xref: /titanic_51/usr/src/uts/sun4v/io/vdc.c (revision 154b1f02449b21af9273efd1a7776a3fe65a0744)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/conf.h>
61 #include <sys/disp.h>
62 #include <sys/ddi.h>
63 #include <sys/dkio.h>
64 #include <sys/efi_partition.h>
65 #include <sys/fcntl.h>
66 #include <sys/file.h>
67 #include <sys/mach_descrip.h>
68 #include <sys/modctl.h>
69 #include <sys/mdeg.h>
70 #include <sys/note.h>
71 #include <sys/open.h>
72 #include <sys/stat.h>
73 #include <sys/sunddi.h>
74 #include <sys/types.h>
75 #include <sys/promif.h>
76 #include <sys/vtoc.h>
77 #include <sys/archsystm.h>
78 #include <sys/sysmacros.h>
79 
80 #include <sys/cdio.h>
81 #include <sys/dktp/cm.h>
82 #include <sys/dktp/fdisk.h>
83 #include <sys/scsi/generic/sense.h>
84 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
85 #include <sys/scsi/targets/sddef.h>
86 
87 #include <sys/ldoms.h>
88 #include <sys/ldc.h>
89 #include <sys/vio_common.h>
90 #include <sys/vio_mailbox.h>
91 #include <sys/vdsk_common.h>
92 #include <sys/vdsk_mailbox.h>
93 #include <sys/vdc.h>
94 
95 /*
96  * function prototypes
97  */
98 
99 /* standard driver functions */
100 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
101 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
102 static int	vdc_strategy(struct buf *buf);
103 static int	vdc_print(dev_t dev, char *str);
104 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
105 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
106 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
107 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
108 			cred_t *credp, int *rvalp);
109 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
110 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
111 
112 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
113 			void *arg, void **resultp);
114 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
115 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
116 
117 /* setup */
118 static int	vdc_send(ldc_handle_t ldc_handle, caddr_t pkt, size_t *msglen);
119 static int	vdc_do_ldc_init(vdc_t *vdc);
120 static int	vdc_start_ldc_connection(vdc_t *vdc);
121 static int	vdc_create_device_nodes(vdc_t *vdc);
122 static int	vdc_create_device_nodes_props(vdc_t *vdc);
123 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
124 static void	vdc_terminate_ldc(vdc_t *vdc);
125 static int	vdc_init_descriptor_ring(vdc_t *vdc);
126 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
127 
128 /* handshake with vds */
129 static void		vdc_init_handshake_negotiation(void *arg);
130 static int		vdc_init_ver_negotiation(vdc_t *vdc);
131 static int		vdc_init_attr_negotiation(vdc_t *vdc);
132 static int		vdc_init_dring_negotiate(vdc_t *vdc);
133 static int		vdc_handle_ver_negotiate();
134 static int		vdc_handle_attr_negotiate();
135 static void		vdc_reset_connection(vdc_t *vdc, boolean_t resetldc);
136 static boolean_t	vdc_is_able_to_tx_data(vdc_t *vdc, int flag);
137 
138 /* processing */
139 static void	vdc_process_msg_thread(vdc_t *vdc);
140 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
141 static void	vdc_process_msg(void *arg);
142 static int	vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg);
143 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg);
144 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
145 static void	vdc_do_process_msg(vdc_t *vdc);
146 static int	vdc_get_next_dring_entry_id(vdc_t *vdc, uint_t needed);
147 static int	vdc_populate_descriptor(vdc_t *vdc, caddr_t addr,
148 			size_t nbytes, int op, uint64_t arg, uint64_t slice);
149 static int	vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx,
150 			vio_dring_msg_t dmsg);
151 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
152 static int	vdc_get_response(vdc_t *vdc, int start, int end);
153 static int	vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx,
154 			caddr_t addr, size_t nbytes, int operation);
155 static boolean_t vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int
156 			num_msgs);
157 
158 /* dkio */
159 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
160 static int	vdc_create_fake_geometry(vdc_t *vdc);
161 
162 /*
163  * Module variables
164  */
165 uint64_t	vdc_hz_timeout;
166 uint64_t	vdc_usec_timeout = VDC_USEC_TIMEOUT_MIN;
167 uint64_t	vdc_dump_usec_timeout = VDC_USEC_TIMEOUT_MIN / 300;
168 static int	vdc_retries = VDC_RETRIES;
169 static int	vdc_dump_retries = VDC_RETRIES * 10;
170 
171 /* Soft state pointer */
172 static void	*vdc_state;
173 
174 /* variable level controlling the verbosity of the error/debug messages */
175 int	vdc_msglevel = 0;
176 
177 
178 static void
179 vdc_msg(const char *format, ...)
180 {
181 	va_list	args;
182 
183 	va_start(args, format);
184 	vcmn_err(CE_CONT, format, args);
185 	va_end(args);
186 }
187 
188 static struct cb_ops vdc_cb_ops = {
189 	vdc_open,	/* cb_open */
190 	vdc_close,	/* cb_close */
191 	vdc_strategy,	/* cb_strategy */
192 	vdc_print,	/* cb_print */
193 	vdc_dump,	/* cb_dump */
194 	vdc_read,	/* cb_read */
195 	vdc_write,	/* cb_write */
196 	vdc_ioctl,	/* cb_ioctl */
197 	nodev,		/* cb_devmap */
198 	nodev,		/* cb_mmap */
199 	nodev,		/* cb_segmap */
200 	nochpoll,	/* cb_chpoll */
201 	ddi_prop_op,	/* cb_prop_op */
202 	NULL,		/* cb_str */
203 	D_MP | D_64BIT,	/* cb_flag */
204 	CB_REV,		/* cb_rev */
205 	vdc_aread,	/* cb_aread */
206 	vdc_awrite	/* cb_awrite */
207 };
208 
209 static struct dev_ops vdc_ops = {
210 	DEVO_REV,	/* devo_rev */
211 	0,		/* devo_refcnt */
212 	vdc_getinfo,	/* devo_getinfo */
213 	nulldev,	/* devo_identify */
214 	nulldev,	/* devo_probe */
215 	vdc_attach,	/* devo_attach */
216 	vdc_detach,	/* devo_detach */
217 	nodev,		/* devo_reset */
218 	&vdc_cb_ops,	/* devo_cb_ops */
219 	NULL,		/* devo_bus_ops */
220 	nulldev		/* devo_power */
221 };
222 
223 static struct modldrv modldrv = {
224 	&mod_driverops,
225 	"virtual disk client %I%",
226 	&vdc_ops,
227 };
228 
229 static struct modlinkage modlinkage = {
230 	MODREV_1,
231 	&modldrv,
232 	NULL
233 };
234 
235 /* -------------------------------------------------------------------------- */
236 
237 /*
238  * Device Driver housekeeping and setup
239  */
240 
241 int
242 _init(void)
243 {
244 	int	status;
245 
246 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
247 		return (status);
248 	if ((status = mod_install(&modlinkage)) != 0)
249 		ddi_soft_state_fini(&vdc_state);
250 	return (status);
251 }
252 
253 int
254 _info(struct modinfo *modinfop)
255 {
256 	return (mod_info(&modlinkage, modinfop));
257 }
258 
259 int
260 _fini(void)
261 {
262 	int	status;
263 
264 	if ((status = mod_remove(&modlinkage)) != 0)
265 		return (status);
266 	ddi_soft_state_fini(&vdc_state);
267 	return (0);
268 }
269 
270 static int
271 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
272 {
273 	_NOTE(ARGUNUSED(dip))
274 
275 	int	instance = SDUNIT(getminor((dev_t)arg));
276 	vdc_t	*vdc = NULL;
277 
278 	switch (cmd) {
279 	case DDI_INFO_DEVT2DEVINFO:
280 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
281 			*resultp = NULL;
282 			return (DDI_FAILURE);
283 		}
284 		*resultp = vdc->dip;
285 		return (DDI_SUCCESS);
286 	case DDI_INFO_DEVT2INSTANCE:
287 		*resultp = (void *)(uintptr_t)instance;
288 		return (DDI_SUCCESS);
289 	default:
290 		*resultp = NULL;
291 		return (DDI_FAILURE);
292 	}
293 }
294 
295 static int
296 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
297 {
298 	int	instance;
299 	int	rv;
300 	uint_t	retries = 0;
301 	vdc_t	*vdc = NULL;
302 
303 	switch (cmd) {
304 	case DDI_DETACH:
305 		/* the real work happens below */
306 		break;
307 	case DDI_SUSPEND:
308 		/* nothing to do for this non-device */
309 		return (DDI_SUCCESS);
310 	default:
311 		return (DDI_FAILURE);
312 	}
313 
314 	ASSERT(cmd == DDI_DETACH);
315 	instance = ddi_get_instance(dip);
316 	PR1("%s[%d] Entered\n", __func__, instance);
317 
318 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
319 		vdc_msg("%s[%d]:  Could not get state structure.",
320 		    __func__, instance);
321 		return (DDI_FAILURE);
322 	}
323 
324 	if (vdc->open) {
325 		PR0("%s[%d]: Cannot detach: device is open",
326 				__func__, instance);
327 		return (DDI_FAILURE);
328 	}
329 
330 	PR0("%s[%d] proceeding...\n", __func__, instance);
331 
332 	/*
333 	 * try and disable callbacks to prevent another handshake
334 	 */
335 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
336 	PR0("%s[%d] callback disabled (rv=%d)\n", __func__, instance, rv);
337 
338 	/*
339 	 * Prevent any more attempts to start a handshake with the vdisk
340 	 * server and tear down the existing connection.
341 	 */
342 	mutex_enter(&vdc->lock);
343 	vdc->initialized |= VDC_HANDSHAKE_STOP;
344 	vdc_reset_connection(vdc, B_TRUE);
345 	mutex_exit(&vdc->lock);
346 
347 	if (vdc->initialized & VDC_THREAD) {
348 		mutex_enter(&vdc->msg_proc_lock);
349 		vdc->msg_proc_thr_state = VDC_THR_STOP;
350 		vdc->msg_pending = B_TRUE;
351 		cv_signal(&vdc->msg_proc_cv);
352 
353 		while (vdc->msg_proc_thr_state != VDC_THR_DONE) {
354 			PR0("%s[%d]: Waiting for thread to exit\n",
355 				__func__, instance);
356 			rv = cv_timedwait(&vdc->msg_proc_cv,
357 				&vdc->msg_proc_lock, VD_GET_TIMEOUT_HZ(1));
358 			if ((rv == -1) && (retries++ > vdc_retries))
359 				break;
360 		}
361 		mutex_exit(&vdc->msg_proc_lock);
362 	}
363 
364 	mutex_enter(&vdc->lock);
365 
366 	if (vdc->initialized & VDC_DRING)
367 		vdc_destroy_descriptor_ring(vdc);
368 
369 	if (vdc->initialized & VDC_LDC)
370 		vdc_terminate_ldc(vdc);
371 
372 	mutex_exit(&vdc->lock);
373 
374 	if (vdc->initialized & VDC_MINOR) {
375 		ddi_prop_remove_all(dip);
376 		ddi_remove_minor_node(dip, NULL);
377 	}
378 
379 	if (vdc->initialized & VDC_LOCKS) {
380 		mutex_destroy(&vdc->lock);
381 		mutex_destroy(&vdc->attach_lock);
382 		mutex_destroy(&vdc->msg_proc_lock);
383 		mutex_destroy(&vdc->dring_lock);
384 		cv_destroy(&vdc->cv);
385 		cv_destroy(&vdc->attach_cv);
386 		cv_destroy(&vdc->msg_proc_cv);
387 	}
388 
389 	if (vdc->minfo)
390 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
391 
392 	if (vdc->cinfo)
393 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
394 
395 	if (vdc->vtoc)
396 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
397 
398 	if (vdc->initialized & VDC_SOFT_STATE)
399 		ddi_soft_state_free(vdc_state, instance);
400 
401 	PR0("%s[%d] End %p\n", __func__, instance, vdc);
402 
403 	return (DDI_SUCCESS);
404 }
405 
406 
407 static int
408 vdc_do_attach(dev_info_t *dip)
409 {
410 	int		instance;
411 	vdc_t		*vdc = NULL;
412 	int		status;
413 	uint_t		retries = 0;
414 
415 	ASSERT(dip != NULL);
416 
417 	instance = ddi_get_instance(dip);
418 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
419 		vdc_msg("%s:(%d): Couldn't alloc state structure",
420 		    __func__, instance);
421 		return (DDI_FAILURE);
422 	}
423 
424 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
425 		vdc_msg("%s:(%d): Could not get state structure.",
426 		    __func__, instance);
427 		return (DDI_FAILURE);
428 	}
429 
430 	/*
431 	 * We assign the value to initialized in this case to zero out the
432 	 * variable and then set bits in it to indicate what has been done
433 	 */
434 	vdc->initialized = VDC_SOFT_STATE;
435 
436 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
437 
438 	vdc->dip	= dip;
439 	vdc->instance	= instance;
440 	vdc->open	= 0;
441 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
442 	vdc->state	= VD_STATE_INIT;
443 	vdc->ldc_state	= 0;
444 	vdc->session_id = 0;
445 	vdc->block_size = DEV_BSIZE;
446 	vdc->max_xfer_sz = VD_MAX_BLOCK_SIZE / DEV_BSIZE;
447 
448 	vdc->vtoc = NULL;
449 	vdc->cinfo = NULL;
450 	vdc->minfo = NULL;
451 
452 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
453 	mutex_init(&vdc->attach_lock, NULL, MUTEX_DRIVER, NULL);
454 	mutex_init(&vdc->msg_proc_lock, NULL, MUTEX_DRIVER, NULL);
455 	mutex_init(&vdc->dring_lock, NULL, MUTEX_DRIVER, NULL);
456 	cv_init(&vdc->cv, NULL, CV_DRIVER, NULL);
457 	cv_init(&vdc->attach_cv, NULL, CV_DRIVER, NULL);
458 	cv_init(&vdc->msg_proc_cv, NULL, CV_DRIVER, NULL);
459 	vdc->initialized |= VDC_LOCKS;
460 
461 	vdc->msg_pending = B_FALSE;
462 	vdc->msg_proc_thr_id = thread_create(NULL, 0, vdc_process_msg_thread,
463 		vdc, 0, &p0, TS_RUN, minclsyspri);
464 	if (vdc->msg_proc_thr_id == NULL) {
465 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
466 				instance);
467 		return (DDI_FAILURE);
468 	}
469 	vdc->initialized |= VDC_THREAD;
470 
471 	/* initialise LDC channel which will be used to communicate with vds */
472 	if (vdc_do_ldc_init(vdc) != 0) {
473 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
474 		return (DDI_FAILURE);
475 	}
476 
477 	/* Bring up connection with vds via LDC */
478 	status = vdc_start_ldc_connection(vdc);
479 	if (status != 0) {
480 		vdc_msg("%s[%d]  Could not start LDC", __func__, instance);
481 		return (DDI_FAILURE);
482 	}
483 
484 	/*
485 	 * We need to wait until the handshake has completed before leaving
486 	 * the attach(). This is to allow the device node(s) to be created
487 	 * and the first usage of the filesystem to succeed.
