xref: /titanic_51/usr/src/uts/sun4u/os/cpr_impl.c (revision fdea908e419c50bb9207dfd6dee8556aa6e39cf3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Platform specific implementation code
30  */
31 
32 #define	SUNDDI_IMPL
33 
34 #include <sys/types.h>
35 #include <sys/promif.h>
36 #include <sys/prom_isa.h>
37 #include <sys/prom_plat.h>
38 #include <sys/mmu.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/iommu.h>
41 #include <sys/scb.h>
42 #include <sys/cpuvar.h>
43 #include <sys/intreg.h>
44 #include <sys/pte.h>
45 #include <vm/hat.h>
46 #include <vm/page.h>
47 #include <vm/as.h>
48 #include <sys/cpr.h>
49 #include <sys/kmem.h>
50 #include <sys/clock.h>
51 #include <sys/kmem.h>
52 #include <sys/panic.h>
53 #include <vm/seg_kmem.h>
54 #include <sys/cpu_module.h>
55 #include <sys/callb.h>
56 #include <sys/machsystm.h>
57 #include <sys/vmsystm.h>
58 #include <sys/systm.h>
59 #include <sys/archsystm.h>
60 #include <sys/stack.h>
61 #include <sys/fs/ufs_fs.h>
62 #include <sys/memlist.h>
63 #include <sys/bootconf.h>
64 #include <sys/thread.h>
65 #include <vm/vm_dep.h>
66 
67 extern	void cpr_clear_bitmaps(void);
68 extern	void dtlb_wr_entry(uint_t, tte_t *, uint64_t *);
69 extern	void itlb_wr_entry(uint_t, tte_t *, uint64_t *);
70 
71 static	int i_cpr_storage_desc_alloc(csd_t **, pgcnt_t *, csd_t **, int);
72 static	void i_cpr_storage_desc_init(csd_t *, pgcnt_t, csd_t *);
73 static	caddr_t i_cpr_storage_data_alloc(pgcnt_t, pgcnt_t *, int);
74 static	int cpr_dump_sensitive(vnode_t *, csd_t *);
75 static	void i_cpr_clear_entries(uint64_t, uint64_t);
76 static	void i_cpr_xcall(xcfunc_t);
77 
78 void	i_cpr_storage_free(void);
79 
80 extern void *i_cpr_data_page;
81 extern int cpr_test_mode;
82 extern int cpr_nbitmaps;
83 extern char cpr_default_path[];
84 extern caddr_t textva, datava;
85 
86 static struct cpr_map_info cpr_prom_retain[CPR_PROM_RETAIN_CNT];
87 caddr_t cpr_vaddr = NULL;
88 
89 static	uint_t sensitive_pages_saved;
90 static	uint_t sensitive_size_saved;
91 
92 caddr_t	i_cpr_storage_data_base;
93 caddr_t	i_cpr_storage_data_end;
94 csd_t *i_cpr_storage_desc_base;
95 csd_t *i_cpr_storage_desc_end;		/* one byte beyond last used descp */
96 csd_t *i_cpr_storage_desc_last_used;	/* last used descriptor */
97 caddr_t sensitive_write_ptr;		/* position for next storage write */
98 
99 size_t	i_cpr_sensitive_bytes_dumped;
100 pgcnt_t	i_cpr_sensitive_pgs_dumped;
101 pgcnt_t	i_cpr_storage_data_sz;		/* in pages */
102 pgcnt_t	i_cpr_storage_desc_pgcnt;	/* in pages */
103 
104 ushort_t cpr_mach_type = CPR_MACHTYPE_4U;
105 static	csu_md_t m_info;
106 
107 
108 #define	MAX_STORAGE_RETRY	3
109 #define	MAX_STORAGE_ALLOC_RETRY	3
110 #define	INITIAL_ALLOC_PCNT	40	/* starting allocation percentage */
111 #define	INTEGRAL		100	/* to get 1% precision */
112 
113 #define	EXTRA_RATE		2	/* add EXTRA_RATE% extra space */
114 #define	EXTRA_DESCS		10
115 
116 #define	CPR_NO_STORAGE_DESC	1
117 #define	CPR_NO_STORAGE_DATA	2
118 
119 #define	CIF_SPLICE		0
120 #define	CIF_UNLINK		1
121 
122 
123 /*
124  * CPR miscellaneous support routines
125  */
126 #define	cpr_open(path, mode,  vpp)	(vn_open(path, UIO_SYSSPACE, \
127 		mode, 0600, vpp, CRCREAT, 0))
128 #define	cpr_rdwr(rw, vp, basep, cnt)	(vn_rdwr(rw, vp,  (caddr_t)(basep), \
129 		cnt, 0LL, UIO_SYSSPACE, 0, (rlim64_t)MAXOFF_T, CRED(), \
130 		(ssize_t *)NULL))
131 
132 /*
133  * definitions for saving/restoring prom pages
134  */
135 static void	*ppage_buf;
136 static pgcnt_t	ppage_count;
137 static pfn_t	*pphys_list;
138 static size_t	pphys_list_size;
139 
140 typedef void (*tlb_rw_t)(uint_t, tte_t *, uint64_t *);
141 typedef void (*tlb_filter_t)(int, tte_t *, uint64_t, void *);
142 
143 /*
144  * private struct for tlb handling
145  */
146 struct cpr_trans_info {
147 	sutlb_t		*dst;
148 	sutlb_t		*tail;
149 	tlb_rw_t	reader;
150 	tlb_rw_t	writer;
151 	tlb_filter_t	filter;
152 	int		index;
153 	uint64_t	skip;		/* assumes TLB <= 64 locked entries */
154 };
155 typedef struct cpr_trans_info cti_t;
156 
157 
158 /*
159  * special handling for tlb info
160  */
161 #define	WITHIN_OFW(va) \
162 	(((va) > (uint64_t)OFW_START_ADDR) && ((va) < (uint64_t)OFW_END_ADDR))
163 
164 #define	WITHIN_NUCLEUS(va, base) \
165 	(((va) >= (base)) && \
166 	(((va) + MMU_PAGESIZE) <= ((base) + MMU_PAGESIZE4M)))
167 
168 #define	IS_BIGKTSB(va) \
169 	(enable_bigktsb && \
170 	((va) >= (uint64_t)ktsb_base) && \
171 	((va) < (uint64_t)(ktsb_base + ktsb_sz)))
172 
173 
174 /*
175  * WARNING:
176  * the text from this file is linked to follow cpr_resume_setup.o;
177  * only add text between here and i_cpr_end_jumpback when it needs
178  * to be called during resume before we switch back to the kernel
179  * trap table.  all the text in this range must fit within a page.
