xref: /titanic_51/usr/src/uts/sun4u/serengeti/os/serengeti.c (revision 5ad42b1b1469908fabc0099764182e9ecbc04dda)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/time.h>
28 #include <sys/cpuvar.h>
29 #include <sys/dditypes.h>
30 #include <sys/ddipropdefs.h>
31 #include <sys/ddi_impldefs.h>
32 #include <sys/sunddi.h>
33 #include <sys/esunddi.h>
34 #include <sys/sunndi.h>
35 #include <sys/platform_module.h>
36 #include <sys/errno.h>
37 #include <sys/conf.h>
38 #include <sys/modctl.h>
39 #include <sys/promif.h>
40 #include <sys/promimpl.h>
41 #include <sys/prom_plat.h>
42 #include <sys/cmn_err.h>
43 #include <sys/sysmacros.h>
44 #include <sys/mem_cage.h>
45 #include <sys/kobj.h>
46 #include <sys/utsname.h>
47 #include <sys/cpu_sgnblk_defs.h>
48 #include <sys/atomic.h>
49 #include <sys/kdi_impl.h>
50 
51 #include <sys/sgsbbc.h>
52 #include <sys/sgsbbc_iosram.h>
53 #include <sys/sgsbbc_iosram_priv.h>
54 #include <sys/sgsbbc_mailbox.h>
55 #include <sys/sgsgn.h>
56 #include <sys/sgcn.h>
57 #include <sys/serengeti.h>
58 #include <sys/sgfrutypes.h>
59 #include <sys/machsystm.h>
60 #include <sys/sbd_ioctl.h>
61 #include <sys/sbd.h>
62 #include <sys/sbdp_mem.h>
63 
64 #include <sys/memnode.h>
65 #include <vm/vm_dep.h>
66 #include <vm/page.h>
67 
68 #include <sys/cheetahregs.h>
69 #include <sys/plat_ecc_unum.h>
70 #include <sys/plat_ecc_dimm.h>
71 
72 #include <sys/lgrp.h>
73 #include <sys/clock_impl.h>
74 
75 static int sg_debug = 0;
76 
77 #ifdef DEBUG
78 #define	DCMNERR if (sg_debug) cmn_err
79 #else
80 #define	DCMNERR
81 #endif
82 
83 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
84 
85 /* local functions */
86 static void cpu_sgn_update(ushort_t sgn, uchar_t state,
87     uchar_t sub_state, int cpuid);
88 
89 
90 /*
91  * Local data.
92  *
93  * iosram_write_ptr is a pointer to iosram_write().  Because of
94  * kernel dynamic linking, we can't get to the function by name,
95  * but we can look up its address, and store it in this variable
96  * instead.
97  *
98  * We include the extern for iosram_write() here not because we call
99  * it, but to force compilation errors if its prototype doesn't
100  * match the prototype of iosram_write_ptr.
101  *
102  * The same issues apply to iosram_read() and iosram_read_ptr.
103  */
104 /*CSTYLED*/
105 extern int   iosram_write     (int, uint32_t, caddr_t, uint32_t);
106 static int (*iosram_write_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
107 /*CSTYLED*/
108 extern int   iosram_read     (int, uint32_t, caddr_t, uint32_t);
109 static int (*iosram_read_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
110 
111 
112 /*
113  * Variable to indicate if the date should be obtained from the SC or not.
114  */
115 int todsg_use_sc = FALSE;	/* set the false at the beginning */
116 
117 /*
118  * Preallocation of spare tsb's for DR
119  *
120  * We don't allocate spares for Wildcat since TSBs should come
121  * out of memory local to the node.
122  */
123 #define	IOMMU_PER_SCHIZO	2
124 int serengeti_tsb_spares = (SG_MAX_IO_BDS * SG_SCHIZO_PER_IO_BD *
125 	IOMMU_PER_SCHIZO);
126 
127 /*
128  * sg_max_ncpus is the maximum number of CPUs supported on Serengeti.
129  * sg_max_ncpus is set to be smaller than NCPU to reduce the amount of
130  * memory the logs take up until we have a dynamic log memory allocation
131  * solution.
132  */
133 int sg_max_ncpus = (24 * 2);    /* (max # of processors * # of cores/proc) */
134 
135 /*
136  * variables to control mailbox message timeouts.
137  * These can be patched via /etc/system or mdb.
138  */
139 int	sbbc_mbox_default_timeout = MBOX_DEFAULT_TIMEOUT;
140 int	sbbc_mbox_min_timeout = MBOX_MIN_TIMEOUT;
141 
142 /* cached 'chosen' node_id */
143 pnode_t chosen_nodeid = (pnode_t)0;
144 
145 static void (*sg_ecc_taskq_func)(sbbc_ecc_mbox_t *) = NULL;
146 static int (*sg_ecc_mbox_func)(sbbc_ecc_mbox_t *) = NULL;
147 
148 /*
149  * Table that maps memory slices to a specific memnode.
150  */
151 int slice_to_memnode[SG_MAX_SLICE];
152 
153 plat_dimm_sid_board_t	domain_dimm_sids[SG_MAX_CPU_BDS];
154 
155 
156 int
157 set_platform_tsb_spares()
158 {
159 	return (MIN(serengeti_tsb_spares, MAX_UPA));
160 }
161 
162 #pragma weak mmu_init_large_pages
163 
164 void
165 set_platform_defaults(void)
166 {
167 	extern int watchdog_enable;
168 	extern uint64_t xc_tick_limit_scale;
169 	extern void mmu_init_large_pages(size_t);
170 
171 #ifdef DEBUG
172 	char *todsg_name = "todsg";
173 	ce_verbose_memory = 2;
174 	ce_verbose_other = 2;
175 #endif /* DEBUG */
176 
177 	watchdog_enable = TRUE;
178 	watchdog_available = TRUE;
179 
180 	cpu_sgn_func = cpu_sgn_update;
181 
182 #ifdef DEBUG
183 	/* tod_module_name should be set to "todsg" from OBP property */
184 	if (tod_module_name && (strcmp(tod_module_name, todsg_name) == 0))
185 		prom_printf("Using todsg driver\n");
186 	else {
187 		prom_printf("Force using todsg driver\n");
188 		tod_module_name = todsg_name;
189 	}
190 #endif /* DEBUG */
191 
192 	/* Serengeti does not support forthdebug */
193 	forthdebug_supported = 0;
194 
195 
196 	/*
197 	 * Some DR operations require the system to be sync paused.
