xref: /titanic_51/usr/src/uts/sun4u/vm/mach_vm_dep.c (revision bbaa8b60dd95d714741fc474adad3cf710ef4efd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * UNIX machine dependent virtual memory support.
36  */
37 
38 #include <sys/vm.h>
39 #include <sys/exec.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu_module.h>
42 #include <sys/cpu.h>
43 #include <sys/elf_SPARC.h>
44 #include <sys/archsystm.h>
45 #include <vm/hat_sfmmu.h>
46 #include <sys/memnode.h>
47 #include <sys/mem_cage.h>
48 #include <vm/vm_dep.h>
49 
50 #if defined(__sparcv9) && defined(SF_ERRATA_57)
51 caddr_t errata57_limit;
52 #endif
53 
54 uint_t page_colors = 0;
55 uint_t page_colors_mask = 0;
56 uint_t page_coloring_shift = 0;
57 int consistent_coloring;
58 int update_proc_pgcolorbase_after_fork = 0;
59 
60 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES;
61 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
62 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT;
63 uint_t max_mmu_hashcnt = MAX_HASHCNT;
64 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
65 
66 /*
67  * The sun4u hardware mapping sizes which will always be supported are
68  * 8K, 64K, 512K and 4M.  If sun4u based machines need to support other
69  * page sizes, platform or cpu specific routines need to modify the value.
70  * The base pagesize (p_szc == 0) must always be supported by the hardware.
71  */
72 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) |
73 	(1 << TTE512K) | (1 << TTE4M);
74 uint_t mmu_exported_page_sizes;
75 
76 uint_t szc_2_userszc[MMU_PAGE_SIZES];
77 uint_t userszc_2_szc[MMU_PAGE_SIZES];
78 
79 extern uint_t vac_colors_mask;
80 extern int vac_shift;
81 
82 hw_pagesize_t hw_page_array[] = {
83 	{MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
84 	{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
85 	    MMU_PAGESIZE64K >> MMU_PAGESHIFT},
86 	{MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
87 	    MMU_PAGESIZE512K >> MMU_PAGESHIFT},
88 	{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
89 	{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
90 	    MMU_PAGESIZE32M >> MMU_PAGESHIFT},
91 	{MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
92 	    MMU_PAGESIZE256M >> MMU_PAGESHIFT},
93 	{0, 0, 0, 0}
94 };
95 
96 /*
97  * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
98  */
99 int	max_bootlp_tteszc = TTE4M;
100 
101 /*
102  * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these
103  * additional text page sizes for USIII-IV+ and OPL by changing the default
104  * values via /etc/system.
105  */
106 int	use_text_pgsz64K = 0;
107 int	use_text_pgsz512K = 0;
108 
109 /*
110  * Maximum and default segment size tunables for user heap, stack, private
111  * and shared anonymous memory, and user text and initialized data.
112  */
113 size_t max_uheap_lpsize = MMU_PAGESIZE4M;
114 size_t default_uheap_lpsize = MMU_PAGESIZE;
115 size_t max_ustack_lpsize = MMU_PAGESIZE4M;
116 size_t default_ustack_lpsize = MMU_PAGESIZE;
117 size_t max_privmap_lpsize = MMU_PAGESIZE4M;
118 size_t max_uidata_lpsize = MMU_PAGESIZE;
119 size_t max_utext_lpsize = MMU_PAGESIZE4M;
120 size_t max_shm_lpsize = MMU_PAGESIZE4M;
121 
122 void
123 adjust_data_maxlpsize(size_t ismpagesize)
124 {
125 	if (max_uheap_lpsize == MMU_PAGESIZE4M) {
126 		max_uheap_lpsize = ismpagesize;
127 	}
128 	if (max_ustack_lpsize == MMU_PAGESIZE4M) {
129 		max_ustack_lpsize = ismpagesize;
130 	}
131 	if (max_privmap_lpsize == MMU_PAGESIZE4M) {
132 		max_privmap_lpsize = ismpagesize;
133 	}
134 	if (max_shm_lpsize == MMU_PAGESIZE4M) {
135 		max_shm_lpsize = ismpagesize;
136 	}
137 }
138 
139 /*
140  * map_addr_proc() is the routine called when the system is to
141  * choose an address for the user.  We will pick an address
142  * range which is just below the current stack limit.  The
143  * algorithm used for cache consistency on machines with virtual
144  * address caches is such that offset 0 in the vnode is always
145  * on a shm_alignment'ed aligned address.  Unfortunately, this
146  * means that vnodes which are demand paged will not be mapped
147  * cache consistently with the executable images.  When the
148  * cache alignment for a given object is inconsistent, the
149  * lower level code must manage the translations so that this
150  * is not seen here (at the cost of efficiency, of course).
151  *
152  * Every mapping will have a redzone of a single page on either side of
153  * the request. This is done to leave one page unmapped between segments.
154  * This is not required, but it's useful for the user because if their
155  * program strays across a segment boundary, it will catch a fault
156  * immediately making debugging a little easier.  Currently the redzone
157  * is mandatory.
158  *
159  *
160  * addrp is a value/result parameter.
161  *	On input it is a hint from the user to be used in a completely
162  *	machine dependent fashion.  For MAP_ALIGN, addrp contains the
163  *	minimal alignment, which must be some "power of two" multiple of
164  *	pagesize.
165  *
166  *	On output it is NULL if no address can be found in the current
167  *	processes address space or else an address that is currently
168  *	not mapped for len bytes with a page of red zone on either side.
169  *	If vacalign is true, then the selected address will obey the alignment
170  *	constraints of a vac machine based on the given off value.
