to be read from device */
1196 	size_t	plen;	/* length of data to be read from physical device */
1197 	char	*buf;	/* buffer area to fit physical device's block size */
1198 
1199 	if (vd->block_size == 0) {
1200 		/*
1201 		 * The block size was not available during the attach,
1202 		 * try to update it now.
1203 		 */
1204 		if (vd_setup_mediainfo(vd) != 0)
1205 			return (EIO);
1206 	}
1207 
1208 	/*
1209 	 * If the vdisk block size and the block size of the underlying device
1210 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1211 	 * to create a buffer large enough to handle the device's block size
1212 	 * and adjust the block to be read from and the amount of data to
1213 	 * read to correspond with the device's block size.
1214 	 */
1215 	if (vd->vdisk_block_size == vd->block_size)
1216 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1217 
1218 	if (vd->vdisk_block_size > vd->block_size)
1219 		return (EINVAL);
1220 
1221 	/*
1222 	 * Writing of physical block sizes larger than the virtual block size
1223 	 * is not supported. This would be added if/when support for guests
1224 	 * writing to DVDs is implemented.
1225 	 */
1226 	if (operation == VD_OP_BWRITE)
1227 		return (ENOTSUP);
1228 
1229 	/* BEGIN CSTYLED */
1230 	/*
1231 	 * Below is a diagram showing the relationship between the physical
1232 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1233 	 * requested, then the physical blocks denoted by 'Y' are read.
1234 	 *
1235 	 *           vblk
1236 	 *             |      vlen
1237 	 *             |<--------------->|
1238 	 *             v                 v
1239 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1240 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1241 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1242 	 *          :  :                 :  :
1243 	 *         >:==:< delta          :  :
1244 	 *          :  :                 :  :
1245 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1246 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1247 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1248 	 *          ^                       ^
1249 	 *          |<--------------------->|
1250 	 *          |         plen
1251 	 *         pblk
1252 	 */
1253 	/* END CSTYLED */
1254 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1255 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1256 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1257 	plen = pnblk * vd->block_size;
1258 
1259 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1260 
1261 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1262 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1263 	bcopy(buf + delta, data, vlen);
1264 
1265 	kmem_free(buf, sizeof (caddr_t) * plen);
1266 
1267 	return (rv);
1268 }
1269 
1270 /*
1271  * Return Values
1272  *	EINPROGRESS	- operation was successfully started
1273  *	EIO		- encountered LDC (aka. task error)
1274  *	0		- operation completed successfully
1275  *
1276  * Side Effect
1277  *     sets request->status = <disk operation status>
1278  */
1279 static int
1280 vd_start_bio(vd_task_t *task)
1281 {
1282 	int			rv, status = 0;
1283 	vd_t			*vd		= task->vd;
1284 	vd_dring_payload_t	*request	= task->request;
1285 	struct buf		*buf		= &task->buf;
1286 	uint8_t			mtype;
1287 	int 			slice;
1288 	char			*bufaddr = 0;
1289 	size_t			buflen;
1290 
1291 	ASSERT(vd != NULL);
1292 	ASSERT(request != NULL);
1293 
1294 	slice = request->slice;
1295 
1296 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1297 	ASSERT((request->operation == VD_OP_BREAD) ||
1298 	    (request->operation == VD_OP_BWRITE));
1299 
1300 	if (request->nbytes == 0) {
1301 		/* no service for trivial requests */
1302 		request->status = EINVAL;
1303 		return (0);
1304 	}
1305 
1306 	PR1("%s %lu bytes at block %lu",
1307 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1308 	    request->nbytes, request->addr);
1309 
1310 	/*
1311 	 * We have to check the open flags because the functions processing
1312 	 * the read/write request will not do it.
1313 	 */
1314 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1315 		PR0("write fails because backend is opened read-only");
1316 		request->nbytes = 0;
1317 		request->status = EROFS;
1318 		return (0);
1319 	}
1320 
1321 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1322 
1323 	/* Map memory exported by client */
1324 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1325 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1326 	    &bufaddr, NULL);
1327 	if (status != 0) {
1328 		PR0("ldc_mem_map() returned err %d ", status);
1329 		return (EIO);
1330 	}
1331 
1332 	buflen = request->nbytes;
1333 
1334 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1335 	if (status != 0) {
1336 		(void) ldc_mem_unmap(task->mhdl);
1337 		PR0("ldc_mem_acquire() returned err %d ", status);
1338 		return (EIO);
1339 	}
1340 
1341 	/* Start the block I/O */
1342 	if (vd->file) {
1343 		rv = vd_file_rw(vd, slice, request->operation, bufaddr,
1344 		    request->addr, request->nbytes);
1345 		if (rv < 0) {
1346 			request->nbytes = 0;
1347 			request->status = EIO;
1348 		} else {
1349 			request->nbytes = rv;
1350 			request->status = 0;
1351 		}
1352 	} else {
1353 		if (slice == VD_SLICE_NONE) {
1354 			/*
1355 			 * This is not a disk image so it is a real disk. We
1356 			 * assume that the underlying device driver supports
1357 			 * USCSICMD ioctls. This is the case of all SCSI devices
1358 			 * (sd, ssd...).
1359 			 *
1360 			 * In the future if we have non-SCSI disks we would need
1361 			 * to invoke the appropriate function to do I/O using an
1362 			 * absolute disk offset (for example using DIOCTL_RWCMD
1363 			 * for IDE disks).
1364 			 */
1365 			rv = vd_scsi_rdwr(vd, request->operation, bufaddr,
1366 			    request->addr, request->nbytes);
1367 			if (rv != 0) {
1368 				request->nbytes = 0;
1369 				request->status = EIO;
1370 			} else {
1371 				request->status = 0;
1372 			}
1373 		} else {
1374 			bioinit(buf);
1375 			buf->b_flags	= B_BUSY;
1376 			buf->b_bcount	= request->nbytes;
1377 			buf->b_lblkno	= request->addr;
1378 			buf->b_edev 	= vd->dev[slice];
1379 			buf->b_un.b_addr = bufaddr;
1380 			buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1381 			    B_READ : B_WRITE;
1382 
1383 			request->status =
1384 			    ldi_strategy(vd->ldi_handle[slice], buf);
1385 
1386 			/*
1387 			 * This is to indicate to the caller that the request
1388 			 * needs to be finished by vd_complete_bio() by calling
1389 			 * biowait() there and waiting for that to return before
1390 			 * triggering the notification of the vDisk client.
1391 			 *
1392 			 * This is necessary when writing to real disks as
1393 			 * otherwise calls to ldi_strategy() would be serialized
1394 			 * behind the calls to biowait() and performance would
1395 			 * suffer.
1396 			 */
1397 			if (request->status == 0)
1398 				return (EINPROGRESS);
1399 
1400 			biofini(buf);
1401 		}
1402 	}
1403 
1404 	/* Clean up after error */
1405 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1406 	if (rv) {
1407 		PR0("ldc_mem_release() returned err %d ", rv);
1408 		status = EIO;
1409 	}
1410 	rv = ldc_mem_unmap(task->mhdl);
1411 	if (rv) {
1412 		PR0("ldc_mem_unmap() returned err %d ", rv);
1413 		status = EIO;
1414 	}
1415 
1416 	return (status);
1417 }
1418 
1419 /*
1420  * This function should only be called from vd_notify to ensure that requests
1421  * are responded to in the order that they are received.
1422  */
1423 static int
1424 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1425 {
1426 	int	status;
1427 	size_t	nbytes;
1428 
1429 	do {
1430 		nbytes = msglen;
1431 		status = ldc_write(ldc_handle, msg, &nbytes);
1432 		if (status != EWOULDBLOCK)
1433 			break;
1434 		drv_usecwait(vds_ldc_delay);
1435 	} while (status == EWOULDBLOCK);
1436 
1437 	if (status != 0) {
1438 		if (status != ECONNRESET)
1439 			PR0("ldc_write() returned errno %d", status);
1440 		return (status);
1441 	} else if (nbytes != msglen) {
1442 		PR0("ldc_write() performed only partial write");
1443 		return (EIO);
1444 	}
1445 
1446 	PR1("SENT %lu bytes", msglen);
1447 	return (0);
1448 }
1449 
1450 static void
1451 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1452 {
1453 	mutex_enter(&vd->lock);
1454 	vd->reset_state	= B_TRUE;
1455 	vd->reset_ldc	= reset_ldc;
1456 	mutex_exit(&vd->lock);
1457 }
1458 
1459 /*
1460  * Reset the state of the connection with a client, if needed; reset the LDC
1461  * transport as well, if needed.  This function should only be called from the
1462  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1463  */
1464 static void
1465 vd_reset_if_needed(vd_t *vd)
1466 {
1467 	int	status = 0;
1468 
1469 	mutex_enter(&vd->lock);
1470 	if (!vd->reset_state) {
1471 		ASSERT(!vd->reset_ldc);
1472 		mutex_exit(&vd->lock);
1473 		return;
1474 	}
1475 	mutex_exit(&vd->lock);
1476 
1477 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1478 
1479 	/*
1480 	 * Let any asynchronous I/O complete before possibly pulling the rug
1481 	 * out from under it; defer checking vd->reset_ldc, as one of the
1482 	 * asynchronous tasks might set it
1483 	 */
1484 	ddi_taskq_wait(vd->completionq);
1485 
1486 	if (vd->file) {
1487 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1488 		if (status) {
1489 			PR0("VOP_FSYNC returned errno %d", status);
1490 		}
1491 	}
1492 
1493 	if ((vd->initialized & VD_DRING) &&
1494 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1495 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1496 
1497 	vd_free_dring_task(vd);
1498 
1499 	/* Free the staging buffer for msgs */
1500 	if (vd->vio_msgp != NULL) {
1501 		kmem_free(vd->vio_msgp, vd->max_msglen);
1502 		vd->vio_msgp = NULL;
1503 	}
1504 
1505 	/* Free the inband message buffer */
1506 	if (vd->inband_task.msg != NULL) {
1507 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1508 		vd->inband_task.msg = NULL;
1509 	}
1510 
1511 	mutex_enter(&vd->lock);
1512 
1513 	if (vd->reset_ldc)
1514 		PR0("taking down LDC channel");
1515 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1516 		PR0("ldc_down() returned errno %d", status);
1517 
1518 	/* Reset exclusive access rights */
1519 	vd_reset_access(vd);
1520 
1521 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1522 	vd->state	= VD_STATE_INIT;
1523 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1524 
1525 	/* Allocate the staging buffer */
1526 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1527 
1528 	PR0("calling ldc_up\n");
1529 	(void) ldc_up(vd->ldc_handle);
1530 
1531 	vd->reset_state	= B_FALSE;
1532 	vd->reset_ldc	= B_FALSE;
1533 
1534 	mutex_exit(&vd->lock);
1535 }
1536 
1537 static void vd_recv_msg(void *arg);
1538 
1539 static void
1540 vd_mark_in_reset(vd_t *vd)
1541 {
1542 	int status;
1543 
1544 	PR0("vd_mark_in_reset: marking vd in reset\n");
1545 
1546 	vd_need_reset(vd, B_FALSE);
1547 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1548 	if (status == DDI_FAILURE) {
1549 		PR0("cannot schedule task to recv msg\n");
1550 		vd_need_reset(vd, B_TRUE);
1551 		return;
1552 	}
1553 }
1554 
1555 static int
1556 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1557 {
1558 	boolean_t		accepted;
1559 	int			status;
1560 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1561 
1562 	if (vd->reset_state)
1563 		return (0);
1564 
1565 	/* Acquire the element */
1566 	if (!vd->reset_state &&
1567 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1568 		if (status == ECONNRESET) {
1569 			vd_mark_in_reset(vd);
1570 			return (0);
1571 		} else {
1572 			PR0("ldc_mem_dring_acquire() returned errno %d",
1573 			    status);
1574 			return (status);
1575 		}
1576 	}
1577 
1578 	/* Set the element's status and mark it done */
1579 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1580 	if (accepted) {
1581 		elem->payload.nbytes	= elem_nbytes;
1582 		elem->payload.status	= elem_status;
1583 		elem->hdr.dstate	= VIO_DESC_DONE;
1584 	} else {
1585 		/* Perhaps client timed out waiting for I/O... */
1586 		PR0("element %u no longer \"accepted\"", idx);
1587 		VD_DUMP_DRING_ELEM(elem);
1588 	}
1589 	/* Release the element */
1590 	if (!vd->reset_state &&
1591 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1592 		if (status == ECONNRESET) {
1593 			vd_mark_in_reset(vd);
1594 			return (0);
1595 		} else {
1596 			PR0("ldc_mem_dring_release() returned errno %d",
1597 			    status);
1598 			return (status);
1599 		}
1600 	}
1601 
1602 	return (accepted ? 0 : EINVAL);
1603 }
1604 
1605 /*
1606  * Return Values
1607  *	0	- operation completed successfully
1608  *	EIO	- encountered LDC / task error
1609  *
1610  * Side Effect
1611  *	sets request->status = <disk operation status>
1612  */
1613 static int
1614 vd_complete_bio(vd_task_t *task)
1615 {
1616 	int			status		= 0;
1617 	int			rv		= 0;
1618 	vd_t			*vd		= task->vd;
1619 	vd_dring_payload_t	*request	= task->request;
1620 	struct buf		*buf		= &task->buf;
1621 
1622 
1623 	ASSERT(vd != NULL);
1624 	ASSERT(request != NULL);
1625 	ASSERT(task->msg != NULL);
1626 	ASSERT(task->msglen >= sizeof (*task->msg));
1627 	ASSERT(!vd->file);
1628 	ASSERT(request->slice != VD_SLICE_NONE);
1629 
1630 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1631 	request->status = biowait(buf);
1632 
1633 	/* return back the number of bytes read/written */
1634 	request->nbytes = buf->b_bcount - buf->b_resid;
1635 
1636 	/* Release the buffer */
1637 	if (!vd->reset_state)
1638 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1639 	if (status) {
1640 		PR0("ldc_mem_release() returned errno %d copying to "
1641 		    "client", status);
1642 		if (status == ECONNRESET) {
1643 			vd_mark_in_reset(vd);
1644 		}
1645 		rv = EIO;
1646 	}
1647 
1648 	/* Unmap the memory, even if in reset */
1649 	status = ldc_mem_unmap(task->mhdl);
1650 	if (status) {
1651 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1652 		    status);
1653 		if (status == ECONNRESET) {
1654 			vd_mark_in_reset(vd);
1655 		}
1656 		rv = EIO;
1657 	}
1658 
1659 	biofini(buf);
1660 
1661 	return (rv);
1662 }
1663 
1664 /*
1665  * Description:
1666  *	This function is called by the two functions called by a taskq
1667  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1668  *	message to the client.
1669  *
1670  * Parameters:
1671  *	arg 	- opaque pointer to structure containing task to be completed
1672  *
1673  * Return Values
1674  *	None
1675  */
1676 static void
1677 vd_notify(vd_task_t *task)
1678 {
1679 	int	status;
1680 
1681 	ASSERT(task != NULL);
1682 	ASSERT(task->vd != NULL);
1683 
1684 	if (task->vd->reset_state)
1685 		return;
1686 
1687 	/*
1688 	 * Send the "ack" or "nack" back to the client; if sending the message
1689 	 * via LDC fails, arrange to reset both the connection state and LDC
1690 	 * itself
1691 	 */
1692 	PR2("Sending %s",
1693 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1694 
1695 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1696 	switch (status) {
1697 	case 0:
1698 		break;
1699 	case ECONNRESET:
1700 		vd_mark_in_reset(task->vd);
1701 		break;
1702 	default:
1703 		PR0("initiating full reset");
1704 		vd_need_reset(task->vd, B_TRUE);
1705 		break;
1706 	}
1707 
1708 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1709 }
1710 
1711 /*
1712  * Description:
1713  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1714  *	the vDisk client
1715  *
1716  * Parameters:
1717  *	task 		- structure containing the request sent from client
1718  *
1719  * Return Values
1720  *	None
1721  */
1722 static void
1723 vd_complete_notify(vd_task_t *task)
1724 {
1725 	int			status		= 0;
1726 	vd_t			*vd		= task->vd;
1727 	vd_dring_payload_t	*request	= task->request;
1728 
1729 	/* Update the dring element for a dring client */
1730 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
1731 		status = vd_mark_elem_done(vd, task->index,
1732 		    request->status, request->nbytes);
1733 		if (status == ECONNRESET)
1734 			vd_mark_in_reset(vd);
1735 	}
1736 
1737 	/*
1738 	 * If a transport error occurred while marking the element done or
1739 	 * previously while executing the task, arrange to "nack" the message
1740 	 * when the final task in the descriptor element range completes
1741 	 */
1742 	if ((status != 0) || (task->status != 0))
1743 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1744 
1745 	/*
1746 	 * Only the final task for a range of elements will respond to and
1747 	 * free the message
1748 	 */
1749 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1750 		return;
1751 	}
1752 
1753 	vd_notify(task);
1754 }
1755 
1756 /*
1757  * Description:
1758  *	This is the basic completion function called to handle inband data
1759  *	requests and handshake messages. All it needs to do is trigger a
1760  *	message to the client that the request is completed.