488 	 */
489 	mutex_enter(&vdc->attach_lock);
490 	while ((vdc->ldc_state != LDC_UP) ||
491 		(vdc->state != VD_STATE_DATA)) {
492 
493 		PR0("%s[%d] handshake in progress [VD %d (LDC %d)]\n",
494 			__func__, instance, vdc->state, vdc->ldc_state);
495 
496 		status = cv_timedwait(&vdc->attach_cv, &vdc->attach_lock,
497 				VD_GET_TIMEOUT_HZ(1));
498 		if (status == -1) {
499 			if (retries >= vdc_retries) {
500 				PR0("%s[%d] Give up handshake wait.\n",
501 						__func__, instance);
502 				mutex_exit(&vdc->attach_lock);
503 				return (DDI_FAILURE);
504 			} else {
505 				PR0("%s[%d] Retry #%d for handshake.\n",
506 						__func__, instance, retries);
507 				retries++;
508 			}
509 		}
510 	}
511 	mutex_exit(&vdc->attach_lock);
512 
513 	if (vdc->vtoc == NULL)
514 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
515 
516 	status = vdc_populate_descriptor(vdc, (caddr_t)vdc->vtoc,
517 			P2ROUNDUP(sizeof (struct vtoc), sizeof (uint64_t)),
518 			VD_OP_GET_VTOC, FKIOCTL, 0);
519 	if (status) {
520 		cmn_err(CE_NOTE, "[%d] Failed to get VTOC", instance);
521 		return (status);
522 	}
523 
524 	/*
525 	 * Now that we have the device info we can create the
526 	 * device nodes and properties
527 	 */
528 	status = vdc_create_device_nodes(vdc);
529 	if (status) {
530 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes",
531 				instance);
532 		return (status);
533 	}
534 	status = vdc_create_device_nodes_props(vdc);
535 	if (status) {
536 		cmn_err(CE_NOTE, "[%d] Failed to create device nodes"
537 				" properties", instance);
538 		return (status);
539 	}
540 
541 	ddi_report_dev(dip);
542 
543 	PR0("%s[%d] Attach completed\n", __func__, instance);
544 	return (status);
545 }
546 
547 static int
548 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
549 {
550 	int	status;
551 
552 	PR0("%s[%d]  Entered.  Built %s %s\n", __func__, ddi_get_instance(dip),
553 		__DATE__, __TIME__);
554 
555 	switch (cmd) {
556 	case DDI_ATTACH:
557 		if ((status = vdc_do_attach(dip)) != 0)
558 			(void) vdc_detach(dip, DDI_DETACH);
559 		return (status);
560 	case DDI_RESUME:
561 		/* nothing to do for this non-device */
562 		return (DDI_SUCCESS);
563 	default:
564 		return (DDI_FAILURE);
565 	}
566 }
567 
568 static int
569 vdc_do_ldc_init(vdc_t *vdc)
570 {
571 	int			status = 0;
572 	ldc_status_t		ldc_state;
573 	ldc_attr_t		ldc_attr;
574 	uint64_t		ldc_id = 0;
575 	dev_info_t		*dip = NULL;
576 
577 	ASSERT(vdc != NULL);
578 
579 	dip = vdc->dip;
580 	vdc->initialized |= VDC_LDC;
581 
582 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
583 		vdc_msg("%s:  Failed to get <ldc_id> property\n", __func__);
584 		return (EIO);
585 	}
586 	vdc->ldc_id = ldc_id;
587 
588 	ldc_attr.devclass = LDC_DEV_BLK;
589 	ldc_attr.instance = vdc->instance;
590 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
591 	ldc_attr.qlen = VD_LDC_QLEN;
592 
593 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
594 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
595 		if (status != 0) {
596 			cmn_err(CE_NOTE, "[%d] ldc_init(chan %ld) returned %d",
597 					vdc->instance, ldc_id, status);
598 			return (status);
599 		}
600 		vdc->initialized |= VDC_LDC_INIT;
601 	}
602 	status = ldc_status(vdc->ldc_handle, &ldc_state);
603 	if (status != 0) {
604 		vdc_msg("Cannot discover LDC status [err=%d].", status);
605 		return (status);
606 	}
607 	vdc->ldc_state = ldc_state;
608 
609 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
610 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
611 		    (caddr_t)vdc);
612 		if (status != 0) {
613 			vdc_msg("%s: ldc_reg_callback()=%d", __func__, status);
614 			return (status);
615 		}
616 		vdc->initialized |= VDC_LDC_CB;
617 	}
618 
619 	vdc->initialized |= VDC_LDC;
620 
621 	/*
622 	 * At this stage we have initialised LDC, we will now try and open
623 	 * the connection.
624 	 */
625 	if (vdc->ldc_state == LDC_INIT) {
626 		status = ldc_open(vdc->ldc_handle);
627 		if (status != 0) {
628 			cmn_err(CE_NOTE, "[%d] ldc_open(chan %ld) returned %d",
629 					vdc->instance, vdc->ldc_id, status);
630 			return (status);
631 		}
632 		vdc->initialized |= VDC_LDC_OPEN;
633 	}
634 
635 	return (status);
636 }
637 
638 static int
639 vdc_start_ldc_connection(vdc_t *vdc)
640 {
641 	int		status = 0;
642 
643 	ASSERT(vdc != NULL);
644 
645 	mutex_enter(&vdc->lock);
646 
647 	if (vdc->ldc_state == LDC_UP) {
648 		PR0("%s:  LDC is already UP ..\n", __func__);
649 		mutex_exit(&vdc->lock);
650 		return (0);
651 	}
652 
653 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
654 		switch (status) {
655 		case ECONNREFUSED:	/* listener not ready at other end */
656 			PR0("%s: ldc_up(%d,...) return %d\n",
657 					__func__, vdc->ldc_id, status);
658 			status = 0;
659 			break;
660 		default:
661 			cmn_err(CE_NOTE, "[%d] Failed to bring up LDC: "
662 					"channel=%ld, err=%d",
663 					vdc->instance, vdc->ldc_id, status);
664 		}
665 	}
666 
667 	PR0("%s[%d] Finished bringing up LDC\n", __func__, vdc->instance);
668 
669 	mutex_exit(&vdc->lock);
670 
671 	return (status);
672 }
673 
674 
675 /*
676  * Function:
677  *	vdc_create_device_nodes
678  *
679  * Description:
680  *	This function creates the block and character device nodes under
681  *	/devices along with the node properties. It is called as part of
682  *	the attach(9E) of the instance during the handshake with vds after
683  *	vds has sent the attributes to vdc.
684  *
685  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
686  *	of 2 is used in keeping with the Solaris convention that slice 2
687  *	refers to a whole disk. Slices start at 'a'
688  *
689  * Parameters:
690  *	vdc 		- soft state pointer
691  *
692  * Return Values
693  *	0		- Success
694  *	EIO		- Failed to create node
695  *	EINVAL		- Unknown type of disk exported
696  */
697 static int
698 vdc_create_device_nodes(vdc_t *vdc)
699 {
700 	/* uses NNNN which is OK as long as # of disks <= 10000 */
701 	char		name[sizeof ("disk@NNNN:s,raw")];
702 	dev_info_t	*dip = NULL;
703 	int		instance;
704 	int		num_slices = 1;
705 	int		i;
706 
707 	ASSERT(vdc != NULL);
708 
709 	instance = vdc->instance;
710 	dip = vdc->dip;
711 
712 	switch (vdc->vdisk_type) {
713 	case VD_DISK_TYPE_DISK:
714 		num_slices = V_NUMPAR;
715 		break;
716 	case VD_DISK_TYPE_SLICE:
717 		num_slices = 1;
718 		break;
719 	case VD_DISK_TYPE_UNK:
720 	default:
721 		return (EINVAL);
722 	}
723 
724 	for (i = 0; i < num_slices; i++) {
725 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
726 		if (ddi_create_minor_node(dip, name, S_IFBLK,
727 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
728 			vdc_msg("%s[%d]: Couldn't add block node %s.",
729 				__func__, instance, name);
730 			return (EIO);
731 		}
732 
733 		/* if any device node is created we set this flag */
734 		vdc->initialized |= VDC_MINOR;
735 
736 		(void) snprintf(name, sizeof (name), "%c%s",
737 			'a' + i, ",raw");
738 		if (ddi_create_minor_node(dip, name, S_IFCHR,
739 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
740 			vdc_msg("%s[%d]:  Could not add raw node %s.",
741 				__func__, instance, name);
742 			return (EIO);
743 		}
744 	}
745 
746 	return (0);
747 }
748 
749 /*
750  * Function:
751  *	vdc_create_device_nodes_props
752  *
753  * Description:
754  *	This function creates the block and character device nodes under
755  *	/devices along with the node properties. It is called as part of
756  *	the attach(9E) of the instance during the handshake with vds after
757  *	vds has sent the attributes to vdc.
758  *
759  * Parameters:
760  *	vdc 		- soft state pointer
761  *
762  * Return Values
763  *	0		- Success
764  *	EIO		- Failed to create device node property
765  *	EINVAL		- Unknown type of disk exported
766  */
767 static int
768 vdc_create_device_nodes_props(vdc_t *vdc)
769 {
770 	dev_info_t	*dip = NULL;
771 	int		instance;
772 	int		num_slices = 1;
773 	int64_t		size = 0;
774 	dev_t		dev;
775 	int		rv;
776 	int		i;
777 
778 	ASSERT(vdc != NULL);
779 
780 	instance = vdc->instance;
781 	dip = vdc->dip;
782 
783 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
784 		cmn_err(CE_NOTE, "![%d] Could not create device node property."
785 				" No VTOC available", instance);
786 		return (ENXIO);
787 	}
788 
789 	switch (vdc->vdisk_type) {
790 	case VD_DISK_TYPE_DISK:
791 		num_slices = V_NUMPAR;
792 		break;
793 	case VD_DISK_TYPE_SLICE:
794 		num_slices = 1;
795 		break;
796 	case VD_DISK_TYPE_UNK:
797 	default:
798 		return (EINVAL);
799 	}
800 
801 	for (i = 0; i < num_slices; i++) {
802 		dev = makedevice(ddi_driver_major(dip),
803 			VD_MAKE_DEV(instance, i));
804 
805 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
806 		PR0("%s[%d] sz %ld (%ld Mb)  p_size %lx\n",
807 				__func__, instance, size, size / (1024 * 1024),
808 				vdc->vtoc->v_part[i].p_size);
809 
810 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
811 		if (rv != DDI_PROP_SUCCESS) {
812 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n",
813 				__func__, instance, VDC_SIZE_PROP_NAME, size);
814 			return (EIO);
815 		}
816 
817 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
818 			lbtodb(size));
819 		if (rv != DDI_PROP_SUCCESS) {
820 			vdc_msg("%s:(%d): Couldn't add \"%s\" [%d]\n", __func__,
821 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
822 			return (EIO);
823 		}
824 	}
825 
826 	return (0);
827 }
828 
829 static int
830 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
831 {
832 	_NOTE(ARGUNUSED(cred))
833 
834 	int		instance;
835 	int		status = 0;
836 	vdc_t		*vdc;
837 
838 	ASSERT(dev != NULL);
839 	instance = SDUNIT(getminor(*dev));
840 
841 	PR0("%s[%d] minor = %d flag = %x, otyp = %x\n", __func__, instance,
842 			getminor(*dev), flag, otyp);
843 
844 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
845 		return (EINVAL);
846 
847 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
848 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
849 		return (ENXIO);
850 	}
851 
852 	/*
853 	 * Check to see if we can communicate with vds
854 	 */
855 	status = vdc_is_able_to_tx_data(vdc, flag);
856 	if (status == B_FALSE) {
857 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
858 		return (ENOLINK);
859 	}
860 
861 	mutex_enter(&vdc->lock);
862 	vdc->open++;
863 	mutex_exit(&vdc->lock);
864 
865 	return (0);
866 }
867 
868 static int
869 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
870 {
871 	_NOTE(ARGUNUSED(cred))
872 
873 	int	instance;
874 	vdc_t	*vdc;
875 
876 	instance = SDUNIT(getminor(dev));
877 
878 	PR0("%s[%d] flag = %x, otyp = %x\n", __func__, instance, flag, otyp);
879 
880 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
881 		return (EINVAL);
882 
883 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
884 		vdc_msg("%s[%d] Could not get state.", __func__, instance);
885 		return (ENXIO);
886 	}
887 
888 	/*
889 	 * Check to see if we can communicate with vds
890 	 */
891 	if (vdc_is_able_to_tx_data(vdc, 0) == B_FALSE) {
892 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
893 		return (ETIMEDOUT);
894 	}
895 
896 	if (vdc->dkio_flush_pending) {
897 		PR0("%s[%d]: Cannot detach: %d outstanding DKIO flushes",
898 			__func__, instance, vdc->dkio_flush_pending);
899 		return (EBUSY);
900 	}
901 
902 	/*
903 	 * Should not need the mutex here, since the framework should protect
904 	 * against more opens on this device, but just in case.
905 	 */
906 	mutex_enter(&vdc->lock);
907 	vdc->open--;
908 	mutex_exit(&vdc->lock);
909 
910 	return (0);
911 }
912 
913 static int
914 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
915 {
916 	_NOTE(ARGUNUSED(credp))
917 	_NOTE(ARGUNUSED(rvalp))
918 
919 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
920 }
921 
922 static int
923 vdc_print(dev_t dev, char *str)
924 {
925 	cmn_err(CE_NOTE, "vdc%d:  %s", SDUNIT(getminor(dev)), str);
926 	return (0);
927 }
928 
929 static int
930 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
931 {
932 	int			rv = 0;
933 	size_t			nbytes = (nblk * DEV_BSIZE);
934 	int			instance = SDUNIT(getminor(dev));
935 	vdc_t			*vdc;
936 
937 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
938 		vdc_msg("%s (%d):  Could not get state.", __func__, instance);
939 		return (ENXIO);
940 	}
941 
942 	rv = vdc_populate_descriptor(vdc, addr, nbytes, VD_OP_BWRITE,
943 					blkno, SDPART(getminor(dev)));
944 
945 	PR1("%s: status=%d\n", __func__, rv);
946 
947 	return (rv);
948 }
949 
950 /* -------------------------------------------------------------------------- */
951 
952 /*
953  * Disk access routines
954  *
955  */
956 
957 /*
958  * vdc_strategy()
959  *
960  * Return Value:
961  *	0:	As per strategy(9E), the strategy() function must return 0
962  *		[ bioerror(9f) sets b_flags to the proper error code ]
963  */
964 static int
965 vdc_strategy(struct buf *buf)
966 {
967 	int		rv = -1;
968 	vdc_t		*vdc = NULL;
969 	int		instance = SDUNIT(getminor(buf->b_edev));
970 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
971 
972 	PR1("%s: %s %ld bytes at block %ld : b_addr=0x%p",
973 	    __func__, (buf->b_flags & B_READ) ? "Read" : "Write",
974 	    buf->b_bcount, buf->b_lblkno, buf->b_un.b_addr);
975 
976 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
977 		vdc_msg("%s[%d]:  Could not get state.", __func__, instance);
978 		bioerror(buf, ENXIO);
979 		biodone(buf);
980 		return (0);
981 	}
982 
983 	ASSERT(buf->b_bcount <= (vdc->max_xfer_sz * vdc->block_size));
984 
985 	if (vdc_is_able_to_tx_data(vdc, O_NONBLOCK) == B_FALSE) {
986 		vdc_msg("%s: Not ready to transmit data", __func__);
987 		bioerror(buf, ENXIO);
988 		biodone(buf);
989 		return (0);
990 	}
991 	bp_mapin(buf);
992 
993 	rv = vdc_populate_descriptor(vdc, buf->b_un.b_addr, buf->b_bcount, op,
994 			buf->b_lblkno, SDPART(getminor(buf->b_edev)));
995 
996 	PR1("%s: status=%d", __func__, rv);
997 	bioerror(buf, rv);
998 	biodone(buf);
999 	return (0);
1000 }
1001 
1002 
1003 static int
1004 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1005 {
1006 	_NOTE(ARGUNUSED(cred))
1007 
1008 	PR1("vdc_read():  Entered");
1009 	return (physio(vdc_strategy, NULL, dev, B_READ, minphys, uio));
1010 }
1011 
1012 static int
1013 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1014 {
1015 	_NOTE(ARGUNUSED(cred))
1016 
1017 	PR1("vdc_write():  Entered");
1018 	return (physio(vdc_strategy, NULL, dev, B_WRITE, minphys, uio));
1019 }
1020 
1021 static int
1022 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1023 {
1024 	_NOTE(ARGUNUSED(cred))
1025 
1026 	PR1("vdc_aread():  Entered");
1027 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, minphys, aio));
1028 }
1029 
1030 static int
1031 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1032 {
1033 	_NOTE(ARGUNUSED(cred))
1034 
1035 	PR1("vdc_awrite():  Entered");
1036 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, minphys, aio));
1037 }
1038 
1039 
1040 /* -------------------------------------------------------------------------- */
1041 
1042 /*
1043  * Handshake support
1044  */
1045 
1046 /*
1047  * vdc_init_handshake_negotiation
1048  *
1049  * Description:
1050  *	This function is called to trigger the handshake negotiations between
1051  *	the client (vdc) and the server (vds). It may be called multiple times.