180  */
181 
182 
183 /*
184  * each time a machine is reset, the prom uses an inconsistent set of phys
185  * pages and the cif cookie may differ as well.  so prior to restoring the
186  * original prom, we have to use to use the new/tmp prom's translations
187  * when requesting prom services.
188  *
189  * cif_handler starts out as the original prom cookie, and that gets used
190  * by client_handler() to jump into the prom.  here we splice-in a wrapper
191  * routine by writing cif_handler; client_handler() will now jump to the
192  * wrapper which switches the %tba to the new/tmp prom's trap table then
193  * jumps to the new cookie.
194  */
195 void
196 i_cpr_cif_setup(int action)
197 {
198 	extern void *i_cpr_orig_cif, *cif_handler;
199 	extern int i_cpr_cif_wrapper(void *);
200 
201 	/*
202 	 * save the original cookie and change the current cookie to the
203 	 * wrapper routine.  later we just restore the original cookie.
204 	 */
205 	if (action == CIF_SPLICE) {
206 		i_cpr_orig_cif = cif_handler;
207 		cif_handler = (void *)i_cpr_cif_wrapper;
208 	} else if (action == CIF_UNLINK)
209 		cif_handler = i_cpr_orig_cif;
210 }
211 
212 
213 /*
214  * launch slave cpus into kernel text, pause them,
215  * and restore the original prom pages
216  */
217 void
218 i_cpr_mp_setup(void)
219 {
220 	extern void restart_other_cpu(int);
221 	cpu_t *cp;
222 
223 	uint64_t kctx = kcontextreg;
224 
225 	/*
226 	 * Do not allow setting page size codes in MMU primary context
227 	 * register while using cif wrapper. This is needed to work
228 	 * arround OBP incorrect handling of this MMU register.
229 	 */
230 	kcontextreg = 0;
231 
232 	/*
233 	 * reset cpu_ready_set so x_calls work properly
234 	 */
235 	CPUSET_ZERO(cpu_ready_set);
236 	CPUSET_ADD(cpu_ready_set, getprocessorid());
237 
238 	/*
239 	 * setup cif to use the cookie from the new/tmp prom
240 	 * and setup tmp handling for calling prom services.
241 	 */
242 	i_cpr_cif_setup(CIF_SPLICE);
243 
244 	/*
245 	 * at this point, only the nucleus and a few cpr pages are
246 	 * mapped in.  once we switch to the kernel trap table,
247 	 * we can access the rest of kernel space.
248 	 */
249 	prom_set_traptable(&trap_table);
250 
251 	if (ncpus > 1) {
252 		sfmmu_init_tsbs();
253 
254 		mutex_enter(&cpu_lock);
255 		/*
256 		 * All of the slave cpus are not ready at this time,
257 		 * yet the cpu structures have various cpu_flags set;
258 		 * clear cpu_flags and mutex_ready.
259 		 * Since we are coming up from a CPU suspend, the slave cpus
260 		 * are frozen.
261 		 */
262 		for (cp = CPU->cpu_next; cp != CPU; cp = cp->cpu_next) {
263 			cp->cpu_flags = CPU_FROZEN;
264 			cp->cpu_m.mutex_ready = 0;
265 		}
266 
267 		for (cp = CPU->cpu_next; cp != CPU; cp = cp->cpu_next)
268 			restart_other_cpu(cp->cpu_id);
269 
270 		pause_cpus(NULL);
271 		mutex_exit(&cpu_lock);
272 
273 		i_cpr_xcall(i_cpr_clear_entries);
274 	} else
275 		i_cpr_clear_entries(0, 0);
276 
277 	/*
278 	 * now unlink the cif wrapper;  WARNING: do not call any
279 	 * prom_xxx() routines until after prom pages are restored.
280 	 */
281 	i_cpr_cif_setup(CIF_UNLINK);
282 
283 	(void) i_cpr_prom_pages(CPR_PROM_RESTORE);
284 
285 	/* allow setting page size codes in MMU primary context register */
286 	kcontextreg = kctx;
287 }
288 
289 
290 /*
291  * end marker for jumpback page;
292  * this symbol is used to check the size of i_cpr_resume_setup()
293  * and the above text.  For simplicity, the Makefile needs to
294  * link i_cpr_resume_setup.o and cpr_impl.o consecutively.