1761  *
1762  * Parameters:
1763  *	arg 	- opaque pointer to structure containing task to be completed
1764  *
1765  * Return Values
1766  *	None
1767  */
1768 static void
1769 vd_serial_notify(void *arg)
1770 {
1771 	vd_task_t		*task = (vd_task_t *)arg;
1772 
1773 	ASSERT(task != NULL);
1774 	vd_notify(task);
1775 }
1776 
1777 /* ARGSUSED */
1778 static int
1779 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1780 {
1781 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1782 	return (0);
1783 }
1784 
1785 /* ARGSUSED */
1786 static int
1787 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1788 {
1789 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1790 	return (0);
1791 }
1792 
1793 static void
1794 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1795 {
1796 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1797 }
1798 
1799 static void
1800 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1801 {
1802 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1803 }
1804 
1805 static int
1806 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1807 {
1808 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1809 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1810 	size_t data_len;
1811 
1812 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
1813 	if (vd_efi->length > data_len)
1814 		return (EINVAL);
1815 
1816 	dk_efi->dki_lba = vd_efi->lba;
1817 	dk_efi->dki_length = vd_efi->length;
1818 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1819 	return (0);
1820 }
1821 
1822 static void
1823 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1824 {
1825 	int len;
1826 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1827 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1828 
1829 	len = vd_efi->length;
1830 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1831 	kmem_free(dk_efi->dki_data, len);
1832 }
1833 
1834 static int
1835 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1836 {
1837 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1838 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1839 	size_t data_len;
1840 
1841 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
1842 	if (vd_efi->length > data_len)
1843 		return (EINVAL);
1844 
1845 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1846 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1847 	return (0);
1848 }
1849 
1850 static void
1851 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1852 {
1853 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1854 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1855 
1856 	kmem_free(dk_efi->dki_data, vd_efi->length);
1857 }
1858 
1859 static int
1860 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
1861 {
1862 	size_t vd_scsi_len;
1863 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
1864 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
1865 
1866 	/* check buffer size */
1867 	vd_scsi_len = VD_SCSI_SIZE;
1868 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
1869 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
1870 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
1871 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
1872 
1873 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
1874 
1875 	if (vd_buf_len < vd_scsi_len)
1876 		return (EINVAL);
1877 
1878 	/* set flags */
1879 	uscsi->uscsi_flags = vd_scsi_debug;
1880 
1881 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
1882 		uscsi->uscsi_flags |= USCSI_ISOLATE;
1883 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
1884 	}
1885 
1886 	/* task attribute */
1887 	switch (vd_scsi->task_attribute) {
1888 	case VD_SCSI_TASK_ACA:
1889 		uscsi->uscsi_flags |= USCSI_HEAD;
1890 		break;
1891 	case VD_SCSI_TASK_HQUEUE:
1892 		uscsi->uscsi_flags |= USCSI_HTAG;
1893 		break;
1894 	case VD_SCSI_TASK_ORDERED:
1895 		uscsi->uscsi_flags |= USCSI_OTAG;
1896 		break;
1897 	default:
1898 		uscsi->uscsi_flags |= USCSI_NOTAG;
1899 		break;
1900 	}
1901 
1902 	/* timeout */
1903 	uscsi->uscsi_timeout = vd_scsi->timeout;
1904 
1905 	/* cdb data */
1906 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
1907 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
1908 
1909 	/* sense buffer */
1910 	if (vd_scsi->sense_len != 0) {
1911 		uscsi->uscsi_flags |= USCSI_RQENABLE;
1912 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
1913 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
1914 	}
1915 
1916 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
1917 		/* uscsi does not support read/write request */
1918 		return (EINVAL);
1919 	}
1920 
1921 	/* request data-in */
1922 	if (vd_scsi->datain_len != 0) {
1923 		uscsi->uscsi_flags |= USCSI_READ;
1924 		uscsi->uscsi_buflen = vd_scsi->datain_len;
1925 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
1926 	}
1927 
1928 	/* request data-out */
1929 	if (vd_scsi->dataout_len != 0) {
1930 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
1931 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
1932 	}
1933 
1934 	return (0);
1935 }
1936 
1937 static void
1938 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
1939 {
1940 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
1941 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
1942 
1943 	/* output fields */
1944 	vd_scsi->cmd_status = uscsi->uscsi_status;
1945 
1946 	/* sense data */
1947 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
1948 	    (uscsi->uscsi_status == STATUS_CHECK ||
1949 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
1950 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
1951 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
1952 			vd_scsi->sense_len -= uscsi->uscsi_resid;
1953 		else
1954 			vd_scsi->sense_len = 0;
1955 	} else {
1956 		vd_scsi->sense_len = 0;
1957 	}
1958 
1959 	if (uscsi->uscsi_status != STATUS_GOOD) {
1960 		vd_scsi->dataout_len = 0;
1961 		vd_scsi->datain_len = 0;
1962 		return;
1963 	}
1964 
1965 	if (uscsi->uscsi_flags & USCSI_READ) {
1966 		/* request data (read) */
1967 		vd_scsi->datain_len -= uscsi->uscsi_resid;
1968 		vd_scsi->dataout_len = 0;
1969 	} else {
1970 		/* request data (write) */
1971 		vd_scsi->datain_len = 0;
1972 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
1973 	}
1974 }
1975 
1976 static ushort_t
1977 vd_lbl2cksum(struct dk_label *label)
1978 {
1979 	int	count;
1980 	ushort_t sum, *sp;
1981 
1982 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1983 	sp = (ushort_t *)label;
1984 	sum = 0;
1985 	while (count--) {
1986 		sum ^= *sp++;
1987 	}
1988 
1989 	return (sum);
1990 }
1991 
1992 /*
1993  * Handle ioctls to a disk slice.
1994  *
1995  * Return Values
1996  *	0	- Indicates that there are no errors in disk operations
1997  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
1998  *	EINVAL	- Not enough room to copy the EFI label
1999  *
2000  */
2001 static int
2002 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2003 {
2004 	dk_efi_t *dk_ioc;
2005 	int rval;
2006 
2007 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2008 
2009 	if (cmd == DKIOCFLUSHWRITECACHE) {
2010 		if (vd->file) {
2011 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2012 		} else {
2013 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2014 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2015 			    kcred, &rval));
2016 		}
2017 	}
2018 
2019 	switch (vd->vdisk_label) {
2020 
2021 	/* ioctls for a single slice disk with a VTOC label */
2022 	case VD_DISK_LABEL_VTOC:
2023 
2024 		switch (cmd) {
2025 		case DKIOCGGEOM:
2026 			ASSERT(ioctl_arg != NULL);
2027 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2028 			return (0);
2029 		case DKIOCGVTOC:
2030 			ASSERT(ioctl_arg != NULL);
2031 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2032 			return (0);
2033 		default:
2034 			return (ENOTSUP);
2035 		}
2036 
2037 	/* ioctls for a single slice disk with an EFI label */
2038 	case VD_DISK_LABEL_EFI:
2039 
2040 		switch (cmd) {
2041 		case DKIOCGETEFI:
2042 			ASSERT(ioctl_arg != NULL);
2043 			dk_ioc = (dk_efi_t *)ioctl_arg;
2044 
2045 			/*
2046 			 * For a single slice disk with an EFI label, we define
2047 			 * a fake EFI label with the GPT at LBA 1 and one GPE
2048 			 * at LBA 2. So we return the GPT or the GPE depending
2049 			 * on which LBA is requested.
2050 			 */
2051 			if (dk_ioc->dki_lba == 1) {
2052 
2053 				/* return the EFI GPT */
2054 				if (dk_ioc->dki_length < sizeof (efi_gpt_t))
2055 					return (EINVAL);
2056 
2057 				bcopy(&vd->efi_gpt, dk_ioc->dki_data,
2058 				    sizeof (efi_gpt_t));
2059 
2060 				/* also return the GPE if possible */
2061 				if (dk_ioc->dki_length >= sizeof (efi_gpt_t) +
2062 				    sizeof (efi_gpe_t)) {
2063 					bcopy(&vd->efi_gpe, dk_ioc->dki_data +
2064 					    1, sizeof (efi_gpe_t));
2065 				}
2066 
2067 			} else if (dk_ioc->dki_lba == 2) {
2068 
2069 				/* return the EFI GPE */
2070 				if (dk_ioc->dki_length < sizeof (efi_gpe_t))
2071 					return (EINVAL);
2072 
2073 				bcopy(&vd->efi_gpe, dk_ioc->dki_data,
2074 				    sizeof (efi_gpe_t));
2075 
2076 			} else {
2077 				return (EINVAL);
2078 			}
2079 
2080 			return (0);
2081 		default:
2082 			return (ENOTSUP);
2083 		}
2084 
2085 	default:
2086 		/* Unknown disk label type */
2087 		return (ENOTSUP);
2088 	}
2089 }
2090 
2091 static int
2092 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
2093 {
2094 	vd_efi_dev_t edev;
2095 	int status;
2096 
2097 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2098 
2099 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
2100 
2101 	return (status);
2102 }
2103 
2104 static void
2105 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
2106 {
2107 	vd_efi_dev_t edev;
2108 
2109 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2110 
2111 	vd_efi_free(&edev, gpt, gpe);
2112 }
2113 
2114 static int
2115 vd_file_validate_efi(vd_t *vd)
2116 {
2117 	efi_gpt_t *gpt;
2118 	efi_gpe_t *gpe;
2119 	int i, nparts, status;
2120 	struct uuid efi_reserved = EFI_RESERVED;
2121 
2122 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
2123 		return (status);
2124 
2125 	bzero(&vd->vtoc, sizeof (struct vtoc));
2126 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
2127 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2128 
2129 	vd->efi_reserved = -1;
2130 
2131 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
2132 
2133 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
2134 
2135 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
2136 		    gpe[i].efi_gpe_EndingLBA == 0) {
2137 			continue;
2138 		}
2139 
2140 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
2141 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
2142 		    gpe[i].efi_gpe_StartingLBA + 1;
2143 
2144 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
2145 		    sizeof (struct uuid)) == 0)
2146 			vd->efi_reserved = i;
2147 
2148 	}
2149 
2150 	ASSERT(vd->vdisk_size != 0);
2151 	vd->slices[VD_EFI_WD_SLICE].start = 0;
2152 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
2153 
2154 	vds_efi_free(vd, gpt, gpe);
2155 
2156 	return (status);
2157 }
2158 
2159 /*
2160  * Function:
2161  *	vd_file_validate_geometry
2162  *
2163  * Description:
2164  *	Read the label and validate the geometry of a disk image. The driver
2165  *	label, vtoc and geometry information are updated according to the
2166  *	label read from the disk image.
2167  *
2168  *	If no valid label is found, the label is set to unknown and the
2169  *	function returns EINVAL, but a default vtoc and geometry are provided
2170  *	to the driver. If an EFI label is found, ENOTSUP is returned.
2171  *
2172  * Parameters:
2173  *	vd	- disk on which the operation is performed.
2174  *
2175  * Return Code:
2176  *	0	- success.
2177  *	EIO	- error reading the label from the disk image.
2178  *	EINVAL	- unknown disk label.
2179  *	ENOTSUP	- geometry not applicable (EFI label).
2180  */
2181 static int
2182 vd_file_validate_geometry(vd_t *vd)
2183 {
2184 	struct dk_label label;
2185 	struct dk_geom *geom = &vd->dk_geom;
2186 	struct vtoc *vtoc = &vd->vtoc;
2187 	int i;
2188 	int status = 0;
2189 
2190 	ASSERT(vd->file);
2191 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2192 
2193 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
2194 		return (EIO);
2195 
2196 	if (label.dkl_magic != DKL_MAGIC ||
2197 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
2198 	    (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) ||
2199 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
2200 
2201 		if (vd_file_validate_efi(vd) == 0) {
2202 			vd->vdisk_label = VD_DISK_LABEL_EFI;
2203 			return (ENOTSUP);
2204 		}
2205 
2206 		vd->vdisk_label = VD_DISK_LABEL_UNK;
2207 		vd_file_build_default_label(vd, &label);
2208 		status = EINVAL;
2209 	} else {
2210 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
2211 	}
2212 
2213 	/* Update the driver geometry */
2214 	bzero(geom, sizeof (struct dk_geom));
2215 
2216 	geom->dkg_ncyl = label.dkl_ncyl;
2217 	geom->dkg_acyl = label.dkl_acyl;
2218 	geom->dkg_nhead = label.dkl_nhead;
2219 	geom->dkg_nsect = label.dkl_nsect;
2220 	geom->dkg_intrlv = label.dkl_intrlv;
2221 	geom->dkg_apc = label.dkl_apc;
2222 	geom->dkg_rpm = label.dkl_rpm;
2223 	geom->dkg_pcyl = label.dkl_pcyl;
2224 	geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
2225 	geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
2226 
2227 	/* Update the driver vtoc */
2228 	bzero(vtoc, sizeof (struct vtoc));
2229 
2230 	vtoc->v_sanity = label.dkl_vtoc.v_sanity;
2231 	vtoc->v_version = label.dkl_vtoc.v_version;
2232 	vtoc->v_sectorsz = DEV_BSIZE;
2233 	vtoc->v_nparts = label.dkl_vtoc.v_nparts;
2234 
2235 	for (i = 0; i < vtoc->v_nparts; i++) {
2236 		vtoc->v_part[i].p_tag =
2237 		    label.dkl_vtoc.v_part[i].p_tag;
2238 		vtoc->v_part[i].p_flag =
2239 		    label.dkl_vtoc.v_part[i].p_flag;
2240 		vtoc->v_part[i].p_start =
2241 		    label.dkl_map[i].dkl_cylno *
2242 		    (label.dkl_nhead * label.dkl_nsect);
2243 		vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
2244 		vtoc->timestamp[i] =
2245 		    label.dkl_vtoc.v_timestamp[i];
2246 	}
2247 	/*
2248 	 * The bootinfo array can not be copied with bcopy() because
2249 	 * elements are of type long in vtoc (so 64-bit) and of type
2250 	 * int in dk_vtoc (so 32-bit).
2251 	 */
2252 	vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
2253 	vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
2254 	vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
2255 	bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
2256 	    LEN_DKL_ASCII);
2257 	bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
2258 	    LEN_DKL_VVOL);
2259 
2260 	/* Update logical partitions */
2261 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2262 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
2263 		for (i = 0; i < vtoc->v_nparts; i++) {
2264 			vd->slices[i].start = vtoc->v_part[i].p_start;
2265 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
2266 		}
2267 	}
2268 
2269 	return (status);
2270 }
2271 
2272 /*
2273  * Handle ioctls to a disk image (file-based).
2274  *
2275  * Return Values
2276  *	0	- Indicates that there are no errors
2277  *	!= 0	- Disk operation returned an error
2278  */
2279 static int
2280 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2281 {
2282 	struct dk_label label;
2283 	struct dk_geom *geom;
2284 	struct vtoc *vtoc;
2285 	dk_efi_t *efi;
2286 	int i, rc;
2287 
2288 	ASSERT(vd->file);
2289 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2290 
2291 	switch (cmd) {
2292 
2293 	case DKIOCGGEOM:
2294 		ASSERT(ioctl_arg != NULL);
2295 		geom = (struct dk_geom *)ioctl_arg;
2296 
2297 		rc = vd_file_validate_geometry(vd);
2298 		if (rc != 0 && rc != EINVAL)
2299 			return (rc);
2300 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
2301 		return (0);
2302 
2303 	case DKIOCGVTOC:
2304 		ASSERT(ioctl_arg != NULL);
2305 		vtoc = (struct vtoc *)ioctl_arg;
2306 
2307 		rc = vd_file_validate_geometry(vd);
2308 		if (rc != 0 && rc != EINVAL)
2309 			return (rc);
2310 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
2311 		return (0);
2312 
2313 	case DKIOCSGEOM:
2314 		ASSERT(ioctl_arg != NULL);
2315 		geom = (struct dk_geom *)ioctl_arg;
2316 
2317 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
2318 			return (EINVAL);
2319 
2320 		/*
2321 		 * The current device geometry is not updated, just the driver
2322 		 * "notion" of it. The device geometry will be effectively
2323 		 * updated when a label is written to the device during a next
2324 		 * DKIOCSVTOC.
2325 		 */
2326 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
2327 		return (0);
2328 
2329 	case DKIOCSVTOC:
2330 		ASSERT(ioctl_arg != NULL);
2331 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
2332 		    vd->dk_geom.dkg_nsect != 0);
2333 		vtoc = (struct vtoc *)ioctl_arg;
2334 
2335 		if (vtoc->v_sanity != VTOC_SANE ||
2336 		    vtoc->v_sectorsz != DEV_BSIZE ||
2337 		    vtoc->v_nparts != V_NUMPAR)
2338 			return (EINVAL);
2339 
2340 		bzero(&label, sizeof (label));
2341 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
2342 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
2343 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
2344 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
2345 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
2346 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
2347 		label.dkl_apc = vd->dk_geom.dkg_apc;
2348 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
2349 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
2350 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
2351 
2352 		label.dkl_vtoc.v_nparts = V_NUMPAR;
2353 		label.dkl_vtoc.v_sanity = VTOC_SANE;
2354 		label.dkl_vtoc.v_version = vtoc->v_version;
2355 		for (i = 0; i < V_NUMPAR; i++) {
2356 			label.dkl_vtoc.v_timestamp[i] =
2357 			    vtoc->timestamp[i];
2358 			label.dkl_vtoc.v_part[i].p_tag =
2359 			    vtoc->v_part[i].p_tag;
2360 			label.dkl_vtoc.v_part[i].p_flag =
2361 			    vtoc->v_part[i].p_flag;
2362 			label.dkl_map[i].dkl_cylno =
2363 			    vtoc->v_part[i].p_start /
2364 			    (label.dkl_nhead * label.dkl_nsect);
2365 			label.dkl_map[i].dkl_nblk =
2366 			    vtoc->v_part[i].p_size;
2367 		}
2368 		/*
2369 		 * The bootinfo array can not be copied with bcopy() because
2370 		 * elements are of type long in vtoc (so 64-bit) and of type
2371 		 * int in dk_vtoc (so 32-bit).
2372 		 */
2373 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2374 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2375 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2376 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
2377 		    LEN_DKL_ASCII);
2378 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
2379 		    LEN_DKL_VVOL);
2380 
2381 		/* re-compute checksum */
2382 		label.dkl_magic = DKL_MAGIC;
2383 		label.dkl_cksum = vd_lbl2cksum(&label);
2384 
2385 		/* write label to the disk image */
2386 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
2387 			return (rc);
2388 
2389 		break;
2390 
2391 	case DKIOCFLUSHWRITECACHE:
2392 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2393 
2394 	case DKIOCGETEFI:
2395 		ASSERT(ioctl_arg != NULL);
2396 		efi = (dk_efi_t *)ioctl_arg;
2397 
2398 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
2399 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
2400 			return (EIO);
2401 
2402 		return (0);
2403 
2404 	case DKIOCSETEFI:
2405 		ASSERT(ioctl_arg != NULL);
2406 		efi = (dk_efi_t *)ioctl_arg;
2407 
2408 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
2409 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
2410 			return (EIO);
2411 
2412 		break;
2413 
2414 
2415 	default:
2416 		return (ENOTSUP);
2417 	}
2418 
2419 	ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI);
2420 
2421 	/* label has changed, revalidate the geometry */
2422 	(void) vd_file_validate_geometry(vd);
2423 
2424 	/*
2425 	 * The disk geometry may have changed, so we need to write
2426 	 * the devid (if there is one) so that it is stored at the
2427 	 * right location.
2428 	 */
2429 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
2430 		PR0("Fail to write devid");
2431 	}
2432 
2433 	return (0);
2434 }
2435 
2436 static int
2437 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
2438 {
2439 	int rval = 0, status;
2440 
2441 	/*
2442 	 * Call the appropriate function to execute the ioctl depending
2443 	 * on the type of vdisk.
