xref: /titanic_51/usr/src/uts/sun4v/io/vdc.c (revision 805b6c0426f50f44bd56333ddd105576a1e47aa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/conf.h>
61 #include <sys/disp.h>
62 #include <sys/ddi.h>
63 #include <sys/dkio.h>
64 #include <sys/efi_partition.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/mach_descrip.h>
68 #include <sys/modctl.h>
69 #include <sys/mdeg.h>
70 #include <sys/note.h>
71 #include <sys/open.h>
72 #include <sys/sdt.h>
73 #include <sys/stat.h>
74 #include <sys/sunddi.h>
75 #include <sys/types.h>
76 #include <sys/promif.h>
77 #include <sys/vtoc.h>
78 #include <sys/archsystm.h>
79 #include <sys/sysmacros.h>
80 
81 #include <sys/cdio.h>
82 #include <sys/dktp/cm.h>
83 #include <sys/dktp/fdisk.h>
84 #include <sys/scsi/generic/sense.h>
85 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
86 #include <sys/scsi/targets/sddef.h>
87 
88 #include <sys/ldoms.h>
89 #include <sys/ldc.h>
90 #include <sys/vio_common.h>
91 #include <sys/vio_mailbox.h>
92 #include <sys/vdsk_common.h>
93 #include <sys/vdsk_mailbox.h>
94 #include <sys/vdc.h>
95 
96 /*
97  * function prototypes
98  */
99 
100 /* standard driver functions */
101 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
102 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
103 static int	vdc_strategy(struct buf *buf);
104 static int	vdc_print(dev_t dev, char *str);
105 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
106 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
107 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
108 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
109 			cred_t *credp, int *rvalp);
110 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
111 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
112 
113 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
114 			void *arg, void **resultp);
115 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
116 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
117 
118 /* setup */
119 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
120 static int	vdc_do_ldc_init(vdc_t *vdc);
121 static int	vdc_start_ldc_connection(vdc_t *vdc);
122 static int	vdc_create_device_nodes(vdc_t *vdc);
123 static int	vdc_create_device_nodes_props(vdc_t *vdc);
124 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
125 static int	vdc_do_ldc_up(vdc_t *vdc);
126 static void	vdc_terminate_ldc(vdc_t *vdc);
127 static int	vdc_init_descriptor_ring(vdc_t *vdc);
128 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
129 
130 /* handshake with vds */
131 static void		vdc_init_handshake_negotiation(void *arg);
132 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
133 static int		vdc_init_attr_negotiation(vdc_t *vdc);
134 static int		vdc_init_dring_negotiate(vdc_t *vdc);
135 static void		vdc_reset_connection(vdc_t *vdc, boolean_t resetldc);
136 static boolean_t	vdc_is_able_to_tx_data(vdc_t *vdc, int flag);
137 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
138 
139 /* processing incoming messages from vDisk server */
140 static void	vdc_process_msg_thread(vdc_t *vdc);
141 static void	vdc_process_msg(void *arg);
142 static void	vdc_do_process_msg(vdc_t *vdc);
143 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
144 static int	vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg);
145 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg);
146 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
147 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
148 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
149 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
150 static int	vdc_get_next_dring_entry_id(vdc_t *vdc, uint_t needed);
151 static int	vdc_populate_descriptor(vdc_t *vdc, caddr_t addr,
152 			size_t nbytes, int op, uint64_t arg, uint64_t slice);
153 static int	vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx,
154 			vio_dring_msg_t dmsg);
155 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
156 static int	vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx,
157 			caddr_t addr, size_t nbytes, int operation);
158 static boolean_t vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int
159 			num_msgs);
160 
161 /* dkio */
162 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
163 static int	vdc_create_fake_geometry(vdc_t *vdc);
164 static int	vdc_setup_disk_layout(vdc_t *vdc);
165 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
166 		    int mode, int dir);
167 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
168 		    int mode, int dir);
169 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
170 		    int mode, int dir);
171 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
172 		    int mode, int dir);
173 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
174 		    int mode, int dir);
175 static int	vdc_uscsicmd_convert(vdc_t *vdc, void *from, void *to,
176 		    int mode, int dir);
177 
178 /*
179  * Module variables
180  */
181 uint64_t	vdc_hz_timeout;
182 uint64_t	vdc_usec_timeout = VDC_USEC_TIMEOUT_MIN;
183 uint64_t	vdc_usec_timeout_dump = VDC_USEC_TIMEOUT_MIN / 300;
184 uint64_t	vdc_usec_timeout_dring = 10 * MILLISEC;
185 static int	vdc_retries = VDC_RETRIES;
186 static int	vdc_dump_retries = VDC_RETRIES * 10;
187 
188 /* Soft state pointer */
189 static void	*vdc_state;
190 
191 /* variable level controlling the verbosity of the error/debug messages */
192 int	vdc_msglevel = 0;
193 
194 /*
195  * Supported vDisk protocol version pairs.
196  *
197  * The first array entry is the latest and preferred version.
198  */
199 static const vio_ver_t	vdc_version[] = {{1, 0}};
200 
201 static void
202 vdc_msg(const char *format, ...)
203 {
204 	va_list	args;
205 
206 	va_start(args, format);
207 	vcmn_err(CE_CONT, format, args);
208 	va_end(args);
209 }
210 
211 static struct cb_ops vdc_cb_ops = {
212 	vdc_open,	/* cb_open */
213 	vdc_close,	/* cb_close */
214 	vdc_strategy,	/* cb_strategy */
215 	vdc_print,	/* cb_print */
216 	vdc_dump,	/* cb_dump */
217 	vdc_read,	/* cb_read */
218 	vdc_write,	/* cb_write */
219 	vdc_ioctl,	/* cb_ioctl */
220 	nodev,		/* cb_devmap */
221 	nodev,		/* cb_mmap */
222 	nodev,		/* cb_segmap */
223 	nochpoll,	/* cb_chpoll */
224 	ddi_prop_op,	/* cb_prop_op */
225 	NULL,		/* cb_str */
226 	D_MP | D_64BIT,	/* cb_flag */
227 	CB_REV,		/* cb_rev */
228 	vdc_aread,	/* cb_aread */
229 	vdc_awrite	/* cb_awrite */
230 };
231 
232 static struct dev_ops vdc_ops = {
233 	DEVO_REV,	/* devo_rev */
234 	0,		/* devo_refcnt */
235 	vdc_getinfo,	/* devo_getinfo */
236 	nulldev,	/* devo_identify */
237 	nulldev,	/* devo_probe */
238 	vdc_attach,	/* devo_attach */
239 	vdc_detach,	/* devo_detach */
240 	nodev,		/* devo_reset */
241 	&vdc_cb_ops,	/* devo_cb_ops */
242 	NULL,		/* devo_bus_ops */
243 	nulldev		/* devo_power */
244 };
245 
246 static struct modldrv modldrv = {
247 	&mod_driverops,
248 	"virtual disk client %I%",
249 	&vdc_ops,
250 };
251 
252 static struct modlinkage modlinkage = {
253 	MODREV_1,
254 	&modldrv,
255 	NULL
256 };
257 
258 /* -------------------------------------------------------------------------- */
259 
260 /*
261  * Device Driver housekeeping and setup
262  */
263 
264 int
265 _init(void)
266 {
267 	int	status;
268 
269 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
270 		return (status);
271 	if ((status = mod_install(&modlinkage)) != 0)
272 		ddi_soft_state_fini(&vdc_state);
273 	return (status);
274 }
275 
276 int
277 _info(struct modinfo *modinfop)
278 {
279 	return (mod_info(&modlinkage, modinfop));
280 }
281 
282 int
283 _fini(void)
284 {
285 	int	status;
286 
287 	if ((status = mod_remove(&modlinkage)) != 0)
288 		return (status);
289 	ddi_soft_state_fini(&vdc_state);
290 	return (0);
291 }
292 
293 static int
294 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
295 {
296 	_NOTE(ARGUNUSED(dip))
297 
298 	int	instance = SDUNIT(getminor((dev_t)arg));
299 	vdc_t	*vdc = NULL;
300 
301 	switch (cmd) {
302 	case DDI_INFO_DEVT2DEVINFO:
303 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
304 			*resultp = NULL;
305 			return (DDI_FAILURE);
306 		}
307 		*resultp = vdc->dip;
308 		return (DDI_SUCCESS);
309 	case DDI_INFO_DEVT2INSTANCE:
310 		*resultp = (void *)(uintptr_t)instance;
311 		return (DDI_SUCCESS);
312 	default:
313 		*resultp = NULL;
314 		return (DDI_FAILURE);
315 	}
316 }
317 
318 static int
319 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
320 {
321 	int	instance;
322 	int	rv;
323 	uint_t	retries = 0;
324 	vdc_t	*vdc = NULL;
325 
326 	switch (cmd) {
327 	case DDI_DETACH:
328 		/* the real work happens below */
329 		break;
330 	case DDI_SUSPEND:
331 		/* nothing to do for this non-device */
332 		return (DDI_SUCCESS);
333 	default:
334 		return (DDI_FAILURE);
335 	}
336 
337 	ASSERT(cmd == DDI_DETACH);
338 	instance = ddi_get_instance(dip);
339 	PR1("%s[%d] Entered\n", __func__, instance);
340 
341 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
342 		vdc_msg("%s[%d]:  Could not get state structure.",
343 		    __func__, instance);
344 		return (DDI_FAILURE);
345 	}
346 
347 	if (vdc->open) {
348 		PR0("%s[%d]: Cannot detach: device is open",
349 				__func__, instance);
350 		return (DDI_FAILURE);
351 	}
352 
353 	PR0("%s[%d] proceeding...\n", __func__, instance);
354 
355 	/*
356 	 * try and disable callbacks to prevent another handshake
357 	 */
358 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
359 	PR0("%s[%d] callback disabled (rv=%d)\n", __func__, instance, rv);
360 
361 	/*
362 	 * Prevent any more attempts to start a handshake with the vdisk
363 	 * server and tear down the existing connection.
364 	 */
365 	mutex_enter(&vdc->lock);
366 	vdc->initialized |= VDC_HANDSHAKE_STOP;
367 	vdc_reset_connection(vdc, B_TRUE);
368 	mutex_exit(&vdc->lock);
369 
370 	if (vdc->initialized & VDC_THREAD) {
371 		mutex_enter(&vdc->msg_proc_lock);
372 		vdc->msg_proc_thr_state = VDC_THR_STOP;
373 		vdc->msg_pending = B_TRUE;
374 		cv_signal(&vdc->msg_proc_cv);
375 
376 		while (vdc->msg_proc_thr_state != VDC_THR_DONE) {
377 			PR0("%s[%d]: Waiting for thread to exit\n",
378 				__func__, instance);
379 			rv = cv_timedwait(&vdc->msg_proc_cv,
380 				&vdc->msg_proc_lock, VD_GET_TIMEOUT_HZ(1));
381 			if ((rv == -1) && (retries++ > vdc_retries))
382 				break;
383 		}
384 		mutex_exit(&vdc->msg_proc_lock);
385 	}
386 
387 	mutex_enter(&vdc->lock);
388 
389 	if (vdc->initialized & VDC_DRING)
390 		vdc_destroy_descriptor_ring(vdc);
391 
392 	if (vdc->initialized & VDC_LDC)
393 		vdc_terminate_ldc(vdc);
394 
395 	mutex_exit(&vdc->lock);
396 
397 	if (vdc->initialized & VDC_MINOR) {
398 		ddi_prop_remove_all(dip);
399 		ddi_remove_minor_node(dip, NULL);
400 	}
401 
402 	if (vdc->initialized & VDC_LOCKS) {
403 		mutex_destroy(&vdc->lock);
404 		mutex_destroy(&vdc->attach_lock);
405 		mutex_destroy(&vdc->msg_proc_lock);
406 		mutex_destroy(&vdc->dring_lock);
407 		cv_destroy(&vdc->cv);
408 		cv_destroy(&vdc->attach_cv);
409 		cv_destroy(&vdc->msg_proc_cv);
410 	}
411 
412 	if (vdc->minfo)
413 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
414 
415 	if (vdc->cinfo)
416 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
417 
418 	if (vdc->vtoc)
419 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
420 
421 	if (vdc->label)
422 		kmem_free(vdc->label, DK_LABEL_SIZE);
423 
424 	if (vdc->initialized & VDC_SOFT_STATE)
425 		ddi_soft_state_free(vdc_state, instance);
426 
427 	PR0("%s[%d] End %p\n", __func__, instance, vdc);
428 
429 	return (DDI_SUCCESS);
430 }
431 
432 
433 static int
434 vdc_do_attach(dev_info_t *dip)
435 {
436 	int		instance;
437 	vdc_t		*vdc = NULL;
438 	int		status;
439 	uint_t		retries = 0;
440 
441 	ASSERT(dip != NULL);
442 
443 	instance = ddi_get_instance(dip);
444 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
445 		vdc_msg("%s:(%d): Couldn't alloc state structure",
446 		    __func__, instance);
447 		return (DDI_FAILURE);
448 	}
449 
450 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
451 		vdc_msg("%s:(%d): Could not get state structure.",
452 		    __func__, instance);
453 		return (DDI_FAILURE);
454 	}
455 
456 	/*
457 	 * We assign the value to initialized in this case to zero out the
458 	 * variable and then set bits in it to indicate what has been done
459 	 */
460 	vdc->initialized = VDC_SOFT_STATE;
461 
462 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
463 
464 	vdc->dip	= dip;
465 	vdc->instance	= instance;
466 	vdc->open	= 0;
467 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
468 	vdc->state	= VD_STATE_INIT;
469 	vdc->ldc_state	= 0;
470 	vdc->session_id = 0;
471 	vdc->block_size = DEV_BSIZE;
472 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
473 
474 	vdc->vtoc = NULL;
475 	vdc->cinfo = NULL;
476 	vdc->minfo = NULL;
477 
478 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
479 	mutex_init(&vdc->attach_lock, NULL, MUTEX_DRIVER, NULL);
480 	mutex_init(&vdc->msg_proc_lock, NULL, MUTEX_DRIVER, NULL);
481 	mutex_init(&vdc->dring_lock, NULL, MUTEX_DRIVER, NULL);
482 	cv_init(&vdc->cv, NULL, CV_DRIVER, NULL);
483 	cv_init(&vdc->attach_cv, NULL, CV_DRIVER, NULL);
484 	cv_init(&vdc->msg_proc_cv, NULL, CV_DRIVER, NULL);
485 	vdc->initialized |= VDC_LOCKS;
486 
487 	vdc->msg_pending = B_FALSE;
488 	vdc->msg_proc_thr_id = thread_create(NULL, 0, vdc_process_msg_thread,
489 		vdc, 0, &p0, TS_RUN, minclsyspri);
490 	if (vdc->msg_proc_thr_id == NULL) {
491 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
492 				instance);
493 		return (DDI_FAILURE);
494 	}
495 	vdc->initialized |= VDC_THREAD;
496 
497 	/* initialise LDC channel which will be used to communicate with vds */
498 	if (vdc_do_ldc_init(vdc) != 0) {
499 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
500 		return (DDI_FAILURE);
501 	}
502 
503 	/* Bring up connection with vds via LDC */
504 	status = vdc_start_ldc_connection(vdc);
505 	if (status != 0) {
506 		vdc_msg("%s[%d]  Could not start LDC", __func__, instance);
507 		return (DDI_FAILURE);
508 	}
509 
510 	/*
511 	 * We need to wait until the handshake has completed before leaving
512 	 * the attach(). This is to allow the device node(s) to be created
513 	 * and the first usage of the filesystem to succeed.
514 	 */
515 	mutex_enter(&vdc->attach_lock);
516 	while ((vdc->ldc_state != LDC_UP) ||
517 		(vdc->state != VD_STATE_DATA)) {
518 
519 		PR0("%s[%d] handshake in progress [VD %d (LDC %d)]\n",
520 			__func__, instance, vdc->state, vdc->ldc_state);
521 
522 		status = cv_timedwait(&vdc->attach_cv, &vdc->attach_lock,
523 				VD_GET_TIMEOUT_HZ(1));
524 		if (status == -1) {
525 			if (retries >= vdc_retries) {
526 				PR0("%s[%d] Give up handshake wait.\n",
527 						__func__, instance);
528 				mutex_exit(&vdc->attach_lock);
529 				return (DDI_FAILURE);
530 			} else {
531 				PR0("%s[%d] Retry #%d for handshake.\n",
532 						__func__, instance, retries);
533 				vdc_init_handshake_negotiation(vdc);
534 				retries++;
535 			}
536 		}
537 	}
538 	mutex_exit(&vdc->attach_lock);
539 
540 	/*
541 	 * Once the handshake is complete, we can use the DRing to send
542 	 * requests to the vDisk server to calculate the geometry and
543 	 * VTOC of the "disk"
544 	 */
545 	status = vdc_setup_disk_layout(vdc);
546 	if (status != 0) {
547 		cmn_err(CE_NOTE, "[%d] Failed to discover disk layout (err%d)",
548 				vdc->instance, status);
549 	}
550 
551 	/*
552 	 * Now that we have the device info we can create the
553 	 * device nodes and properties
554 	 */
555 	status = vdc_create_device_nodes(vdc);
556 	if (status) {
557 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes",
558 				instance);
559 		return (status);
560 	}
561 	status = vdc_create_device_nodes_props(vdc);
562 	if (status) {
563 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes"
564 				" properties (%d)", instance, status);
565 		return (status);
566 	}
567 
568 	ddi_report_dev(dip);
569 
570 	PR0("%s[%d] Attach completed\n", __func__, instance);
571 	return (status);
572 }
573 
574 static int
575 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
576 {
577 	int	status;
578 
579 	switch (cmd) {
580 	case DDI_ATTACH:
581 		if ((status = vdc_do_attach(dip)) != 0)
582 			(void) vdc_detach(dip, DDI_DETACH);
583 		return (status);
584 	case DDI_RESUME:
585 		/* nothing to do for this non-device */
586 		return (DDI_SUCCESS);
587 	default:
588 		return (DDI_FAILURE);
589 	}
590 }
591 
592 static int
593 vdc_do_ldc_init(vdc_t *vdc)
594 {
595 	int			status = 0;
596 	ldc_status_t		ldc_state;
597 	ldc_attr_t		ldc_attr;
598 	uint64_t		ldc_id = 0;
599 	dev_info_t		*dip = NULL;
600 
601 	ASSERT(vdc != NULL);
602 
603 	dip = vdc->dip;
604 	vdc->initialized |= VDC_LDC;
605 
606 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
607 		vdc_msg("%s:  Failed to get <ldc_id> property\n", __func__);
608 		return (EIO);
609 	}
610 	vdc->ldc_id = ldc_id;
611 
612 	ldc_attr.devclass = LDC_DEV_BLK;
613 	ldc_attr.instance = vdc->instance;
614 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
615 	ldc_attr.qlen = VD_LDC_QLEN;
616 
617 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
618 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
619 		if (status != 0) {
620 			cmn_err(CE_NOTE, "[%d] ldc_init(chan %ld) returned %d",
621 					vdc->instance, ldc_id, status);
622 			return (status);
623 		}
624 		vdc->initialized |= VDC_LDC_INIT;
625 	}
626 	status = ldc_status(vdc->ldc_handle, &ldc_state);
627 	if (status != 0) {
628 		vdc_msg("Cannot discover LDC status [err=%d].", status);
629 		return (status);
630 	}
631 	vdc->ldc_state = ldc_state;
632 
633 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
634 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
635 		    (caddr_t)vdc);
636 		if (status != 0) {
637 			vdc_msg("%s: ldc_reg_callback()=%d", __func__, status);
638 			return (status);
639 		}
640 		vdc->initialized |= VDC_LDC_CB;
641 	}
642 
643 	vdc->initialized |= VDC_LDC;
644 
645 	/*
646 	 * At this stage we have initialised LDC, we will now try and open
647 	 * the connection.