295  */
296 void
297 i_cpr_end_jumpback(void)
298 {
299 }
300 
301 
302 /*
303  * scan tlb entries with reader; when valid entries are found,
304  * the filter routine will selectively save/clear them
305  */
306 static void
307 i_cpr_scan_tlb(cti_t *ctip)
308 {
309 	uint64_t va_tag;
310 	int tlb_index;
311 	tte_t tte;
312 
313 	for (tlb_index = ctip->index; tlb_index >= 0; tlb_index--) {
314 		(*ctip->reader)((uint_t)tlb_index, &tte, &va_tag);
315 		if (va_tag && TTE_IS_VALID(&tte))
316 			(*ctip->filter)(tlb_index, &tte, va_tag, ctip);
317 	}
318 }
319 
320 
321 /*
322  * filter for locked tlb entries that reference the text/data nucleus
323  * and any bigktsb's; these will be reinstalled by cprboot on all cpus
324  */
325 /* ARGSUSED */
326 static void
327 i_cpr_lnb(int index, tte_t *ttep, uint64_t va_tag, void *ctrans)
328 {
329 	cti_t *ctip;
330 
331 	/*
332 	 * record tlb data at ctip->dst; the target tlb index starts
333 	 * at the highest tlb offset and moves towards 0.  the prom
334 	 * reserves both dtlb and itlb index 0.  any selected entry
335 	 * also gets marked to prevent being flushed during resume
336 	 */
337 	if (TTE_IS_LOCKED(ttep) && (va_tag == (uint64_t)textva ||
338 	    va_tag == (uint64_t)datava || IS_BIGKTSB(va_tag))) {
339 		ctip = ctrans;
340 		while ((1 << ctip->index) & ctip->skip)
341 			ctip->index--;
342 		ASSERT(ctip->index > 0);
343 		ASSERT(ctip->dst < ctip->tail);
344 		ctip->dst->tte.ll = ttep->ll;
345 		ctip->dst->va_tag = va_tag;
346 		ctip->dst->index = ctip->index--;
347 		ctip->dst->tmp = 0;
348 		ctip->dst++;
349 	}
350 }
351 
352 
353 /*
354  * some tlb entries are stale, filter for unlocked entries
355  * within the prom virt range and clear them
356  */
357 static void
358 i_cpr_ufw(int index, tte_t *ttep, uint64_t va_tag, void *ctrans)
359 {
360 	sutlb_t clr;
361 	cti_t *ctip;
362 
363 	if (!TTE_IS_LOCKED(ttep) && WITHIN_OFW(va_tag)) {
364 		ctip = ctrans;
365 		bzero(&clr, sizeof (clr));
366 		(*ctip->writer)((uint_t)index, &clr.tte, &clr.va_tag);
367 	}
368 }
369 
370 
371 /*
372  * some of the entries installed by cprboot are needed only on a
373  * short-term basis and need to be flushed to avoid clogging the tlbs.
374  * scan the dtte/itte arrays for items marked as temporary and clear
375  * dtlb/itlb entries using wrfunc.
376  */
377 static void
378 i_cpr_clear_tmp(sutlb_t *listp, int max, tlb_rw_t wrfunc)
379 {
380 	sutlb_t clr, *tail;
381 
382 	bzero(&clr, sizeof (clr));
383 	for (tail = listp + max; listp < tail && listp->va_tag; listp++) {
384 		if (listp->tmp)
385 			(*wrfunc)((uint_t)listp->index, &clr.tte, &clr.va_tag);
386 	}
387 }
388 
389 
390 /* ARGSUSED */
391 static void
392 i_cpr_clear_entries(uint64_t arg1, uint64_t arg2)
393 {
394 	extern void demap_all(void);
395 	cti_t cti;
396 
397 	i_cpr_clear_tmp(m_info.dtte, CPR_MAX_TLB, dtlb_wr_entry);
398 	i_cpr_clear_tmp(m_info.itte, CPR_MAX_TLB, itlb_wr_entry);
399 
400 	/*
401 	 * for newer cpus that implement DEMAP_ALL_TYPE, demap_all is
402 	 * a second label for vtag_flushall.  the call is made using
403 	 * vtag_flushall() instead of demap_all() due to runtime and
404 	 * krtld results with both older and newer cpu modules.
405 	 */
406 	if (&demap_all != 0) {
407 		vtag_flushall();
408 		return;
409 	}
410 
411 	/*
412 	 * for older V9 cpus, scan tlbs and clear stale entries
413 	 */
414 	bzero(&cti, sizeof (cti));
415 	cti.filter = i_cpr_ufw;
416 
417 	cti.index = cpunodes[CPU->cpu_id].dtlb_size - 1;
418 	cti.reader = dtlb_rd_entry;
419 	cti.writer = dtlb_wr_entry;
420 	i_cpr_scan_tlb(&cti);
421 
422 	cti.index = cpunodes[CPU->cpu_id].itlb_size - 1;
423 	cti.reader = itlb_rd_entry;
424 	cti.writer = itlb_wr_entry;
425 	i_cpr_scan_tlb(&cti);
426 }
427 
428 
429 /*
430  * craft tlb info for tmp use during resume; this data gets used by
431  * cprboot to install tlb entries.  we also mark each struct as tmp
432  * so those tlb entries will get flushed after switching to the kernel
433  * trap table.  no data needs to be recorded for vaddr when it falls
434  * within the nucleus since we've already recorded nucleus ttes and
435  * a 8K tte would conflict with a 4MB tte.  eg: the cpr module
436  * text/data may have been loaded into the text/data nucleus.