198 	 * Sync pause on Serengeti could potentially take up to 4
199 	 * seconds to complete depending on the load on the SC.  To
200 	 * avoid send_mond panics during such operations, we need to
201 	 * increase xc_tick_limit to a larger value on Serengeti by
202 	 * setting xc_tick_limit_scale to 5.
203 	 */
204 	xc_tick_limit_scale = 5;
205 
206 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
207 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
208 		if (&mmu_init_large_pages)
209 			mmu_init_large_pages(mmu_ism_pagesize);
210 	}
211 }
212 
213 void
214 load_platform_modules(void)
215 {
216 	if (modload("misc", "pcihp") < 0) {
217 		cmn_err(CE_NOTE, "pcihp driver failed to load");
218 	}
219 }
220 
221 /*ARGSUSED*/
222 int
223 plat_cpu_poweron(struct cpu *cp)
224 {
225 	int (*serengeti_cpu_poweron)(struct cpu *) = NULL;
226 
227 	serengeti_cpu_poweron =
228 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweron", 0);
229 
230 	if (serengeti_cpu_poweron == NULL)
231 		return (ENOTSUP);
232 	else
233 		return ((serengeti_cpu_poweron)(cp));
234 }
235 
236 /*ARGSUSED*/
237 int
238 plat_cpu_poweroff(struct cpu *cp)
239 {
240 	int (*serengeti_cpu_poweroff)(struct cpu *) = NULL;
241 
242 	serengeti_cpu_poweroff =
243 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweroff", 0);
244 
245 	if (serengeti_cpu_poweroff == NULL)
246 		return (ENOTSUP);
247 	else
248 		return ((serengeti_cpu_poweroff)(cp));
249 }
250 
251 #ifdef DEBUG
252 pgcnt_t serengeti_cage_size_limit;
253 #endif
254 
255 /* Preferred minimum cage size (expressed in pages)... for DR */
256 pgcnt_t serengeti_minimum_cage_size = 0;
257 
258 void
259 set_platform_cage_params(void)
260 {
261 	extern pgcnt_t total_pages;
262 	extern struct memlist *phys_avail;
263 
264 	if (kernel_cage_enable) {
265 		pgcnt_t preferred_cage_size;
266 
267 		preferred_cage_size =
268 		    MAX(serengeti_minimum_cage_size, total_pages / 256);
269 #ifdef DEBUG
270 		if (serengeti_cage_size_limit)
271 			preferred_cage_size = serengeti_cage_size_limit;
272 #endif
273 		/*
274 		 * Post copies obp into the lowest slice.  This requires the
275 		 * cage to grow upwards
276 		 */
277 		kcage_range_init(phys_avail, KCAGE_UP, preferred_cage_size);
278 	}
279 
280 	kcage_startup_dir = KCAGE_UP;
281 
282 	/* Only note when the cage is off since it should always be on. */
283 	if (!kcage_on)
284 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
285 }
286 
287 #define	ALIGN(x, a)	((a) == 0 ? (uint64_t)(x) : \
288 	(((uint64_t)(x) + (uint64_t)(a) - 1l) & ~((uint64_t)(a) - 1l)))
289 
290 void
291 update_mem_bounds(int brd, uint64_t base, uint64_t sz)
292 {
293 	uint64_t	end;
294 	int		mnode;
295 
296 	end = base + sz - 1;
297 
298 	/*
299 	 * First see if this board already has a memnode associated
300 	 * with it.  If not, see if this slice has a memnode.  This
301 	 * covers the cases where a single slice covers multiple
302 	 * boards (cross-board interleaving) and where a single
303 	 * board has multiple slices (1+GB DIMMs).
304 	 */
305 	if ((mnode = plat_lgrphand_to_mem_node(brd)) == -1) {
306 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
307 			mnode = mem_node_alloc();
308 		plat_assign_lgrphand_to_mem_node(brd, mnode);
309 	}
310 
311 	/*
312 	 * Align base at 16GB boundary
313 	 */
314 	base = ALIGN(base, (1ul << PA_SLICE_SHIFT));
315 
316 	while (base < end) {
317 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
318 		base += (1ul << PA_SLICE_SHIFT);
319 	}
320 }
321 
322 /*
323  * Dynamically detect memory slices in the system by decoding
324  * the cpu memory decoder registers at boot time.
325  */
326 void
327 plat_fill_mc(pnode_t nodeid)
328 {
329 	uint64_t	mc_addr, mask;
330 	uint64_t	mc_decode[SG_MAX_BANKS_PER_MC];
331 	uint64_t	base, size;
332 	uint32_t	regs[4];
333 	int		len;
334 	int		local_mc;
335 	int		portid;
336 	int		boardid;
337 	int		i;
338 
339 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
340 	    (portid == -1))
341 		return;
342 
343 	/*
344 	 * Decode the board number from the MC portid
345 	 */
346 	boardid = SG_PORTID_TO_BOARD_NUM(portid);
347 
348 	/*
349 	 * The "reg" property returns 4 32-bit values. The first two are
350 	 * combined to form a 64-bit address.  The second two are for a
351 	 * 64-bit size, but we don't actually need to look at that value.
352 	 */
353 	len = prom_getproplen(nodeid, "reg");
354 	if (len != (sizeof (uint32_t) * 4)) {
355 		prom_printf("Warning: malformed 'reg' property\n");
356 		return;
357 	}
358 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
359 		return;
360 	mc_addr = ((uint64_t)regs[0]) << 32;
361 	mc_addr |= (uint64_t)regs[1];
362 
363 	/*
364 	 * Figure out whether the memory controller we are examining
365 	 * belongs to this CPU or a different one.
366 	 */
367 	if (portid == cpunodes[CPU->cpu_id].portid)
368 		local_mc = 1;
369 	else
370 		local_mc = 0;
371 
372 	for (i = 0; i < SG_MAX_BANKS_PER_MC; i++) {
373 		mask = SG_REG_2_OFFSET(i);
374 
375 		/*
376 		 * If the memory controller is local to this CPU, we use
377 		 * the special ASI to read the decode registers.
378 		 * Otherwise, we load the values from a magic address in
379 		 * I/O space.
380 		 */
381 		if (local_mc)
382 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
383 		else
384 			mc_decode[i] = lddphysio((mc_addr | mask));
385 
386 		if (mc_decode[i] >> MC_VALID_SHIFT) {
387 			/*
388 			 * The memory decode register is a bitmask field,
389 			 * so we can decode that into both a base and
390 			 * a span.