648 	 */
649 	if (vdc->ldc_state == LDC_INIT) {
650 		status = ldc_open(vdc->ldc_handle);
651 		if (status != 0) {
652 			cmn_err(CE_NOTE, "[%d] ldc_open(chan %ld) returned %d",
653 					vdc->instance, vdc->ldc_id, status);
654 			return (status);
655 		}
656 		vdc->initialized |= VDC_LDC_OPEN;
657 	}
658 
659 	return (status);
660 }
661 
662 static int
663 vdc_start_ldc_connection(vdc_t *vdc)
664 {
665 	int		status = 0;
666 
667 	ASSERT(vdc != NULL);
668 
669 	mutex_enter(&vdc->lock);
670 
671 	if (vdc->ldc_state == LDC_UP) {
672 		PR0("%s:  LDC is already UP ..\n", __func__);
673 		mutex_exit(&vdc->lock);
674 		return (0);
675 	}
676 
677 	status = vdc_do_ldc_up(vdc);
678 
679 	PR0("%s[%d] Finished bringing up LDC\n", __func__, vdc->instance);
680 
681 	mutex_exit(&vdc->lock);
682 
683 	return (status);
684 }
685 
686 
687 /*
688  * Function:
689  *	vdc_create_device_nodes
690  *
691  * Description:
692  *	This function creates the block and character device nodes under
693  *	/devices along with the node properties. It is called as part of
694  *	the attach(9E) of the instance during the handshake with vds after
695  *	vds has sent the attributes to vdc.
696  *
697  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
698  *	of 2 is used in keeping with the Solaris convention that slice 2
699  *	refers to a whole disk. Slices start at 'a'
700  *
701  * Parameters:
702  *	vdc 		- soft state pointer
703  *
704  * Return Values
705  *	0		- Success
706  *	EIO		- Failed to create node
707  *	EINVAL		- Unknown type of disk exported
708  */
709 static int
710 vdc_create_device_nodes(vdc_t *vdc)
711 {
712 	/* uses NNNN which is OK as long as # of disks <= 10000 */
713 	char		name[sizeof ("disk@NNNN:s,raw")];
714 	dev_info_t	*dip = NULL;
715 	int		instance;
716 	int		num_slices = 1;
717 	int		i;
718 
719 	ASSERT(vdc != NULL);
720 
721 	instance = vdc->instance;
722 	dip = vdc->dip;
723 
724 	switch (vdc->vdisk_type) {
725 	case VD_DISK_TYPE_DISK:
726 		num_slices = V_NUMPAR;
727 		break;
728 	case VD_DISK_TYPE_SLICE:
729 		num_slices = 1;
730 		break;
731 	case VD_DISK_TYPE_UNK:
732 	default:
733 		return (EINVAL);
734 	}
735 
736 	for (i = 0; i < num_slices; i++) {
737 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
738 		if (ddi_create_minor_node(dip, name, S_IFBLK,
739 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
740 			vdc_msg("%s[%d]: Couldn't add block node %s.",
741 				__func__, instance, name);
742 			return (EIO);
743 		}
744 
745 		/* if any device node is created we set this flag */
746 		vdc->initialized |= VDC_MINOR;
747 
748 		(void) snprintf(name, sizeof (name), "%c%s",
749 			'a' + i, ",raw");
750 		if (ddi_create_minor_node(dip, name, S_IFCHR,
751 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
752 			vdc_msg("%s[%d]:  Could not add raw node %s.",
753 				__func__, instance, name);
754 			return (EIO);
755 		}
756 	}
757 
758 	return (0);
759 }
760 
761 /*
762  * Function:
763  *	vdc_create_device_nodes_props
764  *
765  * Description:
766  *	This function creates the block and character device nodes under
767  *	/devices along with the node properties. It is called as part of
768  *	the attach(9E) of the instance during the handshake with vds after
769  *	vds has sent the attributes to vdc.
770  *
771  * Parameters:
772  *	vdc 		- soft state pointer
773  *
774  * Return Values
775  *	0		- Success
776  *	EIO		- Failed to create device node property
777  *	EINVAL		- Unknown type of disk exported
778  */
779 static int
780 vdc_create_device_nodes_props(vdc_t *vdc)
781 {
782 	dev_info_t	*dip = NULL;
783 	int		instance;
784 	int		num_slices = 1;
785 	int64_t		size = 0;
786 	dev_t		dev;
787 	int		rv;
788 	int		i;
789 
790 	ASSERT(vdc != NULL);
791 
792 	instance = vdc->instance;
793 	dip = vdc->dip;
794 
795 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
796 		cmn_err(CE_NOTE, "![%d] Could not create device node property."
797 				" No VTOC available", instance);
798 		return (ENXIO);
799 	}
800 
801 	switch (vdc->vdisk_type) {
802 	case VD_DISK_TYPE_DISK:
803 		num_slices = V_NUMPAR;
804 		break;
805 	case VD_DISK_TYPE_SLICE:
806 		num_slices = 1;
807 		break;
808 	case VD_DISK_TYPE_UNK:
809 	default:
810 		return (EINVAL);
811 	}
812 
813 	for (i = 0; i < num_slices; i++) {
814 		dev = makedevice(ddi_driver_major(dip),
815 			VD_MAKE_DEV(instance, i));
816 
817 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
818 		PR0("%s[%d] sz %ld (%ld Mb)  p_size %lx\n",
819 				__func__, instance, size, size / (1024 * 1024),
820 				vdc->vtoc->v_part[i].p_size);
821 
822 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
823 		if (rv != DDI_PROP_SUCCESS) {
824 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n",
825 				__func__, instance, VDC_SIZE_PROP_NAME, size);
826 			return (EIO);
827 		}
828 
829 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
830 			lbtodb(size));
831 		if (rv != DDI_PROP_SUCCESS) {
832 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n", __func__,
833 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
834 			return (EIO);
835 		}
836 	}
837 
838 	return (0);
839 }
840 
841 static int
842 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
843 {
844 	_NOTE(ARGUNUSED(cred))
845 
846 	int		instance;
847 	vdc_t		*vdc;
848 
849 	ASSERT(dev != NULL);
850 	instance = SDUNIT(getminor(*dev));
851 
852 	PR0("%s[%d] minor = %d flag = %x, otyp = %x\n", __func__, instance,
853 			getminor(*dev), flag, otyp);
854 
855 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
856 		return (EINVAL);
857 
858 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
859 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
860 		return (ENXIO);
861 	}
862 
863 	/*
864 	 * Check to see if we can communicate with vds
865 	 */
866 	if (!vdc_is_able_to_tx_data(vdc, flag)) {
867 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
868 		return (ENOLINK);
869 	}
870 
871 	mutex_enter(&vdc->lock);
872 	vdc->open++;
873 	mutex_exit(&vdc->lock);
874 
875 	return (0);
876 }
877 
878 static int
879 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
880 {
881 	_NOTE(ARGUNUSED(cred))
882 
883 	int	instance;
884 	vdc_t	*vdc;
885 
886 	instance = SDUNIT(getminor(dev));
887 
888 	PR0("%s[%d] flag = %x, otyp = %x\n", __func__, instance, flag, otyp);
889 
890 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
891 		return (EINVAL);
892 
893 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
894 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
895 		return (ENXIO);
896 	}
897 
898 	/*
899 	 * Check to see if we can communicate with vds
900 	 */
901 	if (!vdc_is_able_to_tx_data(vdc, 0)) {
902 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
903 		return (ETIMEDOUT);
904 	}
905 
906 	if (vdc->dkio_flush_pending) {
907 		PR0("%s[%d]: Cannot detach: %d outstanding DKIO flushes",
908 			__func__, instance, vdc->dkio_flush_pending);
909 		return (EBUSY);
910 	}
911 
912 	/*
913 	 * Should not need the mutex here, since the framework should protect
914 	 * against more opens on this device, but just in case.
915 	 */
916 	mutex_enter(&vdc->lock);
917 	vdc->open--;
918 	mutex_exit(&vdc->lock);
919 
920 	return (0);
921 }
922 
923 static int
924 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
925 {
926 	_NOTE(ARGUNUSED(credp))
927 	_NOTE(ARGUNUSED(rvalp))
928 
929 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
930 }
931 
932 static int
933 vdc_print(dev_t dev, char *str)
934 {
935 	cmn_err(CE_NOTE, "vdc%d:  %s", SDUNIT(getminor(dev)), str);
936 	return (0);
937 }
938 
939 static int
940 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
941 {
942 	buf_t	*buf;	/* BWRITE requests need to be in a buf_t structure */
943 	int	rv;
944 	size_t	nbytes = nblk * DEV_BSIZE;
945 	int	instance = SDUNIT(getminor(dev));
946 	vdc_t	*vdc = NULL;
947 
948 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
949 		vdc_msg("%s (%d):  Could not get state.", __func__, instance);
950 		return (ENXIO);
951 	}
952 
953 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
954 	bioinit(buf);
955 	buf->b_un.b_addr = addr;
956 	buf->b_bcount = nbytes;
957 	buf->b_flags = B_BUSY | B_WRITE;
958 	buf->b_dev = dev;
959 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, nbytes,
960 			VD_OP_BWRITE, blkno, SDPART(getminor(dev)));
961 
962 	/*
963 	 * If the OS instance is panicking, the call above will ensure that
964 	 * the descriptor is done before returning. This should always be
965 	 * case when coming through this function but we check just in case
966 	 * and wait if necessary for the vDisk server to ACK and trigger
967 	 * the biodone.
968 	 */
969 	if (!ddi_in_panic())
970 		rv = biowait(buf);
971 
972 	biofini(buf);
973 	kmem_free(buf, sizeof (buf_t));
974 
975 	PR1("%s: status=%d\n", __func__, rv);
976 
977 	return (rv);
978 }
979 
980 /* -------------------------------------------------------------------------- */
981 
982 /*
983  * Disk access routines
984  *
985  */
986 
987 /*
988  * vdc_strategy()
989  *
990  * Return Value:
991  *	0:	As per strategy(9E), the strategy() function must return 0
992  *		[ bioerror(9f) sets b_flags to the proper error code ]
993  */
994 static int
995 vdc_strategy(struct buf *buf)
996 {
997 	int		rv = -1;
998 	vdc_t		*vdc = NULL;
999 	int		instance = SDUNIT(getminor(buf->b_edev));
1000 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1001 
1002 	PR1("%s: %s %ld bytes at block %ld : b_addr=0x%p",
1003 	    __func__, (buf->b_flags & B_READ) ? "Read" : "Write",
1004 	    buf->b_bcount, buf->b_lblkno, buf->b_un.b_addr);
1005 
1006 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1007 		vdc_msg("%s[%d]:  Could not get state.", __func__, instance);
1008 		bioerror(buf, ENXIO);
1009 		biodone(buf);
1010 		return (0);
1011 	}
1012 
1013 	DTRACE_IO2(vstart, buf_t *, buf, vdc_t *, vdc);
1014 
1015 	ASSERT(buf->b_bcount <= (vdc->max_xfer_sz * vdc->block_size));
1016 
1017 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
1018 		PR0("%s: Not ready to transmit data\n", __func__);
1019 		bioerror(buf, ENXIO);
1020 		biodone(buf);
1021 		return (0);
1022 	}
1023 	bp_mapin(buf);
1024 
1025 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, buf->b_bcount, op,
1026 			buf->b_lblkno, SDPART(getminor(buf->b_edev)));
1027 
1028 	/*
1029 	 * If the request was successfully sent, the strategy call returns and
1030 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1031 	 * done.
1032 	 */
1033 	if (rv) {
1034 		PR0("[%d] Failed to read/write (err=%d)\n", instance, rv);
1035 		bioerror(buf, rv);
1036 		biodone(buf);
1037 	}
1038 
1039 	return (0);
1040 }
1041 
1042 
1043 static int
1044 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1045 {
1046 	_NOTE(ARGUNUSED(cred))
1047 
1048 	PR1("vdc_read():  Entered");
1049 	return (physio(vdc_strategy, NULL, dev, B_READ, minphys, uio));
1050 }
1051 
1052 static int
1053 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1054 {
1055 	_NOTE(ARGUNUSED(cred))
1056 
1057 	PR1("vdc_write():  Entered");
1058 	return (physio(vdc_strategy, NULL, dev, B_WRITE, minphys, uio));
1059 }
1060 
1061 static int
1062 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1063 {
1064 	_NOTE(ARGUNUSED(cred))
1065 
1066 	PR1("vdc_aread():  Entered");
1067 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, minphys, aio));
1068 }
1069 
1070 static int
1071 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1072 {
1073 	_NOTE(ARGUNUSED(cred))
1074 
1075 	PR1("vdc_awrite():  Entered");
1076 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, minphys, aio));
1077 }
1078 
1079 
1080 /* -------------------------------------------------------------------------- */
1081 
1082 /*
1083  * Handshake support
1084  */
1085 
1086 /*
1087  * vdc_init_handshake_negotiation
1088  *
1089  * Description:
1090  *	This function is called to trigger the handshake negotiations between
1091  *	the client (vdc) and the server (vds). It may be called multiple times.
1092  *
1093  * Parameters:
1094  *	vdc - soft state pointer
1095  */
1096 static void
1097 vdc_init_handshake_negotiation(void *arg)
1098 {
1099 	vdc_t		*vdc = (vdc_t *)(void *)arg;
1100 	ldc_status_t	ldc_state;
1101 	vd_state_t	state;
1102 	int		status;
1103 
1104 	ASSERT(vdc != NULL);
1105 
1106 	PR0("[%d] Initializing vdc<->vds handshake\n", vdc->instance);
1107 
1108 	/* get LDC state */
1109 	status = ldc_status(vdc->ldc_handle, &ldc_state);
1110 	if (status != 0) {
1111 		cmn_err(CE_NOTE, "[%d] Couldn't get LDC status: err=%d",
1112 				vdc->instance, status);
1113 		return;
1114 	}
1115 
1116 	/*
1117 	 * If the LDC connection is not UP we bring it up now and return.
1118 	 * The handshake will be started again when the callback is
1119 	 * triggered due to the UP event.
1120 	 */
1121 	if (ldc_state != LDC_UP) {
1122 		PR0("[%d] Triggering an LDC_UP and returning\n", vdc->instance);
1123 		(void) vdc_do_ldc_up(vdc);
1124 		return;
1125 	}
1126 
1127 	mutex_enter(&vdc->lock);
1128 	/*
1129 	 * Do not continue if another thread has triggered a handshake which
1130 	 * has not been reset or detach() has stopped further handshakes.
1131 	 */
1132 	if (vdc->initialized & (VDC_HANDSHAKE | VDC_HANDSHAKE_STOP)) {
1133 		PR0("%s[%d] Negotiation not triggered. [init=%x]\n",
1134 			__func__, vdc->instance, vdc->initialized);
1135 		mutex_exit(&vdc->lock);
1136 		return;
1137 	}
1138 
1139 	if (vdc->hshake_cnt++ > vdc_retries) {
1140 		cmn_err(CE_NOTE, "[%d] Failed repeatedly to complete handshake"
1141 				"with vDisk server", vdc->instance);
1142 		mutex_exit(&vdc->lock);
1143 		return;
1144 	}
1145 
1146 	vdc->initialized |= VDC_HANDSHAKE;
1147 	vdc->ldc_state = ldc_state;
1148 
1149 	state = vdc->state;
1150 
1151 	if (state == VD_STATE_INIT) {
1152 		/*
1153 		 * Set the desired version parameter to the first entry in the
1154 		 * version array. If this specific version is not supported,
1155 		 * the response handling code will step down the version number
1156 		 * to the next array entry and deal with it accordingly.