437  */
438 static void
439 i_cpr_make_tte(cti_t *ctip, void *vaddr, caddr_t nbase)
440 {
441 	pfn_t ppn;
442 	uint_t rw;
443 
444 	if (WITHIN_NUCLEUS((caddr_t)vaddr, nbase))
445 		return;
446 
447 	while ((1 << ctip->index) & ctip->skip)
448 		ctip->index--;
449 	ASSERT(ctip->index > 0);
450 	ASSERT(ctip->dst < ctip->tail);
451 
452 	/*
453 	 * without any global service available to lookup
454 	 * a tte by vaddr, we craft our own here:
455 	 */
456 	ppn = va_to_pfn(vaddr);
457 	rw = (nbase == datava) ? TTE_HWWR_INT : 0;
458 	ctip->dst->tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(ppn);
459 	ctip->dst->tte.tte_intlo = TTE_PFN_INTLO(ppn) | TTE_LCK_INT |
460 	    TTE_CP_INT | TTE_PRIV_INT | rw;
461 	ctip->dst->va_tag = ((uintptr_t)vaddr & MMU_PAGEMASK);
462 	ctip->dst->index = ctip->index--;
463 	ctip->dst->tmp = 1;
464 	ctip->dst++;
465 }
466 
467 
468 static void
469 i_cpr_xcall(xcfunc_t func)
470 {
471 	uint_t pil, reset_pil;
472 
473 	pil = getpil();
474 	if (pil < XCALL_PIL)
475 		reset_pil = 0;
476 	else {
477 		reset_pil = 1;
478 		setpil(XCALL_PIL - 1);
479 	}
480 	xc_some(cpu_ready_set, func, 0, 0);
481 	if (reset_pil)
482 		setpil(pil);
483 }
484 
485 
486 /*
487  * restart paused slave cpus
488  */
489 void
490 i_cpr_machdep_setup(void)
491 {
492 	if (ncpus > 1) {
493 		CPR_DEBUG(CPR_DEBUG1, "MP restarted...\n");
494 		mutex_enter(&cpu_lock);
495 		start_cpus();
496 		mutex_exit(&cpu_lock);
497 	}
498 }
499 
500 
501 /*
502  * Stop all interrupt activities in the system
503  */
504 void
505 i_cpr_stop_intr(void)
506 {
507 	(void) spl7();
508 }
509 
510 /*
511  * Set machine up to take interrupts
512  */
513 void
514 i_cpr_enable_intr(void)
515 {
516 	(void) spl0();
517 }
518 
519 
520 /*
521  * record cpu nodes and ids
522  */
523 static void
524 i_cpr_save_cpu_info(void)
525 {
526 	struct sun4u_cpu_info *scip;
527 	cpu_t *cp;
528 
529 	scip = m_info.sci;
530 	cp = CPU;
531 	do {
532 		ASSERT(scip < &m_info.sci[NCPU]);
533 		scip->cpu_id = cp->cpu_id;
534 		scip->node = cpunodes[cp->cpu_id].nodeid;
535 		scip++;
536 	} while ((cp = cp->cpu_next) != CPU);
537 }
538 
539 
540 /*
541  * Write necessary machine dependent information to cpr state file,
542  * eg. sun4u mmu ctx secondary for the current running process (cpr) ...
543  */
544 int
545 i_cpr_write_machdep(vnode_t *vp)
546 {
547 	extern uint_t getpstate(), getwstate();
548 	extern uint_t i_cpr_tstack_size;
549 	const char ustr[] = ": unix-tte 2drop false ;";
550 	uintptr_t tinfo;
551 	label_t *ltp;
552 	cmd_t cmach;
553 	char *fmt;
554 	int rc;
555 
556 	/*
557 	 * ustr[] is used as temporary forth words during
558 	 * slave startup sequence, see sfmmu_mp_startup()
559 	 */
560 
561 	cmach.md_magic = (uint_t)CPR_MACHDEP_MAGIC;
562 	cmach.md_size = sizeof (m_info) + sizeof (ustr);
563 
564 	if (rc = cpr_write(vp, (caddr_t)&cmach, sizeof (cmach))) {
565 		cpr_err(CE_WARN, "Failed to write descriptor.");
566 		return (rc);
567 	}
568 
569 	/*
570 	 * m_info is now cleared in i_cpr_dump_setup()
571 	 */
572 	m_info.ksb = (uint32_t)STACK_BIAS;
573 	m_info.kpstate = (uint16_t)getpstate();
574 	m_info.kwstate = (uint16_t)getwstate();
575 	CPR_DEBUG(CPR_DEBUG1, "stack bias 0x%x, pstate 0x%x, wstate 0x%x\n",
576 	    m_info.ksb, m_info.kpstate, m_info.kwstate);
577 
578 	ltp = &ttolwp(curthread)->lwp_qsav;
579 	m_info.qsav_pc = (cpr_ext)ltp->val[0];
580 	m_info.qsav_sp = (cpr_ext)ltp->val[1];
581 
582 	/*
583 	 * Set secondary context to INVALID_CONTEXT to force the HAT
584 	 * to re-setup the MMU registers and locked TTEs it needs for
585 	 * TLB miss handling.