1052  *
1053  * Parameters:
1054  *	vdc - soft state pointer
1055  */
1056 static void
1057 vdc_init_handshake_negotiation(void *arg)
1058 {
1059 	vdc_t		*vdc = (vdc_t *)(void *)arg;
1060 	vd_state_t	state;
1061 
1062 	ASSERT(vdc != NULL);
1063 	ASSERT(vdc->ldc_state == LDC_UP);
1064 
1065 	mutex_enter(&vdc->lock);
1066 
1067 	/*
1068 	 * Do not continue if another thread has triggered a handshake which
1069 	 * is in progress or detach() has stopped further handshakes.
1070 	 */
1071 	if (vdc->initialized & (VDC_HANDSHAKE | VDC_HANDSHAKE_STOP)) {
1072 		PR0("%s[%d] Negotiation not triggered. [init=%x]\n",
1073 			__func__, vdc->instance, vdc->initialized);
1074 		mutex_exit(&vdc->lock);
1075 		return;
1076 	}
1077 
1078 	PR0("Initializing vdc<->vds handshake\n");
1079 
1080 	vdc->initialized |= VDC_HANDSHAKE;
1081 
1082 	state = vdc->state;
1083 
1084 	if (state == VD_STATE_INIT) {
1085 		(void) vdc_init_ver_negotiation(vdc);
1086 	} else if (state == VD_STATE_VER) {
1087 		(void) vdc_init_attr_negotiation(vdc);
1088 	} else if (state == VD_STATE_ATTR) {
1089 		(void) vdc_init_dring_negotiate(vdc);
1090 	} else if (state == VD_STATE_DATA) {
1091 		/*
1092 		 * nothing to do - we have already completed the negotiation
1093 		 * and we can transmit data when ready.
1094 		 */
1095 		PR0("%s[%d] Negotiation triggered after handshake completed",
1096 			__func__, vdc->instance);
1097 	}
1098 
1099 	mutex_exit(&vdc->lock);
1100 }
1101 
1102 static int
1103 vdc_init_ver_negotiation(vdc_t *vdc)
1104 {
1105 	vio_ver_msg_t	pkt;
1106 	size_t		msglen = sizeof (pkt);
1107 	int		status = -1;
1108 
1109 	PR0("%s: Entered.\n", __func__);
1110 
1111 	ASSERT(vdc != NULL);
1112 	ASSERT(mutex_owned(&vdc->lock));
1113 
1114 	/*
1115 	 * set the Session ID to a unique value
1116 	 * (the lower 32 bits of the clock tick)
1117 	 */
1118 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1119 
1120 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1121 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1122 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1123 	pkt.tag.vio_sid = vdc->session_id;
1124 	pkt.dev_class = VDEV_DISK;
1125 	pkt.ver_major = VD_VER_MAJOR;
1126 	pkt.ver_minor = VD_VER_MINOR;
1127 
1128 	status = vdc_send(vdc->ldc_handle, (caddr_t)&pkt, &msglen);
1129 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1130 
1131 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1132 		PR0("%s[%d] vdc_send failed: id(%lx) rv(%d) size(%d)\n",
1133 				__func__, vdc->instance, vdc->ldc_handle,
1134 				status, msglen);
1135 		if (msglen != sizeof (vio_ver_msg_t))
1136 			status = ENOMSG;
1137 	}
1138 
1139 	return (status);
1140 }
1141 
1142 static int
1143 vdc_init_attr_negotiation(vdc_t *vdc)
1144 {
1145 	vd_attr_msg_t	pkt;
1146 	size_t		msglen = sizeof (pkt);
1147 	int		status;
1148 
1149 	ASSERT(vdc != NULL);
1150 	ASSERT(mutex_owned(&vdc->lock));
1151 
1152 	PR0("%s[%d] entered\n", __func__, vdc->instance);
1153 
1154 	/* fill in tag */
1155 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1156 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1157 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1158 	pkt.tag.vio_sid = vdc->session_id;
1159 	/* fill in payload */
1160 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1161 	pkt.vdisk_block_size = vdc->block_size;
1162 	pkt.xfer_mode = VIO_DRING_MODE;
1163 	pkt.operations = 0;	/* server will set bits of valid operations */
1164 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1165 	pkt.vdisk_size = 0;	/* server will set to valid size */
1166 
1167 	status = vdc_send(vdc->ldc_handle, (caddr_t)&pkt, &msglen);
1168 	PR0("%s: vdc_send(status = %d)\n", __func__, status);
1169 
1170 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1171 		PR0("%s[%d] ldc_write failed: id(%lx) rv(%d) size (%d)\n",
1172 			__func__, vdc->instance, vdc->ldc_handle,
1173 			status, msglen);
1174 		if (msglen != sizeof (vio_ver_msg_t))
1175 			status = ENOMSG;
1176 	}
1177 
1178 	return (status);
1179 }
1180 
1181 static int
1182 vdc_init_dring_negotiate(vdc_t *vdc)
1183 {
1184 	vio_dring_reg_msg_t	pkt;
1185 	size_t			msglen = sizeof (pkt);
1186 	int			status = -1;
1187 
1188 	ASSERT(vdc != NULL);
1189 	ASSERT(mutex_owned(&vdc->lock));
1190 
1191 	status = vdc_init_descriptor_ring(vdc);
1192 	PR0("%s[%d] Init of descriptor ring completed (status = %d)\n",
1193 			__func__, vdc->instance, status);
1194 	if (status != 0) {
1195 		cmn_err(CE_CONT, "[%d] Failed to init DRing (status = %d)\n",
1196 				vdc->instance, status);
1197 		vdc_reset_connection(vdc, B_FALSE);
1198 		return (status);
1199 	}
1200 
1201 	/* fill in tag */
1202 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1203 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1204 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1205 	pkt.tag.vio_sid = vdc->session_id;
1206 	/* fill in payload */
1207 	pkt.dring_ident = 0;
1208 	pkt.num_descriptors = VD_DRING_LEN;
1209 	pkt.descriptor_size = VD_DRING_ENTRY_SZ;
1210 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1211 	pkt.ncookies = vdc->dring_cookie_count;
1212 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1213 
1214 	status = vdc_send(vdc->ldc_handle, (caddr_t)&pkt, &msglen);
1215 	if (status != 0) {
1216 		PR0("%s[%d] Failed to register DRing (status = %d)\n",
1217 				__func__, vdc->instance, status);
1218 		vdc_reset_connection(vdc, B_FALSE);
1219 	}
1220 
1221 	return (status);
1222 }
1223 
1224 
1225 /* -------------------------------------------------------------------------- */
1226 
1227 /*
1228  * LDC helper routines
1229  */
1230 
1231 /*
1232  * Function:
1233  *	vdc_send()
1234  *
1235  * Description:
1236  *	The function encapsulates the call to write a message using LDC.
1237  *	If LDC indicates that the call failed due to the queue being full,
1238  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1239  *	we return the error returned by LDC.
1240  *
1241  * Arguments:
1242  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1243  *	pkt		- address of LDC message to be sent
1244  *	msglen		- the size of the message being sent. When the function
1245  *			  returns, this contains the number of bytes written.
1246  *
1247  * Return Code:
1248  *	0		- Success.
1249  *	EINVAL		- pkt or msglen were NULL
1250  *	ECONNRESET	- The connection was not up.
1251  *	EWOULDBLOCK	- LDC queue is full
1252  *	xxx		- other error codes returned by ldc_write
1253  */
1254 static int
1255 vdc_send(ldc_handle_t ldc_handle, caddr_t pkt, size_t *msglen)
1256 {
1257 	size_t	size = 0;
1258 	int	retries = 0;
1259 	int	status = 0;
1260 
1261 	ASSERT(msglen != NULL);
1262 	ASSERT(*msglen != 0);
1263 
1264 	do {
1265 		size = *msglen;
1266 		status = ldc_write(ldc_handle, pkt, &size);
1267 	} while (status == EWOULDBLOCK && retries++ < vdc_retries);
1268 
1269 	/* return the last size written */
1270 	*msglen = size;
1271 
1272 	return (status);
1273 }
1274 
1275 /*
1276  * Function:
1277  *	vdc_get_ldc_id()
1278  *
1279  * Description:
1280  *	This function gets the 'ldc-id' for this particular instance of vdc.
1281  *	The id returned is the guest domain channel endpoint LDC uses for
1282  *	communication with vds.
1283  *
1284  * Arguments:
1285  *	dip	- dev info pointer for this instance of the device driver.
1286  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1287  *
1288  * Return Code:
1289  *	0	- Success.
1290  *	ENOENT	- Expected node or property did not exist.
1291  *	ENXIO	- Unexpected error communicating with MD framework
1292  */
1293 static int
1294 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1295 {
1296 	int		status = ENOENT;
1297 	char		*node_name = NULL;
1298 	md_t		*mdp = NULL;
1299 	int		num_nodes;
1300 	int		num_vdevs;
1301 	int		num_chans;
1302 	mde_cookie_t	rootnode;
1303 	mde_cookie_t	*listp = NULL;
1304 	mde_cookie_t	*chanp = NULL;
1305 	boolean_t	found_inst = B_FALSE;
1306 	int		listsz;
1307 	int		idx;
1308 	uint64_t	md_inst;
1309 	int		obp_inst;
1310 	int		instance = ddi_get_instance(dip);
1311 
1312 	ASSERT(ldc_id != NULL);
1313 	*ldc_id = 0;
1314 
1315 	/*
1316 	 * Get the OBP instance number for comparison with the MD instance
1317 	 *
1318 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1319 	 * notion of "instance", or unique identifier, for that node; OBP
1320 	 * stores the value of the "cfg-handle" MD property as the value of
1321 	 * the "reg" property on the node in the device tree it builds from
1322 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1323 	 * "reg" property value to uniquely identify this device instance.
1324 	 * If the "reg" property cannot be found, the device tree state is
1325 	 * presumably so broken that there is no point in continuing.
1326 	 */
1327 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1328 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1329 		return (ENOENT);
1330 	}
1331 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1332 			OBP_REG, -1);
1333 	PR1("%s[%d]: OBP inst=%d\n", __func__, instance, obp_inst);
1334 
1335 	/*
1336 	 * We now walk the MD nodes and if an instance of a vdc node matches
1337 	 * the instance got from OBP we get the ldc-id property.
1338 	 */
1339 	if ((mdp = md_get_handle()) == NULL) {
1340 		cmn_err(CE_WARN, "unable to init machine description");
1341 		return (ENXIO);
1342 	}
1343 
1344 	num_nodes = md_node_count(mdp);
1345 	ASSERT(num_nodes > 0);
1346 
1347 	listsz = num_nodes * sizeof (mde_cookie_t);
1348 
1349 	/* allocate memory for nodes */
1350 	listp = kmem_zalloc(listsz, KM_SLEEP);
1351 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1352 
1353 	rootnode = md_root_node(mdp);
1354 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1355 
1356 	/*
1357 	 * Search for all the virtual devices, we will then check to see which
1358 	 * ones are disk nodes.
1359 	 */
1360 	num_vdevs = md_scan_dag(mdp, rootnode,
1361 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1362 			md_find_name(mdp, "fwd"), listp);
1363 
1364 	if (num_vdevs <= 0) {
1365 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1366 		status = ENOENT;
1367 		goto done;
1368 	}
1369 
1370 	PR1("%s[%d] num_vdevs=%d\n", __func__, instance, num_vdevs);
1371 	for (idx = 0; idx < num_vdevs; idx++) {
1372 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1373 		if ((status != 0) || (node_name == NULL)) {
1374 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1375 					": err %d", VDC_MD_VDEV_NAME, status);
1376 			continue;
1377 		}
1378 
1379 		PR1("%s[%d] Found node %s\n", __func__, instance, node_name);
1380 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1381 			status = md_get_prop_val(mdp, listp[idx],
1382 					VDC_MD_CFG_HDL, &md_inst);
1383 			PR1("%s[%d] vdc inst# in MD=%d\n",
1384 					__func__, instance, md_inst);
1385 			if ((status == 0) && (md_inst == obp_inst)) {
1386 				found_inst = B_TRUE;
1387 				break;
1388 			}
1389 		}
1390 	}
1391 
1392 	if (found_inst == B_FALSE) {
1393 		cmn_err(CE_NOTE, "Unable to find correct '%s' node",
1394 				VDC_MD_DISK_NAME);
1395 		status = ENOENT;
1396 		goto done;
1397 	}
1398 	PR0("%s[%d] MD inst=%d\n", __func__, instance, md_inst);
1399 
1400 	/* get the channels for this node */
1401 	num_chans = md_scan_dag(mdp, listp[idx],
1402 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1403 			md_find_name(mdp, "fwd"), chanp);
1404 
1405 	/* expecting at least one channel */
1406 	if (num_chans <= 0) {
1407 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1408 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1409 		status = ENOENT;
1410 		goto done;
1411 
1412 	} else if (num_chans != 1) {
1413 		PR0("%s[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1414 			__func__, instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1415 			num_chans);
1416 	}
1417 
1418 	/*
1419 	 * We use the first channel found (index 0), irrespective of how
1420 	 * many are there in total.
1421 	 */
1422 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1423 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1424 				VDC_ID_PROP);
1425 		status = ENOENT;
1426 	}
1427 
1428 	PR0("%s[%d] LDC id is 0x%lx\n", __func__, instance, *ldc_id);
1429 
1430 done:
1431 	if (chanp)
1432 		kmem_free(chanp, listsz);
1433 	if (listp)
1434 		kmem_free(listp, listsz);
1435 
1436 	(void) md_fini_handle(mdp);
1437 
1438 	return (status);
1439 }
1440 
1441 
1442 /*
1443  * vdc_is_able_to_tx_data()
1444  *
1445  * Description:
1446  *	This function checks if we are able to send data to the
1447  *	vDisk server (vds). The LDC connection needs to be up and
1448  *	vdc & vds need to have completed the handshake negotiation.
1449  *
1450  * Parameters:
1451  *	vdc 		- soft state pointer
1452  *	flag		- flag to indicate if we can block or not
1453  *			  [ If O_NONBLOCK or O_NDELAY (which are defined in
1454  *			    open(2)) are set then do not block)
1455  *
1456  * Return Values
1457  *	B_TRUE		- can talk to vds
1458  *	B_FALSE		- unable to talk to vds
1459  */
1460 static boolean_t
1461 vdc_is_able_to_tx_data(vdc_t *vdc, int flag)
1462 {
1463 	vd_state_t	state;
1464 	uint32_t	ldc_state;
1465 	uint_t		retries = 0;
1466 	int		rv = -1;
1467 
1468 	ASSERT(vdc != NULL);
1469 
1470 	mutex_enter(&vdc->lock);
1471 	state = vdc->state;
1472 	ldc_state = vdc->ldc_state;
1473 	mutex_exit(&vdc->lock);
1474 
1475 	if ((state == VD_STATE_DATA) && (ldc_state == LDC_UP))
1476 		return (B_TRUE);
1477 
1478 	if ((flag & O_NONBLOCK) || (flag & O_NDELAY)) {
1479 		PR0("%s[%d] Not ready to tx - state %d LDC state %d\n",
1480 			__func__, vdc->instance, state, ldc_state);
1481 		return (B_FALSE);
1482 	}
1483 
1484 	/*
1485 	 * We want to check and see if any negotiations triggered earlier
1486 	 * have succeeded. We are prepared to wait a little while in case
1487 	 * they are still in progress.