1157 		 */
1158 		(void) vdc_init_ver_negotiation(vdc, vdc_version[0]);
1159 	} else if (state == VD_STATE_VER) {
1160 		(void) vdc_init_attr_negotiation(vdc);
1161 	} else if (state == VD_STATE_ATTR) {
1162 		(void) vdc_init_dring_negotiate(vdc);
1163 	} else if (state == VD_STATE_DATA) {
1164 		/*
1165 		 * nothing to do - we have already completed the negotiation
1166 		 * and we can transmit data when ready.
1167 		 */
1168 		PR0("%s[%d] Negotiation triggered after handshake completed",
1169 			__func__, vdc->instance);
1170 	}
1171 
1172 	mutex_exit(&vdc->lock);
1173 }
1174 
1175 /*
1176  * Function:
1177  *	vdc_init_ver_negotiation()
1178  *
1179  * Description:
1180  *
1181  * Arguments:
1182  *	vdc	- soft state pointer for this instance of the device driver.
1183  *
1184  * Return Code:
1185  *	0	- Success
1186  */
1187 static int
1188 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1189 {
1190 	vio_ver_msg_t	pkt;
1191 	size_t		msglen = sizeof (pkt);
1192 	int		status = -1;
1193 
1194 	PR0("%s: Entered.\n", __func__);
1195 
1196 	ASSERT(vdc != NULL);
1197 	ASSERT(mutex_owned(&vdc->lock));
1198 
1199 	/*
1200 	 * set the Session ID to a unique value
1201 	 * (the lower 32 bits of the clock tick)
1202 	 */
1203 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1204 
1205 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1206 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1207 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1208 	pkt.tag.vio_sid = vdc->session_id;
1209 	pkt.dev_class = VDEV_DISK;
1210 	pkt.ver_major = ver.major;
1211 	pkt.ver_minor = ver.minor;
1212 
1213 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1214 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1215 
1216 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1217 		PR0("%s[%d] vdc_send failed: id(%lx) rv(%d) size(%d)\n",
1218 				__func__, vdc->instance, vdc->ldc_handle,
1219 				status, msglen);
1220 		if (msglen != sizeof (vio_ver_msg_t))
1221 			status = ENOMSG;
1222 	}
1223 
1224 	return (status);
1225 }
1226 
1227 /*
1228  * Function:
1229  *	vdc_init_attr_negotiation()
1230  *
1231  * Description:
1232  *
1233  * Arguments:
1234  *	vdc	- soft state pointer for this instance of the device driver.
1235  *
1236  * Return Code:
1237  *	0	- Success
1238  */
1239 static int
1240 vdc_init_attr_negotiation(vdc_t *vdc)
1241 {
1242 	vd_attr_msg_t	pkt;
1243 	size_t		msglen = sizeof (pkt);
1244 	int		status;
1245 
1246 	ASSERT(vdc != NULL);
1247 	ASSERT(mutex_owned(&vdc->lock));
1248 
1249 	PR0("%s[%d] entered\n", __func__, vdc->instance);
1250 
1251 	/* fill in tag */
1252 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1253 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1254 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1255 	pkt.tag.vio_sid = vdc->session_id;
1256 	/* fill in payload */
1257 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1258 	pkt.vdisk_block_size = vdc->block_size;
1259 	pkt.xfer_mode = VIO_DRING_MODE;
1260 	pkt.operations = 0;	/* server will set bits of valid operations */
1261 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1262 	pkt.vdisk_size = 0;	/* server will set to valid size */
1263 
1264 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1265 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1266 
1267 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1268 		PR0("%s[%d] ldc_write failed: id(%lx) rv(%d) size (%d)\n",
1269 			__func__, vdc->instance, vdc->ldc_handle,
1270 			status, msglen);
1271 		if (msglen != sizeof (vio_ver_msg_t))
1272 			status = ENOMSG;
1273 	}
1274 
1275 	return (status);
1276 }
1277 
1278 /*
1279  * Function:
1280  *	vdc_init_dring_negotiate()
1281  *
1282  * Description:
1283  *
1284  * Arguments:
1285  *	vdc	- soft state pointer for this instance of the device driver.
1286  *
1287  * Return Code:
1288  *	0	- Success
1289  */
1290 static int
1291 vdc_init_dring_negotiate(vdc_t *vdc)
1292 {
1293 	vio_dring_reg_msg_t	pkt;
1294 	size_t			msglen = sizeof (pkt);
1295 	int			status = -1;
1296 
1297 	ASSERT(vdc != NULL);
1298 	ASSERT(mutex_owned(&vdc->lock));
1299 
1300 	status = vdc_init_descriptor_ring(vdc);
1301 	if (status != 0) {
1302 		cmn_err(CE_CONT, "[%d] Failed to init DRing (status = %d)\n",
1303 				vdc->instance, status);
1304 		vdc_destroy_descriptor_ring(vdc);
1305 		vdc_reset_connection(vdc, B_FALSE);
1306 		return (status);
1307 	}
1308 	PR0("%s[%d] Init of descriptor ring completed (status = %d)\n",
1309 			__func__, vdc->instance, status);
1310 
1311 	/* fill in tag */
1312 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1313 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1314 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1315 	pkt.tag.vio_sid = vdc->session_id;
1316 	/* fill in payload */
1317 	pkt.dring_ident = 0;
1318 	pkt.num_descriptors = VD_DRING_LEN;
1319 	pkt.descriptor_size = VD_DRING_ENTRY_SZ;
1320 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1321 	pkt.ncookies = vdc->dring_cookie_count;
1322 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1323 
1324 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1325 	if (status != 0) {
1326 		PR0("%s[%d] Failed to register DRing (status = %d)\n",
1327 				__func__, vdc->instance, status);
1328 		vdc_reset_connection(vdc, B_FALSE);
1329 	}
1330 
1331 	return (status);
1332 }
1333 
1334 
1335 /* -------------------------------------------------------------------------- */
1336 
1337 /*
1338  * LDC helper routines
1339  */
1340 
1341 /*
1342  * Function:
1343  *	vdc_send()
1344  *
1345  * Description:
1346  *	The function encapsulates the call to write a message using LDC.
1347  *	If LDC indicates that the call failed due to the queue being full,
1348  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1349  *	we return the error returned by LDC.
1350  *
1351  * Arguments:
1352  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1353  *	pkt		- address of LDC message to be sent
1354  *	msglen		- the size of the message being sent. When the function
1355  *			  returns, this contains the number of bytes written.
1356  *
1357  * Return Code:
1358  *	0		- Success.
1359  *	EINVAL		- pkt or msglen were NULL
1360  *	ECONNRESET	- The connection was not up.
1361  *	EWOULDBLOCK	- LDC queue is full
1362  *	xxx		- other error codes returned by ldc_write
1363  */
1364 static int
1365 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
1366 {
1367 	size_t	size = 0;
1368 	int	retries = 0;
1369 	int	status = 0;
1370 
1371 	ASSERT(vdc != NULL);
1372 	ASSERT(mutex_owned(&vdc->lock));
1373 	ASSERT(msglen != NULL);
1374 	ASSERT(*msglen != 0);
1375 
1376 	do {
1377 		size = *msglen;
1378 		status = ldc_write(vdc->ldc_handle, pkt, &size);
1379 	} while (status == EWOULDBLOCK && retries++ < vdc_retries);
1380 
1381 	/* if LDC had serious issues --- reset vdc state */
1382 	if (status == EIO || status == ECONNRESET) {
1383 		vdc_reset_connection(vdc, B_TRUE);
1384 	}
1385 
1386 	/* return the last size written */
1387 	*msglen = size;
1388 
1389 	return (status);
1390 }
1391 
1392 /*
1393  * Function:
1394  *	vdc_get_ldc_id()
1395  *
1396  * Description:
1397  *	This function gets the 'ldc-id' for this particular instance of vdc.
1398  *	The id returned is the guest domain channel endpoint LDC uses for
1399  *	communication with vds.
1400  *
1401  * Arguments:
1402  *	dip	- dev info pointer for this instance of the device driver.
1403  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1404  *
1405  * Return Code:
1406  *	0	- Success.
1407  *	ENOENT	- Expected node or property did not exist.
1408  *	ENXIO	- Unexpected error communicating with MD framework
1409  */
1410 static int
1411 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1412 {
1413 	int		status = ENOENT;
1414 	char		*node_name = NULL;
1415 	md_t		*mdp = NULL;
1416 	int		num_nodes;
1417 	int		num_vdevs;
1418 	int		num_chans;
1419 	mde_cookie_t	rootnode;
1420 	mde_cookie_t	*listp = NULL;
1421 	mde_cookie_t	*chanp = NULL;
1422 	boolean_t	found_inst = B_FALSE;
1423 	int		listsz;
1424 	int		idx;
1425 	uint64_t	md_inst;
1426 	int		obp_inst;
1427 	int		instance = ddi_get_instance(dip);
1428 
1429 	ASSERT(ldc_id != NULL);
1430 	*ldc_id = 0;
1431 
1432 	/*
1433 	 * Get the OBP instance number for comparison with the MD instance
1434 	 *
1435 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1436 	 * notion of "instance", or unique identifier, for that node; OBP
1437 	 * stores the value of the "cfg-handle" MD property as the value of
1438 	 * the "reg" property on the node in the device tree it builds from
1439 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1440 	 * "reg" property value to uniquely identify this device instance.
1441 	 * If the "reg" property cannot be found, the device tree state is
1442 	 * presumably so broken that there is no point in continuing.
1443 	 */
1444 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1445 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1446 		return (ENOENT);
1447 	}
1448 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1449 			OBP_REG, -1);
1450 	PR1("%s[%d]: OBP inst=%d\n", __func__, instance, obp_inst);
1451 
1452 	/*
1453 	 * We now walk the MD nodes and if an instance of a vdc node matches
1454 	 * the instance got from OBP we get the ldc-id property.
1455 	 */
1456 	if ((mdp = md_get_handle()) == NULL) {
1457 		cmn_err(CE_WARN, "unable to init machine description");
1458 		return (ENXIO);
1459 	}
1460 
1461 	num_nodes = md_node_count(mdp);
1462 	ASSERT(num_nodes > 0);
1463 
1464 	listsz = num_nodes * sizeof (mde_cookie_t);
1465 
1466 	/* allocate memory for nodes */
1467 	listp = kmem_zalloc(listsz, KM_SLEEP);
1468 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1469 
1470 	rootnode = md_root_node(mdp);
1471 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1472 
1473 	/*
1474 	 * Search for all the virtual devices, we will then check to see which
1475 	 * ones are disk nodes.
1476 	 */
1477 	num_vdevs = md_scan_dag(mdp, rootnode,
1478 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1479 			md_find_name(mdp, "fwd"), listp);
1480 
1481 	if (num_vdevs <= 0) {
1482 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1483 		status = ENOENT;
1484 		goto done;
1485 	}
1486 
1487 	PR1("%s[%d] num_vdevs=%d\n", __func__, instance, num_vdevs);
1488 	for (idx = 0; idx < num_vdevs; idx++) {
1489 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1490 		if ((status != 0) || (node_name == NULL)) {
1491 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1492 					": err %d", VDC_MD_VDEV_NAME, status);
1493 			continue;
1494 		}
1495 
1496 		PR1("%s[%d] Found node %s\n", __func__, instance, node_name);
1497 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1498 			status = md_get_prop_val(mdp, listp[idx],
1499 					VDC_MD_CFG_HDL, &md_inst);
1500 			PR1("%s[%d] vdc inst# in MD=%d\n",
1501 					__func__, instance, md_inst);
1502 			if ((status == 0) && (md_inst == obp_inst)) {
1503 				found_inst = B_TRUE;
1504 				break;
1505 			}
1506 		}
1507 	}
1508 
1509 	if (!found_inst) {
1510 		cmn_err(CE_NOTE, "Unable to find correct '%s' node",
1511 				VDC_MD_DISK_NAME);
1512 		status = ENOENT;
1513 		goto done;
1514 	}
1515 	PR0("%s[%d] MD inst=%d\n", __func__, instance, md_inst);
1516 
1517 	/* get the channels for this node */
1518 	num_chans = md_scan_dag(mdp, listp[idx],
1519 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1520 			md_find_name(mdp, "fwd"), chanp);
1521 
1522 	/* expecting at least one channel */
1523 	if (num_chans <= 0) {
1524 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1525 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1526 		status = ENOENT;
1527 		goto done;
1528 
1529 	} else if (num_chans != 1) {
1530 		PR0("%s[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1531 			__func__, instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1532 			num_chans);
1533 	}
1534 
1535 	/*
1536 	 * We use the first channel found (index 0), irrespective of how
1537 	 * many are there in total.
1538 	 */
1539 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1540 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1541 				VDC_ID_PROP);
1542 		status = ENOENT;
1543 	}
1544 
1545 	PR0("%s[%d] LDC id is 0x%lx\n", __func__, instance, *ldc_id);
1546 
1547 done:
1548 	if (chanp)
1549 		kmem_free(chanp, listsz);
1550 	if (listp)
1551 		kmem_free(listp, listsz);
1552 
1553 	(void) md_fini_handle(mdp);
1554 
1555 	return (status);
1556 }
1557 
1558 static int
1559 vdc_do_ldc_up(vdc_t *vdc)
1560 {
1561 	int	status;
1562 
1563 	PR0("[%d] Bringing up channel %x\n", vdc->instance, vdc->ldc_id);
1564 
1565 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
1566 		switch (status) {
1567 		case ECONNREFUSED:	/* listener not ready at other end */
1568 			PR0("%s: ldc_up(%d,...) return %d\n",
1569 					__func__, vdc->ldc_id, status);
1570 			status = 0;
1571 			break;
1572 		default:
1573 			cmn_err(CE_NOTE, "[%d] Failed to bring up LDC: "
1574 					"channel=%ld, err=%d",
1575 					vdc->instance, vdc->ldc_id, status);
1576 		}
1577 	}
1578 
1579 	return (status);
1580 }
1581 
1582 
1583 /*
1584  * vdc_is_able_to_tx_data()
1585  *
1586  * Description:
1587  *	This function checks if we are able to send data to the
1588  *	vDisk server (vds). The LDC connection needs to be up and
1589  *	vdc & vds need to have completed the handshake negotiation.
1590  *
1591  * Parameters:
1592  *	vdc 		- soft state pointer
1593  *	flag		- flag to indicate if we can block or not
1594  *			  [ If O_NONBLOCK or O_NDELAY (which are defined in
1595  *			    open(2)) are set then do not block)
1596  *
1597  * Return Values
1598  *	B_TRUE		- can talk to vds
1599  *	B_FALSE		- unable to talk to vds
1600  */
1601 static boolean_t
1602 vdc_is_able_to_tx_data(vdc_t *vdc, int flag)
1603 {
1604 	vd_state_t	state;
1605 	uint32_t	ldc_state;
1606 	uint_t		retries = 0;
1607 	int		rv = -1;
1608 
1609 	ASSERT(vdc != NULL);
1610 
1611 	mutex_enter(&vdc->lock);
1612 	state = vdc->state;
1613 	ldc_state = vdc->ldc_state;
1614 	mutex_exit(&vdc->lock);
1615 
1616 	if ((state == VD_STATE_DATA) && (ldc_state == LDC_UP))
1617 		return (B_TRUE);
1618 
1619 	if ((flag & O_NONBLOCK) || (flag & O_NDELAY)) {
1620 		PR0("%s[%d] Not ready to tx - state %d LDC state %d\n",
1621 			__func__, vdc->instance, state, ldc_state);
1622 		return (B_FALSE);
1623 	}
1624 
1625 	/*
1626 	 * We want to check and see if any negotiations triggered earlier
1627 	 * have succeeded. We are prepared to wait a little while in case
1628 	 * they are still in progress.
1629 	 */
1630 	mutex_enter(&vdc->lock);
1631 	while ((vdc->ldc_state != LDC_UP) || (vdc->state != VD_STATE_DATA)) {
1632 		PR0("%s: Waiting for connection at state %d (LDC state %d)\n",
1633 			__func__, vdc->state, vdc->ldc_state);
1634 
1635 		rv = cv_timedwait(&vdc->cv, &vdc->lock,
1636 			VD_GET_TIMEOUT_HZ(retries));
1637 
1638 		/*
1639 		 * An rv of -1 indicates that we timed out without the LDC
1640 		 * state changing so it looks like the other side (vdc) is
1641 		 * not yet ready/responding.
1642 		 *
1643 		 * Any other value of rv indicates that the LDC triggered an
1644 		 * interrupt so we just loop again, check the handshake state
1645 		 * and keep waiting if necessary.
1646 		 */
1647 		if (rv == -1) {
1648 			if (retries >= vdc_retries) {
1649 				PR0("%s[%d] handshake wait timed out.\n",
1650 						__func__, vdc->instance);
1651 				mutex_exit(&vdc->lock);
1652 				return (B_FALSE);
1653 			} else {
1654 				PR1("%s[%d] Retry #%d for handshake timedout\n",
1655 					__func__, vdc->instance, retries);
1656 				retries++;
1657 			}
1658 		}
1659 	}
1660 
1661 	ASSERT(vdc->ldc_state == LDC_UP);
1662 	ASSERT(vdc->state == VD_STATE_DATA);
1663 
1664 	mutex_exit(&vdc->lock);
1665 
1666 	return (B_TRUE);
1667 }
1668 
1669 
1670 /*
1671  * Function:
1672  *	vdc_terminate_ldc()
1673  *
1674  * Description:
1675  *
1676  * Arguments:
1677  *	vdc	- soft state pointer for this instance of the device driver.