391 			 */
392 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
393 			size = MC_UK2SPAN(mc_decode[i]);
394 			update_mem_bounds(boardid, base, size);
395 		}
396 	}
397 }
398 
399 /*
400  * This routine is run midway through the boot process.  By the time we get
401  * here, we know about all the active CPU boards in the system, and we have
402  * extracted information about each board's memory from the memory
403  * controllers.  We have also figured out which ranges of memory will be
404  * assigned to which memnodes, so we walk the slice table to build the table
405  * of memnodes.
406  */
407 /* ARGSUSED */
408 void
409 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
410 {
411 	int	slice;
412 	pfn_t	basepfn;
413 	pgcnt_t	npgs;
414 
415 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
416 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
417 
418 	for (slice = 0; slice < SG_MAX_SLICE; slice++) {
419 		if (slice_to_memnode[slice] == -1)
420 			continue;
421 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
422 		npgs = 1ull << PFN_SLICE_SHIFT;
423 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
424 	}
425 }
426 
427 int
428 plat_pfn_to_mem_node(pfn_t pfn)
429 {
430 	int node;
431 
432 	node = slice_to_memnode[PFN_2_SLICE(pfn)];
433 
434 	return (node);
435 }
436 
437 /*
438  * Serengeti support for lgroups.
439  *
440  * On Serengeti, an lgroup platform handle == board number.
441  *
442  * Mappings between lgroup handles and memnodes are managed
443  * in addition to mappings between memory slices and memnodes
444  * to support cross-board interleaving as well as multiple
445  * slices per board (e.g. >1GB DIMMs). The initial mapping
446  * of memnodes to lgroup handles is determined at boot time.
447  * A DR addition of memory adds a new mapping. A DR copy-rename
448  * swaps mappings.
449  */
450 
451 /*
452  * Macro for extracting the board number from the CPU id
453  */
454 #define	CPUID_TO_BOARD(id)	(((id) >> 2) & 0x7)
455 
456 /*
457  * Return the platform handle for the lgroup containing the given CPU
458  *
459  * For Serengeti, lgroup platform handle == board number
460  */
461 lgrp_handle_t
462 plat_lgrp_cpu_to_hand(processorid_t id)
463 {
464 	return (CPUID_TO_BOARD(id));
465 }
466 
467 /*
468  * Platform specific lgroup initialization
469  */
470 void
471 plat_lgrp_init(void)
472 {
473 	int i;
474 	extern uint32_t lgrp_expand_proc_thresh;
475 	extern uint32_t lgrp_expand_proc_diff;
476 
477 	/*
478 	 * Initialize lookup tables to invalid values so we catch
479 	 * any illegal use of them.
480 	 */
481 	for (i = 0; i < SG_MAX_SLICE; i++) {
482 		slice_to_memnode[i] = -1;
483 	}
484 
485 	/*
486 	 * Set tuneables for Serengeti architecture
487 	 *
488 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
489 	 * this process is currently running on before considering
490 	 * expanding threads to another lgroup.
491 	 *
492 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
493 	 * must be loaded before expanding to it.
494 	 *
495 	 * Bandwidth is maximized on Serengeti by spreading load across
496 	 * the machine. The impact to inter-thread communication isn't
497 	 * too costly since remote latencies are relatively low.  These
498 	 * values equate to one CPU's load and so attempt to spread the
499 	 * load out across as many lgroups as possible one CPU at a time.
500 	 */
501 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX;
502 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
503 }
504 
505 /*
506  * Platform notification of lgroup (re)configuration changes
507  */
508 /*ARGSUSED*/
509 void
510 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
511 {
512 	update_membounds_t	*umb;
513 	lgrp_config_mem_rename_t lmr;
514 	lgrp_handle_t		shand, thand;
515 	int			snode, tnode;
516 
517 	switch (evt) {
518 
519 	case LGRP_CONFIG_MEM_ADD:
520 		umb = (update_membounds_t *)arg;
521 		update_mem_bounds(umb->u_board, umb->u_base, umb->u_len);
522 
523 		break;
524 
525 	case LGRP_CONFIG_MEM_DEL:
526 		/* We don't have to do anything */
527 		break;
528 
529 	case LGRP_CONFIG_MEM_RENAME:
530 		/*
531 		 * During a DR copy-rename operation, all of the memory
532 		 * on one board is moved to another board -- but the
533 		 * addresses/pfns and memnodes don't change. This means
534 		 * the memory has changed locations without changing identity.
535 		 *
536 		 * Source is where we are copying from and target is where we
537 		 * are copying to.  After source memnode is copied to target
538 		 * memnode, the physical addresses of the target memnode are
539 		 * renamed to match what the source memnode had.  Then target
540 		 * memnode can be removed and source memnode can take its
541 		 * place.
542 		 *
543 		 * To do this, swap the lgroup handle to memnode mappings for
544 		 * the boards, so target lgroup will have source memnode and
545 		 * source lgroup will have empty target memnode which is where
546 		 * its memory will go (if any is added to it later).
547 		 *
548 		 * Then source memnode needs to be removed from its lgroup
549 		 * and added to the target lgroup where the memory was living
550 		 * but under a different name/memnode.  The memory was in the
551 		 * target memnode and now lives in the source memnode with
552 		 * different physical addresses even though it is the same
553 		 * memory.
554 		 */
555 		shand = arg & 0xffff;
556 		thand = (arg & 0xffff0000) >> 16;
557 		snode = plat_lgrphand_to_mem_node(shand);
558 		tnode = plat_lgrphand_to_mem_node(thand);
559 
560 		plat_assign_lgrphand_to_mem_node(thand, snode);
561 		plat_assign_lgrphand_to_mem_node(shand, tnode);
562 
563 		/*
564 		 * Remove source memnode of copy rename from its lgroup
565 		 * and add it to its new target lgroup
566 		 */
567 		lmr.lmem_rename_from = shand;
568 		lmr.lmem_rename_to = thand;
569 
570 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
571 		    (uintptr_t)&lmr);
572 
573 		break;
574 
575 	default:
576 		break;
577 	}
578 }
579 
580 /*
581  * Return latency between "from" and "to" lgroups
582  *
583  * This latency number can only be used for relative comparison
584  * between lgroups on the running system, cannot be used across platforms,
585  * and may not reflect the actual latency.  It is platform and implementation
586  * specific, so platform gets to decide its value.  It would be nice if the
587  * number was at least proportional to make comparisons more meaningful though.