2444 	 */
2445 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
2446 
2447 		/* slice, file or volume exported as a single slice disk */
2448 		status = vd_do_slice_ioctl(vd, cmd, arg);
2449 
2450 	} else if (vd->file) {
2451 
2452 		/* file or volume exported as a full disk */
2453 		status = vd_do_file_ioctl(vd, cmd, arg);
2454 
2455 	} else {
2456 
2457 		/* disk device exported as a full disk */
2458 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
2459 		    vd->open_flags | FKIOCTL, kcred, &rval);
2460 	}
2461 
2462 #ifdef DEBUG
2463 	if (rval != 0) {
2464 		PR0("ioctl %x set rval = %d, which is not being returned"
2465 		    " to caller", cmd, rval);
2466 	}
2467 #endif /* DEBUG */
2468 
2469 	return (status);
2470 }
2471 
2472 /*
2473  * Description:
2474  *	This is the function that processes the ioctl requests (farming it
2475  *	out to functions that handle slices, files or whole disks)
2476  *
2477  * Return Values
2478  *     0		- ioctl operation completed successfully
2479  *     != 0		- The LDC error value encountered
2480  *			  (propagated back up the call stack as a task error)
2481  *
2482  * Side Effect
2483  *     sets request->status to the return value of the ioctl function.
2484  */
2485 static int
2486 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
2487 {
2488 	int	status = 0;
2489 	size_t	nbytes = request->nbytes;	/* modifiable copy */
2490 
2491 
2492 	ASSERT(request->slice < vd->nslices);
2493 	PR0("Performing %s", ioctl->operation_name);
2494 
2495 	/* Get data from client and convert, if necessary */
2496 	if (ioctl->copyin != NULL)  {
2497 		ASSERT(nbytes != 0 && buf != NULL);
2498 		PR1("Getting \"arg\" data from client");
2499 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2500 		    request->cookie, request->ncookies,
2501 		    LDC_COPY_IN)) != 0) {
2502 			PR0("ldc_mem_copy() returned errno %d "
2503 			    "copying from client", status);
2504 			return (status);
2505 		}
2506 
2507 		/* Convert client's data, if necessary */
2508 		if (ioctl->copyin == VD_IDENTITY_IN) {
2509 			/* use client buffer */
2510 			ioctl->arg = buf;
2511 		} else {
2512 			/* convert client vdisk operation data to ioctl data */
2513 			status = (ioctl->copyin)(buf, nbytes,
2514 			    (void *)ioctl->arg);
2515 			if (status != 0) {
2516 				request->status = status;
2517 				return (0);
2518 			}
2519 		}
2520 	}
2521 
2522 	if (ioctl->operation == VD_OP_SCSICMD) {
2523 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
2524 
2525 		/* check write permission */
2526 		if (!(vd->open_flags & FWRITE) &&
2527 		    !(uscsi->uscsi_flags & USCSI_READ)) {
2528 			PR0("uscsi fails because backend is opened read-only");
2529 			request->status = EROFS;
2530 			return (0);
2531 		}
2532 	}
2533 
2534 	/*
2535 	 * Send the ioctl to the disk backend.
2536 	 */
2537 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
2538 
2539 	if (request->status != 0) {
2540 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
2541 		if (ioctl->operation == VD_OP_SCSICMD &&
2542 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
2543 			/*
2544 			 * USCSICMD has reported an error and the uscsi_status
2545 			 * field is not zero. This means that the SCSI command
2546 			 * has completed but it has an error. So we should
2547 			 * mark the VD operation has succesfully completed
2548 			 * and clients can check the SCSI status field for
2549 			 * SCSI errors.
2550 			 */
2551 			request->status = 0;
2552 		else
2553 			return (0);
2554 	}
2555 
2556 	/* Convert data and send to client, if necessary */
2557 	if (ioctl->copyout != NULL)  {
2558 		ASSERT(nbytes != 0 && buf != NULL);
2559 		PR1("Sending \"arg\" data to client");
2560 
2561 		/* Convert ioctl data to vdisk operation data, if necessary */
2562 		if (ioctl->copyout != VD_IDENTITY_OUT)
2563 			(ioctl->copyout)((void *)ioctl->arg, buf);
2564 
2565 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2566 		    request->cookie, request->ncookies,
2567 		    LDC_COPY_OUT)) != 0) {
2568 			PR0("ldc_mem_copy() returned errno %d "
2569 			    "copying to client", status);
2570 			return (status);
2571 		}
2572 	}
2573 
2574 	return (status);
2575 }
2576 
2577 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
2578 
2579 /*
2580  * Description:
2581  *	This generic function is called by the task queue to complete
2582  *	the processing of the tasks. The specific completion function
2583  *	is passed in as a field in the task pointer.
2584  *
2585  * Parameters:
2586  *	arg 	- opaque pointer to structure containing task to be completed
2587  *
2588  * Return Values
2589  *	None
2590  */
2591 static void
2592 vd_complete(void *arg)
2593 {
2594 	vd_task_t	*task = (vd_task_t *)arg;
2595 
2596 	ASSERT(task != NULL);
2597 	ASSERT(task->status == EINPROGRESS);
2598 	ASSERT(task->completef != NULL);
2599 
2600 	task->status = task->completef(task);
2601 	if (task->status)
2602 		PR0("%s: Error %d completing task", __func__, task->status);
2603 
2604 	/* Now notify the vDisk client */
2605 	vd_complete_notify(task);
2606 }
2607 
2608 static int
2609 vd_ioctl(vd_task_t *task)
2610 {
2611 	int			i, status;
2612 	void			*buf = NULL;
2613 	struct dk_geom		dk_geom = {0};
2614 	struct vtoc		vtoc = {0};
2615 	struct dk_efi		dk_efi = {0};
2616 	struct uscsi_cmd	uscsi = {0};
2617 	vd_t			*vd		= task->vd;
2618 	vd_dring_payload_t	*request	= task->request;
2619 	vd_ioctl_t		ioctl[] = {
2620 		/* Command (no-copy) operations */
2621 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
2622 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
2623 		    NULL, NULL, NULL, B_TRUE},
2624 
2625 		/* "Get" (copy-out) operations */
2626 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
2627 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
2628 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
2629 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
2630 		    RNDSIZE(vd_geom_t),
2631 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
2632 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
2633 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
2634 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
2635 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
2636 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
2637 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
2638 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
2639 
2640 		/* "Set" (copy-in) operations */
2641 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
2642 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
2643 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
2644 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
2645 		    RNDSIZE(vd_geom_t),
2646 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
2647 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
2648 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
2649 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
2650 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
2651 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
2652 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
2653 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
2654 
2655 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
2656 		    USCSICMD, STRINGIZE(USCSICMD),
2657 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
2658 	};
2659 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
2660 
2661 
2662 	ASSERT(vd != NULL);
2663 	ASSERT(request != NULL);
2664 	ASSERT(request->slice < vd->nslices);
2665 
2666 	/*
2667 	 * Determine ioctl corresponding to caller's "operation" and
2668 	 * validate caller's "nbytes"
2669 	 */
2670 	for (i = 0; i < nioctls; i++) {
2671 		if (request->operation == ioctl[i].operation) {
2672 			/* LDC memory operations require 8-byte multiples */
2673 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
2674 
2675 			if (request->operation == VD_OP_GET_EFI ||
2676 			    request->operation == VD_OP_SET_EFI ||
2677 			    request->operation == VD_OP_SCSICMD) {
2678 				if (request->nbytes >= ioctl[i].nbytes)
2679 					break;
2680 				PR0("%s:  Expected at least nbytes = %lu, "
2681 				    "got %lu", ioctl[i].operation_name,
2682 				    ioctl[i].nbytes, request->nbytes);
2683 				return (EINVAL);
2684 			}
2685 
2686 			if (request->nbytes != ioctl[i].nbytes) {
2687 				PR0("%s:  Expected nbytes = %lu, got %lu",
2688 				    ioctl[i].operation_name, ioctl[i].nbytes,
2689 				    request->nbytes);
2690 				return (EINVAL);
2691 			}
2692 
2693 			break;
2694 		}
2695 	}
2696 	ASSERT(i < nioctls);	/* because "operation" already validated */
2697 
2698 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
2699 		PR0("%s fails because backend is opened read-only",
2700 		    ioctl[i].operation_name);
2701 		request->status = EROFS;
2702 		return (0);
2703 	}
2704 
2705 	if (request->nbytes)
2706 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
2707 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
2708 	if (request->nbytes)
2709 		kmem_free(buf, request->nbytes);
2710 
2711 	return (status);
2712 }
2713 
2714 static int
2715 vd_get_devid(vd_task_t *task)
2716 {
2717 	vd_t *vd = task->vd;
2718 	vd_dring_payload_t *request = task->request;
2719 	vd_devid_t *vd_devid;
2720 	impl_devid_t *devid;
2721 	int status, bufid_len, devid_len, len, sz;
2722 	int bufbytes;
2723 
2724 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
2725 
2726 	if (vd->file) {
2727 		if (vd->file_devid == NULL) {
2728 			PR2("No Device ID");
2729 			request->status = ENOENT;
2730 			return (0);
2731 		} else {
2732 			sz = ddi_devid_sizeof(vd->file_devid);
2733 			devid = kmem_alloc(sz, KM_SLEEP);
2734 			bcopy(vd->file_devid, devid, sz);
2735 		}
2736 	} else {
2737 		if (ddi_lyr_get_devid(vd->dev[request->slice],
2738 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
2739 			PR2("No Device ID");
2740 			request->status = ENOENT;
2741 			return (0);
2742 		}
2743 	}
2744 
2745 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
2746 	devid_len = DEVID_GETLEN(devid);
2747 
2748 	/*
2749 	 * Save the buffer size here for use in deallocation.
2750 	 * The actual number of bytes copied is returned in
2751 	 * the 'nbytes' field of the request structure.
2752 	 */
2753 	bufbytes = request->nbytes;
2754 
2755 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2756 	vd_devid->length = devid_len;
2757 	vd_devid->type = DEVID_GETTYPE(devid);
2758 
2759 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2760 
2761 	bcopy(devid->did_id, vd_devid->id, len);
2762 
2763 	request->status = 0;
2764 
2765 	/* LDC memory operations require 8-byte multiples */
2766 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2767 
2768 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2769 	    &request->nbytes, request->cookie, request->ncookies,
2770 	    LDC_COPY_OUT)) != 0) {
2771 		PR0("ldc_mem_copy() returned errno %d copying to client",
2772 		    status);
2773 	}
2774 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2775 
2776 	kmem_free(vd_devid, bufbytes);
2777 	ddi_devid_free((ddi_devid_t)devid);
2778 
2779 	return (status);
2780 }
2781 
2782 static int
2783 vd_scsi_reset(vd_t *vd)
2784 {
2785 	int rval, status;
2786 	struct uscsi_cmd uscsi = { 0 };
2787 
2788 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
2789 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
2790 
2791 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
2792 	    (vd->open_flags | FKIOCTL), kcred, &rval);
2793 
2794 	return (status);
2795 }
2796 
2797 static int
2798 vd_reset(vd_task_t *task)
2799 {
2800 	vd_t *vd = task->vd;
2801 	vd_dring_payload_t *request = task->request;
2802 
2803 	ASSERT(request->operation == VD_OP_RESET);
2804 	ASSERT(vd->scsi);
2805 
2806 	PR0("Performing VD_OP_RESET");
2807 
2808 	if (request->nbytes != 0) {
2809 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
2810 		    request->nbytes);
2811 		return (EINVAL);
2812 	}
2813 
2814 	request->status = vd_scsi_reset(vd);
2815 
2816 	return (0);
2817 }
2818 
2819 static int
2820 vd_get_capacity(vd_task_t *task)
2821 {
2822 	int rv;
2823 	size_t nbytes;
2824 	vd_t *vd = task->vd;
2825 	vd_dring_payload_t *request = task->request;
2826 	vd_capacity_t vd_cap = { 0 };
2827 
2828 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
2829 	ASSERT(vd->scsi);
2830 
2831 	PR0("Performing VD_OP_GET_CAPACITY");
2832 
2833 	nbytes = request->nbytes;
2834 
2835 	if (nbytes != RNDSIZE(vd_capacity_t)) {
2836 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
2837 		    RNDSIZE(vd_capacity_t), nbytes);
2838 		return (EINVAL);
2839 	}
2840 
2841 	if (vd->vdisk_size == VD_SIZE_UNKNOWN) {
2842 		if (vd_setup_mediainfo(vd) != 0)
2843 			ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN);
2844 	}
2845 
2846 	ASSERT(vd->vdisk_size != 0);
2847 
2848 	request->status = 0;
2849 
2850 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
2851 	vd_cap.vdisk_size = vd->vdisk_size;
2852 
2853 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
2854 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
2855 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
2856 		return (rv);
2857 	}
2858 
2859 	return (0);
2860 }
2861 
2862 static int
2863 vd_get_access(vd_task_t *task)
2864 {
2865 	uint64_t access;
2866 	int rv, rval = 0;
2867 	size_t nbytes;
2868 	vd_t *vd = task->vd;
2869 	vd_dring_payload_t *request = task->request;
2870 
2871 	ASSERT(request->operation == VD_OP_GET_ACCESS);
2872 	ASSERT(vd->scsi);
2873 
2874 	PR0("Performing VD_OP_GET_ACCESS");
2875 
2876 	nbytes = request->nbytes;
2877 
2878 	if (nbytes != sizeof (uint64_t)) {
2879 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
2880 		    sizeof (uint64_t), nbytes);
2881 		return (EINVAL);
2882 	}
2883 
2884 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
2885 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
2886 
2887 	if (request->status != 0)
2888 		return (0);
2889 
2890 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
2891 
2892 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
2893 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
2894 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
2895 		return (rv);
2896 	}
2897 
2898 	return (0);
2899 }
2900 
2901 static int
2902 vd_set_access(vd_task_t *task)
2903 {
2904 	uint64_t flags;
2905 	int rv, rval;
2906 	size_t nbytes;
2907 	vd_t *vd = task->vd;
2908 	vd_dring_payload_t *request = task->request;
2909 
2910 	ASSERT(request->operation == VD_OP_SET_ACCESS);
2911 	ASSERT(vd->scsi);
2912 
2913 	nbytes = request->nbytes;
2914 
2915 	if (nbytes != sizeof (uint64_t)) {
2916 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
2917 		    sizeof (uint64_t), nbytes);
2918 		return (EINVAL);
2919 	}
2920 
2921 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
2922 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
2923 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
2924 		return (rv);
2925 	}
2926 
2927 	if (flags == VD_ACCESS_SET_CLEAR) {
2928 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
2929 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2930 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
2931 		    &rval);
2932 		if (request->status == 0)
2933 			vd->ownership = B_FALSE;
2934 		return (0);
2935 	}
2936 
2937 	/*
2938 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
2939 	 * when the EXCLUSIVE flag is set.
2940 	 */
2941 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
2942 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
2943 		request->status = EINVAL;
2944 		return (0);
2945 	}
2946 
2947 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
2948 
2949 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
2950 		/*
2951 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
2952 		 * acquire exclusive access rights, preserve them and we
2953 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
2954 		 */
2955 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
2956 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2957 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
2958 		break;
2959 
2960 	case VD_ACCESS_SET_PRESERVE:
2961 		/*
2962 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
2963 		 * access rights and preserve them, but not preempt any other
2964 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
2965 		 * "preserve" feature but we can not called it directly
2966 		 * because it uses preemption. So before that, we use the
2967 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
2968 		 * without preempting anyone.
2969 		 */
2970 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
2971 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2972 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
2973 		    &rval);
2974 		if (request->status != 0)
2975 			break;
2976 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2977 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
2978 		break;
2979 
2980 	case VD_ACCESS_SET_PREEMPT:
2981 		/*
2982 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
2983 		 * access rights and we can use preemption. So we try to do
2984 		 * a SCSI reservation, if it fails we reset the disk to clear
2985 		 * any reservation and we try to reserve again.
2986 		 */
2987 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
2988 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2989 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
2990 		    &rval);
2991 		if (request->status == 0)
2992 			break;
2993 
2994 		/* reset the disk */
2995 		(void) vd_scsi_reset(vd);
2996 
2997 		/* try again even if the reset has failed */
2998 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2999 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3000 		    &rval);
3001 		break;
3002 
3003 	case 0:
3004 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3005 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3006 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3007 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3008 		    &rval);
3009 		break;
3010 	}
3011 
3012 	if (request->status == 0)
3013 		vd->ownership = B_TRUE;
3014 	else
3015 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3016 
3017 	return (0);
3018 }
3019 
3020 static void
3021 vd_reset_access(vd_t *vd)
3022 {
3023 	int status, rval;
3024 
3025 	if (vd->file || !vd->ownership)
3026 		return;
3027 
3028 	PR0("Releasing disk ownership");
3029 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3030 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3031 
3032 	/*
3033 	 * An EACCES failure means that there is a reservation conflict,
3034 	 * so we are not the owner of the disk anymore.
3035 	 */
3036 	if (status == 0 || status == EACCES) {
3037 		vd->ownership = B_FALSE;
3038 		return;
3039 	}
3040 
3041 	PR0("Fail to release ownership, error %d", status);
3042 
3043 	/*
3044 	 * We have failed to release the ownership, try to reset the disk
3045 	 * to release reservations.
3046 	 */
3047 	PR0("Resetting disk");
3048 	status = vd_scsi_reset(vd);
3049 
3050 	if (status != 0)
3051 		PR0("Fail to reset disk, error %d", status);
3052 
3053 	/* whatever the result of the reset is, we try the release again */
3054 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3055 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3056 
3057 	if (status == 0 || status == EACCES) {
3058 		vd->ownership = B_FALSE;
3059 		return;
3060 	}
3061 
3062 	PR0("Fail to release ownership, error %d", status);
3063 
3064 	/*
3065 	 * At this point we have done our best to try to reset the
3066 	 * access rights to the disk and we don't know if we still
3067 	 * own a reservation and if any mechanism to preserve the
3068 	 * ownership is still in place. The ultimate solution would
3069 	 * be to reset the system but this is usually not what we
3070 	 * want to happen.