586 	 */
587 	m_info.mmu_ctx_sec = INVALID_CONTEXT;
588 	m_info.mmu_ctx_pri = KCONTEXT;
589 
590 	tinfo = (uintptr_t)curthread;
591 	m_info.thrp = (cpr_ptr)tinfo;
592 
593 	tinfo = (uintptr_t)i_cpr_resume_setup;
594 	m_info.func = (cpr_ptr)tinfo;
595 
596 	/*
597 	 * i_cpr_data_page is comprised of a 4K stack area and a few
598 	 * trailing data symbols; the page is shared by the prom and
599 	 * kernel during resume.  the stack size is recorded here
600 	 * and used by cprboot to set %sp
601 	 */
602 	tinfo = (uintptr_t)&i_cpr_data_page;
603 	m_info.tmp_stack = (cpr_ptr)tinfo;
604 	m_info.tmp_stacksize = i_cpr_tstack_size;
605 
606 	m_info.test_mode = cpr_test_mode;
607 
608 	i_cpr_save_cpu_info();
609 
610 	if (rc = cpr_write(vp, (caddr_t)&m_info, sizeof (m_info))) {
611 		cpr_err(CE_WARN, "Failed to write machdep info.");
612 		return (rc);
613 	}
614 
615 	fmt = "error writing %s forth info";
616 	if (rc = cpr_write(vp, (caddr_t)ustr, sizeof (ustr)))
617 		cpr_err(CE_WARN, fmt, "unix-tte");
618 
619 	return (rc);
620 }
621 
622 
623 /*
624  * Save miscellaneous information which needs to be written to the
625  * state file.  This information is required to re-initialize
626  * kernel/prom handshaking.
627  */
628 void
629 i_cpr_save_machdep_info(void)
630 {
631 	CPR_DEBUG(CPR_DEBUG5, "jumpback size = 0x%lx\n",
632 	    (uintptr_t)&i_cpr_end_jumpback -
633 	    (uintptr_t)i_cpr_resume_setup);
634 
635 	/*
636 	 * Verify the jumpback code all falls in one page.
637 	 */
638 	if (((uintptr_t)&i_cpr_end_jumpback & MMU_PAGEMASK) !=
639 	    ((uintptr_t)i_cpr_resume_setup & MMU_PAGEMASK))
640 		cpr_err(CE_PANIC, "jumpback code exceeds one page.");
641 }
642 
643 
644 void
645 i_cpr_set_tbr(void)
646 {
647 }
648 
649 
650 /*
651  * cpu0 should contain bootcpu info
652  */
653 cpu_t *
654 i_cpr_bootcpu(void)
655 {
656 	return (&cpu0);
657 }
658 
659 
660 /*
661  * Return the virtual address of the mapping area
662  */
663 caddr_t
664 i_cpr_map_setup(void)
665 {
666 	/*
667 	 * Allocate a virtual memory range spanned by an hmeblk.
668 	 * This would be 8 hments or 64k bytes.  Starting VA
669 	 * must be 64k (8-page) aligned.
670 	 */
671 	cpr_vaddr = vmem_xalloc(heap_arena,
672 	    mmu_ptob(NHMENTS), mmu_ptob(NHMENTS),
673 	    0, 0, NULL, NULL, VM_NOSLEEP);
674 	return (cpr_vaddr);
675 }
676 
677 /*
678  * create tmp locked tlb entries for a group of phys pages;
679  *
680  * i_cpr_mapin/i_cpr_mapout should always be called in pairs,
681  * otherwise would fill up a tlb with locked entries
682  */
683 void
684 i_cpr_mapin(caddr_t vaddr, uint_t pages, pfn_t ppn)
685 {
686 	tte_t tte;
687 	extern pfn_t curthreadpfn;
688 	extern int curthreadremapped;
689 
690 	curthreadremapped = (ppn <= curthreadpfn && curthreadpfn < ppn + pages);
691 
692 	for (; pages--; ppn++, vaddr += MMU_PAGESIZE) {
693 		tte.tte_inthi = TTE_VALID_INT | TTE_PFN_INTHI(ppn);
694 		tte.tte_intlo = TTE_PFN_INTLO(ppn) | TTE_LCK_INT |
695 		    TTE_CP_INT | TTE_PRIV_INT | TTE_HWWR_INT;
696 		sfmmu_dtlb_ld_kva(vaddr, &tte);
697 	}
698 }
699 
700 void
701 i_cpr_mapout(caddr_t vaddr, uint_t pages)
702 {
703 	extern int curthreadremapped;
704 
705 	if (curthreadremapped && vaddr <= (caddr_t)curthread &&
706 	    (caddr_t)curthread < vaddr + pages * MMU_PAGESIZE)
707 		curthreadremapped = 0;
708 
709 	for (; pages--; vaddr += MMU_PAGESIZE)
710 		vtag_flushpage(vaddr, (uint64_t)ksfmmup);
711 }
712 
713 /*
714  * We're done using the mapping area; release virtual space
715  */
716 void
717 i_cpr_map_destroy(void)
718 {
719 	vmem_free(heap_arena, cpr_vaddr, mmu_ptob(NHMENTS));
720 	cpr_vaddr = NULL;
721 }
722 
723 /* ARGSUSED */
724 void
725 i_cpr_handle_xc(int flag)
726 {
727 }
728 
729 
730 /*
731  * This function takes care of pages which are not in kas or need to be
732  * taken care of in a special way.  For example, panicbuf pages are not
733  * in kas and their pages are allocated via prom_retain().