588  * NOTE: The numbers below are supposed to be load latencies for uncached
589  * memory divided by 10.
590  */
591 int
592 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
593 {
594 	/*
595 	 * Return min remote latency when there are more than two lgroups
596 	 * (root and child) and getting latency between two different lgroups
597 	 * or root is involved
598 	 */
599 	if (lgrp_optimizations() && (from != to ||
600 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
601 		return (28);
602 	else
603 		return (23);
604 }
605 
606 /* ARGSUSED */
607 void
608 plat_freelist_process(int mnode)
609 {
610 }
611 
612 /*
613  * Find dip for chosen IOSRAM
614  */
615 dev_info_t *
616 find_chosen_dip(void)
617 {
618 	dev_info_t	*dip;
619 	char		master_sbbc[MAXNAMELEN];
620 	pnode_t		nodeid;
621 	uint_t		tunnel;
622 
623 	/*
624 	 * find the /chosen SBBC node, prom interface will handle errors
625 	 */
626 	nodeid = prom_chosennode();
627 
628 	/*
629 	 * get the 'iosram' property from the /chosen node
630 	 */
631 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
632 		SBBC_ERR(CE_PANIC, "No iosram property found! \n");
633 	}
634 
635 	if (prom_phandle_to_path((phandle_t)tunnel, master_sbbc,
636 	    sizeof (master_sbbc)) < 0) {
637 		SBBC_ERR1(CE_PANIC, "prom_phandle_to_path(%d) failed\n",
638 		    tunnel);
639 	}
640 
641 	chosen_nodeid = nodeid;
642 
643 	/*
644 	 * load and attach the sgsbbc driver.
645 	 * This will also attach all the sgsbbc driver instances
646 	 */
647 	if (i_ddi_attach_hw_nodes("sgsbbc") != DDI_SUCCESS) {
648 		cmn_err(CE_WARN, "sgsbbc failed to load\n");
649 	}
650 
651 	/* translate a path name to a dev_info_t */
652 	dip = e_ddi_hold_devi_by_path(master_sbbc, 0);
653 	if ((dip == NULL) || (ddi_get_nodeid(dip) != tunnel)) {
654 		cmn_err(CE_PANIC, "i_ddi_path_to_devi(%x) failed for SBBC\n",
655 		    tunnel);
656 	}
657 
658 	/* make sure devi_ref is ZERO */
659 	ndi_rele_devi(dip);
660 
661 	DCMNERR(CE_CONT, "Chosen IOSRAM is at %s \n", master_sbbc);
662 
663 	return (dip);
664 }
665 
666 void
667 load_platform_drivers(void)
668 {
669 	int ret;
670 
671 	/*
672 	 * Load and attach the mc-us3 memory driver.
673 	 */
674 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
675 		cmn_err(CE_WARN, "mc-us3 failed to load");
676 	else
677 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
678 
679 	/*
680 	 * Initialize the chosen IOSRAM before its clients
681 	 * are loaded.
682 	 */
683 	(void) find_chosen_dip();
684 
685 	/*
686 	 * Ideally, we'd do this in set_platform_defaults(), but
687 	 * at that point it's too early to look up symbols.
688 	 */
689 	iosram_write_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
690 	    modgetsymvalue("iosram_write", 0);
691 
692 	if (iosram_write_ptr == NULL) {
693 		DCMNERR(CE_WARN, "load_platform_defaults: iosram_write()"
694 		    " not found; signatures will not be updated\n");
695 	} else {
696 		/*
697 		 * The iosram read ptr is only needed if we can actually
698 		 * write CPU signatures, so only bother setting it if we
699 		 * set a valid write pointer, above.
700 		 */
701 		iosram_read_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
702 		    modgetsymvalue("iosram_read", 0);
703 
704 		if (iosram_read_ptr == NULL)
705 			DCMNERR(CE_WARN, "load_platform_defaults: iosram_read()"
706 			    " not found\n");
707 	}
708 
709 	/*
710 	 * Set todsg_use_sc to TRUE so that we will be getting date
711 	 * from the SC.
712 	 */
713 	todsg_use_sc = TRUE;
714 
715 	/*
716 	 * Now is a good time to activate hardware watchdog (if one exists).
717 	 */
718 	mutex_enter(&tod_lock);
719 	if (watchdog_enable)
720 		ret = tod_ops.tod_set_watchdog_timer(watchdog_timeout_seconds);
721 	mutex_exit(&tod_lock);
722 	if (ret != 0)
723 		printf("Hardware watchdog enabled\n");
724 
725 	/*
726 	 * Load and attach the schizo pci bus nexus driver.
727 	 */
728 	if (i_ddi_attach_hw_nodes("pcisch") != DDI_SUCCESS)
729 		cmn_err(CE_WARN, "pcisch failed to load");
730 
731 	plat_ecc_init();
732 }
733 
734 /*
735  * No platform drivers on this platform
736  */
737 char *platform_module_list[] = {
738 	(char *)0
739 };
740 
741 /*ARGSUSED*/
742 void
743 plat_tod_fault(enum tod_fault_type tod_bad)
744 {
745 }
746 int
747 plat_max_boards()
748 {
749 	return (SG_MAX_BDS);
750 }
751 int
752 plat_max_io_units_per_board()
753 {
754 	return (SG_MAX_IO_PER_BD);
755 }
756 int
757 plat_max_cmp_units_per_board()
758 {
759 	return (SG_MAX_CMPS_PER_BD);
760 }
761 int
762 plat_max_cpu_units_per_board()
763 {
764 	return (SG_MAX_CPUS_PER_BD);
765 }
766 
767 int
768 plat_max_mc_units_per_board()
769 {
770 	return (SG_MAX_CMPS_PER_BD); /* each CPU die has a memory controller */
771 }
772 
773 int
774 plat_max_mem_units_per_board()
775 {
776 	return (SG_MAX_MEM_PER_BD);
777 }
778 
779 int
780 plat_max_cpumem_boards(void)
781 {
782 	return (SG_MAX_CPU_BDS);
783 }
784 
785 int
786 set_platform_max_ncpus(void)
787 {
788 	return (sg_max_ncpus);
789 }
790 
791 void
792 plat_dmv_params(uint_t *hwint, uint_t *swint)
793 {
794 	*hwint = MAX_UPA;
795 	*swint = 0;
796 }
797 
798 /*
799  * Our nodename has been set, pass it along to the SC.
