xref: /titanic_51/usr/src/uts/sun4u/os/ppage.c (revision 3db86aab554edbb4244c8d1a1c90f152eee768af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/machsystm.h>
32 #include <sys/t_lock.h>
33 #include <sys/vmem.h>
34 #include <sys/mman.h>
35 #include <sys/vm.h>
36 #include <sys/cpu.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cpuvar.h>
39 #include <sys/atomic.h>
40 #include <vm/as.h>
41 #include <vm/hat.h>
42 #include <vm/as.h>
43 #include <vm/page.h>
44 #include <vm/seg.h>
45 #include <vm/seg_kmem.h>
46 #include <vm/hat_sfmmu.h>
47 #include <sys/debug.h>
48 #include <sys/cpu_module.h>
49 
50 /*
51  * A quick way to generate a cache consistent address to map in a page.
52  * users: ppcopy, pagezero, /proc, dev/mem
53  *
54  * The ppmapin/ppmapout routines provide a quick way of generating a cache
55  * consistent address by reserving a given amount of kernel address space.
56  * The base is PPMAPBASE and its size is PPMAPSIZE.  This memory is divided
57  * into x number of sets, where x is the number of colors for the virtual
58  * cache. The number of colors is how many times a page can be mapped
59  * simulatenously in the cache.  For direct map caches this translates to
60  * the number of pages in the cache.
61  * Each set will be assigned a group of virtual pages from the reserved memory
62  * depending on its virtual color.
63  * When trying to assign a virtual address we will find out the color for the
64  * physical page in question (if applicable).  Then we will try to find an
65  * available virtual page from the set of the appropiate color.
66  */
67 
68 #define	clsettoarray(color, set) ((color * nsets) + set)
69 
70 int pp_slots = 4;		/* small default, tuned by cpu module */
71 
72 /* tuned by cpu module, default is "safe" */
73 int pp_consistent_coloring = PPAGE_STORES_POLLUTE | PPAGE_LOADS_POLLUTE;
74 
75 static caddr_t	ppmap_vaddrs[PPMAPSIZE / MMU_PAGESIZE];
76 static int	nsets;			/* number of sets */
77 static int	ppmap_pages;		/* generate align mask */
78 static int	ppmap_shift;		/* set selector */
79 
80 #ifdef PPDEBUG
81 #define		MAXCOLORS	16	/* for debug only */
82 static int	ppalloc_noslot = 0;	/* # of allocations from kernelmap */
83 static int	align_hits[MAXCOLORS];
84 static int	pp_allocs;		/* # of ppmapin requests */
85 #endif /* PPDEBUG */
86 
87 /*
88  * There are only 64 TLB entries on spitfire, 16 on cheetah
89  * (fully-associative TLB) so we allow the cpu module to tune the
90  * number to use here via pp_slots.
91  */
92 static struct ppmap_va {
93 	caddr_t	ppmap_slots[MAXPP_SLOTS];
94 } ppmap_va[NCPU];
95 
96 void
97 ppmapinit(void)
98 {
99 	int color, nset, setsize;
100 	caddr_t va;
101 
102 	ASSERT(pp_slots <= MAXPP_SLOTS);
103 
104 	va = (caddr_t)PPMAPBASE;
105 	if (cache & CACHE_VAC) {
106 		int a;
107 
108 		ppmap_pages = mmu_btop(shm_alignment);
109 		nsets = PPMAPSIZE / shm_alignment;
110 		setsize = shm_alignment;
111 		ppmap_shift = MMU_PAGESHIFT;
112 		a = ppmap_pages;
113 		while (a >>= 1)
114 			ppmap_shift++;
115 	} else {
116 		/*
117 		 * If we do not have a virtual indexed cache we simply
118 		 * have only one set containing all pages.
119 		 */
120 		ppmap_pages = 1;
121 		nsets = mmu_btop(PPMAPSIZE);
122 		setsize = MMU_PAGESIZE;
123 		ppmap_shift = MMU_PAGESHIFT;
124 	}
125 	for (color = 0; color < ppmap_pages; color++) {
126 		for (nset = 0; nset < nsets; nset++) {
127 			ppmap_vaddrs[clsettoarray(color, nset)] =
128 			    (caddr_t)((uintptr_t)va + (nset * setsize));
129 		}
130 		va += MMU_PAGESIZE;
131 	}
132 }
133 
134 /*
135  * Allocate a cache consistent virtual address to map a page, pp,
136  * with protection, vprot; and map it in the MMU, using the most
137  * efficient means possible.  The argument avoid is a virtual address
138  * hint which when masked yields an offset into a virtual cache
139  * that should be avoided when allocating an address to map in a
140  * page.  An avoid arg of -1 means you don't care, for instance pagezero.