734  */
735 pgcnt_t
736 i_cpr_count_special_kpages(int mapflag, bitfunc_t bitfunc)
737 {
738 	struct cpr_map_info *pri, *tail;
739 	pgcnt_t pages, total = 0;
740 	pfn_t pfn;
741 
742 	/*
743 	 * Save information about prom retained panicbuf pages
744 	 */
745 	if (bitfunc == cpr_setbit) {
746 		pri = &cpr_prom_retain[CPR_PANICBUF];
747 		pri->virt = (cpr_ptr)panicbuf;
748 		pri->phys = va_to_pa(panicbuf);
749 		pri->size = sizeof (panicbuf);
750 	}
751 
752 	/*
753 	 * Go through the prom_retain array to tag those pages.
754 	 */
755 	tail = &cpr_prom_retain[CPR_PROM_RETAIN_CNT];
756 	for (pri = cpr_prom_retain; pri < tail; pri++) {
757 		pages = mmu_btopr(pri->size);
758 		for (pfn = ADDR_TO_PN(pri->phys); pages--; pfn++) {
759 			if (pf_is_memory(pfn)) {
760 				if (bitfunc == cpr_setbit) {
761 					if ((*bitfunc)(pfn, mapflag) == 0)
762 						total++;
763 				} else
764 					total++;
765 			}
766 		}
767 	}
768 
769 	return (total);
770 }
771 
772 
773 /*
774  * Free up memory-related resources here.  We start by freeing buffers
775  * allocated during suspend initialization.  Also, free up the mapping
776  * resources allocated in cpr_init().
777  */
778 void
779 i_cpr_free_memory_resources(void)
780 {
781 	(void) i_cpr_prom_pages(CPR_PROM_FREE);
782 	i_cpr_map_destroy();
783 	i_cpr_storage_free();
784 }
785 
786 
787 /*
788  * Derived from cpr_write_statefile().
789  * Save the sensitive pages to the storage area and do bookkeeping
790  * using the sensitive descriptors. Each descriptor will contain no more
791  * than CPR_MAXCONTIG amount of contiguous pages to match the max amount
792  * of pages that statefile gets written to disk at each write.
793  * XXX The CPR_MAXCONTIG can be changed to the size of the compression
794  * scratch area.
795  */
796 static int
797 i_cpr_save_to_storage(void)
798 {
799 	sensitive_size_saved = 0;
800 	sensitive_pages_saved = 0;
801 	sensitive_write_ptr = i_cpr_storage_data_base;
802 	return (cpr_contig_pages(NULL, SAVE_TO_STORAGE));
803 }
804 
805 
806 /*
807  * This routine allocates space to save the sensitive kernel pages,
808  * i.e. kernel data nucleus, kvalloc and kvseg segments.
809  * It's assumed that those segments are the only areas that can be
810  * contaminated by memory allocations during statefile dumping.
811  * The space allocated here contains:
812  * 	A list of descriptors describing the saved sensitive pages.
813  * 	The storage area for saving the compressed sensitive kernel pages.
814  * Since storage pages are allocated from segkmem, they need to be
815  * excluded when saving.
816  */
817 int
818 i_cpr_save_sensitive_kpages(void)
819 {
820 	static const char pages_fmt[] = "\n%s %s allocs\n"
821 	    "	spages %ld, vpages %ld, diff %ld\n";
822 	int retry_cnt;
823 	int error = 0;
824 	pgcnt_t pages, spages, vpages;
825 	caddr_t	addr;
826 	char *str;
827 
828 	/*
829 	 * Tag sensitive kpages. Allocate space for storage descriptors
830 	 * and storage data area based on the resulting bitmaps.
831 	 * Note: The storage space will be part of the sensitive
832 	 * segment, so we need to tag kpages here before the storage
833 	 * is actually allocated just so their space won't be accounted
834 	 * for. They will not be part of the statefile although those
835 	 * pages will be claimed by cprboot.
836 	 */
837 	cpr_clear_bitmaps();
838 
839 	spages = i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_setbit);
840 	vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit);
841 	pages = spages - vpages;
842 
843 	str = "i_cpr_save_sensitive_kpages:";
844 	CPR_DEBUG(CPR_DEBUG7, pages_fmt, "before", str, spages, vpages, pages);
845 
846 	/*
847 	 * Allocate space to save the clean sensitive kpages
848 	 */
849 	for (retry_cnt = 0; retry_cnt < MAX_STORAGE_ALLOC_RETRY; retry_cnt++) {
850 		/*
851 		 * Alloc on first pass or realloc if we are retrying because
852 		 * of insufficient storage for sensitive pages
853 		 */
854 		if (retry_cnt == 0 || error == ENOMEM) {
855 			if (i_cpr_storage_data_base) {
856 				kmem_free(i_cpr_storage_data_base,
857 				    mmu_ptob(i_cpr_storage_data_sz));
858 				i_cpr_storage_data_base = NULL;
859 				i_cpr_storage_data_sz = 0;
860 			}
861 			addr = i_cpr_storage_data_alloc(pages,
862 			    &i_cpr_storage_data_sz, retry_cnt);
863 			if (addr == NULL) {
864 				CPR_DEBUG(CPR_DEBUG7,
865 				    "\n%s can't allocate data storage space!\n",
866 				    str);
867 				return (ENOMEM);
868 			}
869 			i_cpr_storage_data_base = addr;
870 			i_cpr_storage_data_end =
871 			    addr + mmu_ptob(i_cpr_storage_data_sz);
872 		}
873 
874 		/*
875 		 * Allocate on first pass, only realloc if retry is because of
876 		 * insufficient descriptors, but reset contents on each pass
877 		 * (desc_alloc resets contents as well)
878 		 */
879 		if (retry_cnt == 0 || error == -1) {
880 			error = i_cpr_storage_desc_alloc(
881 			    &i_cpr_storage_desc_base, &i_cpr_storage_desc_pgcnt,
882 			    &i_cpr_storage_desc_end, retry_cnt);
883 			if (error != 0)
884 				return (error);
885 		} else {
886 			i_cpr_storage_desc_init(i_cpr_storage_desc_base,
887 			    i_cpr_storage_desc_pgcnt, i_cpr_storage_desc_end);
888 		}
889 
890 		/*
891 		 * We are ready to save the sensitive kpages to storage.