800  */
801 void
802 plat_nodename_set(void)
803 {
804 	sbbc_msg_t	req;	/* request */
805 	sbbc_msg_t	resp;	/* response */
806 	int		rv;	/* return value from call to mbox */
807 	struct nodename_info {
808 		int32_t	namelen;
809 		char	nodename[_SYS_NMLN];
810 	} nni;
811 	int (*sg_mbox)(sbbc_msg_t *, sbbc_msg_t *, time_t) = NULL;
812 
813 	/*
814 	 * find the symbol for the mailbox routine
815 	 */
816 	sg_mbox = (int (*)(sbbc_msg_t *, sbbc_msg_t *, time_t))
817 	    modgetsymvalue("sbbc_mbox_request_response", 0);
818 
819 	if (sg_mbox == NULL) {
820 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox not found\n");
821 		return;
822 	}
823 
824 	/*
825 	 * construct the message telling the SC our nodename
826 	 */
827 	(void) strcpy(nni.nodename, utsname.nodename);
828 	nni.namelen = (int32_t)strlen(nni.nodename);
829 
830 	req.msg_type.type = INFO_MBOX;
831 	req.msg_type.sub_type = INFO_MBOX_NODENAME;
832 	req.msg_status = 0;
833 	req.msg_len = (int)(nni.namelen + sizeof (nni.namelen));
834 	req.msg_bytes = 0;
835 	req.msg_buf = (caddr_t)&nni;
836 	req.msg_data[0] = 0;
837 	req.msg_data[1] = 0;
838 
839 	/*
840 	 * initialize the response back from the SC
841 	 */
842 	resp.msg_type.type = INFO_MBOX;
843 	resp.msg_type.sub_type = INFO_MBOX_NODENAME;
844 	resp.msg_status = 0;
845 	resp.msg_len = 0;
846 	resp.msg_bytes = 0;
847 	resp.msg_buf = (caddr_t)0;
848 	resp.msg_data[0] = 0;
849 	resp.msg_data[1] = 0;
850 
851 	/*
852 	 * ship it and check for success
853 	 */
854 	rv = (sg_mbox)(&req, &resp, sbbc_mbox_default_timeout);
855 
856 	if (rv != 0) {
857 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox retval %d\n", rv);
858 	} else if (resp.msg_status != 0) {
859 		cmn_err(CE_NOTE, "!plat_nodename_set: msg_status %d\n",
860 		    resp.msg_status);
861 	} else {
862 		DCMNERR(CE_NOTE, "!plat_nodename_set was successful\n");
863 
864 		/*
865 		 * It is necessary to exchange the capability bitmap
866 		 * with SC before sending any ecc error information and
867 		 * indictment. We are calling the plat_ecc_capability_send()
868 		 * here just after sending the nodename successfully.
869 		 */
870 		rv = plat_ecc_capability_send();
871 		if (rv == 0) {
872 			DCMNERR(CE_NOTE, "!plat_ecc_capability_send was"
873 			    " successful\n");
874 		}
875 	}
876 }
877 
878 /*
879  * flag to allow users switch between using OBP's
880  * prom_get_unum() and mc-us3 driver's p2get_mem_unum()
881  * (for main memory errors only).
882  */
883 int sg_use_prom_get_unum = 0;
884 
885 /*
886  * Debugging flag: set to 1 to call into obp for get_unum, or set it to 0
887  * to call into the unum cache system.  This is the E$ equivalent of
888  * sg_use_prom_get_unum.
889  */
890 int sg_use_prom_ecache_unum = 0;
891 
892 /* used for logging ECC errors to the SC */
893 #define	SG_MEMORY_ECC	1
894 #define	SG_ECACHE_ECC	2
895 #define	SG_UNKNOWN_ECC	(-1)
896 
897 /*
898  * plat_get_mem_unum() generates a string identifying either the
899  * memory or E$ DIMM(s) during error logging. Depending on whether
900  * the error is E$ or memory related, the appropriate support
901  * routine is called to assist in the string generation.
902  *
903  * - For main memory errors we can use the mc-us3 drivers p2getunum()
904  *   (or prom_get_unum() for debugging purposes).
905  *
906  * - For E$ errors we call sg_get_ecacheunum() to generate the unum (or
907  *   prom_serengeti_get_ecacheunum() for debugging purposes).
908  */
909 
910 static int
911 sg_prom_get_unum(int synd_code, uint64_t paddr, char *buf, int buflen,
912     int *lenp)
913 {
914 	if ((prom_get_unum(synd_code, (unsigned long long)paddr,
915 	    buf, buflen, lenp)) != 0)
916 		return (EIO);
917 	else if (*lenp <= 1)
918 		return (EINVAL);
919 	else
920 		return (0);
921 }
922 
923 /*ARGSUSED*/
924 int
925 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
926     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
927 {
928 	/*
929 	 * unum_func will either point to the memory drivers p2get_mem_unum()
930 	 * or to prom_get_unum() for memory errors.
931 	 */
932 	int (*unum_func)(int synd_code, uint64_t paddr, char *buf,
933 	    int buflen, int *lenp) = p2get_mem_unum;
934 
935 	/*
936 	 * check if it's a Memory or an Ecache error.
937 	 */
938 	if (flt_in_memory) {
939 		/*
940 		 * It's a main memory error.
941 		 *
942 		 * For debugging we allow the user to switch between
943 		 * using OBP's get_unum and the memory driver's get_unum
944 		 * so we create a pointer to the functions and switch
945 		 * depending on the sg_use_prom_get_unum flag.
946 		 */
947 		if (sg_use_prom_get_unum) {
948 			DCMNERR(CE_NOTE, "Using prom_get_unum from OBP");
949 			return (sg_prom_get_unum(synd_code,
950 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp));
951 		} else if (unum_func != NULL) {
952 			return (unum_func(synd_code, P2ALIGN(flt_addr, 8),
953 			    buf, buflen, lenp));
954 		} else {
955 			return (ENOTSUP);
956 		}
957 	} else if (flt_status & ECC_ECACHE) {
958 		/*
959 		 * It's an E$ error.
960 		 */
961 		if (sg_use_prom_ecache_unum) {
962 			/*
963 			 * We call to OBP to handle this.