3071 	 */
3072 
3073 	if (vd_reset_access_failure == A_REBOOT) {
3074 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3075 		    ", rebooting the system", vd->device_path);
3076 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3077 	} else if (vd_reset_access_failure == A_DUMP) {
3078 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3079 	}
3080 
3081 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3082 }
3083 
3084 /*
3085  * Define the supported operations once the functions for performing them have
3086  * been defined
3087  */
3088 static const vds_operation_t	vds_operation[] = {
3089 #define	X(_s)	#_s, _s
3090 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3091 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3092 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3093 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3094 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3095 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3096 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3097 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3098 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3099 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3100 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3101 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3102 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3103 	{X(VD_OP_RESET),	vd_reset,	NULL},
3104 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3105 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3106 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3107 #undef	X
3108 };
3109 
3110 static const size_t	vds_noperations =
3111 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3112 
3113 /*
3114  * Process a task specifying a client I/O request
3115  *
3116  * Parameters:
3117  *	task 		- structure containing the request sent from client
3118  *
3119  * Return Value
3120  *	0	- success
3121  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3122  *	EINVAL	- Invalid disk slice
3123  *	!= 0	- some other non-zero return value from start function
3124  */
3125 static int
3126 vd_do_process_task(vd_task_t *task)
3127 {
3128 	int			i;
3129 	vd_t			*vd		= task->vd;
3130 	vd_dring_payload_t	*request	= task->request;
3131 
3132 	ASSERT(vd != NULL);
3133 	ASSERT(request != NULL);
3134 
3135 	/* Find the requested operation */
3136 	for (i = 0; i < vds_noperations; i++) {
3137 		if (request->operation == vds_operation[i].operation) {
3138 			/* all operations should have a start func */
3139 			ASSERT(vds_operation[i].start != NULL);
3140 
3141 			task->completef = vds_operation[i].complete;
3142 			break;
3143 		}
3144 	}
3145 
3146 	/*
3147 	 * We need to check that the requested operation is permitted
3148 	 * for the particular client that sent it or that the loop above
3149 	 * did not complete without finding the operation type (indicating
3150 	 * that the requested operation is unknown/unimplemented)
3151 	 */
3152 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
3153 	    (i == vds_noperations)) {
3154 		PR0("Unsupported operation %u", request->operation);
3155 		request->status = ENOTSUP;
3156 		return (0);
3157 	}
3158 
3159 	/* Range-check slice */
3160 	if (request->slice >= vd->nslices &&
3161 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
3162 	    request->slice != VD_SLICE_NONE)) {
3163 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
3164 		    request->slice, (vd->nslices - 1));
3165 		return (EINVAL);
3166 	}
3167 
3168 	/*
3169 	 * Call the function pointer that starts the operation.
3170 	 */
3171 	return (vds_operation[i].start(task));
3172 }
3173 
3174 /*
3175  * Description:
3176  *	This function is called by both the in-band and descriptor ring
3177  *	message processing functions paths to actually execute the task
3178  *	requested by the vDisk client. It in turn calls its worker
3179  *	function, vd_do_process_task(), to carry our the request.
3180  *
3181  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
3182  *	saved in the 'status' field of the task and are propagated back
3183  *	up the call stack to trigger a NACK
3184  *
3185  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
3186  *	the 'status' field of the request and result in an ACK being sent
3187  *	by the completion handler.
3188  *
3189  * Parameters:
3190  *	task 		- structure containing the request sent from client
3191  *
3192  * Return Value
3193  *	0		- successful synchronous request.
3194  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
3195  *	EINPROGRESS	- task will be finished in a completion handler
3196  */
3197 static int
3198 vd_process_task(vd_task_t *task)
3199 {
3200 	vd_t	*vd = task->vd;
3201 	int	status;
3202 
3203 	DTRACE_PROBE1(task__start, vd_task_t *, task);
3204 
3205 	task->status =  vd_do_process_task(task);
3206 
3207 	/*
3208 	 * If the task processing function returned EINPROGRESS indicating
3209 	 * that the task needs completing then schedule a taskq entry to
3210 	 * finish it now.
3211 	 *
3212 	 * Otherwise the task processing function returned either zero
3213 	 * indicating that the task was finished in the start function (and we
3214 	 * don't need to wait in a completion function) or the start function
3215 	 * returned an error - in both cases all that needs to happen is the
3216 	 * notification to the vDisk client higher up the call stack.
3217 	 * If the task was using a Descriptor Ring, we need to mark it as done
3218 	 * at this stage.
3219 	 */
3220 	if (task->status == EINPROGRESS) {
3221 		/* Queue a task to complete the operation */
3222 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
3223 		    task, DDI_SLEEP);
3224 
3225 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
3226 		/* Update the dring element if it's a dring client */
3227 		status = vd_mark_elem_done(vd, task->index,
3228 		    task->request->status, task->request->nbytes);
3229 		if (status == ECONNRESET)
3230 			vd_mark_in_reset(vd);
3231 	}
3232 
3233 	return (task->status);
3234 }
3235 
3236 /*
3237  * Return true if the "type", "subtype", and "env" fields of the "tag" first
3238  * argument match the corresponding remaining arguments; otherwise, return false
3239  */
3240 boolean_t
3241 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
3242 {
3243 	return ((tag->vio_msgtype == type) &&
3244 	    (tag->vio_subtype == subtype) &&
3245 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
3246 }
3247 
3248 /*
3249  * Check whether the major/minor version specified in "ver_msg" is supported
3250  * by this server.
3251  */
3252 static boolean_t
3253 vds_supported_version(vio_ver_msg_t *ver_msg)
3254 {
3255 	for (int i = 0; i < vds_num_versions; i++) {
3256 		ASSERT(vds_version[i].major > 0);
3257 		ASSERT((i == 0) ||
3258 		    (vds_version[i].major < vds_version[i-1].major));
3259 
3260 		/*
3261 		 * If the major versions match, adjust the minor version, if
3262 		 * necessary, down to the highest value supported by this
3263 		 * server and return true so this message will get "ack"ed;
3264 		 * the client should also support all minor versions lower
3265 		 * than the value it sent
3266 		 */
3267 		if (ver_msg->ver_major == vds_version[i].major) {
3268 			if (ver_msg->ver_minor > vds_version[i].minor) {
3269 				PR0("Adjusting minor version from %u to %u",
3270 				    ver_msg->ver_minor, vds_version[i].minor);
3271 				ver_msg->ver_minor = vds_version[i].minor;
3272 			}
3273 			return (B_TRUE);
3274 		}
3275 
3276 		/*
3277 		 * If the message contains a higher major version number, set
3278 		 * the message's major/minor versions to the current values
3279 		 * and return false, so this message will get "nack"ed with
3280 		 * these values, and the client will potentially try again
3281 		 * with the same or a lower version
3282 		 */
3283 		if (ver_msg->ver_major > vds_version[i].major) {
3284 			ver_msg->ver_major = vds_version[i].major;
3285 			ver_msg->ver_minor = vds_version[i].minor;
3286 			return (B_FALSE);
3287 		}
3288 
3289 		/*
3290 		 * Otherwise, the message's major version is less than the
3291 		 * current major version, so continue the loop to the next
3292 		 * (lower) supported version
3293 		 */
3294 	}
3295 
3296 	/*
3297 	 * No common version was found; "ground" the version pair in the
3298 	 * message to terminate negotiation
3299 	 */
3300 	ver_msg->ver_major = 0;
3301 	ver_msg->ver_minor = 0;
3302 	return (B_FALSE);
3303 }
3304 
3305 /*
3306  * Process a version message from a client.  vds expects to receive version
3307  * messages from clients seeking service, but never issues version messages
3308  * itself; therefore, vds can ACK or NACK client version messages, but does
3309  * not expect to receive version-message ACKs or NACKs (and will treat such
3310  * messages as invalid).
3311  */
3312 static int
3313 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3314 {
3315 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
3316 
3317 
3318 	ASSERT(msglen >= sizeof (msg->tag));
3319 
3320 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3321 	    VIO_VER_INFO)) {
3322 		return (ENOMSG);	/* not a version message */
3323 	}
3324 
3325 	if (msglen != sizeof (*ver_msg)) {
3326 		PR0("Expected %lu-byte version message; "
3327 		    "received %lu bytes", sizeof (*ver_msg), msglen);
3328 		return (EBADMSG);
3329 	}
3330 
3331 	if (ver_msg->dev_class != VDEV_DISK) {
3332 		PR0("Expected device class %u (disk); received %u",
3333 		    VDEV_DISK, ver_msg->dev_class);
3334 		return (EBADMSG);
3335 	}
3336 
3337 	/*
3338 	 * We're talking to the expected kind of client; set our device class
3339 	 * for "ack/nack" back to the client
3340 	 */
3341 	ver_msg->dev_class = VDEV_DISK_SERVER;
3342 
3343 	/*
3344 	 * Check whether the (valid) version message specifies a version
3345 	 * supported by this server.  If the version is not supported, return
3346 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
3347 	 * will have updated the message with a supported version for the
3348 	 * client to consider
3349 	 */
3350 	if (!vds_supported_version(ver_msg))
3351 		return (EBADMSG);
3352 
3353 
3354 	/*
3355 	 * A version has been agreed upon; use the client's SID for
3356 	 * communication on this channel now
3357 	 */
3358 	ASSERT(!(vd->initialized & VD_SID));
3359 	vd->sid = ver_msg->tag.vio_sid;
3360 	vd->initialized |= VD_SID;
3361 
3362 	/*
3363 	 * Store the negotiated major and minor version values in the "vd" data
3364 	 * structure so that we can check if certain operations are supported
3365 	 * by the client.
3366 	 */
3367 	vd->version.major = ver_msg->ver_major;
3368 	vd->version.minor = ver_msg->ver_minor;
3369 
3370 	PR0("Using major version %u, minor version %u",
3371 	    ver_msg->ver_major, ver_msg->ver_minor);
3372 	return (0);
3373 }
3374 
3375 static void
3376 vd_set_exported_operations(vd_t *vd)
3377 {
3378 	vd->operations = 0;	/* clear field */
3379 
3380 	/*
3381 	 * We need to check from the highest version supported to the
3382 	 * lowest because versions with a higher minor number implicitly
3383 	 * support versions with a lower minor number.
3384 	 */
3385 	if (vio_ver_is_supported(vd->version, 1, 1)) {
3386 		ASSERT(vd->open_flags & FREAD);
3387 		vd->operations |= VD_OP_MASK_READ;
3388 
3389 		if (vd->open_flags & FWRITE)
3390 			vd->operations |= VD_OP_MASK_WRITE;
3391 
3392 		if (vd->scsi)
3393 			vd->operations |= VD_OP_MASK_SCSI;
3394 
3395 		if (vd->file && vd_file_is_iso_image(vd)) {
3396 			/*
3397 			 * can't write to ISO images, make sure that write
3398 			 * support is not set in case administrator did not
3399 			 * use "options=ro" when doing an ldm add-vdsdev
3400 			 */
3401 			vd->operations &= ~VD_OP_MASK_WRITE;
3402 		}
3403 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
3404 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
3405 	}
3406 
3407 	/* we should have already agreed on a version */
3408 	ASSERT(vd->operations != 0);
3409 }
3410 
3411 static int
3412 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3413 {
3414 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
3415 	int		status, retry = 0;
3416 
3417 
3418 	ASSERT(msglen >= sizeof (msg->tag));
3419 
3420 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3421 	    VIO_ATTR_INFO)) {
3422 		PR0("Message is not an attribute message");
3423 		return (ENOMSG);
3424 	}
3425 
3426 	if (msglen != sizeof (*attr_msg)) {
3427 		PR0("Expected %lu-byte attribute message; "
3428 		    "received %lu bytes", sizeof (*attr_msg), msglen);
3429 		return (EBADMSG);
3430 	}
3431 
3432 	if (attr_msg->max_xfer_sz == 0) {
3433 		PR0("Received maximum transfer size of 0 from client");
3434 		return (EBADMSG);
3435 	}
3436 
3437 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
3438 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
3439 		PR0("Client requested unsupported transfer mode");
3440 		return (EBADMSG);
3441 	}
3442 
3443 	/*
3444 	 * check if the underlying disk is ready, if not try accessing
3445 	 * the device again. Open the vdisk device and extract info
3446 	 * about it, as this is needed to respond to the attr info msg
3447 	 */
3448 	if ((vd->initialized & VD_DISK_READY) == 0) {
3449 		PR0("Retry setting up disk (%s)", vd->device_path);
3450 		do {
3451 			status = vd_setup_vd(vd);
3452 			if (status != EAGAIN || ++retry > vds_dev_retries)
3453 				break;
3454 
3455 			/* incremental delay */
3456 			delay(drv_usectohz(vds_dev_delay));
3457 
3458 			/* if vdisk is no longer enabled - return error */
3459 			if (!vd_enabled(vd))
3460 				return (ENXIO);
3461 
3462 		} while (status == EAGAIN);
3463 
3464 		if (status)
3465 			return (ENXIO);
3466 
3467 		vd->initialized |= VD_DISK_READY;
3468 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
3469 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
3470 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
3471 		    (vd->pseudo ? "yes" : "no"),
3472 		    (vd->file ? "yes" : "no"),
3473 		    vd->nslices);
3474 	}
3475 
3476 	/* Success:  valid message and transfer mode */
3477 	vd->xfer_mode = attr_msg->xfer_mode;
3478 
3479 	if (vd->xfer_mode == VIO_DESC_MODE) {
3480 
3481 		/*
3482 		 * The vd_dring_inband_msg_t contains one cookie; need room
3483 		 * for up to n-1 more cookies, where "n" is the number of full
3484 		 * pages plus possibly one partial page required to cover
3485 		 * "max_xfer_sz".  Add room for one more cookie if
3486 		 * "max_xfer_sz" isn't an integral multiple of the page size.
3487 		 * Must first get the maximum transfer size in bytes.
3488 		 */
3489 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
3490 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
3491 		    attr_msg->max_xfer_sz;
3492 		size_t	max_inband_msglen =
3493 		    sizeof (vd_dring_inband_msg_t) +
3494 		    ((max_xfer_bytes/PAGESIZE +
3495 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
3496 		    (sizeof (ldc_mem_cookie_t)));
3497 
3498 		/*
3499 		 * Set the maximum expected message length to
3500 		 * accommodate in-band-descriptor messages with all
3501 		 * their cookies
3502 		 */
3503 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
3504 
3505 		/*
3506 		 * Initialize the data structure for processing in-band I/O
3507 		 * request descriptors
3508 		 */
3509 		vd->inband_task.vd	= vd;
3510 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
3511 		vd->inband_task.index	= 0;
3512 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
3513 	}
3514 
3515 	/* Return the device's block size and max transfer size to the client */
3516 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
3517 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
3518 
3519 	attr_msg->vdisk_size = vd->vdisk_size;
3520 	attr_msg->vdisk_type = vd->vdisk_type;
3521 	attr_msg->vdisk_media = vd->vdisk_media;
3522 
3523 	/* Discover and save the list of supported VD_OP_XXX operations */
3524 	vd_set_exported_operations(vd);
3525 	attr_msg->operations = vd->operations;
3526 
3527 	PR0("%s", VD_CLIENT(vd));
3528 
3529 	ASSERT(vd->dring_task == NULL);
3530 
3531 	return (0);
3532 }
3533 
3534 static int
3535 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3536 {
3537 	int			status;
3538 	size_t			expected;
3539 	ldc_mem_info_t		dring_minfo;
3540 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
3541 
3542 
3543 	ASSERT(msglen >= sizeof (msg->tag));
3544 
3545 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3546 	    VIO_DRING_REG)) {
3547 		PR0("Message is not a register-dring message");
3548 		return (ENOMSG);
3549 	}
3550 
3551 	if (msglen < sizeof (*reg_msg)) {
3552 		PR0("Expected at least %lu-byte register-dring message; "
3553 		    "received %lu bytes", sizeof (*reg_msg), msglen);
3554 		return (EBADMSG);
3555 	}
3556 
3557 	expected = sizeof (*reg_msg) +
3558 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
3559 	if (msglen != expected) {
3560 		PR0("Expected %lu-byte register-dring message; "
3561 		    "received %lu bytes", expected, msglen);
3562 		return (EBADMSG);
3563 	}
3564 
3565 	if (vd->initialized & VD_DRING) {
3566 		PR0("A dring was previously registered; only support one");
3567 		return (EBADMSG);
3568 	}
3569 
3570 	if (reg_msg->num_descriptors > INT32_MAX) {
3571 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
3572 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
3573 		return (EBADMSG);
3574 	}
3575 
3576 	if (reg_msg->ncookies != 1) {
3577 		/*
3578 		 * In addition to fixing the assertion in the success case
3579 		 * below, supporting drings which require more than one
3580 		 * "cookie" requires increasing the value of vd->max_msglen
3581 		 * somewhere in the code path prior to receiving the message
3582 		 * which results in calling this function.  Note that without
3583 		 * making this change, the larger message size required to
3584 		 * accommodate multiple cookies cannot be successfully
3585 		 * received, so this function will not even get called.