892 		 * We cannot trust what's tagged in the bitmaps anymore
893 		 * after storage allocations.  Clear up the bitmaps and
894 		 * retag the sensitive kpages again.  The storage pages
895 		 * should be untagged.
896 		 */
897 		cpr_clear_bitmaps();
898 
899 		spages =
900 		    i_cpr_count_sensitive_kpages(REGULAR_BITMAP, cpr_setbit);
901 		vpages = cpr_count_volatile_pages(REGULAR_BITMAP, cpr_clrbit);
902 
903 		CPR_DEBUG(CPR_DEBUG7, pages_fmt, "after ", str,
904 		    spages, vpages, spages - vpages);
905 
906 		/*
907 		 * Returns 0 on success, -1 if too few descriptors, and
908 		 * ENOMEM if not enough space to save sensitive pages
909 		 */
910 		CPR_DEBUG(CPR_DEBUG1, "compressing pages to storage...\n");
911 		error = i_cpr_save_to_storage();
912 		if (error == 0) {
913 			/* Saving to storage succeeded */
914 			CPR_DEBUG(CPR_DEBUG1, "compressed %d pages\n",
915 			    sensitive_pages_saved);
916 			break;
917 		} else if (error == -1)
918 			CPR_DEBUG(CPR_DEBUG1, "%s too few descriptors\n", str);
919 	}
920 	if (error == -1)
921 		error = ENOMEM;
922 	return (error);
923 }
924 
925 
926 /*
927  * Estimate how much memory we will need to save
928  * the sensitive pages with compression.
929  */
930 static caddr_t
931 i_cpr_storage_data_alloc(pgcnt_t pages, pgcnt_t *alloc_pages, int retry_cnt)
932 {
933 	pgcnt_t alloc_pcnt, last_pcnt;
934 	caddr_t addr;
935 	char *str;
936 
937 	str = "i_cpr_storage_data_alloc:";
938 	if (retry_cnt == 0) {
939 		/*
940 		 * common compression ratio is about 3:1
941 		 * initial storage allocation is estimated at 40%
942 		 * to cover the majority of cases
943 		 */
944 		alloc_pcnt = INITIAL_ALLOC_PCNT;
945 		*alloc_pages = (pages * alloc_pcnt) / INTEGRAL;
946 		CPR_DEBUG(CPR_DEBUG7, "%s sensitive pages: %ld\n", str, pages);
947 		CPR_DEBUG(CPR_DEBUG7,
948 		    "%s initial est pages: %ld, alloc %ld%%\n",
949 		    str, *alloc_pages, alloc_pcnt);
950 	} else {
951 		/*
952 		 * calculate the prior compression percentage (x100)
953 		 * from the last attempt to save sensitive pages
954 		 */
955 		ASSERT(sensitive_pages_saved != 0);
956 		last_pcnt = (mmu_btopr(sensitive_size_saved) * INTEGRAL) /
957 		    sensitive_pages_saved;
958 		CPR_DEBUG(CPR_DEBUG7, "%s last ratio %ld%%\n", str, last_pcnt);
959 
960 		/*
961 		 * new estimated storage size is based on
962 		 * the larger ratio + 5% for each retry:
963 		 * pages * (last + [5%, 10%])
964 		 */
965 		alloc_pcnt = MAX(last_pcnt, INITIAL_ALLOC_PCNT) +
966 		    (retry_cnt * 5);
967 		*alloc_pages = (pages * alloc_pcnt) / INTEGRAL;
968 		CPR_DEBUG(CPR_DEBUG7, "%s Retry est pages: %ld, alloc %ld%%\n",
969 		    str, *alloc_pages, alloc_pcnt);
970 	}
971 
972 	addr = kmem_alloc(mmu_ptob(*alloc_pages), KM_NOSLEEP);
973 	CPR_DEBUG(CPR_DEBUG7, "%s alloc %ld pages\n", str, *alloc_pages);
974 	return (addr);
975 }
976 
977 
978 void
979 i_cpr_storage_free(void)
980 {
981 	/* Free descriptors */
982 	if (i_cpr_storage_desc_base) {
983 		kmem_free(i_cpr_storage_desc_base,
984 		    mmu_ptob(i_cpr_storage_desc_pgcnt));
985 		i_cpr_storage_desc_base = NULL;
986 		i_cpr_storage_desc_pgcnt = 0;
987 	}
988 
989 
990 	/* Data storage */
991 	if (i_cpr_storage_data_base) {
992 		kmem_free(i_cpr_storage_data_base,
993 		    mmu_ptob(i_cpr_storage_data_sz));
994 		i_cpr_storage_data_base = NULL;
995 		i_cpr_storage_data_sz = 0;
996 	}
997 }
998 
999 
1000 /*
1001  * This routine is derived from cpr_compress_and_write().