1678  *
1679  * Return Code:
1680  *	None
1681  */
1682 static void
1683 vdc_terminate_ldc(vdc_t *vdc)
1684 {
1685 	int	instance = ddi_get_instance(vdc->dip);
1686 
1687 	ASSERT(vdc != NULL);
1688 	ASSERT(mutex_owned(&vdc->lock));
1689 
1690 	PR0("%s[%d] initialized=%x\n", __func__, instance, vdc->initialized);
1691 
1692 	if (vdc->initialized & VDC_LDC_OPEN) {
1693 		PR0("%s[%d]: ldc_close()\n", __func__, instance);
1694 		(void) ldc_close(vdc->ldc_handle);
1695 	}
1696 	if (vdc->initialized & VDC_LDC_CB) {
1697 		PR0("%s[%d]: ldc_unreg_callback()\n", __func__, instance);
1698 		(void) ldc_unreg_callback(vdc->ldc_handle);
1699 	}
1700 	if (vdc->initialized & VDC_LDC) {
1701 		PR0("%s[%d]: ldc_fini()\n", __func__, instance);
1702 		(void) ldc_fini(vdc->ldc_handle);
1703 		vdc->ldc_handle = NULL;
1704 	}
1705 
1706 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
1707 }
1708 
1709 /*
1710  * Function:
1711  *	vdc_reset_connection()
1712  *
1713  * Description:
1714  *
1715  * Arguments:
1716  *	vdc	- soft state pointer for this instance of the device driver.
1717  *	reset_ldc - Flag whether or not to reset the LDC connection also.
1718  *
1719  * Return Code:
1720  *	None
1721  */
1722 static void
1723 vdc_reset_connection(vdc_t *vdc, boolean_t reset_ldc)
1724 {
1725 	int	status;
1726 
1727 	ASSERT(vdc != NULL);
1728 	ASSERT(mutex_owned(&vdc->lock));
1729 
1730 	PR0("%s[%d] Entered\n", __func__, vdc->instance);
1731 
1732 	vdc->state = VD_STATE_INIT;
1733 
1734 	if (reset_ldc) {
1735 		status = ldc_reset(vdc->ldc_handle);
1736 		PR0("%s[%d]  ldc_reset() = %d\n",
1737 				__func__, vdc->instance, status);
1738 	}
1739 
1740 	vdc->initialized &= ~VDC_HANDSHAKE;
1741 	PR0("%s[%d] init=%x\n", __func__, vdc->instance, vdc->initialized);
1742 }
1743 
1744 /* -------------------------------------------------------------------------- */
1745 
1746 /*
1747  * Descriptor Ring helper routines
1748  */
1749 
1750 /*
1751  * Function:
1752  *	vdc_init_descriptor_ring()
1753  *
1754  * Description:
1755  *
1756  * Arguments:
1757  *	vdc	- soft state pointer for this instance of the device driver.
1758  *
1759  * Return Code:
1760  *	0	- Success
1761  */
1762 static int
1763 vdc_init_descriptor_ring(vdc_t *vdc)
1764 {
1765 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
1766 	int	status = 0;
1767 	int	i;
1768 
1769 	PR0("%s[%d] initialized=%x\n",
1770 			__func__, vdc->instance, vdc->initialized);
1771 
1772 	ASSERT(vdc != NULL);
1773 	ASSERT(mutex_owned(&vdc->lock));
1774 	ASSERT(vdc->ldc_handle != NULL);
1775 
1776 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
1777 		PR0("%s[%d] ldc_mem_dring_create\n", __func__, vdc->instance);
1778 		status = ldc_mem_dring_create(VD_DRING_LEN, VD_DRING_ENTRY_SZ,
1779 				&vdc->ldc_dring_hdl);
1780 		if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
1781 			PR0("%s: Failed to create a descriptor ring", __func__);
1782 			return (status);
1783 		}
1784 		vdc->dring_entry_size = VD_DRING_ENTRY_SZ;
1785 		vdc->dring_len = VD_DRING_LEN;
1786 		vdc->initialized |= VDC_DRING_INIT;
1787 	}
1788 
1789 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
1790 		PR0("%s[%d] ldc_mem_dring_bind\n", __func__, vdc->instance);
1791 		vdc->dring_cookie =
1792 			kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
1793 
1794 		status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
1795 				LDC_SHADOW_MAP, LDC_MEM_RW,
1796 				&vdc->dring_cookie[0],
1797 				&vdc->dring_cookie_count);
1798 		if (status != 0) {
1799 			PR0("%s: Failed to bind descriptor ring (%p) "
1800 				"to channel (%p)\n",
1801 				__func__, vdc->ldc_dring_hdl, vdc->ldc_handle);
1802 			return (status);
1803 		}
1804 		ASSERT(vdc->dring_cookie_count == 1);
1805 		vdc->initialized |= VDC_DRING_BOUND;
1806 	}
1807 
1808 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
1809 	if (status != 0) {
1810 		PR0("%s: Failed to get info for descriptor ring (%p)\n",
1811 			__func__, vdc->ldc_dring_hdl);
1812 		return (status);
1813 	}
1814 
1815 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
1816 		PR0("%s[%d] local dring\n", __func__, vdc->instance);
1817 
1818 		/* Allocate the local copy of this dring */
1819 		vdc->local_dring =
1820 			kmem_zalloc(VD_DRING_LEN * sizeof (vdc_local_desc_t),
1821 						KM_SLEEP);
1822 		vdc->initialized |= VDC_DRING_LOCAL;
1823 	}
1824 
1825 	/*
1826 	 * Mark all DRing entries as free and initialize the private
1827 	 * descriptor's memory handles. If any entry is initialized,
1828 	 * we need to free it later so we set the bit in 'initialized'
1829 	 * at the start.
1830 	 */
1831 	vdc->initialized |= VDC_DRING_ENTRY;
1832 	for (i = 0; i < VD_DRING_LEN; i++) {
1833 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
1834 		dep->hdr.dstate = VIO_DESC_FREE;
1835 
1836 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
1837 				&vdc->local_dring[i].desc_mhdl);
1838 		if (status != 0) {
1839 			cmn_err(CE_NOTE, "![%d] Failed to alloc mem handle for"
1840 					" descriptor %d", vdc->instance, i);
1841 			return (status);
1842 		}
1843 		vdc->local_dring[i].flags = VIO_DESC_FREE;
1844 		vdc->local_dring[i].dep = dep;
1845 
1846 		mutex_init(&vdc->local_dring[i].lock, NULL, MUTEX_DRIVER, NULL);
1847 		cv_init(&vdc->local_dring[i].cv, NULL, CV_DRIVER, NULL);
1848 	}
1849 
1850 	/*
1851 	 * We init the index of the last DRing entry used. Since the code to
1852 	 * get the next available entry increments it before selecting one,
1853 	 * we set it to the last DRing entry so that it wraps around to zero
1854 	 * for the 1st entry to be used.
1855 	 */
1856 	vdc->dring_curr_idx = VD_DRING_LEN - 1;
1857 
1858 	return (status);
1859 }
1860 
1861 /*
1862  * Function:
1863  *	vdc_destroy_descriptor_ring()
1864  *
1865  * Description:
1866  *
1867  * Arguments:
1868  *	vdc	- soft state pointer for this instance of the device driver.
1869  *
1870  * Return Code:
1871  *	None
1872  */
1873 static void
1874 vdc_destroy_descriptor_ring(vdc_t *vdc)
1875 {
1876 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
1877 	ldc_mem_handle_t	mhdl = NULL;
1878 	int			status = -1;
1879 	int			i;	/* loop */
1880 
1881 	ASSERT(vdc != NULL);
1882 	ASSERT(mutex_owned(&vdc->lock));
1883 	ASSERT(vdc->state == VD_STATE_INIT);
1884 
1885 	PR0("%s: Entered\n", __func__);
1886 
1887 	if (vdc->initialized & VDC_DRING_ENTRY) {
1888 		PR0("[%d] Removing Local DRing entries\n", vdc->instance);
1889 		for (i = 0; i < VD_DRING_LEN; i++) {
1890 			ldep = &vdc->local_dring[i];
1891 			mhdl = ldep->desc_mhdl;
1892 
1893 			if (mhdl == NULL)
1894 				continue;
1895 
1896 			(void) ldc_mem_free_handle(mhdl);
1897 			mutex_destroy(&ldep->lock);
1898 			cv_destroy(&ldep->cv);
1899 		}
1900 		vdc->initialized &= ~VDC_DRING_ENTRY;
1901 	}
1902 
1903 	if (vdc->initialized & VDC_DRING_LOCAL) {
1904 		PR0("[%d] Freeing Local DRing\n", vdc->instance);
1905 		kmem_free(vdc->local_dring,
1906 				VD_DRING_LEN * sizeof (vdc_local_desc_t));
1907 		vdc->initialized &= ~VDC_DRING_LOCAL;
1908 	}
1909 
1910 	if (vdc->initialized & VDC_DRING_BOUND) {
1911 		PR0("[%d] Unbinding DRing\n", vdc->instance);
1912 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
1913 		if (status == 0) {
1914 			vdc->initialized &= ~VDC_DRING_BOUND;
1915 		} else {
1916 			vdc_msg("%s: Failed to unbind Descriptor Ring (%lx)\n",
1917 				vdc->ldc_dring_hdl);
1918 		}
1919 	}
1920 
1921 	if (vdc->initialized & VDC_DRING_INIT) {
1922 		PR0("[%d] Destroying DRing\n", vdc->instance);
1923 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
1924 		if (status == 0) {
1925 			vdc->ldc_dring_hdl = NULL;
1926 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
1927 			vdc->initialized &= ~VDC_DRING_INIT;
1928 		} else {
1929 			vdc_msg("%s: Failed to destroy Descriptor Ring (%lx)\n",
1930 					vdc->ldc_dring_hdl);
1931 		}
1932 	}
1933 }
1934 
1935 /*
1936  * vdc_get_next_dring_entry_idx()
1937  *
1938  * Description:
1939  *	This function gets the index of the next Descriptor Ring entry available
1940  *	If the ring is full, it will back off and wait for the next entry to be
1941  *	freed (the ACK handler will signal).
1942  *
1943  * Return Value:
1944  *	0 <= rv < VD_DRING_LEN		Next available slot
1945  *	-1 				DRing is full
1946  */
1947 static int
1948 vdc_get_next_dring_entry_idx(vdc_t *vdc, uint_t num_slots_needed)
1949 {
1950 	_NOTE(ARGUNUSED(num_slots_needed))
1951 
1952 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry Pointer */
1953 	vdc_local_desc_t	*ldep = NULL;	/* Local DRing Entry Pointer */
1954 	int			idx = -1;
1955 
1956 	ASSERT(vdc != NULL);
1957 	ASSERT(vdc->dring_len == VD_DRING_LEN);
1958 	ASSERT(vdc->dring_curr_idx >= 0);
1959 	ASSERT(vdc->dring_curr_idx < VD_DRING_LEN);
1960 	ASSERT(mutex_owned(&vdc->dring_lock));
1961 
1962 	/* pick the next descriptor after the last one used */
1963 	idx = (vdc->dring_curr_idx + 1) % VD_DRING_LEN;
1964 	ldep = &vdc->local_dring[idx];
1965 	ASSERT(ldep != NULL);
1966 	dep = ldep->dep;
1967 	ASSERT(dep != NULL);
1968 
1969 	mutex_enter(&ldep->lock);
1970 	if (dep->hdr.dstate == VIO_DESC_FREE) {
1971 		vdc->dring_curr_idx = idx;
1972 	} else {
1973 		DTRACE_PROBE(full);
1974 		(void) cv_timedwait(&ldep->cv, &ldep->lock,
1975 					VD_GET_TIMEOUT_HZ(1));
1976 		if (dep->hdr.dstate == VIO_DESC_FREE) {
1977 			vdc->dring_curr_idx = idx;
1978 		} else {
1979 			PR0("[%d] Entry %d unavailable still in state %d\n",
1980 					vdc->instance, idx, dep->hdr.dstate);
1981 			idx = -1; /* indicate that the ring is full */
1982 		}
1983 	}
1984 	mutex_exit(&ldep->lock);
1985 
1986 	return (idx);
1987 }
1988 
1989 /*
1990  * Function:
1991  *	vdc_populate_descriptor
1992  *
1993  * Description:
1994  *	This routine writes the data to be transmitted to vds into the
1995  *	descriptor, notifies vds that the ring has been updated and
1996  *	then waits for the request to be processed.
1997  *
1998  * Arguments:
1999  *	vdc	- the soft state pointer
2000  *	addr	- address of structure to be written. In the case of block
2001  *		  reads and writes this structure will be a buf_t and the
2002  *		  address of the data to be written will be in the b_un.b_addr
2003  *		  field. Otherwise the value of addr will be the address
2004  *		  to be written.
2005  *	nbytes	- number of bytes to read/write
2006  *	operation - operation we want vds to perform (VD_OP_XXX)
2007  *	arg	- parameter to be sent to server (depends on VD_OP_XXX type)
2008  *			. mode for ioctl(9e)
2009  *			. LP64 diskaddr_t (block I/O)
2010  *	slice	- the disk slice this request is for
2011  *
2012  * Return Codes:
2013  *	0
2014  *	EAGAIN
2015  *		EFAULT
2016  *		ENXIO
2017  *		EIO
2018  */
2019 static int
2020 vdc_populate_descriptor(vdc_t *vdc, caddr_t addr, size_t nbytes, int operation,
2021 				uint64_t arg, uint64_t slice)
2022 {
2023 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2024 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2025 	int			idx = 0;	/* Index of DRing entry used */
2026 	vio_dring_msg_t		dmsg;
2027 	size_t			msglen = sizeof (dmsg);
2028 	int			retries = 0;
2029 	int			rv;
2030 
2031 	ASSERT(vdc != NULL);
2032 	ASSERT(slice < V_NUMPAR);
2033 
2034 	/*
2035 	 * Get next available DRing entry.
2036 	 */
2037 	mutex_enter(&vdc->dring_lock);
2038 	idx = vdc_get_next_dring_entry_idx(vdc, 1);
2039 	if (idx == -1) {
2040 		mutex_exit(&vdc->dring_lock);
2041 		PR0("[%d] no descriptor ring entry avail, last seq=%d\n",
2042 				vdc->instance, vdc->seq_num - 1);
2043 
2044 		/*
2045 		 * Since strategy should not block we don't wait for the DRing
2046 		 * to empty and instead return
2047 		 */
2048 		return (EAGAIN);
2049 	}
2050 
2051 	ASSERT(idx < VD_DRING_LEN);
2052 	local_dep = &vdc->local_dring[idx];
2053 	dep = local_dep->dep;
2054 	ASSERT(dep != NULL);
2055 
2056 	/*
2057 	 * We now get the lock for this descriptor before dropping the overall
2058 	 * DRing lock. This prevents a race condition where another vdc thread
2059 	 * could grab the descriptor we selected.
2060 	 */
2061 	ASSERT(!MUTEX_HELD(&local_dep->lock));
2062 	mutex_enter(&local_dep->lock);
2063 	mutex_exit(&vdc->dring_lock);
2064 
2065 	switch (operation) {
2066 	case VD_OP_BREAD:
2067 	case VD_OP_BWRITE:
2068 		local_dep->buf = (struct buf *)addr;
2069 		local_dep->addr = local_dep->buf->b_un.b_addr;
2070 		PR1("buf=%p, block=%lx, nbytes=%lx\n", addr, arg, nbytes);
2071 		dep->payload.addr = (diskaddr_t)arg;
2072 		rv = vdc_populate_mem_hdl(vdc, idx, local_dep->addr,
2073 						nbytes, operation);
2074 		break;
2075 
2076 	case VD_OP_GET_VTOC:
2077 	case VD_OP_SET_VTOC:
2078 	case VD_OP_GET_DISKGEOM:
2079 	case VD_OP_SET_DISKGEOM:
2080 	case VD_OP_SCSICMD:
2081 		local_dep->addr = addr;
2082 		if (nbytes > 0) {
2083 			rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes,
2084 							operation);
2085 		}
2086 		break;
2087 
2088 	case VD_OP_FLUSH:
2089 	case VD_OP_GET_WCE:
2090 	case VD_OP_SET_WCE:
2091 		rv = 0;		/* nothing to bind */
2092 		break;
2093 
2094 	default:
2095 		cmn_err(CE_NOTE, "[%d] Unsupported vDisk operation [%d]\n",
2096 				vdc->instance, operation);
2097 		rv = EINVAL;
2098 	}
2099 
2100 	if (rv != 0) {
2101 		mutex_exit(&local_dep->lock);
2102 		return (rv);
2103 	}
2104 
2105 	/*
2106 	 * fill in the data details into the DRing
2107 	 */
2108 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdc);
2109 	dep->payload.operation = operation;
2110 	dep->payload.nbytes = nbytes;
2111 	dep->payload.status = EINPROGRESS;	/* vds will set valid value */
2112 	dep->payload.slice = slice;
2113 	dep->hdr.dstate = VIO_DESC_READY;
2114 	dep->hdr.ack = 1;		/* request an ACK for every message */
2115 
2116 	local_dep->flags = VIO_DESC_READY;
2117 
2118 	/*
2119 	 * Send a msg with the DRing details to vds
2120 	 */
2121 	mutex_enter(&vdc->lock);
2122 	VIO_INIT_DRING_DATA_TAG(dmsg);
2123 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2124 	dmsg.dring_ident = vdc->dring_ident;
2125 	dmsg.start_idx = idx;
2126 	dmsg.end_idx = idx;
2127 
2128 	DTRACE_IO2(send, vio_dring_msg_t *, &dmsg, vdc_t *, vdc);
2129 
2130 	PR1("ident=0x%llx, st=%d, end=%d, seq=%d req=%d dep=%p\n",
2131 			vdc->dring_ident, dmsg.start_idx, dmsg.end_idx,
2132 			dmsg.seq_num, dep->payload.req_id, dep);
2133 
2134 	rv = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2135 	PR1("%s[%d]: ldc_write() rv=%d\n", __func__, vdc->instance, rv);
2136 	if (rv != 0) {
2137 		mutex_exit(&vdc->lock);
2138 		mutex_exit(&local_dep->lock);
2139 		vdc_msg("%s: ldc_write(%d)\n", __func__, rv);
2140 
2141 		/* Clear the DRing entry */
2142 		rv = vdc_depopulate_descriptor(vdc, idx);
2143 
2144 		return (rv ? rv : EAGAIN);
2145 	}
2146 
2147 	/*
2148 	 * If the message was successfully sent, we increment the sequence
2149 	 * number to be used by the next message
2150 	 */
2151 	vdc->seq_num++;
2152 	mutex_exit(&vdc->lock);
2153 
2154 	/*
2155 	 * When a guest is panicking, the completion of requests needs to be
2156 	 * handled differently because interrupts are disabled and vdc
2157 	 * will not get messages. We have to poll for the messages instead.