1488 	 */
1489 	mutex_enter(&vdc->lock);
1490 	while ((vdc->ldc_state != LDC_UP) || (vdc->state != VD_STATE_DATA)) {
1491 		PR0("%s: Waiting for connection at state %d (LDC state %d)\n",
1492 			__func__, vdc->state, vdc->ldc_state);
1493 
1494 		rv = cv_timedwait(&vdc->cv, &vdc->lock,
1495 			VD_GET_TIMEOUT_HZ(retries));
1496 
1497 		/*
1498 		 * An rv of -1 indicates that we timed out without the LDC
1499 		 * state changing so it looks like the other side (vdc) is
1500 		 * not yet ready/responding.
1501 		 *
1502 		 * Any other value of rv indicates that the LDC triggered an
1503 		 * interrupt so we just loop again, check the handshake state
1504 		 * and keep waiting if necessary.
1505 		 */
1506 		if (rv == -1) {
1507 			if (retries >= vdc_retries) {
1508 				PR0("%s[%d] handshake wait timed out.\n",
1509 						__func__, vdc->instance);
1510 				mutex_exit(&vdc->lock);
1511 				return (B_FALSE);
1512 			} else {
1513 				PR1("%s[%d] Retry #%d for handshake timedout\n",
1514 					__func__, vdc->instance, retries);
1515 				retries++;
1516 			}
1517 		}
1518 	}
1519 
1520 	ASSERT(vdc->ldc_state == LDC_UP);
1521 	ASSERT(vdc->state == VD_STATE_DATA);
1522 
1523 	mutex_exit(&vdc->lock);
1524 
1525 	return (B_TRUE);
1526 }
1527 
1528 
1529 static void
1530 vdc_terminate_ldc(vdc_t *vdc)
1531 {
1532 	int	instance = ddi_get_instance(vdc->dip);
1533 
1534 	ASSERT(vdc != NULL);
1535 	ASSERT(mutex_owned(&vdc->lock));
1536 
1537 	PR0("%s[%d] initialized=%x\n", __func__, instance, vdc->initialized);
1538 
1539 	if (vdc->initialized & VDC_LDC_OPEN) {
1540 		PR0("%s[%d]: ldc_close()\n", __func__, instance);
1541 		(void) ldc_close(vdc->ldc_handle);
1542 	}
1543 	if (vdc->initialized & VDC_LDC_CB) {
1544 		PR0("%s[%d]: ldc_unreg_callback()\n", __func__, instance);
1545 		(void) ldc_unreg_callback(vdc->ldc_handle);
1546 	}
1547 	if (vdc->initialized & VDC_LDC) {
1548 		PR0("%s[%d]: ldc_fini()\n", __func__, instance);
1549 		(void) ldc_fini(vdc->ldc_handle);
1550 		vdc->ldc_handle = NULL;
1551 	}
1552 
1553 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
1554 }
1555 
1556 static void
1557 vdc_reset_connection(vdc_t *vdc, boolean_t reset_ldc)
1558 {
1559 	int	status;
1560 
1561 	ASSERT(vdc != NULL);
1562 	ASSERT(mutex_owned(&vdc->lock));
1563 
1564 	PR0("%s[%d] Entered\n", __func__, vdc->instance);
1565 
1566 	vdc->state = VD_STATE_INIT;
1567 
1568 	if (reset_ldc == B_TRUE) {
1569 		status = ldc_reset(vdc->ldc_handle);
1570 		PR0("%s[%d]  ldc_reset() = %d\n",
1571 				__func__, vdc->instance, status);
1572 	}
1573 
1574 	vdc->initialized &= ~VDC_HANDSHAKE;
1575 	PR0("%s[%d] init=%x\n", __func__, vdc->instance, vdc->initialized);
1576 }
1577 
1578 /* -------------------------------------------------------------------------- */
1579 
1580 /*
1581  * Descriptor Ring helper routines
1582  */
1583 
1584 static int
1585 vdc_init_descriptor_ring(vdc_t *vdc)
1586 {
1587 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
1588 	int	status = -1;
1589 	int	i;
1590 
1591 	PR0("%s\n", __func__);
1592 
1593 	ASSERT(vdc != NULL);
1594 	ASSERT(mutex_owned(&vdc->lock));
1595 	ASSERT(vdc->ldc_handle != NULL);
1596 
1597 	status = ldc_mem_dring_create(VD_DRING_LEN, VD_DRING_ENTRY_SZ,
1598 			&vdc->ldc_dring_hdl);
1599 	if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
1600 		PR0("%s: Failed to create a descriptor ring", __func__);
1601 		return (status);
1602 	}
1603 	vdc->initialized |= VDC_DRING;
1604 	vdc->dring_entry_size = VD_DRING_ENTRY_SZ;
1605 	vdc->dring_len = VD_DRING_LEN;
1606 
1607 	vdc->dring_cookie = kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
1608 
1609 	status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
1610 			LDC_SHADOW_MAP, LDC_MEM_RW, &vdc->dring_cookie[0],
1611 			&vdc->dring_cookie_count);
1612 	if (status != 0) {
1613 		PR0("%s: Failed to bind descriptor ring (%p) to channel (%p)\n",
1614 			__func__, vdc->ldc_dring_hdl, vdc->ldc_handle);
1615 		return (status);
1616 	}
1617 	ASSERT(vdc->dring_cookie_count == 1);
1618 	vdc->initialized |= VDC_DRING_BOUND;
1619 
1620 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
1621 	if (status != 0) {
1622 		PR0("%s: Failed to get info for descriptor ring (%p)\n",
1623 			__func__, vdc->ldc_dring_hdl);
1624 		return (status);
1625 	}
1626 
1627 	/* Allocate the local copy of this dring */
1628 	vdc->local_dring = kmem_zalloc(VD_DRING_LEN * sizeof (vdc_local_desc_t),
1629 						KM_SLEEP);
1630 	vdc->initialized |= VDC_DRING_LOCAL;
1631 
1632 	/*
1633 	 * Mark all DRing entries as free and init priv desc memory handles
1634 	 * If any entry is initialized, we need to free it later so we set
1635 	 * the bit in 'initialized' at the start.
1636 	 */
1637 	vdc->initialized |= VDC_DRING_ENTRY;
1638 	for (i = 0; i < VD_DRING_LEN; i++) {
1639 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
1640 		dep->hdr.dstate = VIO_DESC_FREE;
1641 
1642 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
1643 				&vdc->local_dring[i].desc_mhdl);
1644 		if (status != 0) {
1645 			cmn_err(CE_NOTE, "![%d] Failed to alloc mem handle for"
1646 					" descriptor %d", vdc->instance, i);
1647 			return (status);
1648 		}
1649 		vdc->local_dring[i].flags = VIO_DESC_FREE;
1650 		vdc->local_dring[i].flags |= VDC_ALLOC_HANDLE;
1651 		vdc->local_dring[i].dep = dep;
1652 
1653 		mutex_init(&vdc->local_dring[i].lock, NULL, MUTEX_DRIVER, NULL);
1654 		cv_init(&vdc->local_dring[i].cv, NULL, CV_DRIVER, NULL);
1655 	}
1656 
1657 	/*
1658 	 * We init the index of the last DRing entry used. Since the code to
1659 	 * get the next available entry increments it before selecting one,
1660 	 * we set it to the last DRing entry so that it wraps around to zero
1661 	 * for the 1st entry to be used.
1662 	 */
1663 	vdc->dring_curr_idx = VD_DRING_LEN - 1;
1664 
1665 	return (status);
1666 }
1667 
1668 static void
1669 vdc_destroy_descriptor_ring(vdc_t *vdc)
1670 {
1671 	ldc_mem_handle_t	mhdl = NULL;
1672 	int	status = -1;
1673 	int	i;	/* loop */
1674 
1675 	ASSERT(vdc != NULL);
1676 	ASSERT(mutex_owned(&vdc->lock));
1677 	ASSERT(vdc->state == VD_STATE_INIT);
1678 
1679 	PR0("%s: Entered\n", __func__);
1680 
1681 	if (vdc->initialized & VDC_DRING_ENTRY) {
1682 		for (i = 0; i < VD_DRING_LEN; i++) {
1683 			mhdl = vdc->local_dring[i].desc_mhdl;
1684 
1685 			if (vdc->local_dring[i].flags | VDC_ALLOC_HANDLE)
1686 				(void) ldc_mem_free_handle(mhdl);
1687 
1688 			mutex_destroy(&vdc->local_dring[i].lock);
1689 			cv_destroy(&vdc->local_dring[i].cv);
1690 
1691 			bzero(&vdc->local_dring[i].desc_mhdl,
1692 				sizeof (ldc_mem_handle_t));
1693 		}
1694 		vdc->initialized &= ~VDC_DRING_ENTRY;
1695 	}
1696 
1697 	if (vdc->initialized & VDC_DRING_LOCAL) {
1698 		kmem_free(vdc->local_dring,
1699 				VD_DRING_LEN * sizeof (vdc_local_desc_t));
1700 		vdc->initialized &= ~VDC_DRING_LOCAL;
1701 	}
1702 
1703 	if (vdc->initialized & VDC_DRING_BOUND) {
1704 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
1705 		if (status == 0) {
1706 			vdc->initialized &= ~VDC_DRING_BOUND;
1707 		} else {
1708 			vdc_msg("%s: Failed to unbind Descriptor Ring (%lx)\n",
1709 				vdc->ldc_dring_hdl);
1710 		}
1711 	}
1712 
1713 	if (vdc->initialized & VDC_DRING_INIT) {
1714 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
1715 		if (status == 0) {
1716 			vdc->ldc_dring_hdl = NULL;
1717 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
1718 			vdc->initialized &= ~VDC_DRING_INIT;
1719 		} else {
1720 			vdc_msg("%s: Failed to destroy Descriptor Ring (%lx)\n",
1721 				vdc->ldc_dring_hdl);
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * vdc_get_next_dring_entry_idx()
1728  *
1729  * Description:
1730  *	This function gets the index of the next Descriptor Ring entry available
1731  *
1732  * Return Value:
1733  *	0 <= rv < VD_DRING_LEN		Next available slot
1734  *	-1 				DRing is full
1735  */
1736 static int
1737 vdc_get_next_dring_entry_idx(vdc_t *vdc, uint_t num_slots_needed)
1738 {
1739 	_NOTE(ARGUNUSED(num_slots_needed))
1740 
1741 	vd_dring_entry_t	*dep = NULL;	/* Dring Entry Pointer */
1742 	int			idx = -1;
1743 	int			start_idx = 0;
1744 
1745 	ASSERT(vdc != NULL);
1746 	ASSERT(vdc->dring_len == VD_DRING_LEN);
1747 	ASSERT(vdc->dring_curr_idx >= 0);
1748 	ASSERT(vdc->dring_curr_idx < VD_DRING_LEN);
1749 	ASSERT(mutex_owned(&vdc->dring_lock));
1750 
1751 	/* Start at the last entry used */
1752 	idx = start_idx = vdc->dring_curr_idx;
1753 
1754 	/*
1755 	 * Loop through Descriptor Ring checking for a free entry until we reach
1756 	 * the entry we started at. We should never come close to filling the
1757 	 * Ring at any stage, instead this is just to prevent an entry which
1758 	 * gets into an inconsistent state (e.g. due to a request timing out)
1759 	 * from blocking progress.
1760 	 */
1761 	do {
1762 		/* Get the next entry after the last known index tried */
1763 		idx = (idx + 1) % VD_DRING_LEN;
1764 
1765 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
1766 		ASSERT(dep != NULL);
1767 
1768 		if (dep->hdr.dstate == VIO_DESC_FREE) {
1769 			ASSERT(idx >= 0);
1770 			ASSERT(idx < VD_DRING_LEN);
1771 			vdc->dring_curr_idx = idx;
1772 			return (idx);
1773 
1774 		} else if (dep->hdr.dstate == VIO_DESC_READY) {
1775 			PR0("%s: Entry %d waiting to be accepted\n",
1776 					__func__, idx);
1777 			continue;
1778 
1779 		} else if (dep->hdr.dstate == VIO_DESC_ACCEPTED) {
1780 			PR0("%s: Entry %d waiting to be processed\n",
1781 					__func__, idx);
1782 			continue;
1783 
1784 		} else if (dep->hdr.dstate == VIO_DESC_DONE) {
1785 			PR0("%s: Entry %d done but not marked free\n",
1786 					__func__, idx);
1787 
1788 			/*
1789 			 * If we are currently panicking, interrupts are
1790 			 * disabled and we will not be getting ACKs from the
1791 			 * vDisk server so we mark the descriptor ring entries
1792 			 * as FREE here instead of in the ACK handler.
1793 			 */
1794 			if (panicstr) {
1795 				(void) vdc_depopulate_descriptor(vdc, idx);
1796 				dep->hdr.dstate = VIO_DESC_FREE;
1797 				vdc->local_dring[idx].flags = VIO_DESC_FREE;
1798 			}
1799 			continue;
1800 
1801 		} else {
1802 			vdc_msg("Public Descriptor Ring entry corrupted");
1803 			mutex_enter(&vdc->lock);
1804 			vdc_reset_connection(vdc, B_TRUE);
1805 			mutex_exit(&vdc->lock);
1806 			return (-1);
1807 		}
1808 
1809 	} while (idx != start_idx);
1810 
1811 	return (-1);
1812 }
1813 
1814 /*
1815  * Function:
1816  *	vdc_populate_descriptor
1817  *
1818  * Description:
1819  *	This routine writes the data to be transmitted to vds into the
1820  *	descriptor, notifies vds that the ring has been updated and
1821  *	then waits for the request to be processed.
1822  *
1823  * Arguments:
1824  *	vdc	- the soft state pointer
1825  *	addr	- start address of memory region.
1826  *	nbytes	- number of bytes to read/write
1827  *	operation - operation we want vds to perform (VD_OP_XXX)
1828  *	arg	- parameter to be sent to server (depends on VD_OP_XXX type)
1829  *			. mode for ioctl(9e)
1830  *			. LP64 diskaddr_t (block I/O)
1831  *	slice	- the disk slice this request is for
1832  *
1833  * Return Codes:
1834  *	0
1835  *	EAGAIN
1836  *		EFAULT
1837  *		ENXIO
1838  *		EIO
1839  */
1840 static int
1841 vdc_populate_descriptor(vdc_t *vdc, caddr_t addr, size_t nbytes, int operation,
1842 				uint64_t arg, uint64_t slice)
1843 {
1844 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
1845 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
1846 	int			idx = 0;	/* Index of DRing entry used */
1847 	vio_dring_msg_t		dmsg;
1848 	size_t			msglen = sizeof (dmsg);
1849 	int			status = 0;
1850 	int			rv;
1851 	int			retries = 0;
1852 
1853 	ASSERT(vdc != NULL);
1854 	ASSERT(slice < V_NUMPAR);
1855 
1856 	/*
1857 	 * Get next available DRing entry.
1858 	 */
1859 	mutex_enter(&vdc->dring_lock);
1860 	idx = vdc_get_next_dring_entry_idx(vdc, 1);
1861 	if (idx == -1) {
1862 		mutex_exit(&vdc->dring_lock);
1863 		vdc_msg("%s[%d]: no descriptor ring entry avail, seq=%d\n",
1864 			__func__, vdc->instance, vdc->seq_num);
1865 
1866 		/*
1867 		 * Since strategy should not block we don't wait for the DRing
1868 		 * to empty and instead return
1869 		 */
1870 		return (EAGAIN);
1871 	}
1872 
1873 	ASSERT(idx < VD_DRING_LEN);
1874 	local_dep = &vdc->local_dring[idx];
1875 	dep = local_dep->dep;
1876 	ASSERT(dep != NULL);
1877 
1878 	/*
1879 	 * Wait for anybody still using the DRing entry to finish.