964 			 */
965 			DCMNERR(CE_NOTE,
966 			    "Using prom_serengeti_get_ecacheunum from OBP");
967 			if (prom_serengeti_get_ecacheunum(flt_bus_id,
968 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp) != 0) {
969 				return (EIO);
970 			}
971 		} else {
972 			return (sg_get_ecacheunum(flt_bus_id, flt_addr,
973 			    buf, buflen, lenp));
974 		}
975 	} else {
976 		return (ENOTSUP);
977 	}
978 
979 	return (0);
980 }
981 
982 /*
983  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
984  * driver giving each platform the opportunity to add platform
985  * specific label information to the unum for ECC error logging purposes.
986  */
987 void
988 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
989 {
990 	char	new_unum[UNUM_NAMLEN] = "";
991 	int	node = SG_PORTID_TO_NODEID(mcid);
992 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(mcid);
993 	int	position = SG_PORTID_TO_CPU_POSN(mcid);
994 
995 	/*
996 	 * The mc-us3 driver deals with logical banks but for unum
997 	 * purposes we need to use physical banks so that the correct
998 	 * dimm can be physically located. Logical banks 0 and 2
999 	 * make up physical bank 0. Logical banks 1 and 3 make up
1000 	 * physical bank 1. Here we do the necessary conversion.
1001 	 */
1002 	bank = (bank % 2);
1003 
1004 	if (dimm == -1) {
1005 		SG_SET_FRU_NAME_NODE(new_unum, node);
1006 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1007 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1008 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1009 
1010 	} else {
1011 		SG_SET_FRU_NAME_NODE(new_unum, node);
1012 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1013 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1014 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1015 		SG_SET_FRU_NAME_DIMM(new_unum, dimm);
1016 
1017 		(void) strcat(new_unum, " ");
1018 		(void) strcat(new_unum, unum);
1019 	}
1020 
1021 	(void) strcpy(unum, new_unum);
1022 }
1023 
1024 int
1025 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1026 {
1027 	int	node = SG_PORTID_TO_NODEID(cpuid);
1028 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(cpuid);
1029 
1030 	if (snprintf(buf, buflen, "/N%d/%s%d", node,
1031 	    SG_HPU_TYPE_CPU_BOARD_ID, board) >= buflen) {
1032 		return (ENOSPC);
1033 	} else {
1034 		*lenp = strlen(buf);
1035 		return (0);
1036 	}
1037 }
1038 
1039 /*
1040  * We log all ECC events to the SC so we send a mailbox
1041  * message to the SC passing it the relevant data.
1042  * ECC mailbox messages are sent via a taskq mechanism to
1043  * prevent impaired system performance during ECC floods.
1044  * Indictments have already passed through a taskq, so they
1045  * are not queued here.
1046  */
1047 int
1048 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1049 {
1050 	sbbc_ecc_mbox_t	*msgp;
1051 	size_t		msg_size;
1052 	uint16_t	msg_subtype;
1053 	int		sleep_flag, log_error;
1054 
1055 	if (sg_ecc_taskq_func == NULL) {
1056 		sg_ecc_taskq_func = (void (*)(sbbc_ecc_mbox_t *))
1057 		    modgetsymvalue("sbbc_mbox_queue_ecc_event", 0);
1058 		if (sg_ecc_taskq_func == NULL) {
1059 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1060 			    "sbbc_mbox_queue_ecc_event not found");
1061 			return (ENODEV);
1062 		}
1063 	}
1064 	if (sg_ecc_mbox_func == NULL) {
1065 		sg_ecc_mbox_func = (int (*)(sbbc_ecc_mbox_t *))
1066 		    modgetsymvalue("sbbc_mbox_ecc_output", 0);
1067 		if (sg_ecc_mbox_func == NULL) {
1068 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1069 			    "sbbc_mbox_ecc_output not found");
1070 			return (ENODEV);
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * Initialize the request and response structures
1076 	 */
1077 	switch (msg_type) {
1078 	case PLAT_ECC_ERROR_MESSAGE:
1079 		msg_subtype = INFO_MBOX_ERROR_ECC;
1080 		msg_size = sizeof (plat_ecc_error_data_t);
1081 		sleep_flag = KM_NOSLEEP;
1082 		log_error = 1;
1083 		break;
1084 	case PLAT_ECC_ERROR2_MESSAGE:
1085 		msg_subtype = INFO_MBOX_ECC;
1086 		msg_size = sizeof (plat_ecc_error2_data_t);
1087 		sleep_flag = KM_NOSLEEP;
1088 		log_error = 1;
1089 		break;
1090 	case PLAT_ECC_INDICTMENT_MESSAGE:
1091 		msg_subtype = INFO_MBOX_ERROR_INDICT;
1092 		msg_size = sizeof (plat_ecc_indictment_data_t);
1093 		sleep_flag = KM_SLEEP;
1094 		log_error = 0;
1095 		break;
1096 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1097 		msg_subtype = INFO_MBOX_ECC;
1098 		msg_size = sizeof (plat_ecc_indictment2_data_t);
1099 		sleep_flag = KM_SLEEP;
1100 		log_error = 0;
1101 		break;
1102 	case PLAT_ECC_CAPABILITY_MESSAGE:
1103 		msg_subtype = INFO_MBOX_ECC_CAP;
1104 		msg_size = sizeof (plat_capability_data_t) +
1105 		    strlen(utsname.release) + strlen(utsname.version) + 2;
1106 		sleep_flag = KM_SLEEP;
1107 		log_error = 0;
1108 		break;
1109 	case PLAT_ECC_DIMM_SID_MESSAGE:
1110 		msg_subtype = INFO_MBOX_ECC;
1111 		msg_size = sizeof (plat_dimm_sid_request_data_t);
1112 		sleep_flag = KM_SLEEP;
1113 		log_error = 0;
1114 		break;
1115 	default:
1116 		return (EINVAL);
1117 	}
1118 
1119 	msgp = (sbbc_ecc_mbox_t	*)kmem_zalloc(sizeof (sbbc_ecc_mbox_t),
1120 	    sleep_flag);
1121 	if (msgp == NULL) {
1122 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1123 		    "unable to allocate sbbc_ecc_mbox");
1124 		return (ENOMEM);
1125 	}
1126 
1127 	msgp->ecc_log_error = log_error;
1128 
1129 	msgp->ecc_req.msg_type.type = INFO_MBOX;
1130 	msgp->ecc_req.msg_type.sub_type = msg_subtype;
1131 	msgp->ecc_req.msg_status = 0;
1132 	msgp->ecc_req.msg_len = (int)msg_size;
1133 	msgp->ecc_req.msg_bytes = 0;
1134 	msgp->ecc_req.msg_buf = (caddr_t)kmem_zalloc(msg_size, sleep_flag);
1135 	msgp->ecc_req.msg_data[0] = 0;
1136 	msgp->ecc_req.msg_data[1] = 0;
1137 
1138 	if (msgp->ecc_req.msg_buf == NULL) {
1139 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1140 		    "unable to allocate request msg_buf");
1141 		kmem_free((void *)msgp, sizeof (sbbc_ecc_mbox_t));
1142 		return (ENOMEM);
1143 	}
1144 	bcopy(datap, (void *)msgp->ecc_req.msg_buf, msg_size);
1145 
1146 	/*
1147 	 * initialize the response back from the SC
1148 	 */
1149 	msgp->ecc_resp.msg_type.type = INFO_MBOX;
1150 	msgp->ecc_resp.msg_type.sub_type = msg_subtype;
1151 	msgp->ecc_resp.msg_status = 0;
1152 	msgp->ecc_resp.msg_len = 0;
1153 	msgp->ecc_resp.msg_bytes = 0;
1154 	msgp->ecc_resp.msg_buf = NULL;
1155 	msgp->ecc_resp.msg_data[0] = 0;
1156 	msgp->ecc_resp.msg_data[1] = 0;
1157 
1158 	switch (msg_type) {
1159 	case PLAT_ECC_ERROR_MESSAGE:
1160 	case PLAT_ECC_ERROR2_MESSAGE:
1161 		/*
1162 		 * For Error Messages, we go through a taskq.