2158 	 */
2159 	if (ddi_in_panic()) {
2160 		int start = 0;
2161 		retries = 0;
2162 		for (;;) {
2163 			msglen = sizeof (dmsg);
2164 			rv = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg,
2165 					&msglen);
2166 			if (rv) {
2167 				rv = EINVAL;
2168 				break;
2169 			}
2170 
2171 			/*
2172 			 * if there are no packets wait and check again
2173 			 */
2174 			if ((rv == 0) && (msglen == 0)) {
2175 				if (retries++ > vdc_dump_retries) {
2176 					PR0("[%d] Giving up waiting, idx %d\n",
2177 							vdc->instance, idx);
2178 					rv = EAGAIN;
2179 					break;
2180 				}
2181 
2182 				PR1("Waiting for next packet @ %d\n", idx);
2183 				drv_usecwait(vdc_usec_timeout_dump);
2184 				continue;
2185 			}
2186 
2187 			/*
2188 			 * Ignore all messages that are not ACKs/NACKs to
2189 			 * DRing requests.
2190 			 */
2191 			if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
2192 			    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
2193 				PR0("discarding pkt: type=%d sub=%d env=%d\n",
2194 					dmsg.tag.vio_msgtype,
2195 					dmsg.tag.vio_subtype,
2196 					dmsg.tag.vio_subtype_env);
2197 				continue;
2198 			}
2199 
2200 			/*
2201 			 * set the appropriate return value for the
2202 			 * current request.
2203 			 */
2204 			switch (dmsg.tag.vio_subtype) {
2205 			case VIO_SUBTYPE_ACK:
2206 				rv = 0;
2207 				break;
2208 			case VIO_SUBTYPE_NACK:
2209 				rv = EAGAIN;
2210 				break;
2211 			default:
2212 				continue;
2213 			}
2214 
2215 			start = dmsg.start_idx;
2216 			if (start >= VD_DRING_LEN) {
2217 				PR0("[%d] Bogus ack data : start %d\n",
2218 					vdc->instance, start);
2219 				continue;
2220 			}
2221 
2222 			dep = VDC_GET_DRING_ENTRY_PTR(vdc, start);
2223 
2224 			PR1("[%d] Dumping start=%d idx=%d state=%d\n",
2225 				vdc->instance, start, idx, dep->hdr.dstate);
2226 
2227 			if (dep->hdr.dstate != VIO_DESC_DONE) {
2228 				PR0("[%d] Entry @ %d - state !DONE %d\n",
2229 					vdc->instance, start, dep->hdr.dstate);
2230 				continue;
2231 			}
2232 
2233 			(void) vdc_depopulate_descriptor(vdc, start);
2234 
2235 			/*
2236 			 * We want to process all Dring entries up to
2237 			 * the current one so that we can return an
2238 			 * error with the correct request.
2239 			 */
2240 			if (idx > start) {
2241 				PR0("[%d] Looping: start %d, idx %d\n",
2242 						vdc->instance, idx, start);
2243 				continue;
2244 			}
2245 
2246 			/* exit - all outstanding requests are completed */
2247 			break;
2248 		}
2249 
2250 		mutex_exit(&local_dep->lock);
2251 
2252 		return (rv);
2253 	}
2254 
2255 	/*
2256 	 * In the case of calls from strategy and dump (in the non-panic case),
2257 	 * instead of waiting for a response from the vDisk server return now.
2258 	 * They will be processed asynchronously and the vdc ACK handling code
2259 	 * will trigger the biodone(9F)
2260 	 */
2261 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2262 		mutex_exit(&local_dep->lock);
2263 		return (rv);
2264 	}
2265 
2266 	/*
2267 	 * In the case of synchronous calls we watch the DRing entries we
2268 	 * modified and await the response from vds.
2269 	 */
2270 	rv = vdc_wait_for_descriptor_update(vdc, idx, dmsg);
2271 	if (rv == ETIMEDOUT) {
2272 		/* debug info when dumping state on vds side */
2273 		dep->payload.status = ECANCELED;
2274 	}
2275 
2276 	rv = vdc_depopulate_descriptor(vdc, idx);
2277 	PR1("%s[%d] Status=%d\n", __func__, vdc->instance, rv);
2278 
2279 	mutex_exit(&local_dep->lock);
2280 
2281 	return (rv);
2282 }
2283 
2284 /*
2285  * Function:
2286  *	vdc_wait_for_descriptor_update()
2287  *
2288  * Description:
2289  *
2290  * Arguments:
2291  *	vdc	- soft state pointer for this instance of the device driver.
2292  *	idx	- Index of the Descriptor Ring entry being modified
2293  *	dmsg	- LDC message sent by vDisk server
2294  *
2295  * Return Code:
2296  *	0	- Success
2297  */
2298 static int
2299 vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx, vio_dring_msg_t dmsg)
2300 {
2301 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2302 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2303 	size_t	msglen = sizeof (dmsg);
2304 	int	retries = 0;
2305 	int	status = 0;
2306 	int	rv = 0;
2307 
2308 	ASSERT(vdc != NULL);
2309 	ASSERT(idx < VD_DRING_LEN);
2310 	local_dep = &vdc->local_dring[idx];
2311 	ASSERT(local_dep != NULL);
2312 	dep = local_dep->dep;
2313 	ASSERT(dep != NULL);
2314 
2315 	while (dep->hdr.dstate != VIO_DESC_DONE) {
2316 		rv = cv_timedwait(&local_dep->cv, &local_dep->lock,
2317 			VD_GET_TIMEOUT_HZ(retries));
2318 		if (rv == -1) {
2319 			/*
2320 			 * If they persist in ignoring us we'll storm off in a
2321 			 * huff and return ETIMEDOUT to the upper layers.
2322 			 */
2323 			if (retries >= vdc_retries) {
2324 				PR0("%s: Finished waiting on entry %d\n",
2325 					__func__, idx);
2326 				status = ETIMEDOUT;
2327 				break;
2328 			} else {
2329 				retries++;
2330 				PR0("%s[%d]: Timeout #%d on entry %d "
2331 				    "[seq %d][req %d]\n", __func__,
2332 				    vdc->instance,
2333 				    retries, idx, dmsg.seq_num,
2334 				    dep->payload.req_id);
2335 			}
2336 
2337 			if (dep->hdr.dstate & VIO_DESC_ACCEPTED) {
2338 				PR0("%s[%d]: vds has accessed entry %d [seq %d]"
2339 				    "[req %d] but not ack'ed it yet\n",
2340 				    __func__, vdc->instance, idx, dmsg.seq_num,
2341 				    dep->payload.req_id);
2342 				continue;
2343 			}
2344 
2345 			/*
2346 			 * we resend the message as it may have been dropped
2347 			 * and have never made it to the other side (vds).
2348 			 * (We reuse the original message but update seq ID)
2349 			 */
2350 			mutex_enter(&vdc->lock);
2351 			VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2352 			retries = 0;
2353 			status = vdc_send(vdc, (caddr_t)&dmsg, &msglen);
2354 			if (status != 0) {
2355 				mutex_exit(&vdc->lock);
2356 				vdc_msg("%s: Error (%d) while resending after "
2357 					"timeout\n", __func__, status);
2358 				status = ETIMEDOUT;
2359 				break;
2360 			}
2361 			/*
2362 			 * If the message was successfully sent, we increment
2363 			 * the sequence number to be used by the next message.
2364 			 */
2365 			vdc->seq_num++;
2366 			mutex_exit(&vdc->lock);
2367 		}
2368 	}
2369 
2370 	return (status);
2371 }
2372 
2373 
2374 /*
2375  * Function:
2376  *	vdc_depopulate_descriptor()
2377  *
2378  * Description:
2379  *
2380  * Arguments:
2381  *	vdc	- soft state pointer for this instance of the device driver.
2382  *	idx	- Index of the Descriptor Ring entry being modified
2383  *
2384  * Return Code:
2385  *	0	- Success
2386  */
2387 static int
2388 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2389 {
2390 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2391 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
2392 	int		status = ENXIO;
2393 	int		operation;
2394 	int		rv = 0;
2395 
2396 	ASSERT(vdc != NULL);
2397 	ASSERT(idx < VD_DRING_LEN);
2398 	ldep = &vdc->local_dring[idx];
2399 	ASSERT(ldep != NULL);
2400 	dep = ldep->dep;
2401 	ASSERT(dep != NULL);
2402 
2403 	status = dep->payload.status;
2404 	operation = dep->payload.operation;
2405 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2406 	ldep = &vdc->local_dring[idx];
2407 	VIO_SET_DESC_STATE(ldep->flags, VIO_DESC_FREE);
2408 
2409 	/* the DKIO W$ operations never bind handles so we can return now */
2410 	if ((operation == VD_OP_FLUSH) ||
2411 	    (operation == VD_OP_GET_WCE) ||
2412 	    (operation == VD_OP_SET_WCE))
2413 		return (status);
2414 
2415 	/*
2416 	 * If the upper layer passed in a misaligned address we copied the
2417 	 * data into an aligned buffer before sending it to LDC - we now
2418 	 * copy it back to the original buffer.
2419 	 */
2420 	if (ldep->align_addr) {
2421 		ASSERT(ldep->addr != NULL);
2422 		ASSERT(dep->payload.nbytes > 0);
2423 
2424 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2425 		kmem_free(ldep->align_addr,
2426 			sizeof (caddr_t) * P2ROUNDUP(dep->payload.nbytes, 8));
2427 		ldep->align_addr = NULL;
2428 	}
2429 
2430 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
2431 	if (rv != 0) {
2432 		cmn_err(CE_NOTE, "[%d] unbind mem hdl 0x%lx @ idx %d failed:%d",
2433 				vdc->instance, ldep->desc_mhdl, idx, rv);
2434 		/*
2435 		 * The error returned by the vDisk server is more informative
2436 		 * and thus has a higher priority but if it isn't set we ensure
2437 		 * that this function returns an error.
2438 		 */
2439 		if (status == 0)
2440 			status = EINVAL;
2441 	}
2442 
2443 	return (status);
2444 }
2445 
2446 /*
2447  * Function:
2448  *	vdc_populate_mem_hdl()
2449  *
2450  * Description:
2451  *
2452  * Arguments:
2453  *	vdc	- soft state pointer for this instance of the device driver.
2454  *	idx	- Index of the Descriptor Ring entry being modified
2455  *	addr	- virtual address being mapped in
2456  *	nybtes	- number of bytes in 'addr'
2457  *	operation - the vDisk operation being performed (VD_OP_xxx)
2458  *
2459  * Return Code:
2460  *	0	- Success
2461  */
2462 static int
2463 vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx, caddr_t addr, size_t nbytes,
2464 			int operation)
2465 {
2466 	vd_dring_entry_t	*dep = NULL;
2467 	vdc_local_desc_t	*ldep = NULL;
2468 	ldc_mem_handle_t	mhdl;
2469 	caddr_t			vaddr;
2470 	int			perm = LDC_MEM_RW;
2471 	int			rv = 0;
2472 	int			i;
2473 
2474 	ASSERT(vdc != NULL);
2475 	ASSERT(idx < VD_DRING_LEN);
2476 
2477 	dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
2478 	ldep = &vdc->local_dring[idx];
2479 	mhdl = ldep->desc_mhdl;
2480 
2481 	switch (operation) {
2482 	case VD_OP_BREAD:
2483 		perm = LDC_MEM_W;
2484 		break;
2485 
2486 	case VD_OP_BWRITE:
2487 		perm = LDC_MEM_R;
2488 		break;
2489 
2490 	case VD_OP_GET_VTOC:
2491 	case VD_OP_SET_VTOC:
2492 	case VD_OP_GET_DISKGEOM:
2493 	case VD_OP_SET_DISKGEOM:
2494 	case VD_OP_SCSICMD:
2495 		perm = LDC_MEM_RW;
2496 		break;
2497 
2498 	default:
2499 		ASSERT(0);	/* catch bad programming in vdc */
2500 	}
2501 
2502 	/*
2503 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2504 	 * to copy the contents of any misaligned buffers to a newly allocated
2505 	 * buffer and bind it instead (and copy the the contents back to the
2506 	 * original buffer passed in when depopulating the descriptor)
2507 	 */
2508 	vaddr = addr;
2509 	if (((uint64_t)addr & 0x7) != 0) {
2510 		ASSERT(ldep->align_addr == NULL);
2511 		ldep->align_addr =
2512 			kmem_zalloc(sizeof (caddr_t) * P2ROUNDUP(nbytes, 8),
2513 					KM_SLEEP);
2514 		PR0("%s[%d] Misaligned address %lx reallocating "
2515 		    "(buf=%lx nb=%d op=%d entry=%d)\n",
2516 		    __func__, vdc->instance, addr, ldep->align_addr, nbytes,
2517 		    operation, idx);
2518 		bcopy(addr, ldep->align_addr, nbytes);
2519 		vaddr = ldep->align_addr;
2520 	}
2521 
2522 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2523 		LDC_SHADOW_MAP, perm, &dep->payload.cookie[0],
2524 		&dep->payload.ncookies);
2525 	PR1("%s[%d] bound mem handle; ncookies=%d\n",
2526 			__func__, vdc->instance, dep->payload.ncookies);
2527 	if (rv != 0) {
2528 		vdc_msg("%s[%d] failed to ldc_mem_bind_handle "
2529 		    "(mhdl=%lx, buf=%lx entry=%d err=%d)\n",
2530 		    __func__, vdc->instance, mhdl, addr, idx, rv);
2531 		if (ldep->align_addr) {
2532 			kmem_free(ldep->align_addr,
2533 				sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
2534 			ldep->align_addr = NULL;
2535 		}
2536 		return (EAGAIN);
2537 	}
2538 
2539 	/*
2540 	 * Get the other cookies (if any).
2541 	 */
2542 	for (i = 1; i < dep->payload.ncookies; i++) {
2543 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2544 		if (rv != 0) {
2545 			(void) ldc_mem_unbind_handle(mhdl);
2546 			vdc_msg("%s: failed to get next cookie(mhdl=%lx "
2547 				"cnum=%d), err=%d", __func__, mhdl, i, rv);
2548 			if (ldep->align_addr) {
2549 				kmem_free(ldep->align_addr,
2550 					sizeof (caddr_t) * dep->payload.nbytes);
2551 				ldep->align_addr = NULL;
2552 			}
2553 			return (EAGAIN);
2554 		}
2555 	}
2556 
2557 	return (rv);
2558 }
2559 
2560 /*
2561  * Interrupt handlers for messages from LDC
2562  */
2563 
2564 /*
2565  * Function:
2566  *	vdc_handle_cb()
2567  *
2568  * Description:
2569  *
2570  * Arguments:
2571  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
2572  *	arg	- soft state pointer for this instance of the device driver.
2573  *
2574  * Return Code:
2575  *	0	- Success
2576  */
2577 static uint_t
2578 vdc_handle_cb(uint64_t event, caddr_t arg)
2579 {
2580 	ldc_status_t	ldc_state;
2581 	int		rv = 0;
2582 
2583 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2584 
2585 	ASSERT(vdc != NULL);
2586 
2587 	PR1("%s[%d] event=%x seqID=%d\n",
2588 			__func__, vdc->instance, event, vdc->seq_num);
2589 
2590 	/*
2591 	 * Depending on the type of event that triggered this callback,
2592 	 * we modify the handhske state or read the data.
2593 	 *
2594 	 * NOTE: not done as a switch() as event could be triggered by
2595 	 * a state change and a read request. Also the ordering	of the
2596 	 * check for the event types is deliberate.
2597 	 */
2598 	if (event & LDC_EVT_UP) {
2599 		PR0("%s[%d] Received LDC_EVT_UP\n", __func__, vdc->instance);
2600 
2601 		/* get LDC state */
2602 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2603 		if (rv != 0) {
2604 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2605 					vdc->instance, rv);
2606 			mutex_enter(&vdc->lock);
2607 			vdc_reset_connection(vdc, B_TRUE);
2608 			mutex_exit(&vdc->lock);
2609 			return (LDC_SUCCESS);
2610 		}
2611 
2612 		/*
2613 		 * Reset the transaction sequence numbers when LDC comes up.
2614 		 * We then kick off the handshake negotiation with the vDisk
2615 		 * server.