1880 	 * (e.g. still waiting for vds to respond to a request)
1881 	 */
1882 	mutex_enter(&local_dep->lock);
1883 
1884 	switch (operation) {
1885 	case VD_OP_BREAD:
1886 	case VD_OP_BWRITE:
1887 		PR1("buf=%p, block=%lx, nbytes=%lx\n", addr, arg, nbytes);
1888 		dep->payload.addr = (diskaddr_t)arg;
1889 		rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes, operation);
1890 		break;
1891 
1892 	case VD_OP_FLUSH:
1893 	case VD_OP_GET_VTOC:
1894 	case VD_OP_SET_VTOC:
1895 	case VD_OP_GET_DISKGEOM:
1896 	case VD_OP_SET_DISKGEOM:
1897 	case VD_OP_SCSICMD:
1898 		if (nbytes > 0) {
1899 			rv = vdc_populate_mem_hdl(vdc, idx, addr, nbytes,
1900 							operation);
1901 		}
1902 		break;
1903 	default:
1904 		cmn_err(CE_NOTE, "[%d] Unsupported vDisk operation [%d]\n",
1905 				vdc->instance, operation);
1906 		rv = EINVAL;
1907 	}
1908 
1909 	if (rv != 0) {
1910 		mutex_exit(&local_dep->lock);
1911 		mutex_exit(&vdc->dring_lock);
1912 		return (rv);
1913 	}
1914 
1915 	/*
1916 	 * fill in the data details into the DRing
1917 	 */
1918 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdc);
1919 	dep->payload.operation = operation;
1920 	dep->payload.nbytes = nbytes;
1921 	dep->payload.status = EINPROGRESS;	/* vds will set valid value */
1922 	dep->payload.slice = slice;
1923 	dep->hdr.dstate = VIO_DESC_READY;
1924 	dep->hdr.ack = 1;		/* request an ACK for every message */
1925 
1926 	local_dep->flags = VIO_DESC_READY;
1927 	local_dep->addr = addr;
1928 
1929 	/*
1930 	 * Send a msg with the DRing details to vds
1931 	 */
1932 	VIO_INIT_DRING_DATA_TAG(dmsg);
1933 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
1934 	dmsg.dring_ident = vdc->dring_ident;
1935 	dmsg.start_idx = idx;
1936 	dmsg.end_idx = idx;
1937 
1938 	PR1("ident=0x%llx, st=%d, end=%d, seq=%d req=%d dep=%p\n",
1939 			vdc->dring_ident, dmsg.start_idx, dmsg.end_idx,
1940 			dmsg.seq_num, dep->payload.req_id, dep);
1941 
1942 	status = vdc_send(vdc->ldc_handle, (caddr_t)&dmsg, &msglen);
1943 	PR1("%s[%d]: ldc_write() status=%d\n", __func__, vdc->instance, status);
1944 	if (status != 0) {
1945 		mutex_exit(&local_dep->lock);
1946 		mutex_exit(&vdc->dring_lock);
1947 		vdc_msg("%s: ldc_write(%d)\n", __func__, status);
1948 		return (EAGAIN);
1949 	}
1950 
1951 	/*
1952 	 * XXX - potential performance enhancement (Investigate at a later date)
1953 	 *
1954 	 * for calls from strategy(9E), instead of waiting for a response from
1955 	 * vds, we could return at this stage and let the ACK handling code
1956 	 * trigger the biodone(9F)
1957 	 */
1958 
1959 	/*
1960 	 * When a guest is panicking, the completion of requests needs to be
1961 	 * handled differently because interrupts are disabled and vdc
1962 	 * will not get messages. We have to poll for the messages instead.
1963 	 */
1964 	if (ddi_in_panic()) {
1965 		int start = 0;
1966 		retries = 0;
1967 		for (;;) {
1968 			msglen = sizeof (dmsg);
1969 			status = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg,
1970 					&msglen);
1971 			if (status) {
1972 				status = EINVAL;
1973 				break;
1974 			}
1975 
1976 			/*
1977 			 * if there are no packets wait and check again
1978 			 */
1979 			if ((status == 0) && (msglen == 0)) {
1980 				if (retries++ > vdc_dump_retries) {
1981 					PR0("[%d] Giving up waiting, idx %d\n",
1982 							vdc->instance, idx);
1983 					status = EAGAIN;
1984 					break;
1985 				}
1986 
1987 				PR1("Waiting for next packet @ %d\n", idx);
1988 				delay(drv_usectohz(vdc_dump_usec_timeout));
1989 				continue;
1990 			}
1991 
1992 			/*
1993 			 * Ignore all messages that are not ACKs/NACKs to
1994 			 * DRing requests.
1995 			 */
1996 			if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
1997 			    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
1998 				PR0("discarding pkt: type=%d sub=%d env=%d\n",
1999 					dmsg.tag.vio_msgtype,
2000 					dmsg.tag.vio_subtype,
2001 					dmsg.tag.vio_subtype_env);
2002 				continue;
2003 			}
2004 
2005 			/*
2006 			 * set the appropriate return value for the
2007 			 * current request.
2008 			 */
2009 			switch (dmsg.tag.vio_subtype) {
2010 			case VIO_SUBTYPE_ACK:
2011 				status = 0;
2012 				break;
2013 			case VIO_SUBTYPE_NACK:
2014 				status = EAGAIN;
2015 				break;
2016 			default:
2017 				continue;
2018 			}
2019 
2020 			start = dmsg.start_idx;
2021 			if (start >= VD_DRING_LEN) {
2022 				PR0("[%d] Bogus ack data : start %d\n",
2023 					vdc->instance, start);
2024 				continue;
2025 			}
2026 
2027 			dep = VDC_GET_DRING_ENTRY_PTR(vdc, start);
2028 
2029 			PR1("[%d] Dumping start=%d idx=%d state=%d\n",
2030 				vdc->instance, start, idx, dep->hdr.dstate);
2031 
2032 			if (dep->hdr.dstate != VIO_DESC_DONE) {
2033 				PR0("[%d] Entry @ %d - state !DONE %d\n",
2034 					vdc->instance, start, dep->hdr.dstate);
2035 				continue;
2036 			}
2037 
2038 			(void) vdc_depopulate_descriptor(vdc, start);
2039 
2040 			/*
2041 			 * We want to process all Dring entries up to
2042 			 * the current one so that we can return an
2043 			 * error with the correct request.
2044 			 */
2045 			if (idx > start) {
2046 				PR0("[%d] Looping: start %d, idx %d\n",
2047 						vdc->instance, idx, start);
2048 				continue;
2049 			}
2050 
2051 			/* exit - all outstanding requests are completed */
2052 			break;
2053 		}
2054 
2055 		mutex_exit(&local_dep->lock);
2056 		mutex_exit(&vdc->dring_lock);
2057 
2058 		return (status);
2059 	}
2060 
2061 	/*
2062 	 * Now watch the DRing entries we modified to get the response
2063 	 * from vds.
2064 	 */
2065 	status = vdc_wait_for_descriptor_update(vdc, idx, dmsg);
2066 	if (status == ETIMEDOUT) {
2067 		/* debug info when dumping state on vds side */
2068 		dep->payload.status = ECANCELED;
2069 	}
2070 
2071 	status = vdc_depopulate_descriptor(vdc, idx);
2072 	PR1("%s[%d] Status=%d\n", __func__, vdc->instance, status);
2073 
2074 	mutex_exit(&local_dep->lock);
2075 	mutex_exit(&vdc->dring_lock);
2076 
2077 	return (status);
2078 }
2079 
2080 static int
2081 vdc_wait_for_descriptor_update(vdc_t *vdc, uint_t idx, vio_dring_msg_t dmsg)
2082 {
2083 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2084 	vdc_local_desc_t *local_dep = NULL;	/* Local Dring Entry Pointer */
2085 	size_t	msglen = sizeof (dmsg);
2086 	int	retries = 0;
2087 	int	status = ENXIO;
2088 	int	rv = 0;
2089 
2090 	ASSERT(vdc != NULL);
2091 	ASSERT(idx < VD_DRING_LEN);
2092 	local_dep = &vdc->local_dring[idx];
2093 	ASSERT(local_dep != NULL);
2094 	dep = local_dep->dep;
2095 	ASSERT(dep != NULL);
2096 
2097 	while (dep->hdr.dstate != VIO_DESC_DONE) {
2098 		rv = cv_timedwait(&local_dep->cv, &local_dep->lock,
2099 			VD_GET_TIMEOUT_HZ(retries));
2100 		if (rv == -1) {
2101 			/*
2102 			 * If they persist in ignoring us we'll storm off in a
2103 			 * huff and return ETIMEDOUT to the upper layers.
2104 			 */
2105 			if (retries >= vdc_retries) {
2106 				PR0("%s: Finished waiting on entry %d\n",
2107 					__func__, idx);
2108 				status = ETIMEDOUT;
2109 				break;
2110 			} else {
2111 				retries++;
2112 				PR0("%s[%d]: Timeout #%d on entry %d "
2113 				    "[seq %d][req %d]\n", __func__,
2114 				    vdc->instance,
2115 				    retries, idx, dmsg.seq_num,
2116 				    dep->payload.req_id);
2117 			}
2118 
2119 			if (dep->hdr.dstate & VIO_DESC_ACCEPTED) {
2120 				PR0("%s[%d]: vds has accessed entry %d [seq %d]"
2121 				    "[req %d] but not ack'ed it yet\n",
2122 				    __func__, vdc->instance, idx, dmsg.seq_num,
2123 				    dep->payload.req_id);
2124 				continue;
2125 			}
2126 
2127 			/*
2128 			 * we resend the message as it may have been dropped
2129 			 * and have never made it to the other side (vds).
2130 			 * (We reuse the original message but update seq ID)
2131 			 */
2132 			VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdc);
2133 			retries = 0;
2134 			status = vdc_send(vdc->ldc_handle, (caddr_t)&dmsg,
2135 					&msglen);
2136 			if (status != 0) {
2137 				vdc_msg("%s: Error (%d) while resending after "
2138 					"timeout\n", __func__, status);
2139 				status = ETIMEDOUT;
2140 				break;
2141 			}
2142 		}
2143 	}
2144 
2145 	return (status);
2146 }
2147 
2148 static int
2149 vdc_get_response(vdc_t *vdc, int start, int end)
2150 {
2151 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2152 	vd_dring_entry_t	*dep = NULL;	/* Dring Entry Pointer */
2153 	int			status = ENXIO;
2154 	int			idx = -1;
2155 
2156 	ASSERT(vdc != NULL);
2157 	ASSERT(start >= 0);
2158 	ASSERT(start <= VD_DRING_LEN);
2159 	ASSERT(start >= -1);
2160 	ASSERT(start <= VD_DRING_LEN);
2161 
2162 	idx = start;
2163 	ldep = &vdc->local_dring[idx];
2164 	ASSERT(ldep != NULL);
2165 	dep = ldep->dep;
2166 	ASSERT(dep != NULL);
2167 
2168 	PR0("%s[%d] DRING entry=%d status=%d\n", __func__, vdc->instance,
2169 			idx, VIO_GET_DESC_STATE(dep->hdr.dstate));
2170 	while (VIO_GET_DESC_STATE(dep->hdr.dstate) == VIO_DESC_DONE) {
2171 		if ((end != -1) && (idx > end))
2172 			return (0);
2173 
2174 		switch (ldep->operation) {
2175 		case VD_OP_BREAD:
2176 		case VD_OP_BWRITE:
2177 			/* call bioxxx */
2178 			break;
2179 		default:
2180 			/* signal waiter */
2181 			break;
2182 		}
2183 
2184 		/* Clear the DRing entry */
2185 		status = vdc_depopulate_descriptor(vdc, idx);
2186 		PR0("%s[%d] Status=%d\n", __func__, vdc->instance, status);
2187 
2188 		/* loop accounting to get next DRing entry */
2189 		idx++;
2190 		ldep = &vdc->local_dring[idx];
2191 		dep = ldep->dep;
2192 	}
2193 
2194 	return (status);
2195 }
2196 
2197 static int
2198 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2199 {
2200 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2201 	vdc_local_desc_t *ldep = NULL;	/* Local Dring Entry Pointer */
2202 	int	status = ENXIO;
2203 
2204 	ASSERT(vdc != NULL);
2205 	ASSERT(idx < VD_DRING_LEN);
2206 	ldep = &vdc->local_dring[idx];
2207 	ASSERT(ldep != NULL);
2208 	dep = ldep->dep;
2209 	ASSERT(dep != NULL);
2210 
2211 	status = dep->payload.status;
2212 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2213 	ldep = &vdc->local_dring[idx];
2214 	VIO_SET_DESC_STATE(ldep->flags, VIO_DESC_FREE);
2215 
2216 	/*
2217 	 * If the upper layer passed in a misaligned address we copied the
2218 	 * data into an aligned buffer before sending it to LDC - we now
2219 	 * copy it back to the original buffer.
2220 	 */
2221 	if (ldep->align_addr) {
2222 		ASSERT(ldep->addr != NULL);
2223 		ASSERT(dep->payload.nbytes > 0);
2224 
2225 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2226 		kmem_free(ldep->align_addr,
2227 				sizeof (caddr_t) * dep->payload.nbytes);
2228 		ldep->align_addr = NULL;
2229 	}
2230 
2231 	status = ldc_mem_unbind_handle(ldep->desc_mhdl);
2232 	if (status != 0) {
2233 		cmn_err(CE_NOTE, "[%d] unbind mem hdl 0x%lx @ idx %d failed:%d",
2234 			vdc->instance, ldep->desc_mhdl, idx, status);
2235 	}
2236 
2237 	return (status);
2238 }
2239 
2240 static int
2241 vdc_populate_mem_hdl(vdc_t *vdc, uint_t idx, caddr_t addr, size_t nbytes,
2242 			int operation)
2243 {
2244 	vd_dring_entry_t	*dep = NULL;
2245 	vdc_local_desc_t	*ldep = NULL;
2246 	ldc_mem_handle_t	mhdl;
2247 	caddr_t			vaddr;
2248 	int			perm = LDC_MEM_RW;
2249 	int			rv = 0;
2250 	int			i;
2251 
2252 	ASSERT(vdc != NULL);
2253 	ASSERT(idx < VD_DRING_LEN);
2254 
2255 	dep = VDC_GET_DRING_ENTRY_PTR(vdc, idx);
2256 	ldep = &vdc->local_dring[idx];
2257 	mhdl = ldep->desc_mhdl;
2258 
2259 	switch (operation) {
2260 	case VD_OP_BREAD:
2261 		perm = LDC_MEM_W;
2262 		break;
2263 
2264 	case VD_OP_BWRITE:
2265 		perm = LDC_MEM_R;
2266 		break;
2267 
2268 	case VD_OP_FLUSH:
2269 	case VD_OP_GET_VTOC:
2270 	case VD_OP_SET_VTOC:
2271 	case VD_OP_GET_DISKGEOM:
2272 	case VD_OP_SET_DISKGEOM:
2273 	case VD_OP_SCSICMD:
2274 		perm = LDC_MEM_RW;
2275 		break;
2276 
2277 	default:
2278 		ASSERT(0);	/* catch bad programming in vdc */
2279 	}
2280 
2281 	/*
2282 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2283 	 * to copy the contents of any misaligned buffers to a newly allocated
2284 	 * buffer and bind it instead (and copy the the contents back to the
2285 	 * original buffer passed in when depopulating the descriptor)
2286 	 */
2287 	vaddr = addr;
2288 	if (((uint64_t)addr & 0x7) != 0) {
2289 		ldep->align_addr =
2290 			kmem_zalloc(sizeof (caddr_t) * nbytes, KM_SLEEP);
2291 		PR0("%s[%d] Misaligned address %lx reallocating "
2292 		    "(buf=%lx entry=%d)\n",
2293 		    __func__, vdc->instance, addr, ldep->align_addr, idx);
2294 		bcopy(addr, ldep->align_addr, nbytes);
2295 		vaddr = ldep->align_addr;
2296 	}
2297 
2298 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2299 		vdc->dring_mem_info.mtype, perm, &dep->payload.cookie[0],
2300 		&dep->payload.ncookies);
2301 	PR1("%s[%d] bound mem handle; ncookies=%d\n",
2302 			__func__, vdc->instance, dep->payload.ncookies);
2303 	if (rv != 0) {
2304 		vdc_msg("%s[%d] failed to ldc_mem_bind_handle "
2305 		    "(mhdl=%lx, buf=%lx entry=%d err=%d)\n",
2306 		    __func__, vdc->instance, mhdl, addr, idx, rv);
2307 		if (ldep->align_addr) {
2308 			kmem_free(ldep->align_addr,
2309 				sizeof (caddr_t) * dep->payload.nbytes);
2310 			ldep->align_addr = NULL;
2311 		}
2312 		return (EAGAIN);
2313 	}
2314 
2315 	/*
2316 	 * Get the other cookies (if any).