171  */
172 /*ARGSUSED4*/
173 void
174 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
175     caddr_t userlimit, struct proc *p, uint_t flags)
176 {
177 	struct as *as = p->p_as;
178 	caddr_t addr;
179 	caddr_t base;
180 	size_t slen;
181 	uintptr_t align_amount;
182 	int allow_largepage_alignment = 1;
183 
184 	base = p->p_brkbase;
185 	if (userlimit < as->a_userlimit) {
186 		/*
187 		 * This happens when a program wants to map something in
188 		 * a range that's accessible to a program in a smaller
189 		 * address space.  For example, a 64-bit program might
190 		 * be calling mmap32(2) to guarantee that the returned
191 		 * address is below 4Gbytes.
192 		 */
193 		ASSERT(userlimit > base);
194 		slen = userlimit - base;
195 	} else {
196 		slen = p->p_usrstack - base -
197 		    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
198 	}
199 
200 	/* Make len be a multiple of PAGESIZE */
201 	len = (len + PAGEOFFSET) & PAGEMASK;
202 
203 	/*
204 	 *  If the request is larger than the size of a particular
205 	 *  mmu level, then we use that level to map the request.
206 	 *  But this requires that both the virtual and the physical
207 	 *  addresses be aligned with respect to that level, so we
208 	 *  do the virtual bit of nastiness here.
209 	 *
210 	 *  For 32-bit processes, only those which have specified
211 	 *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
212 	 *  we can potentially waste up to 256MB of the 4G process address
213 	 *  space just for alignment.
214 	 */
215 	if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
216 	    ((uintptr_t)*addrp) != 0)) {
217 		allow_largepage_alignment = 0;
218 	}
219 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
220 	    allow_largepage_alignment &&
221 	    (len >= MMU_PAGESIZE256M)) {	/* 256MB mappings */
222 		align_amount = MMU_PAGESIZE256M;
223 	} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
224 	    allow_largepage_alignment &&
225 	    (len >= MMU_PAGESIZE32M)) {	/* 32MB mappings */
226 		align_amount = MMU_PAGESIZE32M;
227 	} else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
228 		align_amount = MMU_PAGESIZE4M;
229 	} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
230 		align_amount = MMU_PAGESIZE512K;
231 	} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
232 		align_amount = MMU_PAGESIZE64K;
233 	} else  {
234 		/*
235 		 * Align virtual addresses on a 64K boundary to ensure
236 		 * that ELF shared libraries are mapped with the appropriate
237 		 * alignment constraints by the run-time linker.
238 		 */
239 		align_amount = ELF_SPARC_MAXPGSZ;
240 		if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
241 		    ((uintptr_t)*addrp < align_amount))
242 			align_amount = (uintptr_t)*addrp;
243 	}
244 
245 	/*
246 	 * 64-bit processes require 1024K alignment of ELF shared libraries.
247 	 */
248 	if (p->p_model == DATAMODEL_LP64)
249 		align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
250 #ifdef VAC
251 	if (vac && vacalign && (align_amount < shm_alignment))
252 		align_amount = shm_alignment;
253 #endif
254 
255 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
256 		align_amount = (uintptr_t)*addrp;
257 	}
258 
259 	ASSERT(ISP2(align_amount));
260 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
261 
262 	/*
263 	 * Look for a large enough hole starting below the stack limit.
264 	 * After finding it, use the upper part.
265 	 */
266 	as_purge(as);
267 	off = off & (align_amount - 1);
268 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
269 	    PAGESIZE, off) == 0) {
270 		caddr_t as_addr;
271 
272 		/*
273 		 * addr is the highest possible address to use since we have
274 		 * a PAGESIZE redzone at the beginning and end.
275 		 */
276 		addr = base + slen - (PAGESIZE + len);
277 		as_addr = addr;
278 		/*
279 		 * Round address DOWN to the alignment amount and
280 		 * add the offset in.
281 		 * If addr is greater than as_addr, len would not be large
282 		 * enough to include the redzone, so we must adjust down
283 		 * by the alignment amount.
284 		 */
285 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
286 		addr += (long)off;
287 		if (addr > as_addr) {
288 			addr -= align_amount;
289 		}
290 
291 		ASSERT(addr > base);
292 		ASSERT(addr + len < base + slen);
293 		ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
294 		    ((uintptr_t)(off)));
295 		*addrp = addr;
296 
297 #if defined(SF_ERRATA_57)
298 		if (AS_TYPE_64BIT(as) && addr < errata57_limit) {
299 			*addrp = NULL;
300 		}
301 #endif
302 	} else {
303 		*addrp = NULL;	/* no more virtual space */
304 	}
305 }
306 
307 /*
308  * Platform-dependent page scrub call.
309  */
310 void
311 pagescrub(page_t *pp, uint_t off, uint_t len)
312 {
313 	/*
314 	 * For now, we rely on the fact that pagezero() will
315 	 * always clear UEs.
316 	 */
317 	pagezero(pp, off, len);
318 }
319 
320 /*ARGSUSED*/
321 void
322 sync_data_memory(caddr_t va, size_t len)
323 {
324 	cpu_flush_ecache();
325 }
326 
327 /*
328  * platform specific large pages for kernel heap support
329  */
330 void
331 mmu_init_kcontext()
332 {
333 	extern void set_kcontextreg();
334 
335 	if (kcontextreg)
336 		set_kcontextreg();
337 }
338 
339 void
340 contig_mem_init(void)
341 {
342 	/* not applicable to sun4u */
343 }
344 
345 /*ARGSUSED*/
346 caddr_t
347 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
348 {
349 	/* not applicable to sun4u */
350 	return (alloc_base);
351 }
352 
353 size_t
354 exec_get_spslew(void)
355 {
356 	return (0);
357 }
358