3586 		 * Gracefully accommodating more dring cookies might
3587 		 * reasonably demand exchanging an additional attribute or
3588 		 * making a minor protocol adjustment
3589 		 */
3590 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
3591 		return (EBADMSG);
3592 	}
3593 
3594 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
3595 	    reg_msg->ncookies, reg_msg->num_descriptors,
3596 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
3597 	if (status != 0) {
3598 		PR0("ldc_mem_dring_map() returned errno %d", status);
3599 		return (status);
3600 	}
3601 
3602 	/*
3603 	 * To remove the need for this assertion, must call
3604 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
3605 	 * successful call to ldc_mem_dring_map()
3606 	 */
3607 	ASSERT(reg_msg->ncookies == 1);
3608 
3609 	if ((status =
3610 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
3611 		PR0("ldc_mem_dring_info() returned errno %d", status);
3612 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
3613 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
3614 		return (status);
3615 	}
3616 
3617 	if (dring_minfo.vaddr == NULL) {
3618 		PR0("Descriptor ring virtual address is NULL");
3619 		return (ENXIO);
3620 	}
3621 
3622 
3623 	/* Initialize for valid message and mapped dring */
3624 	PR1("descriptor size = %u, dring length = %u",
3625 	    vd->descriptor_size, vd->dring_len);
3626 	vd->initialized |= VD_DRING;
3627 	vd->dring_ident = 1;	/* "There Can Be Only One" */
3628 	vd->dring = dring_minfo.vaddr;
3629 	vd->descriptor_size = reg_msg->descriptor_size;
3630 	vd->dring_len = reg_msg->num_descriptors;
3631 	reg_msg->dring_ident = vd->dring_ident;
3632 
3633 	/*
3634 	 * Allocate and initialize a "shadow" array of data structures for
3635 	 * tasks to process I/O requests in dring elements
3636 	 */
3637 	vd->dring_task =
3638 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
3639 	for (int i = 0; i < vd->dring_len; i++) {
3640 		vd->dring_task[i].vd		= vd;
3641 		vd->dring_task[i].index		= i;
3642 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
3643 
3644 		status = ldc_mem_alloc_handle(vd->ldc_handle,
3645 		    &(vd->dring_task[i].mhdl));
3646 		if (status) {
3647 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
3648 			return (ENXIO);
3649 		}
3650 
3651 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
3652 	}
3653 
3654 	return (0);
3655 }
3656 
3657 static int
3658 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3659 {
3660 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
3661 
3662 
3663 	ASSERT(msglen >= sizeof (msg->tag));
3664 
3665 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3666 	    VIO_DRING_UNREG)) {
3667 		PR0("Message is not an unregister-dring message");
3668 		return (ENOMSG);
3669 	}
3670 
3671 	if (msglen != sizeof (*unreg_msg)) {
3672 		PR0("Expected %lu-byte unregister-dring message; "
3673 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
3674 		return (EBADMSG);
3675 	}
3676 
3677 	if (unreg_msg->dring_ident != vd->dring_ident) {
3678 		PR0("Expected dring ident %lu; received %lu",
3679 		    vd->dring_ident, unreg_msg->dring_ident);
3680 		return (EBADMSG);
3681 	}
3682 
3683 	return (0);
3684 }
3685 
3686 static int
3687 process_rdx_msg(vio_msg_t *msg, size_t msglen)
3688 {
3689 	ASSERT(msglen >= sizeof (msg->tag));
3690 
3691 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
3692 		PR0("Message is not an RDX message");
3693 		return (ENOMSG);
3694 	}
3695 
3696 	if (msglen != sizeof (vio_rdx_msg_t)) {
3697 		PR0("Expected %lu-byte RDX message; received %lu bytes",
3698 		    sizeof (vio_rdx_msg_t), msglen);
3699 		return (EBADMSG);
3700 	}
3701 
3702 	PR0("Valid RDX message");
3703 	return (0);
3704 }
3705 
3706 static int
3707 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
3708 {
3709 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
3710 		PR0("Received seq_num %lu; expected %lu",
3711 		    seq_num, (vd->seq_num + 1));
3712 		PR0("initiating soft reset");
3713 		vd_need_reset(vd, B_FALSE);
3714 		return (1);
3715 	}
3716 
3717 	vd->seq_num = seq_num;
3718 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
3719 	return (0);
3720 }
3721 
3722 /*
3723  * Return the expected size of an inband-descriptor message with all the
3724  * cookies it claims to include
3725  */
3726 static size_t
3727 expected_inband_size(vd_dring_inband_msg_t *msg)
3728 {
3729 	return ((sizeof (*msg)) +
3730 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
3731 }
3732 
3733 /*
3734  * Process an in-band descriptor message:  used with clients like OBP, with
3735  * which vds exchanges descriptors within VIO message payloads, rather than
3736  * operating on them within a descriptor ring
3737  */
3738 static int
3739 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3740 {
3741 	size_t			expected;
3742 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
3743 
3744 
3745 	ASSERT(msglen >= sizeof (msg->tag));
3746 
3747 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3748 	    VIO_DESC_DATA)) {
3749 		PR1("Message is not an in-band-descriptor message");
3750 		return (ENOMSG);
3751 	}
3752 
3753 	if (msglen < sizeof (*desc_msg)) {
3754 		PR0("Expected at least %lu-byte descriptor message; "
3755 		    "received %lu bytes", sizeof (*desc_msg), msglen);
3756 		return (EBADMSG);
3757 	}
3758 
3759 	if (msglen != (expected = expected_inband_size(desc_msg))) {
3760 		PR0("Expected %lu-byte descriptor message; "
3761 		    "received %lu bytes", expected, msglen);
3762 		return (EBADMSG);
3763 	}
3764 
3765 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
3766 		return (EBADMSG);
3767 
3768 	/*
3769 	 * Valid message:  Set up the in-band descriptor task and process the
3770 	 * request.  Arrange to acknowledge the client's message, unless an
3771 	 * error processing the descriptor task results in setting
3772 	 * VIO_SUBTYPE_NACK
3773 	 */
3774 	PR1("Valid in-band-descriptor message");
3775 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3776 
3777 	ASSERT(vd->inband_task.msg != NULL);
3778 
3779 	bcopy(msg, vd->inband_task.msg, msglen);
3780 	vd->inband_task.msglen	= msglen;
3781 
3782 	/*
3783 	 * The task request is now the payload of the message
3784 	 * that was just copied into the body of the task.
3785 	 */
3786 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
3787 	vd->inband_task.request	= &desc_msg->payload;
3788 
3789 	return (vd_process_task(&vd->inband_task));
3790 }
3791 
3792 static int
3793 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
3794     vio_msg_t *msg, size_t msglen)
3795 {
3796 	int			status;
3797 	boolean_t		ready;
3798 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
3799 
3800 
3801 	/* Accept the updated dring element */
3802 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
3803 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
3804 		return (status);
3805 	}
3806 	ready = (elem->hdr.dstate == VIO_DESC_READY);
3807 	if (ready) {
3808 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
3809 	} else {
3810 		PR0("descriptor %u not ready", idx);
3811 		VD_DUMP_DRING_ELEM(elem);
3812 	}
3813 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
3814 		PR0("ldc_mem_dring_release() returned errno %d", status);
3815 		return (status);
3816 	}
3817 	if (!ready)
3818 		return (EBUSY);
3819 
3820 
3821 	/* Initialize a task and process the accepted element */
3822 	PR1("Processing dring element %u", idx);
3823 	vd->dring_task[idx].type	= type;
3824 
3825 	/* duplicate msg buf for cookies etc. */
3826 	bcopy(msg, vd->dring_task[idx].msg, msglen);
3827 
3828 	vd->dring_task[idx].msglen	= msglen;
3829 	return (vd_process_task(&vd->dring_task[idx]));
3830 }
3831 
3832 static int
3833 vd_process_element_range(vd_t *vd, int start, int end,
3834     vio_msg_t *msg, size_t msglen)
3835 {
3836 	int		i, n, nelem, status = 0;
3837 	boolean_t	inprogress = B_FALSE;
3838 	vd_task_type_t	type;
3839 
3840 
3841 	ASSERT(start >= 0);
3842 	ASSERT(end >= 0);
3843 
3844 	/*
3845 	 * Arrange to acknowledge the client's message, unless an error
3846 	 * processing one of the dring elements results in setting
3847 	 * VIO_SUBTYPE_NACK
3848 	 */
3849 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3850 
3851 	/*
3852 	 * Process the dring elements in the range
3853 	 */
3854 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
3855 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
3856 		((vio_dring_msg_t *)msg)->end_idx = i;
3857 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
3858 		status = vd_process_element(vd, type, i, msg, msglen);
3859 		if (status == EINPROGRESS)
3860 			inprogress = B_TRUE;
3861 		else if (status != 0)
3862 			break;
3863 	}
3864 
3865 	/*
3866 	 * If some, but not all, operations of a multi-element range are in
3867 	 * progress, wait for other operations to complete before returning
3868 	 * (which will result in "ack" or "nack" of the message).  Note that
3869 	 * all outstanding operations will need to complete, not just the ones
3870 	 * corresponding to the current range of dring elements; howevever, as
3871 	 * this situation is an error case, performance is less critical.
3872 	 */
3873 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
3874 		ddi_taskq_wait(vd->completionq);
3875 
3876 	return (status);
3877 }
3878 
3879 static int
3880 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3881 {
3882 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
3883 
3884 
3885 	ASSERT(msglen >= sizeof (msg->tag));
3886 
3887 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3888 	    VIO_DRING_DATA)) {
3889 		PR1("Message is not a dring-data message");
3890 		return (ENOMSG);
3891 	}
3892 
3893 	if (msglen != sizeof (*dring_msg)) {
3894 		PR0("Expected %lu-byte dring message; received %lu bytes",
3895 		    sizeof (*dring_msg), msglen);
3896 		return (EBADMSG);
3897 	}
3898 
3899 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
3900 		return (EBADMSG);
3901 
3902 	if (dring_msg->dring_ident != vd->dring_ident) {
3903 		PR0("Expected dring ident %lu; received ident %lu",
3904 		    vd->dring_ident, dring_msg->dring_ident);
3905 		return (EBADMSG);
3906 	}
3907 
3908 	if (dring_msg->start_idx >= vd->dring_len) {
3909 		PR0("\"start_idx\" = %u; must be less than %u",
3910 		    dring_msg->start_idx, vd->dring_len);
3911 		return (EBADMSG);
3912 	}
3913 
3914 	if ((dring_msg->end_idx < 0) ||
3915 	    (dring_msg->end_idx >= vd->dring_len)) {
3916 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
3917 		    dring_msg->end_idx, vd->dring_len);
3918 		return (EBADMSG);
3919 	}
3920 
3921 	/* Valid message; process range of updated dring elements */
3922 	PR1("Processing descriptor range, start = %u, end = %u",
3923 	    dring_msg->start_idx, dring_msg->end_idx);
3924 	return (vd_process_element_range(vd, dring_msg->start_idx,
3925 	    dring_msg->end_idx, msg, msglen));
3926 }
3927 
3928 static int
3929 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
3930 {
3931 	int	retry, status;
3932 	size_t	size = *nbytes;
3933 
3934 
3935 	for (retry = 0, status = ETIMEDOUT;
3936 	    retry < vds_ldc_retries && status == ETIMEDOUT;
3937 	    retry++) {
3938 		PR1("ldc_read() attempt %d", (retry + 1));
3939 		*nbytes = size;
3940 		status = ldc_read(ldc_handle, msg, nbytes);
3941 	}
3942 
3943 	if (status) {
3944 		PR0("ldc_read() returned errno %d", status);
3945 		if (status != ECONNRESET)
3946 			return (ENOMSG);
3947 		return (status);
3948 	} else if (*nbytes == 0) {
3949 		PR1("ldc_read() returned 0 and no message read");
3950 		return (ENOMSG);
3951 	}
3952 
3953 	PR1("RCVD %lu-byte message", *nbytes);
3954 	return (0);
3955 }
3956 
3957 static int
3958 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3959 {
3960 	int		status;
3961 
3962 
3963 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
3964 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
3965 #ifdef	DEBUG
3966 	vd_decode_tag(msg);
3967 #endif
3968 
3969 	/*
3970 	 * Validate session ID up front, since it applies to all messages
3971 	 * once set
3972 	 */
3973 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
3974 		PR0("Expected SID %u, received %u", vd->sid,
3975 		    msg->tag.vio_sid);
3976 		return (EBADMSG);
3977 	}
3978 
3979 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
3980 
3981 	/*
3982 	 * Process the received message based on connection state
3983 	 */
3984 	switch (vd->state) {
3985 	case VD_STATE_INIT:	/* expect version message */
3986 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
3987 			return (status);
3988 
3989 		/* Version negotiated, move to that state */
3990 		vd->state = VD_STATE_VER;
3991 		return (0);
3992 
3993 	case VD_STATE_VER:	/* expect attribute message */
3994 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
3995 			return (status);
3996 
3997 		/* Attributes exchanged, move to that state */
3998 		vd->state = VD_STATE_ATTR;
3999 		return (0);
4000 
4001 	case VD_STATE_ATTR:
4002 		switch (vd->xfer_mode) {
4003 		case VIO_DESC_MODE:	/* expect RDX message */
4004 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4005 				return (status);
4006 
4007 			/* Ready to receive in-band descriptors */
4008 			vd->state = VD_STATE_DATA;
4009 			return (0);
4010 
4011 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4012 			if ((status =
4013 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4014 				return (status);
4015 
4016 			/* One dring negotiated, move to that state */
4017 			vd->state = VD_STATE_DRING;
4018 			return (0);
4019 
4020 		default:
4021 			ASSERT("Unsupported transfer mode");
4022 			PR0("Unsupported transfer mode");
4023 			return (ENOTSUP);
4024 		}
4025 
4026 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4027 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4028 			/* Ready to receive data */
4029 			vd->state = VD_STATE_DATA;
4030 			return (0);
4031 		} else if (status != ENOMSG) {
4032 			return (status);
4033 		}
4034 
4035 
4036 		/*
4037 		 * If another register-dring message is received, stay in
4038 		 * dring state in case the client sends RDX; although the
4039 		 * protocol allows multiple drings, this server does not
4040 		 * support using more than one
4041 		 */
4042 		if ((status =
4043 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4044 			return (status);
4045 
4046 		/*
4047 		 * Acknowledge an unregister-dring message, but reset the
4048 		 * connection anyway:  Although the protocol allows
4049 		 * unregistering drings, this server cannot serve a vdisk
4050 		 * without its only dring
4051 		 */
4052 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4053 		return ((status == 0) ? ENOTSUP : status);
4054 
4055 	case VD_STATE_DATA:
4056 		switch (vd->xfer_mode) {
4057 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4058 			return (vd_process_desc_msg(vd, msg, msglen));
4059 
4060 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4061 			/*
4062 			 * Typically expect dring-data messages, so handle
4063 			 * them first
4064 			 */
4065 			if ((status = vd_process_dring_msg(vd, msg,
4066 			    msglen)) != ENOMSG)
4067 				return (status);
4068 
4069 			/*
4070 			 * Acknowledge an unregister-dring message, but reset
4071 			 * the connection anyway:  Although the protocol
4072 			 * allows unregistering drings, this server cannot
4073 			 * serve a vdisk without its only dring
4074 			 */
4075 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4076 			return ((status == 0) ? ENOTSUP : status);
4077 
4078 		default:
4079 			ASSERT("Unsupported transfer mode");
4080 			PR0("Unsupported transfer mode");
4081 			return (ENOTSUP);
4082 		}
4083 
4084 	default:
4085 		ASSERT("Invalid client connection state");
4086 		PR0("Invalid client connection state");
4087 		return (ENOTSUP);
4088 	}
4089 }
4090 
4091 static int
4092 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4093 {
4094 	int		status;
4095 	boolean_t	reset_ldc = B_FALSE;
4096 	vd_task_t	task;
4097 
4098 	/*
4099 	 * Check that the message is at least big enough for a "tag", so that
4100 	 * message processing can proceed based on tag-specified message type
4101 	 */
4102 	if (msglen < sizeof (vio_msg_tag_t)) {
4103 		PR0("Received short (%lu-byte) message", msglen);
4104 		/* Can't "nack" short message, so drop the big hammer */
4105 		PR0("initiating full reset");
4106 		vd_need_reset(vd, B_TRUE);
4107 		return (EBADMSG);
4108 	}
4109 
4110 	/*
4111 	 * Process the message
4112 	 */
4113 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
4114 	case 0:
4115 		/* "ack" valid, successfully-processed messages */
4116 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4117 		break;
4118 
4119 	case EINPROGRESS:
4120 		/* The completion handler will "ack" or "nack" the message */
4121 		return (EINPROGRESS);
4122 	case ENOMSG:
4123 		PR0("Received unexpected message");
4124 		_NOTE(FALLTHROUGH);
4125 	case EBADMSG:
4126 	case ENOTSUP:
4127 		/* "transport" error will cause NACK of invalid messages */
4128 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4129 		break;
4130 
4131 	default:
4132 		/* "transport" error will cause NACK of invalid messages */
4133 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4134 		/* An LDC error probably occurred, so try resetting it */
4135 		reset_ldc = B_TRUE;
4136 		break;
4137 	}
4138 
4139 	PR1("\tResulting in state %d (%s)", vd->state,
4140 	    vd_decode_state(vd->state));
4141 
4142 	/* populate the task so we can dispatch it on the taskq */
4143 	task.vd = vd;
4144 	task.msg = msg;
4145 	task.msglen = msglen;
4146 
4147 	/*
4148 	 * Queue a task to send the notification that the operation completed.
4149 	 * We need to ensure that requests are responded to in the correct
4150 	 * order and since the taskq is processed serially this ordering
4151 	 * is maintained.
4152 	 */
4153 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
4154 	    &task, DDI_SLEEP);
4155 
4156 	/*
4157 	 * To ensure handshake negotiations do not happen out of order, such
4158 	 * requests that come through this path should not be done in parallel
4159 	 * so we need to wait here until the response is sent to the client.