1163 		 * Queue up the message for processing
1164 		 */
1165 		(*sg_ecc_taskq_func)(msgp);
1166 		return (0);
1167 
1168 	case PLAT_ECC_CAPABILITY_MESSAGE:
1169 		/*
1170 		 * For indictment and capability messages, we've already gone
1171 		 * through the taskq, so we can call the mailbox routine
1172 		 * directly.  Find the symbol for the routine that sends
1173 		 * the mailbox msg
1174 		 */
1175 		msgp->ecc_resp.msg_len = (int)msg_size;
1176 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(msg_size,
1177 		    sleep_flag);
1178 		/* FALLTHRU */
1179 
1180 	case PLAT_ECC_INDICTMENT_MESSAGE:
1181 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1182 		return ((*sg_ecc_mbox_func)(msgp));
1183 
1184 	case PLAT_ECC_DIMM_SID_MESSAGE:
1185 		msgp->ecc_resp.msg_len = sizeof (plat_dimm_sid_board_data_t);
1186 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(
1187 		    sizeof (plat_dimm_sid_board_data_t), sleep_flag);
1188 		return ((*sg_ecc_mbox_func)(msgp));
1189 
1190 	default:
1191 		ASSERT(0);
1192 		return (EINVAL);
1193 	}
1194 }
1195 
1196 /*
1197  * m is redundant on serengeti as the multiplier is always 4
1198  */
1199 /*ARGSUSED*/
1200 int
1201 plat_make_fru_cpuid(int sb, int m, int proc)
1202 {
1203 	return (MAKE_CPUID(sb, proc));
1204 }
1205 
1206 /*
1207  * board number for a given proc
1208  */
1209 int
1210 plat_make_fru_boardnum(int proc)
1211 {
1212 	return (SG_CPU_BD_PORTID_TO_BD_NUM(proc));
1213 }
1214 
1215 static
1216 void
1217 cpu_sgn_update(ushort_t sig, uchar_t state, uchar_t sub_state, int cpuid)
1218 {
1219 	uint32_t signature = CPU_SIG_BLD(sig, state, sub_state);
1220 	sig_state_t current_sgn;
1221 	int i;
1222 
1223 	if (iosram_write_ptr == NULL) {
1224 		/*
1225 		 * If the IOSRAM write pointer isn't set, we won't be able
1226 		 * to write signatures to ANYTHING, so we may as well just
1227 		 * write out an error message (if desired) and exit this
1228 		 * routine now...
1229 		 */
1230 		DCMNERR(CE_WARN,
1231 		    "cpu_sgn_update: iosram_write() not found;"
1232 		    " cannot write signature 0x%x for CPU(s) or domain\n",
1233 		    signature);
1234 		return;
1235 	}
1236 
1237 
1238 	/*
1239 	 * Differentiate a panic reboot from a non-panic reboot in the
1240 	 * setting of the substate of the signature.
1241 	 *
1242 	 * If the new substate is REBOOT and we're rebooting due to a panic,
1243 	 * then set the new substate to a special value indicating a panic
1244 	 * reboot, SIGSUBST_PANIC_REBOOT.
1245 	 *
1246 	 * A panic reboot is detected by a current (previous) domain signature
1247 	 * state of SIGST_EXIT, and a new signature substate of SIGSUBST_REBOOT.
1248 	 * The domain signature state SIGST_EXIT is used as the panic flow
1249 	 * progresses.
1250 	 *
1251 	 * At the end of the panic flow, the reboot occurs but we should now
1252 	 * one that was involuntary, something that may be quite useful to know
1253 	 * at OBP level.
1254 	 */
1255 	if (sub_state == SIGSUBST_REBOOT) {
1256 		if (iosram_read_ptr == NULL) {
1257 			DCMNERR(CE_WARN,
1258 			    "cpu_sgn_update: iosram_read() not found;"
1259 			    " could not check current domain signature\n");
1260 		} else {
1261 			(void) (*iosram_read_ptr)(SBBC_SIGBLCK_KEY,
1262 			    SG_SGNBLK_DOMAINSIG_OFFSET,
1263 			    (char *)&current_sgn, sizeof (current_sgn));
1264 			if (current_sgn.state_t.state == SIGST_EXIT)
1265 				signature = CPU_SIG_BLD(sig, state,
1266 				    SIGSUBST_PANIC_REBOOT);
1267 		}
1268 	}
1269 
1270 	/*
1271 	 * cpuid == -1 indicates that the operation applies to all cpus.