141  *
142  * machine dependent, depends on virtual address space layout,
143  * understands that all kernel addresses have bit 31 set.
144  *
145  * NOTE: For sun4 platforms the meaning of the hint argument is opposite from
146  * that found in other architectures.  In other architectures the hint
147  * (called avoid) was used to ask ppmapin to NOT use the specified cache color.
148  * This was used to avoid virtual cache trashing in the bcopy.  Unfortunately
149  * in the case of a COW,  this later on caused a cache aliasing conflict.  In
150  * sun4, the bcopy routine uses the block ld/st instructions so we don't have
151  * to worry about virtual cache trashing.  Actually, by using the hint to choose
152  * the right color we can almost guarantee a cache conflict will not occur.
153  */
154 
155 caddr_t
156 ppmapin(page_t *pp, uint_t vprot, caddr_t hint)
157 {
158 	int color, nset, index, start;
159 	caddr_t va;
160 
161 #ifdef PPDEBUG
162 	pp_allocs++;
163 #endif /* PPDEBUG */
164 	if (cache & CACHE_VAC) {
165 		color = sfmmu_get_ppvcolor(pp);
166 		if (color == -1) {
167 			if ((intptr_t)hint != -1L) {
168 				color = addr_to_vcolor(hint);
169 			} else {
170 				color = addr_to_vcolor(mmu_ptob(pp->p_pagenum));
171 			}
172 		}
173 
174 	} else {
175 		/*
176 		 * For physical caches, we can pick any address we want.
177 		 */
178 		color = 0;
179 	}
180 
181 	start = color;
182 	do {
183 		for (nset = 0; nset < nsets; nset++) {
184 			index = clsettoarray(color, nset);
185 			va = ppmap_vaddrs[index];
186 			if (va != NULL) {
187 #ifdef PPDEBUG
188 				align_hits[color]++;
189 #endif /* PPDEBUG */
190 				if (casptr(&ppmap_vaddrs[index],
191 				    va, NULL) == va) {
192 					hat_memload(kas.a_hat, va, pp,
193 						vprot | HAT_NOSYNC,
194 						HAT_LOAD_LOCK);
195 					return (va);
196 				}
197 			}
198 		}
199 		/*
200 		 * first pick didn't succeed, try another
201 		 */
202 		if (++color == ppmap_pages)
203 			color = 0;
204 	} while (color != start);
205 
206 #ifdef PPDEBUG
207 	ppalloc_noslot++;
208 #endif /* PPDEBUG */
209 
210 	/*
211 	 * No free slots; get a random one from the kernel heap area.
212 	 */
213 	va = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
214 
215 	hat_memload(kas.a_hat, va, pp, vprot | HAT_NOSYNC, HAT_LOAD_LOCK);
216 
217 	return (va);
218 
219 }
220 
221 void
222 ppmapout(caddr_t va)
223 {
224 	int color, nset, index;
225 
226 	if (va >= kernelheap && va < ekernelheap) {
227 		/*
228 		 * Space came from kernelmap, flush the page and
229 		 * return the space.
230 		 */
231 		hat_unload(kas.a_hat, va, PAGESIZE,
232 		    (HAT_UNLOAD_NOSYNC | HAT_UNLOAD_UNLOCK));
233 		vmem_free(heap_arena, va, PAGESIZE);
234 	} else {
235 		/*
236 		 * Space came from ppmap_vaddrs[], give it back.
237 		 */
238 		color = addr_to_vcolor(va);
239 		ASSERT((cache & CACHE_VAC)? (color < ppmap_pages) : 1);
240 
241 		nset = ((uintptr_t)va >> ppmap_shift) & (nsets - 1);
242 		index = clsettoarray(color, nset);
243 		hat_unload(kas.a_hat, va, PAGESIZE,
244 		    (HAT_UNLOAD_NOSYNC | HAT_UNLOAD_UNLOCK));
245 
246 		ASSERT(ppmap_vaddrs[index] == NULL);
247 		ppmap_vaddrs[index] = va;
248 	}
249 }
250 
251 #ifdef DEBUG
252 #define	PP_STAT_ADD(stat)	(stat)++
253 uint_t pload, ploadfail;
254 uint_t ppzero, ppzero_short;
255 #else
256 #define	PP_STAT_ADD(stat)
257 #endif /* DEBUG */
258 
259 /*
260  * Find a slot in per CPU page copy area. Load up a locked TLB in the
261  * running cpu. We don't call hat layer to load up the tte since the
262  * mapping is only temporary. If the thread migrates it'll get a TLB
263  * miss trap and TLB/TSB miss handler will panic since there is no
264  * official hat record of this mapping.