2616 		 */
2617 		mutex_enter(&vdc->lock);
2618 		vdc->seq_num = 1;
2619 		vdc->seq_num_reply = 0;
2620 		vdc->ldc_state = ldc_state;
2621 		ASSERT(ldc_state == LDC_UP);
2622 		mutex_exit(&vdc->lock);
2623 
2624 		vdc_init_handshake_negotiation(vdc);
2625 
2626 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2627 	}
2628 
2629 	if (event & LDC_EVT_READ) {
2630 		/*
2631 		 * Wake up the worker thread to process the message
2632 		 */
2633 		mutex_enter(&vdc->msg_proc_lock);
2634 		vdc->msg_pending = B_TRUE;
2635 		cv_signal(&vdc->msg_proc_cv);
2636 		mutex_exit(&vdc->msg_proc_lock);
2637 
2638 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2639 
2640 		/* that's all we have to do - no need to handle DOWN/RESET */
2641 		return (LDC_SUCCESS);
2642 	}
2643 
2644 	if (event & LDC_EVT_RESET) {
2645 		PR0("%s[%d] Recvd LDC RESET event\n", __func__, vdc->instance);
2646 
2647 		/* get LDC state */
2648 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2649 		if (rv != 0) {
2650 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2651 					vdc->instance, rv);
2652 			ldc_state = LDC_OPEN;
2653 		}
2654 		mutex_enter(&vdc->lock);
2655 		vdc->ldc_state = ldc_state;
2656 		vdc_reset_connection(vdc, B_FALSE);
2657 		mutex_exit(&vdc->lock);
2658 
2659 		vdc_init_handshake_negotiation(vdc);
2660 	}
2661 
2662 	if (event & LDC_EVT_DOWN) {
2663 		PR0("%s[%d] Recvd LDC DOWN event\n", __func__, vdc->instance);
2664 
2665 		/* get LDC state */
2666 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2667 		if (rv != 0) {
2668 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2669 					vdc->instance, rv);
2670 			ldc_state = LDC_OPEN;
2671 		}
2672 		mutex_enter(&vdc->lock);
2673 		vdc->ldc_state = ldc_state;
2674 		vdc_reset_connection(vdc, B_TRUE);
2675 		mutex_exit(&vdc->lock);
2676 	}
2677 
2678 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
2679 		cmn_err(CE_NOTE, "![%d] Unexpected LDC event (%lx) received",
2680 				vdc->instance, event);
2681 
2682 	return (LDC_SUCCESS);
2683 }
2684 
2685 /* -------------------------------------------------------------------------- */
2686 
2687 /*
2688  * The following functions process the incoming messages from vds
2689  */
2690 
2691 
2692 /*
2693  * Function:
2694  *	vdc_process_msg_thread()
2695  *
2696  * Description:
2697  *
2698  * Arguments:
2699  *	vdc	- soft state pointer for this instance of the device driver.
2700  *
2701  * Return Code:
2702  *	None
2703  */
2704 static void
2705 vdc_process_msg_thread(vdc_t *vdc)
2706 {
2707 	int		status = 0;
2708 	boolean_t	q_is_empty = B_TRUE;
2709 
2710 	ASSERT(vdc != NULL);
2711 
2712 	mutex_enter(&vdc->msg_proc_lock);
2713 	PR0("%s[%d]: Starting\n", __func__, vdc->instance);
2714 
2715 	vdc->msg_proc_thr_state = VDC_THR_RUNNING;
2716 
2717 	while (vdc->msg_proc_thr_state == VDC_THR_RUNNING) {
2718 
2719 		PR1("%s[%d] Waiting\n", __func__, vdc->instance);
2720 		while (!vdc->msg_pending)
2721 			cv_wait(&vdc->msg_proc_cv, &vdc->msg_proc_lock);
2722 
2723 		PR1("%s[%d] Message Received\n", __func__, vdc->instance);
2724 
2725 		/* check if there is data */
2726 		status = ldc_chkq(vdc->ldc_handle, &q_is_empty);
2727 		if ((status != 0) &&
2728 		    (vdc->msg_proc_thr_state == VDC_THR_RUNNING)) {
2729 			cmn_err(CE_NOTE, "[%d] Unable to communicate with vDisk"
2730 					" server. Cannot check LDC queue: %d",
2731 					vdc->instance, status);
2732 			mutex_enter(&vdc->lock);
2733 			vdc_reset_connection(vdc, B_FALSE);
2734 			mutex_exit(&vdc->lock);
2735 			vdc->msg_proc_thr_state = VDC_THR_STOP;
2736 			continue;
2737 		}
2738 
2739 		if (!q_is_empty) {
2740 			PR1("%s: new pkt(s) available\n", __func__);
2741 			vdc_process_msg(vdc);
2742 		}
2743 
2744 		vdc->msg_pending = B_FALSE;
2745 	}
2746 
2747 	PR0("Message processing thread stopped\n");
2748 	vdc->msg_pending = B_FALSE;
2749 	vdc->msg_proc_thr_state = VDC_THR_DONE;
2750 	cv_signal(&vdc->msg_proc_cv);
2751 	mutex_exit(&vdc->msg_proc_lock);
2752 	thread_exit();
2753 }
2754 
2755 
2756 /*
2757  * Function:
2758  *	vdc_process_msg()
2759  *
2760  * Description:
2761  *	This function is called by the message processing thread each time it
2762  *	is triggered when LDC sends an interrupt to indicate that there are
2763  *	more packets on the queue. When it is called it will continue to loop
2764  *	and read the messages until there are no more left of the queue. If it
2765  *	encounters an invalid sized message it will drop it and check the next
2766  *	message.
2767  *
2768  * Arguments:
2769  *	arg	- soft state pointer for this instance of the device driver.
2770  *
2771  * Return Code:
2772  *	None.
2773  */
2774 static void
2775 vdc_process_msg(void *arg)
2776 {
2777 	vdc_t		*vdc = (vdc_t *)(void *)arg;
2778 	vio_msg_t	vio_msg;
2779 	size_t		nbytes = sizeof (vio_msg);
2780 	int		status;
2781 
2782 	ASSERT(vdc != NULL);
2783 
2784 	mutex_enter(&vdc->lock);
2785 
2786 	PR1("%s\n", __func__);
2787 
2788 	for (;;) {
2789 
2790 		/* read all messages - until no more left */
2791 		status = ldc_read(vdc->ldc_handle, (caddr_t)&vio_msg, &nbytes);
2792 
2793 		if (status) {
2794 			vdc_msg("%s: ldc_read() failed = %d", __func__, status);
2795 
2796 			/* if status is ECONNRESET --- reset vdc state */
2797 			if (status == EIO || status == ECONNRESET) {
2798 				vdc_reset_connection(vdc, B_TRUE);
2799 			}
2800 
2801 			mutex_exit(&vdc->lock);
2802 			return;
2803 		}
2804 
2805 		if ((nbytes > 0) && (nbytes < sizeof (vio_msg_tag_t))) {
2806 			cmn_err(CE_CONT, "![%d] Expect %lu bytes; recv'd %lu\n",
2807 				vdc->instance, sizeof (vio_msg_tag_t), nbytes);
2808 			mutex_exit(&vdc->lock);
2809 			return;
2810 		}
2811 
2812 		if (nbytes == 0) {
2813 			PR2("%s[%d]: ldc_read() done..\n",
2814 					__func__, vdc->instance);
2815 			mutex_exit(&vdc->lock);
2816 			return;
2817 		}
2818 
2819 		PR1("%s[%d] (%x/%x/%x)\n", __func__, vdc->instance,
2820 		    vio_msg.tag.vio_msgtype,
2821 		    vio_msg.tag.vio_subtype,
2822 		    vio_msg.tag.vio_subtype_env);
2823 
2824 		/*
2825 		 * Verify the Session ID of the message
2826 		 *
2827 		 * Every message after the Version has been negotiated should
2828 		 * have the correct session ID set.
2829 		 */
2830 		if ((vio_msg.tag.vio_sid != vdc->session_id) &&
2831 		    (vio_msg.tag.vio_subtype_env != VIO_VER_INFO)) {
2832 			cmn_err(CE_NOTE, "[%d] Invalid SID 0x%x, expect 0x%lx",
2833 				vdc->instance, vio_msg.tag.vio_sid,
2834 				vdc->session_id);
2835 			vdc_reset_connection(vdc, B_FALSE);
2836 			mutex_exit(&vdc->lock);
2837 			return;
2838 		}
2839 
2840 		switch (vio_msg.tag.vio_msgtype) {
2841 		case VIO_TYPE_CTRL:
2842 			status = vdc_process_ctrl_msg(vdc, vio_msg);
2843 			break;
2844 		case VIO_TYPE_DATA:
2845 			status = vdc_process_data_msg(vdc, vio_msg);
2846 			break;
2847 		case VIO_TYPE_ERR:
2848 			status = vdc_process_err_msg(vdc, vio_msg);
2849 			break;
2850 		default:
2851 			PR1("%s", __func__);
2852 			status = EINVAL;
2853 			break;
2854 		}
2855 
2856 		if (status != 0) {
2857 			PR0("%s[%d] Error (%d) occcurred processing msg\n",
2858 					__func__, vdc->instance, status);
2859 			vdc_reset_connection(vdc, B_FALSE);
2860 		}
2861 	}
2862 	_NOTE(NOTREACHED)
2863 }
2864 
2865 /*
2866  * Function:
2867  *	vdc_process_ctrl_msg()
2868  *
2869  * Description:
2870  *	This function is called by the message processing thread each time
2871  *	an LDC message with a msgtype of VIO_TYPE_CTRL is received.
2872  *
2873  * Arguments:
2874  *	vdc	- soft state pointer for this instance of the device driver.
2875  *	msg	- the LDC message sent by vds
2876  *
2877  * Return Codes:
2878  *	0	- Success.
2879  *	EPROTO	- A message was received which shouldn't have happened according
2880  *		  to the protocol
2881  *	ENOTSUP	- An action which is allowed according to the protocol but which
2882  *		  isn't (or doesn't need to be) implemented yet.
2883  *	EINVAL	- An invalid value was returned as part of a message.
2884  */
2885 static int
2886 vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg)
2887 {
2888 	int			status = -1;
2889 
2890 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_CTRL);
2891 	ASSERT(vdc != NULL);
2892 	ASSERT(mutex_owned(&vdc->lock));
2893 
2894 	/* Depending on which state we are in; process the message */
2895 	switch (vdc->state) {
2896 	case VD_STATE_INIT:
2897 		status = vdc_handle_ver_msg(vdc, (vio_ver_msg_t *)&msg);
2898 		break;
2899 
2900 	case VD_STATE_VER:
2901 		status = vdc_handle_attr_msg(vdc, (vd_attr_msg_t *)&msg);
2902 		break;
2903 
2904 	case VD_STATE_ATTR:
2905 		status = vdc_handle_dring_reg_msg(vdc,
2906 				(vio_dring_reg_msg_t *)&msg);
2907 		break;
2908 
2909 	case VD_STATE_RDX:
2910 		if (msg.tag.vio_subtype_env != VIO_RDX) {
2911 			status = EPROTO;
2912 			break;
2913 		}
2914 
2915 		PR0("%s: Received RDX - handshake successful\n", __func__);
2916 
2917 		vdc->hshake_cnt = 0;	/* reset failed handshake count */
2918 		status = 0;
2919 		vdc->state = VD_STATE_DATA;
2920 
2921 		cv_broadcast(&vdc->attach_cv);
2922 		break;
2923 
2924 	case VD_STATE_DATA:
2925 	default:
2926 		cmn_err(CE_NOTE, "[%d] Unexpected handshake state %d",
2927 				vdc->instance, vdc->state);
2928 		status = EPROTO;
2929 		break;
2930 	}
2931 
2932 	return (status);
2933 }
2934 
2935 
2936 /*
2937  * Function:
2938  *	vdc_process_data_msg()
2939  *
2940  * Description:
2941  *	This function is called by the message processing thread each time
2942  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
2943  *	be an ACK or NACK from vds[1] which vdc handles as follows.
2944  *		ACK	- wake up the waiting thread
2945  *		NACK	- resend any messages necessary
2946  *
2947  *	[1] Although the message format allows it, vds should not send a
2948  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
2949  *	    some bizarre reason it does, vdc will reset the connection.
2950  *
2951  * Arguments:
2952  *	vdc	- soft state pointer for this instance of the device driver.
2953  *	msg	- the LDC message sent by vds
2954  *
2955  * Return Code:
2956  *	0	- Success.
2957  *	> 0	- error value returned by LDC
2958  */
2959 static int
2960 vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg)
2961 {
2962 	int			status = 0;
2963 	vdc_local_desc_t	*ldep = NULL;
2964 	vio_dring_msg_t		*dring_msg = NULL;
2965 	uint_t			num_msgs;
2966 	uint_t			start;
2967 	uint_t			end;
2968 	uint_t			i;
2969 
2970 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_DATA);
2971 	ASSERT(vdc != NULL);
2972 	ASSERT(mutex_owned(&vdc->lock));
2973 
2974 	dring_msg = (vio_dring_msg_t *)&msg;
2975 
2976 	/*
2977 	 * Check to see if the message has bogus data
2978 	 */
2979 	start = dring_msg->start_idx;
2980 	end = dring_msg->end_idx;
2981 	if ((start >= VD_DRING_LEN) || (end >= VD_DRING_LEN)) {
2982 		vdc_msg("%s: Bogus ACK data : start %d, end %d\n",
2983 			__func__, start, end);
2984 		return (EPROTO);
2985 	}
2986 
2987 	DTRACE_IO2(recv, vio_dring_msg_t, dring_msg, vdc_t *, vdc);
2988 
2989 	/*
2990 	 * calculate the number of messages that vds ACK'ed
2991 	 *
2992 	 * Assumes, (like the rest of vdc) that there is a 1:1 mapping
2993 	 * between requests and Dring entries.
2994 	 */
2995 	num_msgs = (end >= start) ?
2996 			(end - start + 1) :
2997 			(VD_DRING_LEN - start + end + 1);
2998 
2999 	/*
3000 	 * Verify that the sequence number is what vdc expects.
3001 	 */
3002 	if (!vdc_verify_seq_num(vdc, dring_msg, num_msgs)) {
3003 		return (ENXIO);
3004 	}
3005 
3006 	/*
3007 	 * Wake the thread waiting for each DRing entry ACK'ed
3008 	 */
3009 	for (i = 0; i < num_msgs; i++) {
3010 		int operation;
3011 		int idx = (start + i) % VD_DRING_LEN;
3012 
3013 		ldep = &vdc->local_dring[idx];
3014 		mutex_enter(&ldep->lock);
3015 		operation = ldep->dep->payload.operation;
3016 		if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
3017 			/*
3018 			 * The vDisk server responds when it accepts a
3019 			 * descriptor so we continue looping and process
3020 			 * it when it sends the message that it is done.
3021 			 */
3022 			if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3023 				mutex_exit(&ldep->lock);
3024 				continue;
3025 			}
3026 			bioerror(ldep->buf, ldep->dep->payload.status);
3027 			biodone(ldep->buf);
3028 
3029 			DTRACE_IO2(vdone, buf_t *, ldep->buf, vdc_t *, vdc);
3030 
3031 			/* Clear the DRing entry */
3032 			status = vdc_depopulate_descriptor(vdc, idx);
3033 		}
3034 		cv_signal(&ldep->cv);
3035 		mutex_exit(&ldep->lock);
3036 	}
3037 
3038 	if (msg.tag.vio_subtype == VIO_SUBTYPE_NACK) {
3039 		PR0("%s: DATA NACK\n", __func__);
3040 		VDC_DUMP_DRING_MSG(dring_msg);
3041 		vdc_reset_connection(vdc, B_FALSE);
3042 
3043 		/* we need to drop the lock to trigger the handshake */
3044 		mutex_exit(&vdc->lock);
3045 		vdc_init_handshake_negotiation(vdc);
3046 		mutex_enter(&vdc->lock);
3047 	} else if (msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
3048 		status = EPROTO;
3049 	}
3050 
3051 	return (status);
3052 }
3053 
3054 /*
3055  * Function:
3056  *	vdc_process_err_msg()
3057  *
3058  * NOTE: No error messages are used as part of the vDisk protocol
3059  */
3060 static int
3061 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
3062 {
3063 	_NOTE(ARGUNUSED(vdc))
3064 	_NOTE(ARGUNUSED(msg))
3065 
3066 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
3067 	cmn_err(CE_NOTE, "[%d] Got an ERR msg", vdc->instance);
3068 
3069 	return (ENOTSUP);
3070 }
3071 
3072 /*
3073  * Function:
3074  *	vdc_handle_ver_msg()
3075  *
3076  * Description:
3077  *
3078  * Arguments:
3079  *	vdc	- soft state pointer for this instance of the device driver.
3080  *	ver_msg	- LDC message sent by vDisk server
3081  *
3082  * Return Code:
3083  *	0	- Success
3084  */
3085 static int
3086 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
3087 {
3088 	int status = 0;
3089 
3090 	ASSERT(vdc != NULL);
3091 	ASSERT(mutex_owned(&vdc->lock));
3092 
3093 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
3094 		return (EPROTO);
3095 	}
3096 
3097 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
3098 		return (EINVAL);
3099 	}
3100 
3101 	switch (ver_msg->tag.vio_subtype) {
3102 	case VIO_SUBTYPE_ACK:
3103 		/*
3104 		 * We check to see if the version returned is indeed supported
3105 		 * (The server may have also adjusted the minor number downwards
3106 		 * and if so 'ver_msg' will contain the actual version agreed)
3107 		 */
3108 		if (vdc_is_supported_version(ver_msg)) {
3109 			vdc->ver.major = ver_msg->ver_major;
3110 			vdc->ver.minor = ver_msg->ver_minor;
3111 			ASSERT(vdc->ver.major > 0);
3112 
3113 			vdc->state = VD_STATE_VER;
3114 			status = vdc_init_attr_negotiation(vdc);
3115 		} else {
3116 			status = EPROTO;
3117 		}
3118 		break;
3119 
3120 	case VIO_SUBTYPE_NACK:
3121 		/*
3122 		 * call vdc_is_supported_version() which will return the next
3123 		 * supported version (if any) in 'ver_msg'
3124 		 */
3125 		(void) vdc_is_supported_version(ver_msg);
3126 		if (ver_msg->ver_major > 0) {
3127 			size_t len = sizeof (*ver_msg);
3128 
3129 			ASSERT(vdc->ver.major > 0);
3130 
3131 			/* reset the necessary fields and resend */
3132 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
3133 			ver_msg->dev_class = VDEV_DISK;
3134 
3135 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
3136 			PR0("[%d] Resend VER info (LDC status = %d)\n",
3137 					vdc->instance, status);
3138 			if (len != sizeof (*ver_msg))
3139 				status = EBADMSG;
3140 		} else {
3141 			cmn_err(CE_NOTE, "[%d] No common version with "
3142 					"vDisk server", vdc->instance);
3143 			status = ENOTSUP;
3144 		}
3145 
3146 		break;
3147 	case VIO_SUBTYPE_INFO:
3148 		/*
3149 		 * Handle the case where vds starts handshake
3150 		 * (for now only vdc is the instigatior)
3151 		 */
3152 		status = ENOTSUP;
3153 		break;
3154 
3155 	default:
3156 		status = EINVAL;
3157 		break;
3158 	}
3159 
3160 	return (status);
3161 }
3162 
3163 /*
3164  * Function:
3165  *	vdc_handle_attr_msg()
3166  *
3167  * Description:
3168  *
3169  * Arguments:
3170  *	vdc	- soft state pointer for this instance of the device driver.