4160 	 */
4161 	ddi_taskq_wait(vd->completionq);
4162 
4163 	/* Arrange to reset the connection for nack'ed or failed messages */
4164 	if ((status != 0) || reset_ldc) {
4165 		PR0("initiating %s reset",
4166 		    (reset_ldc) ? "full" : "soft");
4167 		vd_need_reset(vd, reset_ldc);
4168 	}
4169 
4170 	return (status);
4171 }
4172 
4173 static boolean_t
4174 vd_enabled(vd_t *vd)
4175 {
4176 	boolean_t	enabled;
4177 
4178 	mutex_enter(&vd->lock);
4179 	enabled = vd->enabled;
4180 	mutex_exit(&vd->lock);
4181 	return (enabled);
4182 }
4183 
4184 static void
4185 vd_recv_msg(void *arg)
4186 {
4187 	vd_t	*vd = (vd_t *)arg;
4188 	int	rv = 0, status = 0;
4189 
4190 	ASSERT(vd != NULL);
4191 
4192 	PR2("New task to receive incoming message(s)");
4193 
4194 
4195 	while (vd_enabled(vd) && status == 0) {
4196 		size_t		msglen, msgsize;
4197 		ldc_status_t	lstatus;
4198 
4199 		/*
4200 		 * Receive and process a message
4201 		 */
4202 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
4203 
4204 		/*
4205 		 * check if channel is UP - else break out of loop
4206 		 */
4207 		status = ldc_status(vd->ldc_handle, &lstatus);
4208 		if (lstatus != LDC_UP) {
4209 			PR0("channel not up (status=%d), exiting recv loop\n",
4210 			    lstatus);
4211 			break;
4212 		}
4213 
4214 		ASSERT(vd->max_msglen != 0);
4215 
4216 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
4217 		msglen	= msgsize;	  /* actual len after recv_msg() */
4218 
4219 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
4220 		switch (status) {
4221 		case 0:
4222 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
4223 			    msglen);
4224 			/* check if max_msglen changed */
4225 			if (msgsize != vd->max_msglen) {
4226 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
4227 				    msgsize, vd->max_msglen);
4228 				kmem_free(vd->vio_msgp, msgsize);
4229 				vd->vio_msgp =
4230 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
4231 			}
4232 			if (rv == EINPROGRESS)
4233 				continue;
4234 			break;
4235 
4236 		case ENOMSG:
4237 			break;
4238 
4239 		case ECONNRESET:
4240 			PR0("initiating soft reset (ECONNRESET)\n");
4241 			vd_need_reset(vd, B_FALSE);
4242 			status = 0;
4243 			break;
4244 
4245 		default:
4246 			/* Probably an LDC failure; arrange to reset it */
4247 			PR0("initiating full reset (status=0x%x)", status);
4248 			vd_need_reset(vd, B_TRUE);
4249 			break;
4250 		}
4251 	}
4252 
4253 	PR2("Task finished");
4254 }
4255 
4256 static uint_t
4257 vd_handle_ldc_events(uint64_t event, caddr_t arg)
4258 {
4259 	vd_t	*vd = (vd_t *)(void *)arg;
4260 	int	status;
4261 
4262 	ASSERT(vd != NULL);
4263 
4264 	if (!vd_enabled(vd))
4265 		return (LDC_SUCCESS);
4266 
4267 	if (event & LDC_EVT_DOWN) {
4268 		PR0("LDC_EVT_DOWN: LDC channel went down");
4269 
4270 		vd_need_reset(vd, B_TRUE);
4271 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4272 		    DDI_SLEEP);
4273 		if (status == DDI_FAILURE) {
4274 			PR0("cannot schedule task to recv msg\n");
4275 			vd_need_reset(vd, B_TRUE);
4276 		}
4277 	}
4278 
4279 	if (event & LDC_EVT_RESET) {
4280 		PR0("LDC_EVT_RESET: LDC channel was reset");
4281 
4282 		if (vd->state != VD_STATE_INIT) {
4283 			PR0("scheduling full reset");
4284 			vd_need_reset(vd, B_FALSE);
4285 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4286 			    vd, DDI_SLEEP);
4287 			if (status == DDI_FAILURE) {
4288 				PR0("cannot schedule task to recv msg\n");
4289 				vd_need_reset(vd, B_TRUE);
4290 			}
4291 
4292 		} else {
4293 			PR0("channel already reset, ignoring...\n");
4294 			PR0("doing ldc up...\n");
4295 			(void) ldc_up(vd->ldc_handle);
4296 		}
4297 
4298 		return (LDC_SUCCESS);
4299 	}
4300 
4301 	if (event & LDC_EVT_UP) {
4302 		PR0("EVT_UP: LDC is up\nResetting client connection state");
4303 		PR0("initiating soft reset");
4304 		vd_need_reset(vd, B_FALSE);
4305 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4306 		    vd, DDI_SLEEP);
4307 		if (status == DDI_FAILURE) {
4308 			PR0("cannot schedule task to recv msg\n");
4309 			vd_need_reset(vd, B_TRUE);
4310 			return (LDC_SUCCESS);
4311 		}
4312 	}
4313 
4314 	if (event & LDC_EVT_READ) {
4315 		int	status;
4316 
4317 		PR1("New data available");
4318 		/* Queue a task to receive the new data */
4319 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4320 		    DDI_SLEEP);
4321 
4322 		if (status == DDI_FAILURE) {
4323 			PR0("cannot schedule task to recv msg\n");
4324 			vd_need_reset(vd, B_TRUE);
4325 		}
4326 	}
4327 
4328 	return (LDC_SUCCESS);
4329 }
4330 
4331 static uint_t
4332 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4333 {
4334 	_NOTE(ARGUNUSED(key, val))
4335 	(*((uint_t *)arg))++;
4336 	return (MH_WALK_TERMINATE);
4337 }
4338 
4339 
4340 static int
4341 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
4342 {
4343 	uint_t	vd_present = 0;
4344 	minor_t	instance;
4345 	vds_t	*vds;
4346 
4347 
4348 	switch (cmd) {
4349 	case DDI_DETACH:
4350 		/* the real work happens below */
4351 		break;
4352 	case DDI_SUSPEND:
4353 		PR0("No action required for DDI_SUSPEND");
4354 		return (DDI_SUCCESS);
4355 	default:
4356 		PR0("Unrecognized \"cmd\"");
4357 		return (DDI_FAILURE);
4358 	}
4359 
4360 	ASSERT(cmd == DDI_DETACH);
4361 	instance = ddi_get_instance(dip);
4362 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4363 		PR0("Could not get state for instance %u", instance);
4364 		ddi_soft_state_free(vds_state, instance);
4365 		return (DDI_FAILURE);
4366 	}
4367 
4368 	/* Do no detach when serving any vdisks */
4369 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
4370 	if (vd_present) {
4371 		PR0("Not detaching because serving vdisks");
4372 		return (DDI_FAILURE);
4373 	}
4374 
4375 	PR0("Detaching");
4376 	if (vds->initialized & VDS_MDEG) {
4377 		(void) mdeg_unregister(vds->mdeg);
4378 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
4379 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
4380 		vds->ispecp = NULL;
4381 		vds->mdeg = NULL;
4382 	}
4383 
4384 	if (vds->initialized & VDS_LDI)
4385 		(void) ldi_ident_release(vds->ldi_ident);
4386 	mod_hash_destroy_hash(vds->vd_table);
4387 	ddi_soft_state_free(vds_state, instance);
4388 	return (DDI_SUCCESS);
4389 }
4390 
4391 static boolean_t
4392 is_pseudo_device(dev_info_t *dip)
4393 {
4394 	dev_info_t	*parent, *root = ddi_root_node();
4395 
4396 
4397 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
4398 	    parent = ddi_get_parent(parent)) {
4399 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
4400 			return (B_TRUE);
4401 	}
4402 
4403 	return (B_FALSE);
4404 }
4405 
4406 /*
4407  * Description:
4408  *	This function checks to see if the file being used as a
4409  *	virtual disk is an ISO image. An ISO image is a special
4410  *	case which can be booted/installed from like a CD/DVD
4411  *
4412  * Parameters:
4413  *	vd		- disk on which the operation is performed.
4414  *
4415  * Return Code:
4416  *	B_TRUE		- The file is an ISO 9660 compliant image
4417  *	B_FALSE		- just a regular disk image file
4418  */
4419 static boolean_t
4420 vd_file_is_iso_image(vd_t *vd)
4421 {
4422 	char	iso_buf[ISO_SECTOR_SIZE];
4423 	int	i, rv;
4424 	uint_t	sec;
4425 
4426 	ASSERT(vd->file);
4427 
4428 	/*
4429 	 * If we have already discovered and saved this info we can
4430 	 * short-circuit the check and avoid reading the file.
4431 	 */
4432 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
4433 		return (B_TRUE);
4434 
4435 	/*
4436 	 * We wish to read the sector that should contain the 2nd ISO volume
4437 	 * descriptor. The second field in this descriptor is called the
4438 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
4439 	 * to the ISO 9660 standard.
4440 	 */
4441 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
4442 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
4443 	    sec, ISO_SECTOR_SIZE);
4444 
4445 	if (rv < 0)
4446 		return (B_FALSE);
4447 
4448 	for (i = 0; i < ISO_ID_STRLEN; i++) {
4449 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
4450 			return (B_FALSE);
4451 	}
4452 
4453 	return (B_TRUE);
4454 }
4455 
4456 /*
4457  * Description:
4458  *	This function checks to see if the virtual device is an ATAPI
4459  *	device. ATAPI devices use Group 1 Read/Write commands, so
4460  *	any USCSI calls vds makes need to take this into account.
4461  *
4462  * Parameters:
4463  *	vd		- disk on which the operation is performed.
4464  *
4465  * Return Code:
4466  *	B_TRUE		- The virtual disk is backed by an ATAPI device
4467  *	B_FALSE		- not an ATAPI device (presumably SCSI)
4468  */
4469 static boolean_t
4470 vd_is_atapi_device(vd_t *vd)
4471 {
4472 	boolean_t	is_atapi = B_FALSE;
4473 	char		*variantp;
4474 	int		rv;
4475 
4476 	ASSERT(vd->ldi_handle[0] != NULL);
4477 	ASSERT(!vd->file);
4478 
4479 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
4480 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
4481 	if (rv == DDI_PROP_SUCCESS) {
4482 		PR0("'variant' property exists for %s", vd->device_path);
4483 		if (strcmp(variantp, "atapi") == 0)
4484 			is_atapi = B_TRUE;
4485 		ddi_prop_free(variantp);
4486 	}
4487 
4488 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
4489 	if (rv) {
4490 		PR0("'atapi' property exists for %s", vd->device_path);
4491 		is_atapi = B_TRUE;
4492 	}
4493 
4494 	return (is_atapi);
4495 }
4496 
4497 static int
4498 vd_setup_mediainfo(vd_t *vd)
4499 {
4500 	int status, rval;
4501 	struct dk_minfo	dk_minfo;
4502 
4503 	ASSERT(vd->ldi_handle[0] != NULL);
4504 	ASSERT(vd->vdisk_block_size != 0);
4505 
4506 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
4507 	    (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL),
4508 	    kcred, &rval)) != 0)
4509 		return (status);
4510 
4511 	ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0);
4512 
4513 	vd->block_size = dk_minfo.dki_lbsize;
4514 	vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) /
4515 	    vd->vdisk_block_size;
4516 	vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type);
4517 	return (0);
4518 }
4519 
4520 static int
4521 vd_setup_full_disk(vd_t *vd)
4522 {
4523 	int		status;
4524 	major_t		major = getmajor(vd->dev[0]);
4525 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
4526 
4527 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
4528 
4529 	vd->vdisk_block_size = DEV_BSIZE;
4530 
4531 	/*
4532 	 * At this point, vdisk_size is set to the size of partition 2 but
4533 	 * this does not represent the size of the disk because partition 2
4534 	 * may not cover the entire disk and its size does not include reserved
4535 	 * blocks. So we call vd_get_mediainfo to udpate this information and
4536 	 * set the block size and the media type of the disk.
4537 	 */
4538 	status = vd_setup_mediainfo(vd);
4539 
4540 	if (status != 0) {
4541 		if (!vd->scsi) {
4542 			/* unexpected failure */
4543 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
4544 			    status);
4545 			return (status);
4546 		}
4547 
4548 		/*
4549 		 * The function can fail for SCSI disks which are present but
4550 		 * reserved by another system. In that case, we don't know the
4551 		 * size of the disk and the block size.
4552 		 */
4553 		vd->vdisk_size = VD_SIZE_UNKNOWN;
4554 		vd->block_size = 0;
4555 		vd->vdisk_media = VD_MEDIA_FIXED;
4556 	}
4557 
4558 	/* Move dev number and LDI handle to entire-disk-slice array elements */
4559 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
4560 	vd->dev[0]				= 0;
4561 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
4562 	vd->ldi_handle[0]			= NULL;
4563 
4564 	/* Initialize device numbers for remaining slices and open them */
4565 	for (int slice = 0; slice < vd->nslices; slice++) {
4566 		/*
4567 		 * Skip the entire-disk slice, as it's already open and its
4568 		 * device known
4569 		 */
4570 		if (slice == VD_ENTIRE_DISK_SLICE)
4571 			continue;
4572 		ASSERT(vd->dev[slice] == 0);
4573 		ASSERT(vd->ldi_handle[slice] == NULL);
4574 
4575 		/*
4576 		 * Construct the device number for the current slice
4577 		 */
4578 		vd->dev[slice] = makedevice(major, (minor + slice));
4579 
4580 		/*
4581 		 * Open all slices of the disk to serve them to the client.
4582 		 * Slices are opened exclusively to prevent other threads or
4583 		 * processes in the service domain from performing I/O to
4584 		 * slices being accessed by a client.  Failure to open a slice
4585 		 * results in vds not serving this disk, as the client could
4586 		 * attempt (and should be able) to access any slice immediately.
4587 		 * Any slices successfully opened before a failure will get
4588 		 * closed by vds_destroy_vd() as a result of the error returned
4589 		 * by this function.
4590 		 *
4591 		 * We need to do the open with FNDELAY so that opening an empty
4592 		 * slice does not fail.
4593 		 */
4594 		PR0("Opening device major %u, minor %u = slice %u",
4595 		    major, minor, slice);
4596 
4597 		/*
4598 		 * Try to open the device. This can fail for example if we are
4599 		 * opening an empty slice. So in case of a failure, we try the
4600 		 * open again but this time with the FNDELAY flag.
4601 		 */
4602 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
4603 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
4604 		    vd->vds->ldi_ident);
4605 
4606 		if (status != 0) {
4607 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
4608 			    vd->open_flags | FNDELAY, kcred,
4609 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
4610 		}
4611 
4612 		if (status != 0) {
4613 			PRN("ldi_open_by_dev() returned errno %d "
4614 			    "for slice %u", status, slice);
4615 			/* vds_destroy_vd() will close any open slices */
4616 			vd->ldi_handle[slice] = NULL;
4617 			return (status);
4618 		}
4619 	}
4620 
4621 	return (0);
4622 }
4623 
4624 /*
4625  * When a slice or a volume is exported as a single-slice disk, we want
4626  * the disk backend (i.e. the slice or volume) to be entirely mapped as
4627  * a slice without the addition of any metadata.
4628  *
4629  * So when exporting the disk as a VTOC disk, we fake a disk with the following
4630  * layout:
4631  *
4632  *                 0 1                         N+1
4633  *                 +-+--------------------------+
4634  *  virtual disk:  |L|           slice 0        |
4635  *                 +-+--------------------------+
4636  *                  ^:                          :
4637  *                  |:                          :
4638  *      VTOC LABEL--+:                          :
4639  *                   +--------------------------+
4640  *  disk backend:    |       slice/volume       |
4641  *                   +--------------------------+
4642  *                   0                          N
4643  *
4644  * N is the number of blocks in the slice/volume.
4645  *
4646  * We simulate a disk with N+1 blocks. The first block (block 0) is faked and
4647  * can not be changed. The remaining blocks (1 to N+1) defines slice 0 and are
4648  * mapped to the exported slice or volume:
4649  *
4650  * - block 0 (L) can return a fake VTOC label if raw read was implemented.
4651  * - block 1 to N+1 is mapped to the exported slice or volume.
4652  *
4653  */
4654 static int
4655 vd_setup_partition_vtoc(vd_t *vd)
4656 {
4657 	int rval, status;
4658 	char *device_path = vd->device_path;
4659 
4660 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
4661 	    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), kcred, &rval);
4662 
4663 	if (status != 0) {
4664 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
4665 		    status, device_path);
4666 		return (status);
4667 	}
4668 
4669 	/* Initialize dk_geom structure for single-slice device */
4670 	if (vd->dk_geom.dkg_nsect == 0) {
4671 		PRN("%s geometry claims 0 sectors per track", device_path);
4672 		return (EIO);
4673 	}
4674 	if (vd->dk_geom.dkg_nhead == 0) {
4675 		PRN("%s geometry claims 0 heads", device_path);
4676 		return (EIO);
4677 	}
4678 	vd->dk_geom.dkg_ncyl = (vd->vdisk_size + 1) / vd->dk_geom.dkg_nsect /
4679 	    vd->dk_geom.dkg_nhead;
4680 	vd->dk_geom.dkg_acyl = 0;
4681 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
4682 
4683 
4684 	/* Initialize vtoc structure for single-slice device */
4685 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
4686 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
4687 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
4688 	vd->vtoc.v_nparts = 1;
4689 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
4690 	vd->vtoc.v_part[0].p_flag = 0;
4691 	vd->vtoc.v_part[0].p_start = 1;
4692 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
4693 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
4694 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
4695 
4696 	/* adjust the vdisk_size, we emulate the first block */
4697 	vd->vdisk_size += 1;
4698 
4699 	return (0);
4700 }
4701 
4702 /*
4703  * When a slice, volume or file is exported as a single-slice disk, we want
4704  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
4705  * as a slice without the addition of any metadata.
4706  *
4707  * So when exporting the disk as an EFI disk, we fake a disk with the following
4708  * layout:
4709  *
4710  *                 0 1 2 3      34                        34+N
4711  *                 +-+-+-+-------+--------------------------+
4712  *  virtual disk:  |X|T|E|XXXXXXX|           slice 0        |
4713  *                 +-+-+-+-------+--------------------------+
4714  *                    ^ ^        :                          :
4715  *                    | |        :                          :
4716  *                GPT-+ +-GPE    :                          :
4717  *                               +--------------------------+
4718  *  disk backend:                |     slice/volume/file    |
4719  *                               +--------------------------+
4720  *                               0                          N
4721  *
4722  * N is the number of blocks in the slice/volume/file.
4723  *
4724  * We simulate a disk with 34+N blocks. The first 34 blocks (0 to 33) are
4725  * emulated and can not be changed. The remaining blocks (34 to 34+N) defines
4726  * slice 0 and are mapped to the exported slice, volume or file:
4727  *
4728  * - block 0 (X) is unused and can return 0 if raw read was implemented.
4729  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
4730  * - block 2 (E) returns a fake EFI GPE (via DKIOCGETEFI)
4731  * - block 3 to 33 (X) are unused and return 0 if raw read is implemented.
4732  * - block 34 to 34+N is mapped to the exported slice, volume or file.
4733  *
4734  */
4735 static int
4736 vd_setup_partition_efi(vd_t *vd)
4737 {
4738 	efi_gpt_t *gpt;
4739 	efi_gpe_t *gpe;
4740 	struct uuid uuid = EFI_USR;
4741 	uint32_t crc;
4742 
4743 	gpt = &vd->efi_gpt;
4744 	gpe = &vd->efi_gpe;
4745 
4746 	bzero(gpt, sizeof (efi_gpt_t));
4747 	bzero(gpe, sizeof (efi_gpe_t));
4748 
4749 	/* adjust the vdisk_size, we emulate the first 34 blocks */
4750 	vd->vdisk_size += 34;
4751 
4752 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
4753 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
4754 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
4755 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
4756 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
4757 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
4758 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
4759 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
4760 
4761 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
4762 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
4763 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
4764 
4765 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
4766 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
4767 
4768 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
4769 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
4770 
4771 	return (0);
4772 }
4773 
4774 /*
4775  * Setup for a virtual disk whose backend is a file (exported as a single slice
4776  * or as a full disk) or a pseudo device (for example a ZFS, SVM or VxVM volume)
4777  * exported as a full disk. In these cases, the backend is accessed using the
4778  * vnode interface.
4779  */
4780 static int
4781 vd_setup_backend_vnode(vd_t *vd)
4782 {
4783 	int 		rval, status;
4784 	vattr_t		vattr;
4785 	dev_t		dev;
4786 	char		*file_path = vd->device_path;
4787 	char		dev_path[MAXPATHLEN + 1];
4788 	ldi_handle_t	lhandle;
4789 	struct dk_cinfo	dk_cinfo;
4790 
4791 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
4792 	    0, &vd->file_vnode, 0, 0)) != 0) {
4793 		PRN("vn_open(%s) = errno %d", file_path, status);
4794 		return (status);
4795 	}
4796 
4797 	/*
4798 	 * We set vd->file now so that vds_destroy_vd will take care of
4799 	 * closing the file and releasing the vnode in case of an error.
4800 	 */
4801 	vd->file = B_TRUE;
4802 
4803 	vattr.va_mask = AT_SIZE;
4804 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
4805 	    != 0) {
4806 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
4807 		return (EIO);
4808 	}
4809 
4810 	vd->file_size = vattr.va_size;
4811 	/* size should be at least sizeof(dk_label) */
4812 	if (vd->file_size < sizeof (struct dk_label)) {
4813 		PRN("Size of file has to be at least %ld bytes",
4814 		    sizeof (struct dk_label));
4815 		return (EIO);
4816 	}
4817 
4818 	if (vd->file_vnode->v_flag & VNOMAP) {
4819 		PRN("File %s cannot be mapped", file_path);
4820 		return (EIO);
4821 	}
4822 
4823 	/* sector size = block size = DEV_BSIZE */
4824 	vd->block_size = DEV_BSIZE;
4825 	vd->vdisk_block_size = DEV_BSIZE;
4826 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
4827 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
4828 
4829 	/*
4830 	 * Get max_xfer_sz from the device where the file is or from the device
4831 	 * itself if we have a pseudo device.