265  */
266 static caddr_t
267 pp_load_tlb(processorid_t cpu, caddr_t **pslot, page_t *pp, uint_t prot)
268 {
269 	struct ppmap_va	*ppmap;
270 	tte_t		tte;
271 	caddr_t		*myslot;
272 	caddr_t		va;
273 	long		i, start, stride;
274 	int		vcolor;
275 	uint_t		flags, strict_flag;
276 
277 	PP_STAT_ADD(pload);
278 
279 	ppmap = &ppmap_va[cpu];
280 	va = (caddr_t)(PPMAP_FAST_BASE + (MMU_PAGESIZE * MAXPP_SLOTS) * cpu);
281 	myslot = ppmap->ppmap_slots;
282 	ASSERT(addr_to_vcolor(va) == 0);
283 
284 	if (prot & TTE_HWWR_INT) {
285 		flags = PPAGE_STORE_VCOLORING | PPAGE_STORES_POLLUTE;
286 		strict_flag = PPAGE_STORES_POLLUTE;
287 	} else {
288 		flags = PPAGE_LOAD_VCOLORING | PPAGE_LOADS_POLLUTE;
289 		strict_flag = PPAGE_LOADS_POLLUTE;
290 	}
291 
292 	/*
293 	 * If consistent handling is required then keep the current
294 	 * vcolor of the page.  Furthermore, if loads or stores can
295 	 * pollute the VAC then using a "new" page (unassigned vcolor)
296 	 * won't work and we have to return a failure.
297 	 */
298 	if (pp_consistent_coloring & flags) {
299 		vcolor = sfmmu_get_ppvcolor(pp);
300 		if ((vcolor == -1) &&
301 		    (pp_consistent_coloring & strict_flag))
302 			return (NULL);
303 		/* else keep the current vcolor of the page */
304 	} else {
305 		vcolor = -1;
306 	}
307 
308 	if (vcolor != -1) {
309 		va += MMU_PAGESIZE * vcolor;
310 		start = vcolor;
311 		stride = ppmap_pages; /* number of colors */
312 		myslot += vcolor;
313 	} else {
314 		start = 0;
315 		stride = 1;
316 	}
317 
318 	for (i = start; i < pp_slots; i += stride) {
319 		if (*myslot == NULL) {
320 			if (casptr(myslot, NULL, va) == NULL)
321 				break;
322 		}
323 		myslot += stride;
324 		va += MMU_PAGESIZE * stride;
325 	}
326 
327 	if (i >= pp_slots) {
328 		PP_STAT_ADD(ploadfail);
329 		return (NULL);
330 	}
331 
332 	ASSERT(vcolor == -1 || addr_to_vcolor(va) == vcolor);
333 
334 	/*
335 	 * Now we have a slot we can use, make the tte.
336 	 */
337 	tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(pp->p_pagenum);
338 	tte.tte_intlo = TTE_PFN_INTLO(pp->p_pagenum) | TTE_CP_INT |
339 	    TTE_CV_INT | TTE_PRIV_INT | TTE_LCK_INT | prot;
340 
341 	ASSERT(CPU->cpu_id == cpu);
342 	sfmmu_dtlb_ld_kva(va, &tte);
343 
344 	*pslot = myslot;	/* Return ptr to the slot we used. */
345 
346 	return (va);
347 }
348 
349 static void
350 pp_unload_tlb(caddr_t *pslot, caddr_t va)
351 {
352 	ASSERT(*pslot == va);
353 
354 	vtag_flushpage(va, (uint64_t)ksfmmup);
355 	*pslot = NULL;				/* release the slot */
356 }
357 
358 /*
359  * Common copy routine which attempts to use hwblkpagecopy.  If this routine
360  * can't be used, failure (0) will be returned.  Otherwise, a PAGESIZE page
361  * will be copied and success (1) will be returned.
362  */
363 int
364 ppcopy_common(page_t *fm_pp, page_t *to_pp)
365 {
366 	caddr_t fm_va, to_va;
367 	caddr_t	*fm_slot, *to_slot;
368 	processorid_t cpu;
369 
370 	ASSERT(PAGE_LOCKED(fm_pp));
371 	ASSERT(PAGE_LOCKED(to_pp));
372 
373 	/*
374 	 * If we can't use VIS block loads and stores we can't use
375 	 * pp_load_tlb/pp_unload_tlb due to the possibility of
376 	 * d$ aliasing.