2317 	 */
2318 	for (i = 1; i < dep->payload.ncookies; i++) {
2319 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2320 		if (rv != 0) {
2321 			(void) ldc_mem_unbind_handle(mhdl);
2322 			vdc_msg("%s: failed to get next cookie(mhdl=%lx "
2323 				"cnum=%d), err=%d", __func__, mhdl, i, rv);
2324 			if (ldep->align_addr) {
2325 				kmem_free(ldep->align_addr,
2326 					sizeof (caddr_t) * dep->payload.nbytes);
2327 				ldep->align_addr = NULL;
2328 			}
2329 			return (EAGAIN);
2330 		}
2331 	}
2332 
2333 	return (rv);
2334 }
2335 
2336 /*
2337  * Interrupt handlers for messages from LDC
2338  */
2339 
2340 static uint_t
2341 vdc_handle_cb(uint64_t event, caddr_t arg)
2342 {
2343 	ldc_status_t	ldc_state;
2344 	int		rv = 0;
2345 
2346 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2347 
2348 	ASSERT(vdc != NULL);
2349 
2350 	PR1("%s[%d] event=%x seqID=%d\n",
2351 			__func__, vdc->instance, event, vdc->seq_num);
2352 
2353 	/*
2354 	 * Depending on the type of event that triggered this callback,
2355 	 * we modify the handhske state or read the data.
2356 	 *
2357 	 * NOTE: not done as a switch() as event could be triggered by
2358 	 * a state change and a read request. Also the ordering	of the
2359 	 * check for the event types is deliberate.
2360 	 */
2361 	if (event & LDC_EVT_UP) {
2362 		PR0("%s[%d] Received LDC_EVT_UP\n", __func__, vdc->instance);
2363 
2364 		/* get LDC state */
2365 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2366 		if (rv != 0) {
2367 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2368 					vdc->instance, rv);
2369 			vdc_reset_connection(vdc, B_TRUE);
2370 			return (LDC_SUCCESS);
2371 		}
2372 
2373 		/*
2374 		 * Reset the transaction sequence numbers when LDC comes up.
2375 		 * We then kick off the handshake negotiation with the vDisk
2376 		 * server.
2377 		 */
2378 		mutex_enter(&vdc->lock);
2379 		vdc->seq_num = 0;
2380 		vdc->seq_num_reply = 0;
2381 		vdc->ldc_state = ldc_state;
2382 		ASSERT(ldc_state == LDC_UP);
2383 		mutex_exit(&vdc->lock);
2384 
2385 		vdc_init_handshake_negotiation(vdc);
2386 
2387 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2388 	}
2389 
2390 	if (event & LDC_EVT_READ) {
2391 		/*
2392 		 * Wake up the worker thread to process the message
2393 		 */
2394 		mutex_enter(&vdc->msg_proc_lock);
2395 		vdc->msg_pending = B_TRUE;
2396 		cv_signal(&vdc->msg_proc_cv);
2397 		mutex_exit(&vdc->msg_proc_lock);
2398 
2399 		ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
2400 
2401 		/* that's all we have to do - no need to handle DOWN/RESET */
2402 		return (LDC_SUCCESS);
2403 	}
2404 
2405 	if (event & LDC_EVT_RESET) {
2406 		PR0("%s[%d] Recvd LDC RESET event\n", __func__, vdc->instance);
2407 	}
2408 
2409 	if (event & LDC_EVT_DOWN) {
2410 		PR0("%s[%d] Recvd LDC DOWN event\n", __func__, vdc->instance);
2411 
2412 		/* get LDC state */
2413 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2414 		if (rv != 0) {
2415 			cmn_err(CE_NOTE, "[%d] Couldn't get LDC status %d",
2416 					vdc->instance, rv);
2417 			ldc_state = LDC_OPEN;
2418 		}
2419 		mutex_enter(&vdc->lock);
2420 		vdc->ldc_state = ldc_state;
2421 		mutex_exit(&vdc->lock);
2422 
2423 		vdc_reset_connection(vdc, B_TRUE);
2424 	}
2425 
2426 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
2427 		cmn_err(CE_NOTE, "![%d] Unexpected LDC event (%lx) received",
2428 				vdc->instance, event);
2429 
2430 	return (LDC_SUCCESS);
2431 }
2432 
2433 /* -------------------------------------------------------------------------- */
2434 
2435 /*
2436  * The following functions process the incoming messages from vds
2437  */
2438 
2439 
2440 static void
2441 vdc_process_msg_thread(vdc_t *vdc)
2442 {
2443 	int		status = 0;
2444 	boolean_t	q_is_empty = B_TRUE;
2445 
2446 	ASSERT(vdc != NULL);
2447 
2448 	mutex_enter(&vdc->msg_proc_lock);
2449 	PR0("%s[%d]: Starting\n", __func__, vdc->instance);
2450 
2451 	vdc->msg_proc_thr_state = VDC_THR_RUNNING;
2452 
2453 	while (vdc->msg_proc_thr_state == VDC_THR_RUNNING) {
2454 
2455 		PR1("%s[%d] Waiting\n", __func__, vdc->instance);
2456 		while (vdc->msg_pending == B_FALSE)
2457 			cv_wait(&vdc->msg_proc_cv, &vdc->msg_proc_lock);
2458 
2459 		PR1("%s[%d] Message Received\n", __func__, vdc->instance);
2460 
2461 		/* check if there is data */
2462 		status = ldc_chkq(vdc->ldc_handle, &q_is_empty);
2463 		if ((status != 0) &&
2464 		    (vdc->msg_proc_thr_state == VDC_THR_RUNNING)) {
2465 			cmn_err(CE_NOTE, "[%d] Unable to communicate with vDisk"
2466 					" server. Cannot check LDC queue: %d",
2467 					vdc->instance, status);
2468 			mutex_enter(&vdc->lock);
2469 			vdc_reset_connection(vdc, B_TRUE);
2470 			mutex_exit(&vdc->lock);
2471 			vdc->msg_proc_thr_state = VDC_THR_STOP;
2472 			continue;
2473 		}
2474 
2475 		if (q_is_empty == B_FALSE) {
2476 			PR1("%s: new pkt(s) available\n", __func__);
2477 			vdc_process_msg(vdc);
2478 		}
2479 
2480 		vdc->msg_pending = B_FALSE;
2481 	}
2482 
2483 	PR0("Message processing thread stopped\n");
2484 	vdc->msg_pending = B_FALSE;
2485 	vdc->msg_proc_thr_state = VDC_THR_DONE;
2486 	cv_signal(&vdc->msg_proc_cv);
2487 	mutex_exit(&vdc->msg_proc_lock);
2488 	thread_exit();
2489 }
2490 
2491 
2492 /*
2493  * Function:
2494  *	vdc_process_msg()
2495  *
2496  * Description:
2497  *	This function is called by the message processing thread each time it
2498  *	is triggered when LDC sends an interrupt to indicate that there are
2499  *	more packets on the queue. When it is called it will continue to loop
2500  *	and read the messages until there are no more left of the queue. If it
2501  *	encounters an invalid sized message it will drop it and check the next
2502  *	message.
2503  *
2504  * Arguments:
2505  *	arg	- soft state pointer for this instance of the device driver.
2506  *
2507  * Return Code:
2508  *	None.
2509  */
2510 static void
2511 vdc_process_msg(void *arg)
2512 {
2513 	vdc_t		*vdc = (vdc_t *)(void *)arg;
2514 	vio_msg_t	vio_msg;
2515 	size_t		nbytes = sizeof (vio_msg);
2516 	int		status;
2517 
2518 	ASSERT(vdc != NULL);
2519 
2520 	mutex_enter(&vdc->lock);
2521 
2522 	PR1("%s\n", __func__);
2523 
2524 	for (;;) {
2525 
2526 		/* read all messages - until no more left */
2527 		status = ldc_read(vdc->ldc_handle, (caddr_t)&vio_msg, &nbytes);
2528 
2529 		if (status) {
2530 			vdc_msg("%s: ldc_read() failed = %d", __func__, status);
2531 
2532 			/* if status is ECONNRESET --- reset vdc state */
2533 			if (status == EIO || status == ECONNRESET) {
2534 				vdc_reset_connection(vdc, B_FALSE);
2535 			}
2536 
2537 			mutex_exit(&vdc->lock);
2538 			return;
2539 		}
2540 
2541 		if ((nbytes > 0) && (nbytes < sizeof (vio_msg_tag_t))) {
2542 			cmn_err(CE_CONT, "![%d] Expect %lu bytes; recv'd %lu\n",
2543 				vdc->instance, sizeof (vio_msg_tag_t), nbytes);
2544 			mutex_exit(&vdc->lock);
2545 			return;
2546 		}
2547 
2548 		if (nbytes == 0) {
2549 			PR2("%s[%d]: ldc_read() done..\n",
2550 					__func__, vdc->instance);
2551 			mutex_exit(&vdc->lock);
2552 			return;
2553 		}
2554 
2555 		PR1("%s[%d] (%x/%x/%x)\n", __func__, vdc->instance,
2556 		    vio_msg.tag.vio_msgtype,
2557 		    vio_msg.tag.vio_subtype,
2558 		    vio_msg.tag.vio_subtype_env);
2559 
2560 		/*
2561 		 * Verify the Session ID of the message
2562 		 *
2563 		 * Every message after the Version has been negotiated should
2564 		 * have the correct session ID set.
2565 		 */
2566 		if ((vio_msg.tag.vio_sid != vdc->session_id) &&
2567 		    (vio_msg.tag.vio_subtype_env != VIO_VER_INFO)) {
2568 			PR0("%s: Incorrect SID 0x%x msg 0x%lx, expected 0x%x\n",
2569 				__func__, vio_msg.tag.vio_sid, &vio_msg,
2570 				vdc->session_id);
2571 			vdc_reset_connection(vdc, B_FALSE);
2572 			mutex_exit(&vdc->lock);
2573 			return;
2574 		}
2575 
2576 		switch (vio_msg.tag.vio_msgtype) {
2577 		case VIO_TYPE_CTRL:
2578 			status = vdc_process_ctrl_msg(vdc, vio_msg);
2579 			break;
2580 		case VIO_TYPE_DATA:
2581 			status = vdc_process_data_msg(vdc, vio_msg);
2582 			break;
2583 		case VIO_TYPE_ERR:
2584 			status = vdc_process_err_msg(vdc, vio_msg);
2585 			break;
2586 		default:
2587 			PR1("%s", __func__);
2588 			status = EINVAL;
2589 			break;
2590 		}
2591 
2592 		if (status != 0) {
2593 			PR0("%s[%d] Error (%d) occcurred processing msg\n",
2594 					__func__, vdc->instance, status);
2595 			vdc_reset_connection(vdc, B_FALSE);
2596 		}
2597 	}
2598 	_NOTE(NOTREACHED)
2599 }
2600 
2601 /*
2602  * Function:
2603  *	vdc_process_ctrl_msg()
2604  *
2605  * Description:
2606  *	This function is called by the message processing thread each time
2607  *	an LDC message with a msgtype of VIO_TYPE_CTRL is received.
2608  *
2609  * Arguments:
2610  *	vdc	- soft state pointer for this instance of the device driver.
2611  *	msg	- the LDC message sent by vds
2612  *
2613  * Return Codes:
2614  *	0	- Success.
2615  *	EPROTO	- A message was received which shouldn't have happened according
2616  *		  to the protocol
2617  *	ENOTSUP	- An action which is allowed according to the protocol but which
2618  *		  isn't (or doesn't need to be) implemented yet.
2619  *	EINVAL	- An invalid value was returned as part of a message.
2620  */
2621 static int
2622 vdc_process_ctrl_msg(vdc_t *vdc, vio_msg_t msg)
2623 {
2624 	size_t			msglen = sizeof (msg);
2625 	vd_attr_msg_t		*attr_msg = NULL;
2626 	vio_dring_reg_msg_t	*dring_msg = NULL;
2627 	int			status = -1;
2628 
2629 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_CTRL);
2630 	ASSERT(vdc != NULL);
2631 	ASSERT(mutex_owned(&vdc->lock));
2632 
2633 	/* Depending on which state we are in; process the message */
2634 	switch (vdc->state) {
2635 	case VD_STATE_INIT:
2636 		if (msg.tag.vio_subtype_env != VIO_VER_INFO) {
2637 			status = EPROTO;
2638 			break;
2639 		}
2640 
2641 		switch (msg.tag.vio_subtype) {
2642 		case VIO_SUBTYPE_ACK:
2643 			vdc->state = VD_STATE_VER;
2644 			status = vdc_init_attr_negotiation(vdc);
2645 			break;
2646 		case VIO_SUBTYPE_NACK:
2647 			/*
2648 			 * For now there is only one version number so we
2649 			 * cannot step back to an earlier version but in the
2650 			 * future we may need to add further logic here
2651 			 * to try negotiating an earlier version as the VIO
2652 			 * design allow for it.
2653 			 */
2654 
2655 			/*
2656 			 * vds could not handle the version we sent so we just
2657 			 * stop negotiating.
2658 			 */
2659 			status = EPROTO;
2660 			break;
2661 
2662 		case VIO_SUBTYPE_INFO:
2663 			/*
2664 			 * Handle the case where vds starts handshake
2665 			 * (for now only vdc is the instigatior)
2666 			 */
2667 			status = ENOTSUP;
2668 			break;
2669 
2670 		default:
2671 			status = ENOTSUP;
2672 			break;
2673 		}
2674 		break;
2675 
2676 	case VD_STATE_VER:
2677 		if (msg.tag.vio_subtype_env != VIO_ATTR_INFO) {
2678 			status = EPROTO;
2679 			break;
2680 		}
2681 
2682 		switch (msg.tag.vio_subtype) {
2683 		case VIO_SUBTYPE_ACK:
2684 			/*
2685 			 * We now verify the attributes sent by vds.
2686 			 */
2687 			attr_msg = (vd_attr_msg_t *)&msg;
2688 			vdc->vdisk_size = attr_msg->vdisk_size;
2689 			vdc->vdisk_type = attr_msg->vdisk_type;
2690 
2691 			if ((attr_msg->max_xfer_sz != vdc->max_xfer_sz) ||
2692 			    (attr_msg->vdisk_block_size != vdc->block_size)) {
2693 				/*
2694 				 * Future support: step down to the block size
2695 				 * and max transfer size suggested by the
2696 				 * server. (If this value is less than 128K
2697 				 * then multiple Dring entries per request
2698 				 * would need to be implemented)
2699 				 */
2700 				cmn_err(CE_NOTE, "[%d] Couldn't process block "
2701 					"attrs from vds", vdc->instance);
2702 				status = EINVAL;
2703 				break;
2704 			}
2705 
2706 			if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
2707 			    (attr_msg->vdisk_size > INT64_MAX) ||
2708 			    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
2709 				vdc_msg("%s[%d] Couldn't process attrs "
2710 				    "from vds", __func__, vdc->instance);
2711 				status = EINVAL;
2712 				break;
2713 			}
2714 
2715 			vdc->state = VD_STATE_ATTR;
2716 			status = vdc_init_dring_negotiate(vdc);
2717 			break;
2718 
2719 		case VIO_SUBTYPE_NACK:
2720 			/*
2721 			 * vds could not handle the attributes we sent so we
2722 			 * stop negotiating.