1272 	 */
1273 	if (cpuid >= 0) {
1274 		(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1275 		    SG_SGNBLK_CPUSIG_OFFSET(cpuid), (char *)&signature,
1276 		    sizeof (signature));
1277 	} else {
1278 		for (i = 0; i < NCPU; i++) {
1279 			if (cpu[i] == NULL || !(cpu[i]->cpu_flags &
1280 			    (CPU_EXISTS|CPU_QUIESCED))) {
1281 				continue;
1282 			}
1283 			(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1284 			    SG_SGNBLK_CPUSIG_OFFSET(i), (char *)&signature,
1285 			    sizeof (signature));
1286 		}
1287 	}
1288 
1289 	if (state == SIGST_OFFLINE || state == SIGST_DETACHED) {
1290 		return;
1291 	}
1292 
1293 	(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1294 	    SG_SGNBLK_DOMAINSIG_OFFSET, (char *)&signature,
1295 	    sizeof (signature));
1296 }
1297 
1298 void
1299 startup_platform(void)
1300 {
1301 	/* set per-platform constants for mutex backoff */
1302 	mutex_backoff_base = 1;
1303 	mutex_cap_factor = 32;
1304 }
1305 
1306 /*
1307  * A routine to convert a number (represented as a string) to
1308  * the integer value it represents.
1309  */
1310 
1311 static int
1312 isdigit(int ch)
1313 {
1314 	return (ch >= '0' && ch <= '9');
1315 }
1316 
1317 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n')
1318 
1319 static int
1320 strtoi(char *p, char **pos)
1321 {
1322 	int n;
1323 	int c, neg = 0;
1324 
1325 	if (!isdigit(c = *p)) {
1326 		while (isspace(c))
1327 			c = *++p;
1328 		switch (c) {
1329 			case '-':
1330 				neg++;
1331 				/* FALLTHROUGH */
1332 			case '+':
1333 			c = *++p;
1334 		}
1335 		if (!isdigit(c)) {
1336 			if (pos != NULL)
1337 				*pos = p;
1338 			return (0);
1339 		}
1340 	}
1341 	for (n = '0' - c; isdigit(c = *++p); ) {
1342 		n *= 10; /* two steps to avoid unnecessary overflow */
1343 		n += '0' - c; /* accum neg to avoid surprises at MAX */
1344 	}
1345 	if (pos != NULL)
1346 		*pos = p;
1347 	return (neg ? n : -n);
1348 }
1349 
1350 /*
1351  * Get the three parts of the Serengeti PROM version.
1352  * Used for feature readiness tests.
1353  *
1354  * Return 0 if version extracted successfully, -1 otherwise.
1355  */
1356 
1357 int
1358 sg_get_prom_version(int *sysp, int *intfp, int *bldp)
1359 {
1360 	int plen;
1361 	char vers[512];
1362 	static pnode_t node;
1363 	static char version[] = "version";
1364 	char *verp, *ep;
1365 
1366 	node = prom_finddevice("/openprom");
1367 	if (node == OBP_BADNODE)
1368 		return (-1);
1369 
1370 	plen = prom_getproplen(node, version);
1371 	if (plen <= 0 || plen >= sizeof (vers))
1372 		return (-1);
1373 	(void) prom_getprop(node, version, vers);
1374 	vers[plen] = '\0';
1375 
1376 	/* Make sure it's an OBP flashprom */
1377 	if (vers[0] != 'O' && vers[1] != 'B' && vers[2] != 'P') {
1378 		cmn_err(CE_WARN, "sg_get_prom_version: "
1379 		    "unknown <version> string in </openprom>\n");
1380 		return (-1);
1381 	}
1382 	verp = &vers[4];
1383 
1384 	*sysp = strtoi(verp, &ep);
1385 	if (ep == verp || *ep != '.')
1386 		return (-1);
1387 	verp = ep + 1;
1388 
1389 	*intfp = strtoi(verp, &ep);
1390 	if (ep == verp || *ep != '.')
1391 		return (-1);
1392 	verp = ep + 1;
1393 
1394 	*bldp = strtoi(verp, &ep);
1395 	if (ep == verp || (*ep != '\0' && !isspace(*ep)))
1396 		return (-1);
1397 	return (0);
1398 }
1399 
1400 /*
1401  * Return 0 if system board Dynamic Reconfiguration
1402  * is supported by the firmware, -1 otherwise.
1403  */
1404 int
1405 sg_prom_sb_dr_check(void)
1406 {
1407 	static int prom_res = 1;
1408 
1409 	if (prom_res == 1) {
1410 		int sys, intf, bld;
1411 		int rv;
1412 
1413 		rv = sg_get_prom_version(&sys, &intf, &bld);
1414 		if (rv == 0 && sys == 5 &&
1415 		    (intf >= 12 || (intf == 11 && bld >= 200))) {
1416 			prom_res = 0;
1417 		} else {
1418 			prom_res = -1;
1419 		}
1420 	}
1421 	return (prom_res);
1422 }
1423 
1424 /*
1425  * Return 0 if cPCI Dynamic Reconfiguration
1426  * is supported by the firmware, -1 otherwise.
1427  */
1428 int
1429 sg_prom_cpci_dr_check(void)
1430 {
1431 	/*
1432 	 * The version check is currently the same as for
1433 	 * system boards. Since the two DR sub-systems are
1434 	 * independent, this could change.
1435 	 */
1436 	return (sg_prom_sb_dr_check());
1437 }
1438 
1439 /*
1440  * KDI functions - used by the in-situ kernel debugger (kmdb) to perform
1441  * platform-specific operations.  These functions execute when the world is
1442  * stopped, and as such cannot make any blocking calls, hold locks, etc.
1443  * promif functions are a special case, and may be used.
1444  */
1445 
1446 /*
1447  * Our implementation of this KDI op updates the CPU signature in the system
1448  * controller.  Note that we set the signature to OBP_SIG, rather than DBG_SIG.
1449  * The Forth words we execute will, among other things, transform our OBP_SIG
1450  * into DBG_SIG.  They won't function properly if we try to use DBG_SIG.
1451  */
1452 static void
1453 sg_system_claim(void)
1454 {
1455 	lbolt_debug_entry();
1456 
1457 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1458 }
1459 
1460 static void
1461 sg_system_release(void)
1462 {
1463 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1464 
1465 	lbolt_debug_return();
1466 }
1467 
1468 static void
1469 sg_console_claim(void)
1470 {
1471 	(void) prom_serengeti_set_console_input(SGCN_OBP_STR);
1472 }
1473 
1474 static void
1475 sg_console_release(void)
1476 {
1477 	(void) prom_serengeti_set_console_input(SGCN_CLNT_STR);
1478 }
1479 
1480 void
1481 plat_kdi_init(kdi_t *kdi)
1482 {
1483 	kdi->pkdi_system_claim = sg_system_claim;
1484 	kdi->pkdi_system_release = sg_system_release;
1485 	kdi->pkdi_console_claim = sg_console_claim;
1486 	kdi->pkdi_console_release = sg_console_release;
1487 }
1488