377 	 */
378 	if (!use_hw_bcopy && (cache & CACHE_VAC))
379 		return (0);
380 
381 	kpreempt_disable();
382 	cpu = CPU->cpu_id;
383 	fm_va = pp_load_tlb(cpu, &fm_slot, fm_pp, 0);
384 	if (fm_va == NULL) {
385 		kpreempt_enable();
386 		return (0);
387 	}
388 	to_va = pp_load_tlb(cpu, &to_slot, to_pp, TTE_HWWR_INT);
389 	if (to_va == NULL) {
390 		pp_unload_tlb(fm_slot, fm_va);
391 		kpreempt_enable();
392 		return (0);
393 	}
394 	hwblkpagecopy(fm_va, to_va);
395 	ASSERT(CPU->cpu_id == cpu);
396 	pp_unload_tlb(fm_slot, fm_va);
397 	pp_unload_tlb(to_slot, to_va);
398 	kpreempt_enable();
399 	return (1);
400 }
401 
402 /*
403  * Routine to copy kernel pages during relocation.  It will copy one
404  * PAGESIZE page to another PAGESIZE page.  This function may be called
405  * above LOCK_LEVEL so it should not grab any locks.
406  */
407 void
408 ppcopy_kernel__relocatable(page_t *fm_pp, page_t *to_pp)
409 {
410 	uint64_t fm_pa, to_pa;
411 	size_t nbytes;
412 
413 	fm_pa = (uint64_t)(fm_pp->p_pagenum) << MMU_PAGESHIFT;
414 	to_pa = (uint64_t)(to_pp->p_pagenum) << MMU_PAGESHIFT;
415 
416 	nbytes = MMU_PAGESIZE;
417 
418 	for (; nbytes > 0; fm_pa += 32, to_pa += 32, nbytes -= 32)
419 		hw_pa_bcopy32(fm_pa, to_pa);
420 }
421 
422 /*
423  * Copy the data from the physical page represented by "frompp" to
424  * that represented by "topp".
425  *
426  * Try to use per cpu mapping first, if that fails then call pp_mapin
427  * to load it.
428  */
429 void
430 ppcopy(page_t *fm_pp, page_t *to_pp)
431 {
432 	caddr_t fm_va, to_va;
433 
434 	/* Try the fast path first */
435 	if (ppcopy_common(fm_pp, to_pp))
436 		return;
437 
438 	/* Fast path failed, so we need to do the slow path. */
439 	fm_va = ppmapin(fm_pp, PROT_READ, (caddr_t)-1);
440 	to_va = ppmapin(to_pp, PROT_READ | PROT_WRITE, fm_va);
441 	bcopy(fm_va, to_va, PAGESIZE);
442 	ppmapout(fm_va);
443 	ppmapout(to_va);
444 }
445 
446 /*
447  * Zero the physical page from off to off + len given by `pp'
448  * without changing the reference and modified bits of page.
449  *
450  * Again, we'll try per cpu mapping first.
451  */
452 void
453 pagezero(page_t *pp, uint_t off, uint_t len)
454 {
455 	caddr_t va;
456 	caddr_t *slot;
457 	int fast = 1;
458 	processorid_t cpu;
459 	extern int hwblkclr(void *, size_t);
460 	extern int use_hw_bzero;
461 
462 	ASSERT((int)len > 0 && (int)off >= 0 && off + len <= PAGESIZE);
463 	ASSERT(PAGE_LOCKED(pp));
464 
465 	PP_STAT_ADD(ppzero);
466 
467 	if (len != MMU_PAGESIZE || !use_hw_bzero) {
468 		/*
469 		 * Since the fast path doesn't do anything about
470 		 * VAC coloring, we make sure bcopy h/w will be used.
471 		 */
472 		fast = 0;
473 		va = NULL;
474 		PP_STAT_ADD(ppzero_short);
475 	}
476 
477 	kpreempt_disable();
478 
479 	if (fast) {
480 		cpu = CPU->cpu_id;
481 		va = pp_load_tlb(cpu, &slot, pp, TTE_HWWR_INT);
482 	}
483 
484 	if (va == NULL) {
485 		/*
486 		 * We are here either length != MMU_PAGESIZE or pp_load_tlb()
487 		 * returns NULL or use_hw_bzero is disabled.
488 		 */
489 		va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
490 		fast = 0;
491 	}
492 
493 	if (hwblkclr(va + off, len)) {
494 		/*
495 		 * We may not have used block commit asi.
496 		 * So flush the I-$ manually
497 		 */
498 
499 		ASSERT(fast == 0);
500 
501 		sync_icache(va + off, len);
502 	} else {
503 		/*
504 		 * We have used blk commit, and flushed the I-$. However we
505 		 * still may have an instruction in the pipeline. Only a flush
506 		 * instruction will invalidate that.
507 		 */
508 		doflush(va);
509 	}
510 
511 	if (fast) {
512 		ASSERT(CPU->cpu_id == cpu);
513 		pp_unload_tlb(slot, va);
514 	} else {
515 		ppmapout(va);
516 	}
517 
518 	kpreempt_enable();
519 }
520