3171  *	attr_msg	- LDC message sent by vDisk server
3172  *
3173  * Return Code:
3174  *	0	- Success
3175  */
3176 static int
3177 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
3178 {
3179 	int status = 0;
3180 
3181 	ASSERT(vdc != NULL);
3182 	ASSERT(mutex_owned(&vdc->lock));
3183 
3184 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
3185 		return (EPROTO);
3186 	}
3187 
3188 	switch (attr_msg->tag.vio_subtype) {
3189 	case VIO_SUBTYPE_ACK:
3190 		/*
3191 		 * We now verify the attributes sent by vds.
3192 		 */
3193 		vdc->vdisk_size = attr_msg->vdisk_size;
3194 		vdc->vdisk_type = attr_msg->vdisk_type;
3195 
3196 		if ((attr_msg->max_xfer_sz != vdc->max_xfer_sz) ||
3197 		    (attr_msg->vdisk_block_size != vdc->block_size)) {
3198 			/*
3199 			 * Future support: step down to the block size
3200 			 * and max transfer size suggested by the
3201 			 * server. (If this value is less than 128K
3202 			 * then multiple Dring entries per request
3203 			 * would need to be implemented)
3204 			 */
3205 			cmn_err(CE_NOTE, "[%d] Couldn't process block "
3206 				"attributes from vds", vdc->instance);
3207 			status = EINVAL;
3208 			break;
3209 		}
3210 
3211 		if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
3212 		    (attr_msg->vdisk_size > INT64_MAX) ||
3213 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
3214 			vdc_msg("%s[%d] Couldn't process attrs "
3215 			    "from vds", __func__, vdc->instance);
3216 			status = EINVAL;
3217 			break;
3218 		}
3219 
3220 		vdc->state = VD_STATE_ATTR;
3221 		status = vdc_init_dring_negotiate(vdc);
3222 		break;
3223 
3224 	case VIO_SUBTYPE_NACK:
3225 		/*
3226 		 * vds could not handle the attributes we sent so we
3227 		 * stop negotiating.
3228 		 */
3229 		status = EPROTO;
3230 		break;
3231 
3232 	case VIO_SUBTYPE_INFO:
3233 		/*
3234 		 * Handle the case where vds starts the handshake
3235 		 * (for now; vdc is the only supported instigatior)
3236 		 */
3237 		status = ENOTSUP;
3238 		break;
3239 
3240 	default:
3241 		status = ENOTSUP;
3242 		break;
3243 	}
3244 
3245 	return (status);
3246 }
3247 
3248 /*
3249  * Function:
3250  *	vdc_handle_dring_reg_msg()
3251  *
3252  * Description:
3253  *
3254  * Arguments:
3255  *	vdc		- soft state pointer for this instance of the driver.
3256  *	dring_msg	- LDC message sent by vDisk server
3257  *
3258  * Return Code:
3259  *	0	- Success
3260  */
3261 static int
3262 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
3263 {
3264 	int		status = 0;
3265 	vio_rdx_msg_t	msg = {0};
3266 	size_t		msglen = sizeof (msg);
3267 
3268 	ASSERT(vdc != NULL);
3269 	ASSERT(mutex_owned(&vdc->lock));
3270 
3271 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
3272 		return (EPROTO);
3273 	}
3274 
3275 	switch (dring_msg->tag.vio_subtype) {
3276 	case VIO_SUBTYPE_ACK:
3277 		/* save the received dring_ident */
3278 		vdc->dring_ident = dring_msg->dring_ident;
3279 		PR0("%s[%d] Received dring ident=0x%lx\n",
3280 			__func__, vdc->instance, vdc->dring_ident);
3281 
3282 		/*
3283 		 * Send an RDX message to vds to indicate we are ready
3284 		 * to send data
3285 		 */
3286 		msg.tag.vio_msgtype = VIO_TYPE_CTRL;
3287 		msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
3288 		msg.tag.vio_subtype_env = VIO_RDX;
3289 		msg.tag.vio_sid = vdc->session_id;
3290 		status = vdc_send(vdc, (caddr_t)&msg, &msglen);
3291 		if (status != 0) {
3292 			cmn_err(CE_NOTE, "[%d] Failed to send RDX"
3293 				" message (%d)", vdc->instance, status);
3294 			break;
3295 		}
3296 
3297 		vdc->state = VD_STATE_RDX;
3298 		break;
3299 
3300 	case VIO_SUBTYPE_NACK:
3301 		/*
3302 		 * vds could not handle the DRing info we sent so we
3303 		 * stop negotiating.
3304 		 */
3305 		cmn_err(CE_CONT, "server could not register DRing\n");
3306 		vdc_reset_connection(vdc, B_FALSE);
3307 		vdc_destroy_descriptor_ring(vdc);
3308 		status = EPROTO;
3309 		break;
3310 
3311 	case VIO_SUBTYPE_INFO:
3312 		/*
3313 		 * Handle the case where vds starts handshake
3314 		 * (for now only vdc is the instigatior)
3315 		 */
3316 		status = ENOTSUP;
3317 		break;
3318 	default:
3319 		status = ENOTSUP;
3320 	}
3321 
3322 	return (status);
3323 }
3324 
3325 /*
3326  * Function:
3327  *	vdc_verify_seq_num()
3328  *
3329  * Description:
3330  *	This functions verifies that the sequence number sent back by vds with
3331  *	the latest message correctly follows the last request processed.
3332  *
3333  * Arguments:
3334  *	vdc		- soft state pointer for this instance of the driver.
3335  *	dring_msg	- pointer to the LDC message sent by vds
3336  *	num_msgs	- the number of requests being acknowledged
3337  *
3338  * Return Code:
3339  *	B_TRUE	- Success.
3340  *	B_FALSE	- The seq numbers are so out of sync, vdc cannot deal with them
3341  */
3342 static boolean_t
3343 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int num_msgs)
3344 {
3345 	ASSERT(vdc != NULL);
3346 	ASSERT(dring_msg != NULL);
3347 	ASSERT(mutex_owned(&vdc->lock));
3348 
3349 	/*
3350 	 * Check to see if the messages were responded to in the correct
3351 	 * order by vds. There are 3 possible scenarios:
3352 	 *	- the seq_num we expected is returned (everything is OK)
3353 	 *	- a seq_num earlier than the last one acknowledged is returned,
3354 	 *	  if so something is seriously wrong so we reset the connection
3355 	 *	- a seq_num greater than what we expected is returned.
3356 	 */
3357 	if (dring_msg->seq_num < vdc->seq_num_reply) {
3358 		vdc_msg("%s[%d]: Bogus seq_num %d, expected %d\n",
3359 			__func__, vdc->instance, dring_msg->seq_num,
3360 			vdc->seq_num_reply + num_msgs);
3361 		if (dring_msg->seq_num < (vdc->seq_num_reply + num_msgs)) {
3362 			return (B_FALSE);
3363 		} else {
3364 			/*
3365 			 * vds has responded with a seq_num greater than what we
3366 			 * expected
3367 			 */
3368 			return (B_FALSE);
3369 		}
3370 	}
3371 	vdc->seq_num_reply += num_msgs;
3372 
3373 	return (B_TRUE);
3374 }
3375 
3376 
3377 /*
3378  * Function:
3379  *	vdc_is_supported_version()
3380  *
3381  * Description:
3382  *	This routine checks if the major/minor version numbers specified in
3383  *	'ver_msg' are supported. If not it finds the next version that is
3384  *	in the supported version list 'vdc_version[]' and sets the fields in
3385  *	'ver_msg' to those values
3386  *
3387  * Arguments:
3388  *	ver_msg	- LDC message sent by vDisk server
3389  *
3390  * Return Code:
3391  *	B_TRUE	- Success
3392  *	B_FALSE	- Version not supported
3393  */
3394 static boolean_t
3395 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
3396 {
3397 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
3398 
3399 	for (int i = 0; i < vdc_num_versions; i++) {
3400 		ASSERT(vdc_version[i].major > 0);
3401 		ASSERT((i == 0) ||
3402 		    (vdc_version[i].major < vdc_version[i-1].major));
3403 
3404 		/*
3405 		 * If the major versions match, adjust the minor version, if
3406 		 * necessary, down to the highest value supported by this
3407 		 * client. The server should support all minor versions lower
3408 		 * than the value it sent
3409 		 */
3410 		if (ver_msg->ver_major == vdc_version[i].major) {
3411 			if (ver_msg->ver_minor > vdc_version[i].minor) {
3412 				PR0("Adjusting minor version from %u to %u",
3413 				    ver_msg->ver_minor, vdc_version[i].minor);
3414 				ver_msg->ver_minor = vdc_version[i].minor;
3415 			}
3416 			return (B_TRUE);
3417 		}
3418 
3419 		/*
3420 		 * If the message contains a higher major version number, set
3421 		 * the message's major/minor versions to the current values
3422 		 * and return false, so this message will get resent with
3423 		 * these values, and the server will potentially try again
3424 		 * with the same or a lower version
3425 		 */
3426 		if (ver_msg->ver_major > vdc_version[i].major) {
3427 			ver_msg->ver_major = vdc_version[i].major;
3428 			ver_msg->ver_minor = vdc_version[i].minor;
3429 			PR0("Suggesting major/minor (0x%x/0x%x)\n",
3430 				ver_msg->ver_major, ver_msg->ver_minor);
3431 
3432 			return (B_FALSE);
3433 		}
3434 
3435 		/*
3436 		 * Otherwise, the message's major version is less than the
3437 		 * current major version, so continue the loop to the next
3438 		 * (lower) supported version
3439 		 */
3440 	}
3441 
3442 	/*
3443 	 * No common version was found; "ground" the version pair in the
3444 	 * message to terminate negotiation
3445 	 */
3446 	ver_msg->ver_major = 0;
3447 	ver_msg->ver_minor = 0;
3448 
3449 	return (B_FALSE);
3450 }
3451 /* -------------------------------------------------------------------------- */
3452 
3453 /*
3454  * DKIO(7) support
3455  */
3456 
3457 typedef struct vdc_dk_arg {
3458 	struct dk_callback	dkc;
3459 	int			mode;
3460 	dev_t			dev;
3461 	vdc_t			*vdc;
3462 } vdc_dk_arg_t;
3463 
3464 /*
3465  * Function:
3466  * 	vdc_dkio_flush_cb()
3467  *
3468  * Description:
3469  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
3470  *	by kernel code.
3471  *
3472  * Arguments:
3473  *	arg	- a pointer to a vdc_dk_arg_t structure.
3474  */
3475 void
3476 vdc_dkio_flush_cb(void *arg)
3477 {
3478 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
3479 	struct dk_callback	*dkc = NULL;
3480 	vdc_t			*vdc = NULL;
3481 	int			rv;
3482 
3483 	if (dk_arg == NULL) {
3484 		vdc_msg("%s[?] DKIOCFLUSHWRITECACHE arg is NULL\n", __func__);
3485 		return;
3486 	}
3487 	dkc = &dk_arg->dkc;
3488 	vdc = dk_arg->vdc;
3489 	ASSERT(vdc != NULL);
3490 
3491 	rv = vdc_populate_descriptor(vdc, NULL, 0, VD_OP_FLUSH,
3492 		dk_arg->mode, SDPART(getminor(dk_arg->dev)));
3493 	if (rv != 0) {
3494 		PR0("%s[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
3495 			__func__, vdc->instance, rv,
3496 			ddi_model_convert_from(dk_arg->mode & FMODELS));
3497 	}
3498 
3499 	/*
3500 	 * Trigger the call back to notify the caller the the ioctl call has
3501 	 * been completed.
3502 	 */
3503 	if ((dk_arg->mode & FKIOCTL) &&
3504 	    (dkc != NULL) &&
3505 	    (dkc->dkc_callback != NULL)) {
3506 		ASSERT(dkc->dkc_cookie != NULL);
3507 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
3508 	}
3509 
3510 	/* Indicate that one less DKIO write flush is outstanding */
3511 	mutex_enter(&vdc->lock);
3512 	vdc->dkio_flush_pending--;
3513 	ASSERT(vdc->dkio_flush_pending >= 0);
3514 	mutex_exit(&vdc->lock);
3515 
3516 	/* free the mem that was allocated when the callback was dispatched */
3517 	kmem_free(arg, sizeof (vdc_dk_arg_t));
3518 }
3519 
3520 /*
3521  * This structure is used in the DKIO(7I) array below.
3522  */
3523 typedef struct vdc_dk_ioctl {
3524 	uint8_t		op;		/* VD_OP_XXX value */
3525 	int		cmd;		/* Solaris ioctl operation number */
3526 	size_t		nbytes;		/* size of structure to be copied */
3527 
3528 	/* function to convert between vDisk and Solaris structure formats */
3529 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
3530 	    int mode, int dir);
3531 } vdc_dk_ioctl_t;
3532 
3533 /*
3534  * Subset of DKIO(7I) operations currently supported
3535  */
3536 static vdc_dk_ioctl_t	dk_ioctl[] = {
3537 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	sizeof (int),
3538 		vdc_null_copy_func},
3539 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
3540 		vdc_null_copy_func},
3541 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
3542 		vdc_null_copy_func},
3543 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
3544 		vdc_get_vtoc_convert},
3545 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
3546 		vdc_set_vtoc_convert},
3547 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
3548 		vdc_get_geom_convert},
3549 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
3550 		vdc_get_geom_convert},
3551 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
3552 		vdc_get_geom_convert},
3553 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
3554 		vdc_set_geom_convert},
3555 
3556 	/*
3557 	 * These particular ioctls are not sent to the server - vdc fakes up
3558 	 * the necessary info.
3559 	 */
3560 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
3561 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
3562 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
3563 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
3564 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
3565 };
3566 
3567 /*
3568  * Function:
3569  *	vd_process_ioctl()
3570  *
3571  * Description:
3572  *	This routine processes disk specific ioctl calls
3573  *
3574  * Arguments:
3575  *	dev	- the device number
3576  *	cmd	- the operation [dkio(7I)] to be processed
3577  *	arg	- pointer to user provided structure
3578  *		  (contains data to be set or reference parameter for get)
3579  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
3580  *
3581  * Return Code:
3582  *	0
3583  *	EFAULT
3584  *	ENXIO
3585  *	EIO
3586  *	ENOTSUP
3587  */
3588 static int
3589 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
3590 {
3591 	int		instance = SDUNIT(getminor(dev));
3592 	vdc_t		*vdc = NULL;
3593 	int		rv = -1;
3594 	int		idx = 0;		/* index into dk_ioctl[] */
3595 	size_t		len = 0;		/* #bytes to send to vds */
3596 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
3597 	caddr_t		mem_p = NULL;
3598 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
3599 	struct vtoc	vtoc_saved;
3600 
3601 	PR0("%s: Processing ioctl(%x) for dev %x : model %x\n",
3602 		__func__, cmd, dev, ddi_model_convert_from(mode & FMODELS));
3603 
3604 	vdc = ddi_get_soft_state(vdc_state, instance);
3605 	if (vdc == NULL) {
3606 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
3607 		    instance);
3608 		return (ENXIO);
3609 	}
3610 
3611 	/*
3612 	 * Check to see if we can communicate with the vDisk server
3613 	 */
3614 	if (!vdc_is_able_to_tx_data(vdc, O_NONBLOCK)) {
3615 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
3616 		return (ENOLINK);
3617 	}
3618 
3619 	/*
3620 	 * Validate the ioctl operation to be performed.
3621 	 *
3622 	 * If we have looped through the array without finding a match then we
3623 	 * don't support this ioctl.
3624 	 */
3625 	for (idx = 0; idx < nioctls; idx++) {
3626 		if (cmd == dk_ioctl[idx].cmd)
3627 			break;
3628 	}
3629 
3630 	if (idx >= nioctls) {
3631 		PR0("%s[%d] Unsupported ioctl(%x)\n",
3632 				__func__, vdc->instance, cmd);
3633 		return (ENOTSUP);
3634 	}
3635 
3636 	len = dk_ioctl[idx].nbytes;
3637 
3638 	/*
3639 	 * Deal with the ioctls which the server does not provide. vdc can
3640 	 * fake these up and return immediately
3641 	 */
3642 	switch (cmd) {
3643 	case CDROMREADOFFSET:
3644 	case DKIOCREMOVABLE:
3645 	case USCSICMD:
3646 		return (ENOTTY);
3647 
3648 	case DKIOCINFO:
3649 		{
3650 			struct dk_cinfo	cinfo;
3651 			if (vdc->cinfo == NULL)
3652 				return (ENXIO);
3653 
3654 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
3655 			cinfo.dki_partition = SDPART(getminor(dev));
3656 
3657 			rv = ddi_copyout(&cinfo, (void *)arg,
3658 					sizeof (struct dk_cinfo), mode);
3659 			if (rv != 0)
3660 				return (EFAULT);
3661 
3662 			return (0);
3663 		}
3664 
3665 	case DKIOCGMEDIAINFO:
3666 		{
3667 			if (vdc->minfo == NULL)
3668 				return (ENXIO);
3669 
3670 			rv = ddi_copyout(vdc->minfo, (void *)arg,
3671 					sizeof (struct dk_minfo), mode);
3672 			if (rv != 0)
3673 				return (EFAULT);
3674 
3675 			return (0);
3676 		}
3677 
3678 	case DKIOCFLUSHWRITECACHE:
3679 		{
3680 			struct dk_callback *dkc = (struct dk_callback *)arg;
3681 			vdc_dk_arg_t	*dkarg = NULL;
3682 
3683 			PR1("[%d] Flush W$: mode %x\n", instance, mode);
3684 
3685 			/*
3686 			 * If the backing device is not a 'real' disk then the
3687 			 * W$ operation request to the vDisk server will fail
3688 			 * so we might as well save the cycles and return now.