2723 			 */
2724 			status = EPROTO;
2725 			break;
2726 
2727 		case VIO_SUBTYPE_INFO:
2728 			/*
2729 			 * Handle the case where vds starts the handshake
2730 			 * (for now; vdc is the only supported instigatior)
2731 			 */
2732 			status = ENOTSUP;
2733 			break;
2734 
2735 		default:
2736 			status = ENOTSUP;
2737 			break;
2738 		}
2739 		break;
2740 
2741 
2742 	case VD_STATE_ATTR:
2743 		if (msg.tag.vio_subtype_env != VIO_DRING_REG) {
2744 			status = EPROTO;
2745 			break;
2746 		}
2747 
2748 		switch (msg.tag.vio_subtype) {
2749 		case VIO_SUBTYPE_ACK:
2750 			/* Verify that we have sent all the descr. ring info */
2751 			/* nop for now as we have just 1 dring */
2752 			dring_msg = (vio_dring_reg_msg_t *)&msg;
2753 
2754 			/* save the received dring_ident */
2755 			vdc->dring_ident = dring_msg->dring_ident;
2756 			PR0("%s[%d] Received dring ident=0x%lx\n",
2757 				__func__, vdc->instance, vdc->dring_ident);
2758 
2759 			/*
2760 			 * Send an RDX message to vds to indicate we are ready
2761 			 * to send data
2762 			 */
2763 			msg.tag.vio_msgtype = VIO_TYPE_CTRL;
2764 			msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
2765 			msg.tag.vio_subtype_env = VIO_RDX;
2766 			msg.tag.vio_sid = vdc->session_id;
2767 			status = vdc_send(vdc->ldc_handle, (caddr_t)&msg,
2768 					&msglen);
2769 			if (status != 0) {
2770 				cmn_err(CE_NOTE, "[%d] Failed to send RDX"
2771 					" message (%d)", vdc->instance, status);
2772 				break;
2773 			}
2774 
2775 			status = vdc_create_fake_geometry(vdc);
2776 			if (status != 0) {
2777 				cmn_err(CE_NOTE, "[%d] Failed to create disk "
2778 					"geometery(%d)", vdc->instance, status);
2779 				break;
2780 			}
2781 
2782 			vdc->state = VD_STATE_RDX;
2783 			break;
2784 
2785 		case VIO_SUBTYPE_NACK:
2786 			/*
2787 			 * vds could not handle the DRing info we sent so we
2788 			 * stop negotiating.
2789 			 */
2790 			cmn_err(CE_CONT, "server could not register DRing\n");
2791 			vdc_reset_connection(vdc, B_FALSE);
2792 			vdc_destroy_descriptor_ring(vdc);
2793 			status = EPROTO;
2794 			break;
2795 
2796 		case VIO_SUBTYPE_INFO:
2797 			/*
2798 			 * Handle the case where vds starts handshake
2799 			 * (for now only vdc is the instigatior)
2800 			 */
2801 			status = ENOTSUP;
2802 			break;
2803 		default:
2804 			status = ENOTSUP;
2805 		}
2806 		break;
2807 
2808 	case VD_STATE_RDX:
2809 		if (msg.tag.vio_subtype_env != VIO_RDX) {
2810 			status = EPROTO;
2811 			break;
2812 		}
2813 
2814 		PR0("%s: Received RDX - handshake successful\n", __func__);
2815 
2816 		status = 0;
2817 		vdc->state = VD_STATE_DATA;
2818 
2819 		cv_broadcast(&vdc->attach_cv);
2820 		break;
2821 
2822 	default:
2823 		cmn_err(CE_NOTE, "[%d] unknown handshake negotiation state %d",
2824 				vdc->instance, vdc->state);
2825 		break;
2826 	}
2827 
2828 	return (status);
2829 }
2830 
2831 
2832 /*
2833  * Function:
2834  *	vdc_process_data_msg()
2835  *
2836  * Description:
2837  *	This function is called by the message processing thread each time it
2838  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
2839  *	be an ACK or NACK from vds[1] which vdc handles as follows.
2840  *		ACK	- wake up the waiting thread
2841  *		NACK	- resend any messages necessary
2842  *
2843  *	[1] Although the message format allows it, vds should not send a
2844  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
2845  *	    some bizarre reason it does, vdc will reset the connection.
2846  *
2847  * Arguments:
2848  *	vdc	- soft state pointer for this instance of the device driver.
2849  *	msg	- the LDC message sent by vds
2850  *
2851  * Return Code:
2852  *	0	- Success.
2853  *	> 0	- error value returned by LDC
2854  */
2855 static int
2856 vdc_process_data_msg(vdc_t *vdc, vio_msg_t msg)
2857 {
2858 	int			status = 0;
2859 	vdc_local_desc_t	*local_dep = NULL;
2860 	vio_dring_msg_t		*dring_msg = NULL;
2861 	size_t			msglen = sizeof (*dring_msg);
2862 	uint_t			num_msgs;
2863 	uint_t			start;
2864 	uint_t			end;
2865 	uint_t			i;
2866 
2867 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_DATA);
2868 	ASSERT(vdc != NULL);
2869 	ASSERT(mutex_owned(&vdc->lock));
2870 
2871 	dring_msg = (vio_dring_msg_t *)&msg;
2872 
2873 	/*
2874 	 * Check to see if the message has bogus data
2875 	 */
2876 	start = dring_msg->start_idx;
2877 	end = dring_msg->end_idx;
2878 	if ((start >= VD_DRING_LEN) || (end >= VD_DRING_LEN)) {
2879 		vdc_msg("%s: Bogus ACK data : start %d, end %d\n",
2880 			__func__, start, end);
2881 		return (EPROTO);
2882 	}
2883 
2884 	/*
2885 	 * calculate the number of messages that vds ACK'ed
2886 	 *
2887 	 * Assumes, (like the rest of vdc) that there is a 1:1 mapping
2888 	 * between requests and Dring entries.
2889 	 */
2890 	num_msgs = (end >= start) ?
2891 			(end - start + 1) :
2892 			(VD_DRING_LEN - start + end + 1);
2893 
2894 	/*
2895 	 * Verify that the sequence number is what vdc expects.
2896 	 */
2897 	if (vdc_verify_seq_num(vdc, dring_msg, num_msgs) == B_FALSE) {
2898 		return (ENXIO);
2899 	}
2900 
2901 	switch (msg.tag.vio_subtype) {
2902 	case VIO_SUBTYPE_ACK:
2903 		PR2("%s: DATA ACK\n", __func__);
2904 
2905 		/*
2906 		 * Wake the thread waiting for each DRing entry ACK'ed
2907 		 */
2908 		for (i = 0; i < num_msgs; i++) {
2909 			int idx = (start + i) % VD_DRING_LEN;
2910 
2911 			local_dep = &vdc->local_dring[idx];
2912 			mutex_enter(&local_dep->lock);
2913 			cv_signal(&local_dep->cv);
2914 			mutex_exit(&local_dep->lock);
2915 		}
2916 		break;
2917 
2918 	case VIO_SUBTYPE_NACK:
2919 		PR0("%s: DATA NACK\n", __func__);
2920 		dring_msg = (vio_dring_msg_t *)&msg;
2921 		VDC_DUMP_DRING_MSG(dring_msg);
2922 
2923 		/* Resend necessary messages */
2924 		for (i = 0; i < num_msgs; i++) {
2925 			int idx = (start + i) % VD_DRING_LEN;
2926 
2927 			local_dep = &vdc->local_dring[idx];
2928 			ASSERT(local_dep != NULL);
2929 			mutex_enter(&local_dep->lock);
2930 
2931 			if (local_dep->dep->hdr.dstate != VIO_DESC_READY) {
2932 				PR0("%s[%d]: Won't resend entry %d [flag=%d]\n",
2933 					__func__, vdc->instance, idx,
2934 					local_dep->dep->hdr.dstate);
2935 				mutex_exit(&local_dep->lock);
2936 				break;
2937 			}
2938 
2939 			/* we'll reuse the message passed in */
2940 			VIO_INIT_DRING_DATA_TAG(msg);
2941 			dring_msg->tag.vio_sid = vdc->session_id;
2942 			dring_msg->seq_num = ++(vdc->seq_num);
2943 			VDC_DUMP_DRING_MSG(dring_msg);
2944 
2945 			status = vdc_send(vdc->ldc_handle, (caddr_t)&dring_msg,
2946 					&msglen);
2947 			PR1("%s: ldc_write() status=%d\n", __func__, status);
2948 			if (status != 0) {
2949 				vdc_msg("%s ldc_write(%d)\n", __func__, status);
2950 				mutex_exit(&local_dep->lock);
2951 				break;
2952 			}
2953 
2954 			mutex_exit(&local_dep->lock);
2955 		}
2956 		break;
2957 
2958 	case VIO_SUBTYPE_INFO:
2959 	default:
2960 		cmn_err(CE_NOTE, "[%d] Got an unexpected DATA msg [subtype %d]",
2961 				vdc->instance, msg.tag.vio_subtype);
2962 		break;
2963 	}
2964 
2965 	return (status);
2966 }
2967 
2968 /*
2969  * Function:
2970  *	vdc_process_err_msg()
2971  *
2972  * NOTE: No error messages are used as part of the vDisk protocol
2973  */
2974 static int
2975 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
2976 {
2977 	_NOTE(ARGUNUSED(vdc))
2978 	_NOTE(ARGUNUSED(msg))
2979 
2980 	int	status = ENOTSUP;
2981 
2982 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
2983 	cmn_err(CE_NOTE, "[%d] Got an ERR msg", vdc->instance);
2984 
2985 	return (status);
2986 }
2987 
2988 /*
2989  * Function:
2990  *	vdc_verify_seq_num()
2991  *
2992  * Description:
2993  *	This functions verifies that the sequence number sent back by vds with
2994  *	the latest message correctly follows the last request processed.
2995  *
2996  * Arguments:
2997  *	vdc		- soft state pointer for this instance of the driver.
2998  *	dring_msg	- pointer to the LDC message sent by vds
2999  *	num_msgs	- the number of requests being acknowledged
3000  *
3001  * Return Code:
3002  *	B_TRUE	- Success.
3003  *	B_FALSE	- The seq numbers are so out of sync, vdc cannot deal with them
3004  */
3005 static boolean_t
3006 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg, int num_msgs)
3007 {
3008 	ASSERT(vdc != NULL);
3009 	ASSERT(dring_msg != NULL);
3010 
3011 	/*
3012 	 * Check to see if the messages were responded to in the correct
3013 	 * order by vds. There are 3 possible scenarios:
3014 	 *	- the seq_num we expected is returned (everything is OK)
3015 	 *	- a seq_num earlier than the last one acknowledged is returned,
3016 	 *	  if so something is seriously wrong so we reset the connection
3017 	 *	- a seq_num greater than what we expected is returned.
3018 	 */
3019 	if (dring_msg->seq_num != (vdc->seq_num_reply + num_msgs)) {
3020 		vdc_msg("%s[%d]: Bogus seq_num %d, expected %d\n",
3021 			__func__, vdc->instance, dring_msg->seq_num,
3022 			vdc->seq_num_reply + num_msgs);
3023 		if (dring_msg->seq_num < (vdc->seq_num_reply + num_msgs)) {
3024 			return (B_FALSE);
3025 		} else {
3026 			/*
3027 			 * vds has responded with a seq_num greater than what we
3028 			 * expected
3029 			 */
3030 			return (B_FALSE);
3031 		}
3032 	}
3033 	vdc->seq_num_reply += num_msgs;
3034 
3035 	return (B_TRUE);
3036 }
3037 
3038 /* -------------------------------------------------------------------------- */
3039 
3040 /*
3041  * DKIO(7) support
3042  *
3043  * XXX FIXME - needs to be converted to use the structures defined in the
3044  * latest VIO spec to communicate with the vDisk server.
3045  */
3046 
3047 typedef struct vdc_dk_arg {
3048 	struct dk_callback	dkc;
3049 	int			mode;
3050 	dev_t			dev;
3051 	vdc_t			*vdc;
3052 } vdc_dk_arg_t;
3053 
3054 /*
3055  * Function:
3056  * 	vdc_dkio_flush_cb()
3057  *
3058  * Description:
3059  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
3060  *	by kernel code.
3061  *
3062  * Arguments:
3063  *	arg	- a pointer to a vdc_dk_arg_t structure.
3064  */
3065 void
3066 vdc_dkio_flush_cb(void *arg)
3067 {
3068 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
3069 	struct dk_callback	*dkc = NULL;
3070 	vdc_t			*vdc = NULL;
3071 	int			rv;
3072 
3073 	if (dk_arg == NULL) {
3074 		vdc_msg("%s[?] DKIOCFLUSHWRITECACHE arg is NULL\n", __func__);
3075 		return;
3076 	}
3077 	dkc = &dk_arg->dkc;
3078 	vdc = dk_arg->vdc;
3079 	ASSERT(vdc != NULL);
3080 
3081 	rv = vdc_populate_descriptor(vdc, NULL, 0, VD_OP_FLUSH,
3082 		dk_arg->mode, SDPART(getminor(dk_arg->dev)));
3083 	if (rv != 0) {
3084 		PR0("%s[%d] DKIOCFLUSHWRITECACHE failed : model %x\n",
3085 			__func__, vdc->instance,
3086 			ddi_model_convert_from(dk_arg->mode & FMODELS));
3087 		return;
3088 	}
3089 
3090 	/*
3091 	 * Trigger the call back to notify the caller the the ioctl call has
3092 	 * been completed.
3093 	 */
3094 	if ((dk_arg->mode & FKIOCTL) &&
3095 	    (dkc != NULL) &&
3096 	    (dkc->dkc_callback != NULL)) {
3097 		ASSERT(dkc->dkc_cookie != NULL);
3098 		(*dkc->dkc_callback)(dkc->dkc_cookie, ENOTSUP);
3099 	}
3100 
3101 	/* Indicate that one less DKIO write flush is outstanding */
3102 	mutex_enter(&vdc->lock);
3103 	vdc->dkio_flush_pending--;
3104 	ASSERT(vdc->dkio_flush_pending >= 0);
3105 	mutex_exit(&vdc->lock);
3106 }
3107 
3108 
3109 /*
3110  * This structure is used in the DKIO(7I) array below.