4832 	 */
4833 	dev_path[0] = '\0';
4834 
4835 	if (vd->pseudo) {
4836 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
4837 		    vd->vds->ldi_ident);
4838 	} else {
4839 		dev = vd->file_vnode->v_vfsp->vfs_dev;
4840 		if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
4841 			PR0("underlying device = %s\n", dev_path);
4842 		}
4843 
4844 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
4845 		    vd->vds->ldi_ident);
4846 	}
4847 
4848 	if (status != 0) {
4849 		PR0("ldi_open() returned errno %d for device %s",
4850 		    status, (dev_path[0] == '\0')? file_path : dev_path);
4851 	} else {
4852 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
4853 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
4854 		    &rval)) != 0) {
4855 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
4856 			    status, dev_path);
4857 		} else {
4858 			/*
4859 			 * Store the device's max transfer size for
4860 			 * return to the client
4861 			 */
4862 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
4863 		}
4864 
4865 		PR0("close the device %s", dev_path);
4866 		(void) ldi_close(lhandle, FREAD, kcred);
4867 	}
4868 
4869 	PR0("using file %s, dev %s, max_xfer = %u blks",
4870 	    file_path, dev_path, vd->max_xfer_sz);
4871 
4872 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
4873 		ASSERT(!vd->pseudo);
4874 		vd->vdisk_label = VD_DISK_LABEL_EFI;
4875 		status = vd_setup_partition_efi(vd);
4876 		return (0);
4877 	}
4878 
4879 	/*
4880 	 * Find and validate the geometry of a disk image.
4881 	 */
4882 	status = vd_file_validate_geometry(vd);
4883 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
4884 		PRN("Failed to read label from %s", file_path);
4885 		return (EIO);
4886 	}
4887 
4888 	if (vd_file_is_iso_image(vd)) {
4889 		/*
4890 		 * Indicate whether to call this a CD or DVD from the size
4891 		 * of the ISO image (images for both drive types are stored
4892 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
4893 		 */
4894 		if ((vd->vdisk_size * vd->vdisk_block_size) >
4895 		    (1024 * 1024 * 1024))
4896 			vd->vdisk_media = VD_MEDIA_DVD;
4897 		else
4898 			vd->vdisk_media = VD_MEDIA_CD;
4899 	} else {
4900 		vd->vdisk_media = VD_MEDIA_FIXED;
4901 	}
4902 
4903 	/* Setup devid for the disk image */
4904 
4905 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
4906 
4907 		status = vd_file_read_devid(vd, &vd->file_devid);
4908 
4909 		if (status == 0) {
4910 			/* a valid devid was found */
4911 			return (0);
4912 		}
4913 
4914 		if (status != EINVAL) {
4915 			/*
4916 			 * There was an error while trying to read the devid.
4917 			 * So this disk image may have a devid but we are
4918 			 * unable to read it.
4919 			 */
4920 			PR0("can not read devid for %s", file_path);
4921 			vd->file_devid = NULL;
4922 			return (0);
4923 		}
4924 	}
4925 
4926 	/*
4927 	 * No valid device id was found so we create one. Note that a failure
4928 	 * to create a device id is not fatal and does not prevent the disk
4929 	 * image from being attached.
4930 	 */
4931 	PR1("creating devid for %s", file_path);
4932 
4933 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
4934 	    &vd->file_devid) != DDI_SUCCESS) {
4935 		PR0("fail to create devid for %s", file_path);
4936 		vd->file_devid = NULL;
4937 		return (0);
4938 	}
4939 
4940 	/*
4941 	 * Write devid to the disk image. The devid is stored into the disk
4942 	 * image if we have a valid label; otherwise the devid will be stored
4943 	 * when the user writes a valid label.
4944 	 */
4945 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
4946 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
4947 			PR0("fail to write devid for %s", file_path);
4948 			ddi_devid_free(vd->file_devid);
4949 			vd->file_devid = NULL;
4950 		}
4951 	}
4952 
4953 	return (0);
4954 }
4955 
4956 
4957 /*
4958  * Description:
4959  *	Open a device using its device path (supplied by ldm(1m))
4960  *
4961  * Parameters:
4962  *	vd 	- pointer to structure containing the vDisk info
4963  *
4964  * Return Value
4965  *	0	- success
4966  *	EIO	- Invalid number of partitions
4967  *	!= 0	- some other non-zero return value from ldi(9F) functions
4968  */
4969 static int
4970 vd_open_using_ldi_by_name(vd_t *vd)
4971 {
4972 	int		rval, status, open_flags;
4973 	struct dk_cinfo	dk_cinfo;
4974 	char		*device_path = vd->device_path;
4975 
4976 	/*
4977 	 * Try to open the device. If the flags indicate that the device should
4978 	 * be opened write-enabled, we first we try to open it "read-only"
4979 	 * to see if we have an optical device such as a CD-ROM which, for
4980 	 * now, we do not permit writes to and thus should not export write
4981 	 * operations to the client.
4982 	 *
4983 	 * Future: if/when we implement support for guest domains writing to
4984 	 * optical devices we will need to do further checking of the media type
4985 	 * to distinguish between read-only and writable discs.
4986 	 */
4987 	if (vd->open_flags & FWRITE) {
4988 		open_flags = vd->open_flags & ~FWRITE;
4989 		status = ldi_open_by_name(device_path, open_flags, kcred,
4990 		    &vd->ldi_handle[0], vd->vds->ldi_ident);
4991 
4992 		if (status == 0) {
4993 			/* Verify backing device supports dk_cinfo */
4994 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
4995 			    (intptr_t)&dk_cinfo, (open_flags | FKIOCTL),
4996 			    kcred, &rval);
4997 			if (status != 0) {
4998 				PRN("ldi_ioctl(DKIOCINFO) returned errno %d for"
4999 				    " %s opened as RO", status, device_path);
5000 				return (status);
5001 			}
5002 
5003 			if (dk_cinfo.dki_partition >= V_NUMPAR) {
5004 				PRN("slice %u >= maximum slice %u for %s",
5005 				    dk_cinfo.dki_partition, V_NUMPAR,
5006 				    device_path);
5007 				return (EIO);
5008 			}
5009 
5010 			/*
5011 			 * If this is an optical device then we disable
5012 			 * write access and return, otherwise we close
5013 			 * the device and try again with writes enabled.
5014 			 */
5015 			if (dk_cinfo.dki_ctype == DKC_CDROM) {
5016 				vd->open_flags = open_flags;
5017 				return (0);
5018 			} else {
5019 				(void) ldi_close(vd->ldi_handle[0],
5020 				    open_flags, kcred);
5021 			}
5022 		}
5023 	}
5024 
5025 	/* Attempt to (re)open device */
5026 	status = ldi_open_by_name(device_path, open_flags, kcred,
5027 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5028 
5029 	/*
5030 	 * The open can fail for example if we are opening an empty slice.
5031 	 * In case of a failure, we try the open again but this time with
5032 	 * the FNDELAY flag.
5033 	 */
5034 	if (status != 0)
5035 		status = ldi_open_by_name(device_path, vd->open_flags | FNDELAY,
5036 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5037 
5038 	if (status != 0) {
5039 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5040 		vd->ldi_handle[0] = NULL;
5041 		return (status);
5042 	}
5043 
5044 	/* Verify backing device supports dk_cinfo */
5045 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5046 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5047 	    &rval)) != 0) {
5048 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5049 		    status, device_path);
5050 		return (status);
5051 	}
5052 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5053 		PRN("slice %u >= maximum slice %u for %s",
5054 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5055 		return (EIO);
5056 	}
5057 
5058 	return (0);
5059 }
5060 
5061 
5062 /*
5063  * Setup for a virtual disk which backend is a device (a physical disk,
5064  * slice or pseudo device) that is directly exported either as a full disk
5065  * for a physical disk or as a slice for a pseudo device or a disk slice.
5066  * In these cases, the backend is accessed using the LDI interface.
5067  */
5068 static int
5069 vd_setup_backend_ldi(vd_t *vd)
5070 {
5071 	int		rval, status;
5072 	struct dk_cinfo	dk_cinfo;
5073 	char		*device_path = vd->device_path;
5074 
5075 	status = vd_open_using_ldi_by_name(vd);
5076 	if (status != 0) {
5077 		PR0("Failed to open (%s) = errno %d", device_path, status);
5078 		return (status);
5079 	}
5080 
5081 	vd->file = B_FALSE;
5082 
5083 	/* Get device number of backing device */
5084 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
5085 		PRN("ldi_get_dev() returned errno %d for %s",
5086 		    status, device_path);
5087 		return (status);
5088 	}
5089 
5090 	/* Verify backing device supports dk_cinfo */
5091 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5092 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5093 	    &rval)) != 0) {
5094 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5095 		    status, device_path);
5096 		return (status);
5097 	}
5098 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5099 		PRN("slice %u >= maximum slice %u for %s",
5100 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5101 		return (EIO);
5102 	}
5103 
5104 	/* Store the device's max transfer size for return to the client */
5105 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5106 
5107 	/*
5108 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
5109 	 * that we can use the correct CDB group when sending USCSI commands.
5110 	 */
5111 	vd->is_atapi_dev = vd_is_atapi_device(vd);
5112 
5113 	/*
5114 	 * Export a full disk.
5115 	 *
5116 	 * When we use the LDI interface, we export a device as a full disk
5117 	 * if we have an entire disk slice (slice 2) and if this slice is
5118 	 * exported as a full disk and not as a single slice disk.
5119 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
5120 	 * device (even if it isn't s2)
5121 	 *
5122 	 * Note that pseudo devices are exported as full disks using the vnode
5123 	 * interface, not the LDI interface.
5124 	 */
5125 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
5126 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
5127 	    dk_cinfo.dki_ctype == DKC_CDROM) {
5128 		ASSERT(!vd->pseudo);
5129 		if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
5130 			vd->scsi = B_TRUE;
5131 		return (vd_setup_full_disk(vd));
5132 	}
5133 
5134 	/*
5135 	 * Export a single slice disk.
5136 	 *
5137 	 * The exported device can be either a pseudo device or a disk slice. If
5138 	 * it is a disk slice different from slice 2 then it is always exported
5139 	 * as a single slice disk even if the "slice" option is not specified.
5140 	 * If it is disk slice 2 or a pseudo device then it is exported as a
5141 	 * single slice disk only if the "slice" option is specified.
5142 	 */
5143 	return (vd_setup_single_slice_disk(vd));
5144 }
5145 
5146 static int
5147 vd_setup_single_slice_disk(vd_t *vd)
5148 {
5149 	int status, rval;
5150 	char *device_path = vd->device_path;
5151 
5152 	/* Get size of backing device */
5153 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
5154 		PRN("ldi_get_size() failed for %s", device_path);
5155 		return (EIO);
5156 	}
5157 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
5158 	vd->block_size = DEV_BSIZE;
5159 	vd->vdisk_block_size = DEV_BSIZE;
5160 	vd->vdisk_media = VD_MEDIA_FIXED;
5161 
5162 	if (vd->pseudo) {
5163 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
5164 	}
5165 
5166 	/*
5167 	 * We export the slice as a single slice disk even if the "slice"
5168 	 * option was not specified.
5169 	 */
5170 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
5171 	vd->nslices	= 1;
5172 
5173 	/*
5174 	 * When exporting a slice or a device as a single slice disk, we don't
5175 	 * care about any partitioning exposed by the backend. The goal is just
5176 	 * to export the backend as a flat storage. We provide a fake partition
5177 	 * table (either a VTOC or EFI), which presents only one slice, to
5178 	 * accommodate tools expecting a disk label.
5179 	 *
5180 	 * We check the label of the backend to export the device as a slice
5181 	 * using the same type of label (VTOC or EFI). If there is no label
5182 	 * then we create a fake EFI label.
5183 	 *
5184 	 * Note that the partition table we are creating could also be faked
5185 	 * by the client based on the size of the backend device.
5186 	 */
5187 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, (intptr_t)&vd->vtoc,
5188 	    (vd->open_flags | FKIOCTL), kcred, &rval);
5189 
5190 	if (status == 0) {
5191 		/* export with a fake VTOC label */
5192 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
5193 		status = vd_setup_partition_vtoc(vd);
5194 	} else {
5195 		/* export with a fake EFI label */
5196 		vd->vdisk_label = VD_DISK_LABEL_EFI;
5197 		status = vd_setup_partition_efi(vd);
5198 	}
5199 
5200 	return (status);
5201 }
5202 
5203 static int
5204 vd_setup_vd(vd_t *vd)
5205 {
5206 	int		status;
5207 	dev_info_t	*dip;
5208 	vnode_t 	*vnp;
5209 	char		*path = vd->device_path;
5210 
5211 	/* make sure the vdisk backend is valid */
5212 	if ((status = lookupname(path, UIO_SYSSPACE,
5213 	    FOLLOW, NULLVPP, &vnp)) != 0) {
5214 		PR0("Cannot lookup %s errno %d", path, status);
5215 		goto done;
5216 	}
5217 
5218 	switch (vnp->v_type) {
5219 	case VREG:
5220 		/*
5221 		 * Backend is a file so it is exported as a full disk or as a
5222 		 * single slice disk using the vnode interface.
5223 		 */
5224 		VN_RELE(vnp);
5225 		vd->pseudo = B_FALSE;
5226 		status = vd_setup_backend_vnode(vd);
5227 		break;
5228 
5229 	case VBLK:
5230 	case VCHR:
5231 		/*
5232 		 * Backend is a device. The way it is exported depends on the
5233 		 * type of the device.
5234 		 *
5235 		 * - A pseudo device is exported as a full disk using the vnode
5236 		 *   interface or as a single slice disk using the LDI
5237 		 *   interface.
5238 		 *
5239 		 * - A disk (represented by the slice 2 of that disk) is
5240 		 *   exported as a full disk using the LDI interface.
5241 		 *
5242 		 * - A disk slice (different from slice 2) is always exported
5243 		 *   as a single slice disk using the LDI interface.
5244 		 *
5245 		 * - The slice 2 of a disk is exported as a single slice disk
5246 		 *   if the "slice" option is specified, otherwise the entire
5247 		 *   disk will be exported. In any case, the LDI interface is
5248 		 *   used.
5249 		 */
5250 
5251 		/* check if this is a pseudo device */
5252 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
5253 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
5254 			PRN("%s is no longer accessible", path);
5255 			VN_RELE(vnp);
5256 			status = EIO;
5257 			break;
5258 		}
5259 		vd->pseudo = is_pseudo_device(dip);
5260 		ddi_release_devi(dip);
5261 		VN_RELE(vnp);
5262 
5263 		if (!vd->pseudo) {
5264 			status = vd_setup_backend_ldi(vd);
5265 			break;
5266 		}
5267 
5268 		/*
5269 		 * If this is a pseudo device then its usage depends if the
5270 		 * "slice" option is set or not. If the "slice" option is set
5271 		 * then the pseudo device will be exported as a single slice,
5272 		 * otherwise it will be exported as a full disk.
5273 		 *
5274 		 * For backward compatibility, if vd_volume_force_slice is set
5275 		 * then we always export pseudo devices as slices.
5276 		 */
5277 		if (vd_volume_force_slice) {
5278 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
5279 			vd->nslices = 1;
5280 		}
5281 
5282 		if (vd->vdisk_type == VD_DISK_TYPE_DISK)
5283 			status = vd_setup_backend_vnode(vd);
5284 		else
5285 			status = vd_setup_backend_ldi(vd);
5286 		break;
5287 
5288 	default:
5289 		PRN("Unsupported vdisk backend %s", path);
5290 		VN_RELE(vnp);
5291 		status = EBADF;
5292 	}
5293 
5294 done:
5295 	if (status != 0) {
5296 		/*
5297 		 * If the error is retryable print an error message only
5298 		 * during the first try.