3689 			 */
3690 			if (vdc->vdisk_type != VD_DISK_TYPE_DISK)
3691 				return (ENOTTY);
3692 
3693 			/*
3694 			 * If arg is NULL, then there is no callback function
3695 			 * registered and the call operates synchronously; we
3696 			 * break and continue with the rest of the function and
3697 			 * wait for vds to return (i.e. after the request to
3698 			 * vds returns successfully, all writes completed prior
3699 			 * to the ioctl will have been flushed from the disk
3700 			 * write cache to persistent media.
3701 			 *
3702 			 * If a callback function is registered, we dispatch
3703 			 * the request on a task queue and return immediately.
3704 			 * The callback will deal with informing the calling
3705 			 * thread that the flush request is completed.
3706 			 */
3707 			if (dkc == NULL)
3708 				break;
3709 
3710 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
3711 
3712 			dkarg->mode = mode;
3713 			dkarg->dev = dev;
3714 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
3715 
3716 			mutex_enter(&vdc->lock);
3717 			vdc->dkio_flush_pending++;
3718 			dkarg->vdc = vdc;
3719 			mutex_exit(&vdc->lock);
3720 
3721 			/* put the request on a task queue */
3722 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
3723 				(void *)dkarg, DDI_SLEEP);
3724 
3725 			return (rv == NULL ? ENOMEM : 0);
3726 		}
3727 	}
3728 
3729 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
3730 	ASSERT(dk_ioctl[idx].op != 0);
3731 
3732 	/* LDC requires that the memory being mapped is 8-byte aligned */
3733 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
3734 	PR1("%s[%d]: struct size %d alloc %d\n",
3735 			__func__, instance, len, alloc_len);
3736 
3737 	ASSERT(alloc_len != 0);	/* sanity check */
3738 	mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
3739 
3740 	if (cmd == DKIOCSVTOC) {
3741 		/*
3742 		 * Save a copy of the current VTOC so that we can roll back
3743 		 * if the setting of the new VTOC fails.
3744 		 */
3745 		bcopy(vdc->vtoc, &vtoc_saved, sizeof (struct vtoc));
3746 	}
3747 
3748 	/*
3749 	 * Call the conversion function for this ioctl whhich if necessary
3750 	 * converts from the Solaris format to the format ARC'ed
3751 	 * as part of the vDisk protocol (FWARC 2006/195)
3752 	 */
3753 	ASSERT(dk_ioctl[idx].convert != NULL);
3754 	rv = (dk_ioctl[idx].convert)(vdc, arg, mem_p, mode, VD_COPYIN);
3755 	if (rv != 0) {
3756 		PR0("%s[%d]: convert returned %d for ioctl 0x%x\n",
3757 				__func__, instance, rv, cmd);
3758 		if (mem_p != NULL)
3759 			kmem_free(mem_p, alloc_len);
3760 		return (rv);
3761 	}
3762 
3763 	/*
3764 	 * send request to vds to service the ioctl.
3765 	 */
3766 	rv = vdc_populate_descriptor(vdc, mem_p, alloc_len, dk_ioctl[idx].op,
3767 			mode, SDPART((getminor(dev))));
3768 	if (rv != 0) {
3769 		/*
3770 		 * This is not necessarily an error. The ioctl could
3771 		 * be returning a value such as ENOTTY to indicate
3772 		 * that the ioctl is not applicable.
3773 		 */
3774 		PR0("%s[%d]: vds returned %d for ioctl 0x%x\n",
3775 			__func__, instance, rv, cmd);
3776 		if (mem_p != NULL)
3777 			kmem_free(mem_p, alloc_len);
3778 
3779 		if (cmd == DKIOCSVTOC) {
3780 			/* update of the VTOC has failed, roll back */
3781 			bcopy(&vtoc_saved, vdc->vtoc, sizeof (struct vtoc));
3782 		}
3783 
3784 		return (rv);
3785 	}
3786 
3787 	if (cmd == DKIOCSVTOC) {
3788 		/*
3789 		 * The VTOC has been changed, try and update the device
3790 		 * node properties. Failing to set the properties should
3791 		 * not cause an error to be return the caller though.
3792 		 */
3793 		if (vdc_create_device_nodes_props(vdc)) {
3794 			cmn_err(CE_NOTE, "![%d] Failed to update device nodes"
3795 			    " properties", vdc->instance);
3796 		}
3797 	}
3798 
3799 	/*
3800 	 * Call the conversion function (if it exists) for this ioctl
3801 	 * which converts from the format ARC'ed as part of the vDisk
3802 	 * protocol (FWARC 2006/195) back to a format understood by
3803 	 * the rest of Solaris.
3804 	 */
3805 	rv = (dk_ioctl[idx].convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
3806 	if (rv != 0) {
3807 		PR0("%s[%d]: convert returned %d for ioctl 0x%x\n",
3808 				__func__, instance, rv, cmd);
3809 		if (mem_p != NULL)
3810 			kmem_free(mem_p, alloc_len);
3811 		return (rv);
3812 	}
3813 
3814 	if (mem_p != NULL)
3815 		kmem_free(mem_p, alloc_len);
3816 
3817 	return (rv);
3818 }
3819 
3820 /*
3821  * Function:
3822  *
3823  * Description:
3824  *	This is an empty conversion function used by ioctl calls which
3825  *	do not need to convert the data being passed in/out to userland
3826  */
3827 static int
3828 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
3829 {
3830 	_NOTE(ARGUNUSED(vdc))
3831 	_NOTE(ARGUNUSED(from))
3832 	_NOTE(ARGUNUSED(to))
3833 	_NOTE(ARGUNUSED(mode))
3834 	_NOTE(ARGUNUSED(dir))
3835 
3836 	return (0);
3837 }
3838 
3839 /*
3840  * Function:
3841  *	vdc_get_vtoc_convert()
3842  *
3843  * Description:
3844  *	This routine performs the necessary convertions from the DKIOCGVTOC
3845  *	Solaris structure to the format defined in FWARC 2006/195.
3846  *
3847  *	In the struct vtoc definition, the timestamp field is marked as not
3848  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
3849  *	However SVM uses that field to check it can write into the VTOC,
3850  *	so we fake up the info of that field.
3851  *
3852  * Arguments:
3853  *	vdc	- the vDisk client
3854  *	from	- the buffer containing the data to be copied from
3855  *	to	- the buffer to be copied to
3856  *	mode	- flags passed to ioctl() call
3857  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
3858  *
3859  * Return Code:
3860  *	0	- Success
3861  *	ENXIO	- incorrect buffer passed in.
3862  *	EFAULT	- ddi_copyout routine encountered an error.
3863  */
3864 static int
3865 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
3866 {
3867 	int		i;
3868 	void		*tmp_mem = NULL;
3869 	void		*tmp_memp;
3870 	struct vtoc	vt;
3871 	struct vtoc32	vt32;
3872 	int		copy_len = 0;
3873 	int		rv = 0;
3874 
3875 	if (dir != VD_COPYOUT)
3876 		return (0);	/* nothing to do */
3877 
3878 	if ((from == NULL) || (to == NULL))
3879 		return (ENXIO);
3880 
3881 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
3882 		copy_len = sizeof (struct vtoc32);
3883 	else
3884 		copy_len = sizeof (struct vtoc);
3885 
3886 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
3887 
3888 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
3889 
3890 	/* fake the VTOC timestamp field */
3891 	for (i = 0; i < V_NUMPAR; i++) {
3892 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
3893 	}
3894 
3895 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
3896 		vtoctovtoc32(vt, vt32);
3897 		tmp_memp = &vt32;
3898 	} else {
3899 		tmp_memp = &vt;
3900 	}
3901 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
3902 	if (rv != 0)
3903 		rv = EFAULT;
3904 
3905 	kmem_free(tmp_mem, copy_len);
3906 	return (rv);
3907 }
3908 
3909 /*
3910  * Function:
3911  *	vdc_set_vtoc_convert()
3912  *
3913  * Description:
3914  *	This routine performs the necessary convertions from the DKIOCSVTOC
3915  *	Solaris structure to the format defined in FWARC 2006/195.
3916  *
3917  * Arguments:
3918  *	vdc	- the vDisk client
3919  *	from	- Buffer with data
3920  *	to	- Buffer where data is to be copied to
3921  *	mode	- flags passed to ioctl
3922  *	dir	- direction of copy (in or out)
3923  *
3924  * Return Code:
3925  *	0	- Success
3926  *	ENXIO	- Invalid buffer passed in
3927  *	EFAULT	- ddi_copyin of data failed
3928  */
3929 static int
3930 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
3931 {
3932 	void		*tmp_mem = NULL;
3933 	struct vtoc	vt;
3934 	struct vtoc	*vtp = &vt;
3935 	vd_vtoc_t	vtvd;
3936 	int		copy_len = 0;
3937 	int		rv = 0;
3938 
3939 	if (dir != VD_COPYIN)
3940 		return (0);	/* nothing to do */
3941 
3942 	if ((from == NULL) || (to == NULL))
3943 		return (ENXIO);
3944 
3945 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
3946 		copy_len = sizeof (struct vtoc32);
3947 	else
3948 		copy_len = sizeof (struct vtoc);
3949 
3950 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
3951 
3952 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
3953 	if (rv != 0) {
3954 		kmem_free(tmp_mem, copy_len);
3955 		return (EFAULT);
3956 	}
3957 
3958 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
3959 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
3960 	} else {
3961 		vtp = tmp_mem;
3962 	}
3963 
3964 	/*
3965 	 * The VTOC is being changed, then vdc needs to update the copy
3966 	 * it saved in the soft state structure.
3967 	 */
3968 	bcopy(vtp, vdc->vtoc, sizeof (struct vtoc));
3969 
3970 	VTOC2VD_VTOC(vtp, &vtvd);
3971 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
3972 	kmem_free(tmp_mem, copy_len);
3973 
3974 	return (0);
3975 }
3976 
3977 /*
3978  * Function:
3979  *	vdc_get_geom_convert()
3980  *
3981  * Description:
3982  *	This routine performs the necessary convertions from the DKIOCGGEOM,
3983  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
3984  *	defined in FWARC 2006/195
3985  *
3986  * Arguments:
3987  *	vdc	- the vDisk client
3988  *	from	- Buffer with data
3989  *	to	- Buffer where data is to be copied to
3990  *	mode	- flags passed to ioctl
3991  *	dir	- direction of copy (in or out)
3992  *
3993  * Return Code:
3994  *	0	- Success
3995  *	ENXIO	- Invalid buffer passed in
3996  *	EFAULT	- ddi_copyout of data failed
3997  */
3998 static int
3999 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4000 {
4001 	_NOTE(ARGUNUSED(vdc))
4002 
4003 	struct dk_geom	geom;
4004 	int	copy_len = sizeof (struct dk_geom);
4005 	int	rv = 0;
4006 
4007 	if (dir != VD_COPYOUT)
4008 		return (0);	/* nothing to do */
4009 
4010 	if ((from == NULL) || (to == NULL))
4011 		return (ENXIO);
4012 
4013 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
4014 	rv = ddi_copyout(&geom, to, copy_len, mode);
4015 	if (rv != 0)
4016 		rv = EFAULT;
4017 
4018 	return (rv);
4019 }
4020 
4021 /*
4022  * Function:
4023  *	vdc_set_geom_convert()
4024  *
4025  * Description:
4026  *	This routine performs the necessary convertions from the DKIOCSGEOM
4027  *	Solaris structure to the format defined in FWARC 2006/195.
4028  *
4029  * Arguments:
4030  *	vdc	- the vDisk client
4031  *	from	- Buffer with data
4032  *	to	- Buffer where data is to be copied to
4033  *	mode	- flags passed to ioctl
4034  *	dir	- direction of copy (in or out)
4035  *
4036  * Return Code:
4037  *	0	- Success
4038  *	ENXIO	- Invalid buffer passed in
4039  *	EFAULT	- ddi_copyin of data failed
4040  */
4041 static int
4042 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4043 {
4044 	_NOTE(ARGUNUSED(vdc))
4045 
4046 	vd_geom_t	vdgeom;
4047 	void		*tmp_mem = NULL;
4048 	int		copy_len = sizeof (struct dk_geom);
4049 	int		rv = 0;
4050 
4051 	if (dir != VD_COPYIN)
4052 		return (0);	/* nothing to do */
4053 
4054 	if ((from == NULL) || (to == NULL))
4055 		return (ENXIO);
4056 
4057 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4058 
4059 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4060 	if (rv != 0) {
4061 		kmem_free(tmp_mem, copy_len);
4062 		return (EFAULT);
4063 	}
4064 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
4065 	bcopy(&vdgeom, to, sizeof (vdgeom));
4066 	kmem_free(tmp_mem, copy_len);
4067 
4068 	return (0);
4069 }
4070 
4071 /*
4072  * Function:
4073  *	vdc_create_fake_geometry()
4074  *
4075  * Description:
4076  *	This routine fakes up the disk info needed for some DKIO ioctls.
4077  *		- DKIOCINFO
4078  *		- DKIOCGMEDIAINFO
4079  *
4080  *	[ just like lofi(7D) and ramdisk(7D) ]
4081  *
4082  * Arguments:
4083  *	vdc	- soft state pointer for this instance of the device driver.
4084  *
4085  * Return Code:
4086  *	0	- Success
4087  */
4088 static int
4089 vdc_create_fake_geometry(vdc_t *vdc)
4090 {
4091 	int	rv = 0;
4092 
4093 	ASSERT(vdc != NULL);
4094 
4095 	/*
4096 	 * DKIOCINFO support
4097 	 */
4098 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
4099 
4100 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
4101 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
4102 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
4103 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
4104 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
4105 	vdc->cinfo->dki_flags = DKI_FMTVOL;
4106 	vdc->cinfo->dki_cnum = 0;
4107 	vdc->cinfo->dki_addr = 0;
4108 	vdc->cinfo->dki_space = 0;
4109 	vdc->cinfo->dki_prio = 0;
4110 	vdc->cinfo->dki_vec = 0;
4111 	vdc->cinfo->dki_unit = vdc->instance;
4112 	vdc->cinfo->dki_slave = 0;
4113 	/*
4114 	 * The partition number will be created on the fly depending on the
4115 	 * actual slice (i.e. minor node) that is used to request the data.
4116 	 */
4117 	vdc->cinfo->dki_partition = 0;
4118 
4119 	/*
4120 	 * DKIOCGMEDIAINFO support
4121 	 */
4122 	if (vdc->minfo == NULL)
4123 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
4124 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
4125 	vdc->minfo->dki_capacity = 1;
4126 	vdc->minfo->dki_lbsize = DEV_BSIZE;
4127 
4128 	return (rv);
4129 }
4130 
4131 /*
4132  * Function:
4133  *	vdc_setup_disk_layout()
4134  *
4135  * Description:
4136  *	This routine discovers all the necessary details about the "disk"
4137  *	by requesting the data that is available from the vDisk server and by
4138  *	faking up the rest of the data.
4139  *
4140  * Arguments:
4141  *	vdc	- soft state pointer for this instance of the device driver.
4142  *
4143  * Return Code:
4144  *	0	- Success
4145  */
4146 static int
4147 vdc_setup_disk_layout(vdc_t *vdc)
4148 {
4149 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
4150 	dev_t	dev;
4151 	int	slice = 0;
4152 	int	rv;
4153 
4154 	ASSERT(vdc != NULL);
4155 
4156 	rv = vdc_create_fake_geometry(vdc);
4157 	if (rv != 0) {
4158 		cmn_err(CE_NOTE, "[%d] Failed to create disk geometry (err%d)",
4159 				vdc->instance, rv);
4160 	}
4161 
4162 	if (vdc->vtoc == NULL)
4163 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
4164 
4165 	dev = makedevice(ddi_driver_major(vdc->dip),
4166 				VD_MAKE_DEV(vdc->instance, 0));
4167 	rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL);
4168 	if (rv) {
4169 		cmn_err(CE_NOTE, "[%d] Failed to get VTOC (err=%d)",
4170 				vdc->instance, rv);
4171 		return (rv);
4172 	}
4173 
4174 	/*
4175 	 * find the slice that represents the entire "disk" and use that to
4176 	 * read the disk label. The convention in Solaris is that slice 2
4177 	 * represents the whole disk so we check that it is, otherwise we
4178 	 * default to slice 0
4179 	 */
4180 	if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) &&
4181 	    (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) {
4182 		slice = 2;
4183 	} else {
4184 		slice = 0;
4185 	}
4186 
4187 	/*
4188 	 * Read disk label from start of disk
4189 	 */
4190 	vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP);
4191 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
4192 	bioinit(buf);
4193 	buf->b_un.b_addr = (caddr_t)vdc->label;
4194 	buf->b_bcount = DK_LABEL_SIZE;
4195 	buf->b_flags = B_BUSY | B_READ;
4196 	buf->b_dev = dev;
4197 	rv = vdc_populate_descriptor(vdc, (caddr_t)buf, DK_LABEL_SIZE,
4198 			VD_OP_BREAD, 0, slice);
4199 	rv = biowait(buf);
4200 	biofini(buf);
4201 	kmem_free(buf, sizeof (buf_t));
4202 
4203 	return (rv);
4204 }
4205