3111  */
3112 typedef struct vdc_dk_ioctl {
3113 	uint8_t		op;		/* VD_OP_XXX value */
3114 	int		cmd;		/* Solaris ioctl operation number */
3115 	uint8_t		copy;		/* copyin and/or copyout needed ? */
3116 	size_t		nbytes;		/* size of structure to be copied */
3117 	size_t		nbytes32;	/* size of 32bit struct if different */
3118 					/*   to 64bit struct (zero otherwise) */
3119 } vdc_dk_ioctl_t;
3120 
3121 /*
3122  * Subset of DKIO(7I) operations currently supported
3123  */
3124 static vdc_dk_ioctl_t	dk_ioctl[] = {
3125 	{VD_OP_FLUSH, DKIOCFLUSHWRITECACHE, 0,
3126 		0, 0},
3127 	{VD_OP_GET_WCE, DKIOCGETWCE, 0,
3128 		0, 0},
3129 	{VD_OP_SET_WCE, DKIOCSETWCE, 0,
3130 		0, 0},
3131 	{VD_OP_GET_VTOC, DKIOCGVTOC, VD_COPYOUT,
3132 		sizeof (struct vtoc), sizeof (struct vtoc32)},
3133 	{VD_OP_SET_VTOC, DKIOCSVTOC, VD_COPYIN,
3134 		sizeof (struct vtoc), sizeof (struct vtoc32)},
3135 	{VD_OP_SET_DISKGEOM, DKIOCSGEOM, VD_COPYIN,
3136 		sizeof (struct dk_geom), 0},
3137 	{VD_OP_GET_DISKGEOM, DKIOCGGEOM, VD_COPYOUT,
3138 		sizeof (struct dk_geom), 0},
3139 	{VD_OP_GET_DISKGEOM, DKIOCG_PHYGEOM, VD_COPYOUT,
3140 		sizeof (struct dk_geom), 0},
3141 	{VD_OP_GET_DISKGEOM, DKIOCG_VIRTGEOM, VD_COPYOUT,
3142 		sizeof (struct dk_geom), 0},
3143 	{VD_OP_SET_DISKGEOM, DKIOCSGEOM, VD_COPYOUT,
3144 		sizeof (struct dk_geom), 0},
3145 	{VD_OP_SCSICMD, USCSICMD, VD_COPYIN|VD_COPYOUT,
3146 		sizeof (struct uscsi_cmd), sizeof (struct uscsi_cmd32)},
3147 	{0, DKIOCINFO, VD_COPYOUT,
3148 		sizeof (struct dk_cinfo), 0},
3149 	{0, DKIOCGMEDIAINFO, VD_COPYOUT,
3150 		sizeof (struct dk_minfo), 0},
3151 	{0, DKIOCREMOVABLE, 0,
3152 		0, 0},
3153 	{0, CDROMREADOFFSET, 0,
3154 		0, 0}
3155 };
3156 
3157 /*
3158  * Function:
3159  *	vd_process_ioctl()
3160  *
3161  * Description:
3162  *	This routine is the driver entry point for handling user
3163  *	requests to get the device geometry.
3164  *
3165  * Arguments:
3166  *	dev	- the device number
3167  *	cmd	- the operation [dkio(7I)] to be processed
3168  *	arg	- pointer to user provided structure
3169  *		  (contains data to be set or reference parameter for get)
3170  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
3171  *	rvalp	- calling process return value, used in some ioctl calls
3172  *		  (passed throught to vds who fills in the value)
3173  *
3174  * Assumptions:
3175  *	vds will make the ioctl calls in the 64 bit address space so vdc
3176  *	will convert the data to/from 32 bit as necessary before doing
3177  *	the copyin or copyout.
3178  *
3179  * Return Code:
3180  *	0
3181  *	EFAULT
3182  *	ENXIO
3183  *	EIO
3184  *	ENOTSUP
3185  */
3186 static int
3187 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
3188 {
3189 	int		instance = SDUNIT(getminor(dev));
3190 	vdc_t		*vdc = NULL;
3191 	int		op = -1;		/* VD_OP_XXX value */
3192 	int		rv = -1;
3193 	int		idx = 0;		/* index into dk_ioctl[] */
3194 	size_t		len = 0;		/* #bytes to send to vds */
3195 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
3196 	size_t		copy_len = 0;		/* #bytes to copy in/out */
3197 	caddr_t		mem_p = NULL;
3198 	boolean_t	do_convert_32to64 = B_FALSE;
3199 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
3200 
3201 	PR0("%s: Processing ioctl(%x) for dev %x : model %x\n",
3202 		__func__, cmd, dev, ddi_model_convert_from(mode & FMODELS));
3203 
3204 	vdc = ddi_get_soft_state(vdc_state, instance);
3205 	if (vdc == NULL) {
3206 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
3207 		    instance);
3208 		return (ENXIO);
3209 	}
3210 
3211 	/*
3212 	 * Check to see if we can communicate with the vDisk server
3213 	 */
3214 	rv = vdc_is_able_to_tx_data(vdc, O_NONBLOCK);
3215 	if (rv == B_FALSE) {
3216 		PR0("%s[%d] Not ready to transmit data\n", __func__, instance);
3217 		return (ENOLINK);
3218 	}
3219 
3220 	/*
3221 	 * Validate the ioctl operation to be performed.
3222 	 *
3223 	 * If we have looped through the array without finding a match then we
3224 	 * don't support this ioctl.
3225 	 */
3226 	for (idx = 0; idx < nioctls; idx++) {
3227 		if (cmd == dk_ioctl[idx].cmd)
3228 			break;
3229 	}
3230 
3231 	if (idx >= nioctls) {
3232 		PR0("%s[%d] Unsupported ioctl(%x)\n",
3233 				__func__, vdc->instance, cmd);
3234 		return (ENOTSUP);
3235 	}
3236 
3237 	copy_len = len = dk_ioctl[idx].nbytes;
3238 	op = dk_ioctl[idx].op;
3239 
3240 	/*
3241 	 * Some ioctl operations have different sized structures for 32 bit
3242 	 * and 64 bit. If the userland caller is 32 bit, we need to check
3243 	 * to see if the operation is one of those special cases and
3244 	 * flag that we need to convert to and/or from 32 bit since vds
3245 	 * will make the call as 64 bit.
3246 	 */
3247 	if ((ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) &&
3248 	    (dk_ioctl[idx].nbytes != 0) &&
3249 	    (dk_ioctl[idx].nbytes32 != 0)) {
3250 		do_convert_32to64 = B_TRUE;
3251 		copy_len = dk_ioctl[idx].nbytes32;
3252 	}
3253 
3254 	/*
3255 	 * Deal with the ioctls which the server does not provide.
3256 	 */
3257 	switch (cmd) {
3258 	case CDROMREADOFFSET:
3259 	case DKIOCREMOVABLE:
3260 		return (ENOTTY);
3261 
3262 	case DKIOCINFO:
3263 		{
3264 			struct dk_cinfo	cinfo;
3265 			if (vdc->cinfo == NULL)
3266 				return (ENXIO);
3267 
3268 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
3269 			cinfo.dki_partition = SDPART(getminor(dev));
3270 
3271 			rv = ddi_copyout(&cinfo, (void *)arg,
3272 					sizeof (struct dk_cinfo), mode);
3273 			if (rv != 0)
3274 				return (EFAULT);
3275 
3276 			return (0);
3277 		}
3278 
3279 	case DKIOCGMEDIAINFO:
3280 		if (vdc->minfo == NULL)
3281 			return (ENXIO);
3282 
3283 		rv = ddi_copyout(vdc->minfo, (void *)arg,
3284 				sizeof (struct dk_minfo), mode);
3285 		if (rv != 0)
3286 			return (EFAULT);
3287 
3288 		return (0);
3289 	}
3290 
3291 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
3292 	ASSERT(op != 0);
3293 
3294 	/* LDC requires that the memory being mapped is 8-byte aligned */
3295 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
3296 	PR1("%s[%d]: struct size %d alloc %d\n",
3297 			__func__, instance, len, alloc_len);
3298 
3299 	if (alloc_len != 0)
3300 		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
3301 
3302 	if (dk_ioctl[idx].copy & VD_COPYIN) {
3303 		if (arg == NULL) {
3304 			if (mem_p != NULL)
3305 				kmem_free(mem_p, alloc_len);
3306 			return (EINVAL);
3307 		}
3308 
3309 		ASSERT(copy_len != 0);
3310 
3311 		rv = ddi_copyin((void *)arg, mem_p, copy_len, mode);
3312 		if (rv != 0) {
3313 			if (mem_p != NULL)
3314 				kmem_free(mem_p, alloc_len);
3315 			return (EFAULT);
3316 		}
3317 
3318 		/*
3319 		 * some operations need the data to be converted from 32 bit
3320 		 * to 64 bit structures so that vds can process them on the
3321 		 * other side.
3322 		 */
3323 		if (do_convert_32to64) {
3324 			switch (cmd) {
3325 			case DKIOCSVTOC:
3326 			{
3327 				struct vtoc	vt;
3328 				struct vtoc32	vt32;
3329 
3330 				ASSERT(mem_p != NULL);
3331 				vt32 = *((struct vtoc32 *)(mem_p));
3332 
3333 				vtoc32tovtoc(vt32, vt);
3334 				bcopy(&vt, mem_p, len);
3335 				break;
3336 			}
3337 
3338 			case USCSICMD:
3339 			{
3340 				struct uscsi_cmd	scmd;
3341 				struct uscsi_cmd	*uscmd = &scmd;
3342 				struct uscsi_cmd32	*uscmd32;
3343 
3344 				ASSERT(mem_p != NULL);
3345 				uscmd32 = (struct uscsi_cmd32 *)mem_p;
3346 
3347 				/*
3348 				 * Convert the ILP32 uscsi data from the
3349 				 * application to LP64 for internal use.
3350 				 */
3351 				uscsi_cmd32touscsi_cmd(uscmd32, uscmd);
3352 				bcopy(uscmd, mem_p, len);
3353 				break;
3354 			}
3355 			default:
3356 				break;
3357 			}
3358 		}
3359 	}
3360 
3361 	/*
3362 	 * handle the special case of DKIOCFLUSHWRITECACHE
3363 	 */
3364 	if (cmd == DKIOCFLUSHWRITECACHE) {
3365 		struct dk_callback *dkc = (struct dk_callback *)arg;
3366 
3367 		PR0("%s[%d]: DKIOCFLUSHWRITECACHE\n", __func__, instance);
3368 
3369 		/* no mem should have been allocated hence no need to free it */
3370 		ASSERT(mem_p == NULL);
3371 
3372 		/*
3373 		 * If arg is NULL, we break here and the call operates
3374 		 * synchronously; waiting for vds to return.
3375 		 *
3376 		 * i.e. after the request to vds returns successfully,
3377 		 * all writes completed prior to the ioctl will have been
3378 		 * flushed from the disk write cache to persistent media.
3379 		 */
3380 		if (dkc != NULL) {
3381 			vdc_dk_arg_t	arg;
3382 			arg.mode = mode;
3383 			arg.dev = dev;
3384 			bcopy(dkc, &arg.dkc, sizeof (*dkc));
3385 
3386 			mutex_enter(&vdc->lock);
3387 			vdc->dkio_flush_pending++;
3388 			arg.vdc = vdc;
3389 			mutex_exit(&vdc->lock);
3390 
3391 			/* put the request on a task queue */
3392 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
3393 				(void *)&arg, DDI_SLEEP);
3394 
3395 			return (rv == NULL ? ENOMEM : 0);
3396 		}
3397 	}
3398 
3399 	/*
3400 	 * send request to vds to service the ioctl.
3401 	 */
3402 	rv = vdc_populate_descriptor(vdc, mem_p, alloc_len, op, mode,
3403 			SDPART((getminor(dev))));
3404 	if (rv != 0) {
3405 		/*
3406 		 * This is not necessarily an error. The ioctl could
3407 		 * be returning a value such as ENOTTY to indicate
3408 		 * that the ioctl is not applicable.
3409 		 */
3410 		PR0("%s[%d]: vds returned %d for ioctl 0x%x\n",
3411 			__func__, instance, rv, cmd);
3412 		if (mem_p != NULL)
3413 			kmem_free(mem_p, alloc_len);
3414 		return (rv);
3415 	}
3416 
3417 	/*
3418 	 * If the VTOC has been changed, then vdc needs to update the copy
3419 	 * it saved in the soft state structure and try and update the device
3420 	 * node properties. Failing to set the properties should not cause
3421 	 * an error to be return the caller though.
3422 	 */
3423 	if (cmd == DKIOCSVTOC) {
3424 		bcopy(mem_p, vdc->vtoc, sizeof (struct vtoc));
3425 		if (vdc_create_device_nodes_props(vdc)) {
3426 			cmn_err(CE_NOTE, "![%d] Failed to update device nodes"
3427 				" properties", instance);
3428 		}
3429 	}
3430 
3431 	/*
3432 	 * if we don't have to do a copyout, we have nothing left to do
3433 	 * so we just return.
3434 	 */
3435 	if ((dk_ioctl[idx].copy & VD_COPYOUT) == 0) {
3436 		if (mem_p != NULL)
3437 			kmem_free(mem_p, alloc_len);
3438 		return (0);
3439 	}
3440 
3441 	/* sanity check */
3442 	if (mem_p == NULL)
3443 		return (EFAULT);
3444 
3445 
3446 	/*
3447 	 * some operations need the data to be converted from 64 bit
3448 	 * back to 32 bit structures after vds has processed them.
3449 	 */
3450 	if (do_convert_32to64) {
3451 		switch (cmd) {
3452 		case DKIOCGVTOC:
3453 		{
3454 			struct vtoc	vt;
3455 			struct vtoc32	vt32;
3456 
3457 			ASSERT(mem_p != NULL);
3458 			vt = *((struct vtoc *)(mem_p));
3459 
3460 			vtoctovtoc32(vt, vt32);
3461 			bcopy(&vt32, mem_p, copy_len);
3462 			break;
3463 		}
3464 
3465 		case USCSICMD:
3466 		{
3467 			struct uscsi_cmd32	*uc32;
3468 			struct uscsi_cmd	*uc;
3469 
3470 			len = sizeof (struct uscsi_cmd32);
3471 
3472 			ASSERT(mem_p != NULL);
3473 			uc = (struct uscsi_cmd *)mem_p;
3474 			uc32 = kmem_zalloc(len, KM_SLEEP);
3475 
3476 			uscsi_cmdtouscsi_cmd32(uc, uc32);
3477 			bcopy(uc32, mem_p, copy_len);
3478 			PR0("%s[%d]: uscsi_cmd32:%x\n", __func__, instance,
3479 				((struct uscsi_cmd32 *)mem_p)->uscsi_cdblen);
3480 			kmem_free(uc32, len);
3481 			break;
3482 		}
3483 		default:
3484 			PR1("%s[%d]: This mode (%x) should just work for(%x)\n",
3485 				__func__, instance, mode, cmd);
3486 			break;
3487 		}
3488 	}
3489 
3490 	ASSERT(len != 0);
3491 	ASSERT(mem_p != NULL);
3492 
3493 	rv = ddi_copyout(mem_p, (void *)arg, copy_len, mode);
3494 	if (rv != 0) {
3495 		vdc_msg("%s[%d]: Could not do copy out for ioctl (%x)\n",
3496 			__func__, instance, cmd);
3497 		rv = EFAULT;
3498 	}
3499 
3500 	if (mem_p != NULL)
3501 		kmem_free(mem_p, alloc_len);
3502 
3503 	return (rv);
3504 }
3505 
3506 /*
3507  * Function:
3508  *	vdc_create_fake_geometry()
3509  *
3510  * Description:
3511  *	This routine fakes up the disk info needed for some DKIO ioctls.
3512  *		- DKIOCINFO
3513  *		- DKIOCGMEDIAINFO
3514  *
3515  *	[ just like lofi(7D) and ramdisk(7D) ]
3516  *
3517  * Arguments:
3518  *	vdc	- soft state pointer for this instance of the device driver.
3519  *
3520  * Return Code:
3521  *	0	- Success
3522  */
3523 static int
3524 vdc_create_fake_geometry(vdc_t *vdc)
3525 {
3526 	ASSERT(vdc != NULL);
3527 
3528 	/*
3529 	 * DKIOCINFO support
3530 	 */
3531 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
3532 
3533 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
3534 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
3535 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz / vdc->block_size;
3536 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
3537 	vdc->cinfo->dki_flags = DKI_FMTVOL;
3538 	vdc->cinfo->dki_cnum = 0;
3539 	vdc->cinfo->dki_addr = 0;
3540 	vdc->cinfo->dki_space = 0;
3541 	vdc->cinfo->dki_prio = 0;
3542 	vdc->cinfo->dki_vec = 0;
3543 	vdc->cinfo->dki_unit = vdc->instance;
3544 	vdc->cinfo->dki_slave = 0;
3545 	/*
3546 	 * The partition number will be created on the fly depending on the
3547 	 * actual slice (i.e. minor node) that is used to request the data.
3548 	 */
3549 	vdc->cinfo->dki_partition = 0;
3550 
3551 	/*
3552 	 * DKIOCGMEDIAINFO support
3553 	 */
3554 	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
3555 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
3556 	vdc->minfo->dki_capacity = 1;
3557 	vdc->minfo->dki_lbsize = DEV_BSIZE;
3558 
3559 	return (0);
3560 }
3561