5299 		 */
5300 		if (status == ENXIO || status == ENODEV ||
5301 		    status == ENOENT || status == EROFS) {
5302 			if (!(vd->initialized & VD_SETUP_ERROR)) {
5303 				PRN("%s is currently inaccessible (error %d)",
5304 				    path, status);
5305 			}
5306 			status = EAGAIN;
5307 		} else {
5308 			PRN("%s can not be exported as a virtual disk "
5309 			    "(error %d)", path, status);
5310 		}
5311 		vd->initialized |= VD_SETUP_ERROR;
5312 
5313 	} else if (vd->initialized & VD_SETUP_ERROR) {
5314 		/* print a message only if we previously had an error */
5315 		PRN("%s is now online", path);
5316 		vd->initialized &= ~VD_SETUP_ERROR;
5317 	}
5318 
5319 	return (status);
5320 }
5321 
5322 static int
5323 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
5324     uint64_t ldc_id, vd_t **vdp)
5325 {
5326 	char			tq_name[TASKQ_NAMELEN];
5327 	int			status;
5328 	ddi_iblock_cookie_t	iblock = NULL;
5329 	ldc_attr_t		ldc_attr;
5330 	vd_t			*vd;
5331 
5332 
5333 	ASSERT(vds != NULL);
5334 	ASSERT(device_path != NULL);
5335 	ASSERT(vdp != NULL);
5336 	PR0("Adding vdisk for %s", device_path);
5337 
5338 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
5339 		PRN("No memory for virtual disk");
5340 		return (EAGAIN);
5341 	}
5342 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
5343 	vd->vds = vds;
5344 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
5345 
5346 	/* Setup open flags */
5347 	vd->open_flags = FREAD;
5348 
5349 	if (!(options & VD_OPT_RDONLY))
5350 		vd->open_flags |= FWRITE;
5351 
5352 	if (options & VD_OPT_EXCLUSIVE)
5353 		vd->open_flags |= FEXCL;
5354 
5355 	/* Setup disk type */
5356 	if (options & VD_OPT_SLICE) {
5357 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
5358 		vd->nslices = 1;
5359 	} else {
5360 		vd->vdisk_type = VD_DISK_TYPE_DISK;
5361 		vd->nslices = V_NUMPAR;
5362 	}
5363 
5364 	/* default disk label */
5365 	vd->vdisk_label = VD_DISK_LABEL_UNK;
5366 
5367 	/* Open vdisk and initialize parameters */
5368 	if ((status = vd_setup_vd(vd)) == 0) {
5369 		vd->initialized |= VD_DISK_READY;
5370 
5371 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
5372 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
5373 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
5374 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
5375 		    vd->nslices);
5376 	} else {
5377 		if (status != EAGAIN)
5378 			return (status);
5379 	}
5380 
5381 	/* Initialize locking */
5382 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
5383 	    &iblock) != DDI_SUCCESS) {
5384 		PRN("Could not get iblock cookie.");
5385 		return (EIO);
5386 	}
5387 
5388 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
5389 	vd->initialized |= VD_LOCKING;
5390 
5391 
5392 	/* Create start and completion task queues for the vdisk */
5393 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
5394 	PR1("tq_name = %s", tq_name);
5395 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
5396 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
5397 		PRN("Could not create task queue");
5398 		return (EIO);
5399 	}
5400 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
5401 	PR1("tq_name = %s", tq_name);
5402 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
5403 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
5404 		PRN("Could not create task queue");
5405 		return (EIO);
5406 	}
5407 	vd->enabled = 1;	/* before callback can dispatch to startq */
5408 
5409 
5410 	/* Bring up LDC */
5411 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
5412 	ldc_attr.instance	= ddi_get_instance(vds->dip);
5413 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
5414 	ldc_attr.mtu		= VD_LDC_MTU;
5415 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
5416 		PRN("Could not initialize LDC channel %lx, "
5417 		    "init failed with error %d", ldc_id, status);
5418 		return (status);
5419 	}
5420 	vd->initialized |= VD_LDC;
5421 
5422 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
5423 	    (caddr_t)vd)) != 0) {
5424 		PRN("Could not initialize LDC channel %lu,"
5425 		    "reg_callback failed with error %d", ldc_id, status);
5426 		return (status);
5427 	}
5428 
5429 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
5430 		PRN("Could not initialize LDC channel %lu,"
5431 		    "open failed with error %d", ldc_id, status);
5432 		return (status);
5433 	}
5434 
5435 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
5436 		PR0("ldc_up() returned errno %d", status);
5437 	}
5438 
5439 	/* Allocate the inband task memory handle */
5440 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
5441 	if (status) {
5442 		PRN("Could not initialize LDC channel %lu,"
5443 		    "alloc_handle failed with error %d", ldc_id, status);
5444 		return (ENXIO);
5445 	}
5446 
5447 	/* Add the successfully-initialized vdisk to the server's table */
5448 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
5449 		PRN("Error adding vdisk ID %lu to table", id);
5450 		return (EIO);
5451 	}
5452 
5453 	/* Allocate the staging buffer */
5454 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
5455 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
5456 
5457 	/* store initial state */
5458 	vd->state = VD_STATE_INIT;
5459 
5460 	return (0);
5461 }
5462 
5463 static void
5464 vd_free_dring_task(vd_t *vdp)
5465 {
5466 	if (vdp->dring_task != NULL) {
5467 		ASSERT(vdp->dring_len != 0);
5468 		/* Free all dring_task memory handles */
5469 		for (int i = 0; i < vdp->dring_len; i++) {
5470 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
5471 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
5472 			vdp->dring_task[i].msg = NULL;
5473 		}
5474 		kmem_free(vdp->dring_task,
5475 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
5476 		vdp->dring_task = NULL;
5477 	}
5478 }
5479 
5480 /*
5481  * Destroy the state associated with a virtual disk
5482  */
5483 static void
5484 vds_destroy_vd(void *arg)
5485 {
5486 	vd_t	*vd = (vd_t *)arg;
5487 	int	retry = 0, rv;
5488 
5489 	if (vd == NULL)
5490 		return;
5491 
5492 	PR0("Destroying vdisk state");
5493 
5494 	/* Disable queuing requests for the vdisk */
5495 	if (vd->initialized & VD_LOCKING) {
5496 		mutex_enter(&vd->lock);
5497 		vd->enabled = 0;
5498 		mutex_exit(&vd->lock);
5499 	}
5500 
5501 	/* Drain and destroy start queue (*before* destroying completionq) */
5502 	if (vd->startq != NULL)
5503 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
5504 
5505 	/* Drain and destroy completion queue (*before* shutting down LDC) */
5506 	if (vd->completionq != NULL)
5507 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
5508 
5509 	vd_free_dring_task(vd);
5510 
5511 	/* Free the inband task memory handle */
5512 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
5513 
5514 	/* Shut down LDC */
5515 	if (vd->initialized & VD_LDC) {
5516 		/* unmap the dring */
5517 		if (vd->initialized & VD_DRING)
5518 			(void) ldc_mem_dring_unmap(vd->dring_handle);
5519 
5520 		/* close LDC channel - retry on EAGAIN */
5521 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
5522 			if (++retry > vds_ldc_retries) {
5523 				PR0("Timed out closing channel");
5524 				break;
5525 			}
5526 			drv_usecwait(vds_ldc_delay);
5527 		}
5528 		if (rv == 0) {
5529 			(void) ldc_unreg_callback(vd->ldc_handle);
5530 			(void) ldc_fini(vd->ldc_handle);
5531 		} else {
5532 			/*
5533 			 * Closing the LDC channel has failed. Ideally we should
5534 			 * fail here but there is no Zeus level infrastructure
5535 			 * to handle this. The MD has already been changed and
5536 			 * we have to do the close. So we try to do as much
5537 			 * clean up as we can.
5538 			 */
5539 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
5540 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
5541 				drv_usecwait(vds_ldc_delay);
5542 		}
5543 	}
5544 
5545 	/* Free the staging buffer for msgs */
5546 	if (vd->vio_msgp != NULL) {
5547 		kmem_free(vd->vio_msgp, vd->max_msglen);
5548 		vd->vio_msgp = NULL;
5549 	}
5550 
5551 	/* Free the inband message buffer */
5552 	if (vd->inband_task.msg != NULL) {
5553 		kmem_free(vd->inband_task.msg, vd->max_msglen);
5554 		vd->inband_task.msg = NULL;
5555 	}
5556 
5557 	if (vd->file) {
5558 		/* Close file */
5559 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
5560 		    0, kcred, NULL);
5561 		VN_RELE(vd->file_vnode);
5562 		if (vd->file_devid != NULL)
5563 			ddi_devid_free(vd->file_devid);
5564 	} else {
5565 		/* Close any open backing-device slices */
5566 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
5567 			if (vd->ldi_handle[slice] != NULL) {
5568 				PR0("Closing slice %u", slice);
5569 				(void) ldi_close(vd->ldi_handle[slice],
5570 				    vd->open_flags, kcred);
5571 			}
5572 		}
5573 	}
5574 
5575 	/* Free lock */
5576 	if (vd->initialized & VD_LOCKING)
5577 		mutex_destroy(&vd->lock);
5578 
5579 	/* Finally, free the vdisk structure itself */
5580 	kmem_free(vd, sizeof (*vd));
5581 }
5582 
5583 static int
5584 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
5585     uint64_t ldc_id)
5586 {
5587 	int	status;
5588 	vd_t	*vd = NULL;
5589 
5590 
5591 	if ((status = vds_do_init_vd(vds, id, device_path, options,
5592 	    ldc_id, &vd)) != 0)
5593 		vds_destroy_vd(vd);
5594 
5595 	return (status);
5596 }
5597 
5598 static int
5599 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
5600     uint64_t *ldc_id)
5601 {
5602 	int	num_channels;
5603 
5604 
5605 	/* Look for channel endpoint child(ren) of the vdisk MD node */
5606 	if ((num_channels = md_scan_dag(md, vd_node,
5607 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
5608 	    md_find_name(md, "fwd"), channel)) <= 0) {
5609 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
5610 		return (-1);
5611 	}
5612 
5613 	/* Get the "id" value for the first channel endpoint node */
5614 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
5615 		PRN("No \"%s\" property found for \"%s\" of vdisk",
5616 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
5617 		return (-1);
5618 	}
5619 
5620 	if (num_channels > 1) {
5621 		PRN("Using ID of first of multiple channels for this vdisk");
5622 	}
5623 
5624 	return (0);
5625 }
5626 
5627 static int
5628 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
5629 {
5630 	int		num_nodes, status;
5631 	size_t		size;
5632 	mde_cookie_t	*channel;
5633 
5634 
5635 	if ((num_nodes = md_node_count(md)) <= 0) {
5636 		PRN("Invalid node count in Machine Description subtree");
5637 		return (-1);
5638 	}
5639 	size = num_nodes*(sizeof (*channel));
5640 	channel = kmem_zalloc(size, KM_SLEEP);
5641 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
5642 	kmem_free(channel, size);
5643 
5644 	return (status);
5645 }
5646 
5647 /*
5648  * Function:
5649  *	vds_get_options
5650  *
5651  * Description:
5652  * 	Parse the options of a vds node. Options are defined as an array
5653  *	of strings in the vds-block-device-opts property of the vds node
5654  *	in the machine description. Options are returned as a bitmask. The
5655  *	mapping between the bitmask options and the options strings from the
5656  *	machine description is defined in the vd_bdev_options[] array.
5657  *
5658  *	The vds-block-device-opts property is optional. If a vds has no such
5659  *	property then no option is defined.
5660  *
5661  * Parameters:
5662  *	md		- machine description.
5663  *	vd_node		- vds node in the machine description for which
5664  *			  options have to be parsed.
5665  *	options		- the returned options.
5666  *
5667  * Return Code:
5668  *	none.
5669  */
5670 static void
5671 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
5672 {
5673 	char	*optstr, *opt;
5674 	int	len, n, i;
5675 
5676 	*options = 0;
5677 
5678 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
5679 	    (uint8_t **)&optstr, &len) != 0) {
5680 		PR0("No options found");
5681 		return;
5682 	}
5683 
5684 	/* parse options */
5685 	opt = optstr;
5686 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
5687 
5688 	while (opt < optstr + len) {
5689 		for (i = 0; i < n; i++) {
5690 			if (strncmp(vd_bdev_options[i].vdo_name,
5691 			    opt, VD_OPTION_NLEN) == 0) {
5692 				*options |= vd_bdev_options[i].vdo_value;
5693 				break;
5694 			}
5695 		}
5696 
5697 		if (i < n) {
5698 			PR0("option: %s", opt);
5699 		} else {
5700 			PRN("option %s is unknown or unsupported", opt);
5701 		}
5702 
5703 		opt += strlen(opt) + 1;
5704 	}
5705 }
5706 
5707 static void
5708 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
5709 {
5710 	char		*device_path = NULL;
5711 	uint64_t	id = 0, ldc_id = 0, options = 0;
5712 
5713 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
5714 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
5715 		return;
5716 	}
5717 	PR0("Adding vdisk ID %lu", id);
5718 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
5719 	    &device_path) != 0) {
5720 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
5721 		return;
5722 	}
5723 
5724 	vds_get_options(md, vd_node, &options);
5725 
5726 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
5727 		PRN("Error getting LDC ID for vdisk %lu", id);
5728 		return;
5729 	}
5730 
5731 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
5732 		PRN("Failed to add vdisk ID %lu", id);
5733 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
5734 			PRN("No vDisk entry found for vdisk ID %lu", id);
5735 		return;
5736 	}
5737 }
5738 
5739 static void
5740 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
5741 {
5742 	uint64_t	id = 0;
5743 
5744 
5745 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
5746 		PRN("Unable to get \"%s\" property from vdisk's MD node",
5747 		    VD_ID_PROP);
5748 		return;
5749 	}
5750 	PR0("Removing vdisk ID %lu", id);
5751 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
5752 		PRN("No vdisk entry found for vdisk ID %lu", id);
5753 }
5754 
5755 static void
5756 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
5757     md_t *curr_md, mde_cookie_t curr_vd_node)
5758 {
5759 	char		*curr_dev, *prev_dev;
5760 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
5761 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
5762 	size_t		len;
5763 
5764 
5765 	/* Validate that vdisk ID has not changed */
5766 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
5767 		PRN("Error getting previous vdisk \"%s\" property",
5768 		    VD_ID_PROP);
5769 		return;
5770 	}
5771 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
5772 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
5773 		return;
5774 	}
5775 	if (curr_id != prev_id) {
5776 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
5777 		    prev_id, curr_id);
5778 		return;
5779 	}
5780 
5781 	/* Validate that LDC ID has not changed */
5782 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
5783 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
5784 		return;
5785 	}
5786 
5787 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
5788 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
5789 		return;
5790 	}
5791 	if (curr_ldc_id != prev_ldc_id) {
5792 		_NOTE(NOTREACHED);	/* lint is confused */
5793 		PRN("Not changing vdisk:  "
5794 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
5795 		return;
5796 	}
5797 
5798 	/* Determine whether device path has changed */
5799 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
5800 	    &prev_dev) != 0) {
5801 		PRN("Error getting previous vdisk \"%s\"",
5802 		    VD_BLOCK_DEVICE_PROP);
5803 		return;
5804 	}
5805 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
5806 	    &curr_dev) != 0) {
5807 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
5808 		return;
5809 	}
5810 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
5811 	    (strncmp(curr_dev, prev_dev, len) == 0))
5812 		return;	/* no relevant (supported) change */
5813 
5814 	/* Validate that options have not changed */
5815 	vds_get_options(prev_md, prev_vd_node, &prev_options);
5816 	vds_get_options(curr_md, curr_vd_node, &curr_options);
5817 	if (prev_options != curr_options) {
5818 		PRN("Not changing vdisk:  options changed from %lx to %lx",
5819 		    prev_options, curr_options);
5820 		return;
5821 	}
5822 
5823 	PR0("Changing vdisk ID %lu", prev_id);
5824 
5825 	/* Remove old state, which will close vdisk and reset */
5826 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
5827 		PRN("No entry found for vdisk ID %lu", prev_id);
5828 
5829 	/* Re-initialize vdisk with new state */
5830 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
5831 	    curr_ldc_id) != 0) {
5832 		PRN("Failed to change vdisk ID %lu", curr_id);
5833 		return;
5834 	}
5835 }
5836 
5837 static int
5838 vds_process_md(void *arg, mdeg_result_t *md)
5839 {
5840 	int	i;
5841 	vds_t	*vds = arg;
5842 
5843 
5844 	if (md == NULL)
5845 		return (MDEG_FAILURE);
5846 	ASSERT(vds != NULL);
5847 
5848 	for (i = 0; i < md->removed.nelem; i++)
5849 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
5850 	for (i = 0; i < md->match_curr.nelem; i++)
5851 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
5852 		    md->match_curr.mdp, md->match_curr.mdep[i]);
5853 	for (i = 0; i < md->added.nelem; i++)
5854 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
5855 
5856 	return (MDEG_SUCCESS);
5857 }
5858 
5859 
5860 static int
5861 vds_do_attach(dev_info_t *dip)
5862 {
5863 	int			status, sz;
5864 	int			cfg_handle;
5865 	minor_t			instance = ddi_get_instance(dip);
5866 	vds_t			*vds;
5867 	mdeg_prop_spec_t	*pspecp;
5868 	mdeg_node_spec_t	*ispecp;
5869 
5870 	/*
5871 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
5872 	 * notion of "instance", or unique identifier, for that node; OBP
5873 	 * stores the value of the "cfg-handle" MD property as the value of
5874 	 * the "reg" property on the node in the device tree it builds from
5875 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
5876 	 * "reg" property value to uniquely identify this device instance when
5877 	 * registering with the MD event-generation framework.  If the "reg"
5878 	 * property cannot be found, the device tree state is presumably so
5879 	 * broken that there is no point in continuing.
5880 	 */
5881 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
5882 	    VD_REG_PROP)) {
5883 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
5884 		return (DDI_FAILURE);
5885 	}
5886 
5887 	/* Get the MD instance for later MDEG registration */
5888 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
5889 	    VD_REG_PROP, -1);
5890 
5891 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
5892 		PRN("Could not allocate state for instance %u", instance);
5893 		return (DDI_FAILURE);
5894 	}
5895 
5896 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5897 		PRN("Could not get state for instance %u", instance);
5898 		ddi_soft_state_free(vds_state, instance);
5899 		return (DDI_FAILURE);
5900 	}
5901 
5902 	vds->dip	= dip;
5903 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
5904 	    vds_destroy_vd, sizeof (void *));
5905 
5906 	ASSERT(vds->vd_table != NULL);
5907 
5908 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
5909 		PRN("ldi_ident_from_dip() returned errno %d", status);
5910 		return (DDI_FAILURE);
5911 	}
5912 	vds->initialized |= VDS_LDI;
5913 
5914 	/* Register for MD updates */
5915 	sz = sizeof (vds_prop_template);
5916 	pspecp = kmem_alloc(sz, KM_SLEEP);
5917 	bcopy(vds_prop_template, pspecp, sz);
5918 
5919 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
5920 
5921 	/* initialize the complete prop spec structure */
5922 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
5923 	ispecp->namep = "virtual-device";
5924 	ispecp->specp = pspecp;
5925 
5926 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
5927 	    &vds->mdeg) != MDEG_SUCCESS) {
5928 		PRN("Unable to register for MD updates");
5929 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
5930 		kmem_free(pspecp, sz);
5931 		return (DDI_FAILURE);
5932 	}
5933 
5934 	vds->ispecp = ispecp;
5935 	vds->initialized |= VDS_MDEG;
5936 
5937 	/* Prevent auto-detaching so driver is available whenever MD changes */
5938 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
5939 	    DDI_PROP_SUCCESS) {
5940 		PRN("failed to set \"%s\" property for instance %u",
5941 		    DDI_NO_AUTODETACH, instance);
5942 	}
5943 
5944 	ddi_report_dev(dip);
5945 	return (DDI_SUCCESS);
5946 }
5947 
5948 static int
5949 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
5950 {
5951 	int	status;
5952 
5953 	switch (cmd) {
5954 	case DDI_ATTACH:
5955 		PR0("Attaching");
5956 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
5957 			(void) vds_detach(dip, DDI_DETACH);
5958 		return (status);
5959 	case DDI_RESUME:
5960 		PR0("No action required for DDI_RESUME");
5961 		return (DDI_SUCCESS);
5962 	default:
5963 		return (DDI_FAILURE);
5964 	}
5965 }
5966 
5967 static struct dev_ops vds_ops = {
5968 	DEVO_REV,	/* devo_rev */
5969 	0,		/* devo_refcnt */
5970 	ddi_no_info,	/* devo_getinfo */
5971 	nulldev,	/* devo_identify */
5972 	nulldev,	/* devo_probe */
5973 	vds_attach,	/* devo_attach */
5974 	vds_detach,	/* devo_detach */
5975 	nodev,		/* devo_reset */
5976 	NULL,		/* devo_cb_ops */
5977 	NULL,		/* devo_bus_ops */
5978 	nulldev		/* devo_power */
5979 };
5980 
5981 static struct modldrv modldrv = {
5982 	&mod_driverops,
5983 	"virtual disk server",
5984 	&vds_ops,
5985 };
5986 
5987 static struct modlinkage modlinkage = {
5988 	MODREV_1,
5989 	&modldrv,
5990 	NULL
5991 };
5992 
5993 
5994 int
5995 _init(void)
5996 {
5997 	int		status;
5998 
5999 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
6000 		return (status);
6001 
6002 	if ((status = mod_install(&modlinkage)) != 0) {
6003 		ddi_soft_state_fini(&vds_state);
6004 		return (status);
6005 	}
6006 
6007 	return (0);
6008 }
6009 
6010 int
6011 _info(struct modinfo *modinfop)
6012 {
6013 	return (mod_info(&modlinkage, modinfop));
6014 }
6015 
6016 int
6017 _fini(void)
6018 {
6019 	int	status;
6020 
6021 	if ((status = mod_remove(&modlinkage)) != 0)
6022 		return (status);
6023 	ddi_soft_state_fini(&vds_state);
6024 	return (0);
6025 }
6026