1002  * 1. Do bookkeeping in the descriptor for the contiguous sensitive chunk.
1003  * 2. Compress and save the clean sensitive pages into the storage area.
1004  */
1005 int
1006 i_cpr_compress_and_save(int chunks, pfn_t spfn, pgcnt_t pages)
1007 {
1008 	extern char *cpr_compress_pages(cpd_t *, pgcnt_t, int);
1009 	extern caddr_t i_cpr_storage_data_end;
1010 	uint_t remaining, datalen;
1011 	uint32_t test_usum;
1012 	char *datap;
1013 	csd_t *descp;
1014 	cpd_t cpd;
1015 	int error;
1016 
1017 	/*
1018 	 * Fill next empty storage descriptor
1019 	 */
1020 	descp = i_cpr_storage_desc_base + chunks - 1;
1021 	if (descp >= i_cpr_storage_desc_end) {
1022 		CPR_DEBUG(CPR_DEBUG1, "ran out of descriptors, base 0x%p, "
1023 		    "chunks %d, end 0x%p, descp 0x%p\n",
1024 		    i_cpr_storage_desc_base, chunks,
1025 		    i_cpr_storage_desc_end, descp);
1026 		return (-1);
1027 	}
1028 	ASSERT(descp->csd_dirty_spfn == (uint_t)-1);
1029 	i_cpr_storage_desc_last_used = descp;
1030 
1031 	descp->csd_dirty_spfn = spfn;
1032 	descp->csd_dirty_npages = pages;
1033 
1034 	i_cpr_mapin(CPR->c_mapping_area, pages, spfn);
1035 
1036 	/*
1037 	 * try compressing pages and copy cpd fields
1038 	 * pfn is copied for debug use
1039 	 */
1040 	cpd.cpd_pfn = spfn;
1041 	datap = cpr_compress_pages(&cpd, pages, C_COMPRESSING);
1042 	datalen = cpd.cpd_length;
1043 	descp->csd_clean_compressed = (cpd.cpd_flag & CPD_COMPRESS);
1044 #ifdef DEBUG
1045 	descp->csd_usum = cpd.cpd_usum;
1046 	descp->csd_csum = cpd.cpd_csum;
1047 #endif
1048 
1049 	error = 0;
1050 
1051 	/*
1052 	 * Save the raw or compressed data to the storage area pointed to by
1053 	 * sensitive_write_ptr. Make sure the storage space is big enough to
1054 	 * hold the result. Otherwise roll back to increase the storage space.
1055 	 */
1056 	descp->csd_clean_sva = (cpr_ptr)sensitive_write_ptr;
1057 	descp->csd_clean_sz = datalen;
1058 	if ((sensitive_write_ptr + datalen) < i_cpr_storage_data_end) {
1059 		extern	void cprbcopy(void *, void *, size_t);
1060 
1061 		cprbcopy(datap, sensitive_write_ptr, datalen);
1062 		sensitive_size_saved += datalen;
1063 		sensitive_pages_saved += descp->csd_dirty_npages;
1064 		sensitive_write_ptr += datalen;
1065 	} else {
1066 		remaining = (i_cpr_storage_data_end - sensitive_write_ptr);
1067 		CPR_DEBUG(CPR_DEBUG1, "i_cpr_compress_and_save: The storage "
1068 		    "space is too small!\ngot %d, want %d\n\n",
1069 		    remaining, (remaining + datalen));
1070 #ifdef	DEBUG
1071 		/*
1072 		 * Check to see if the content of the sensitive pages that we
1073 		 * just copied have changed during this small time window.
1074 		 */
1075 		test_usum = checksum32(CPR->c_mapping_area, mmu_ptob(pages));
1076 		descp->csd_usum = cpd.cpd_usum;
1077 		if (test_usum != descp->csd_usum) {
1078 			CPR_DEBUG(CPR_DEBUG1, "\nWARNING: "
1079 			    "i_cpr_compress_and_save: "
1080 			    "Data in the range of pfn 0x%lx to pfn "
1081 			    "0x%lx has changed after they are saved "
1082 			    "into storage.", spfn, (spfn + pages - 1));
1083 		}
1084 #endif
1085 		error = ENOMEM;
1086 	}
1087 
1088 	i_cpr_mapout(CPR->c_mapping_area, pages);
1089 	return (error);
1090 }
1091 
1092 
1093 /*
1094  * This routine is derived from cpr_count_kpages().
1095  * It goes through kernel data nucleus and segkmem segments to select
1096  * pages in use and mark them in the corresponding bitmap.
1097  */
1098 pgcnt_t
1099 i_cpr_count_sensitive_kpages(int mapflag, bitfunc_t bitfunc)
1100 {
1101 	pgcnt_t kdata_cnt = 0, segkmem_cnt = 0;
1102 	extern caddr_t e_moddata;
1103 	extern struct seg kvalloc;
1104 	extern struct seg kmem64;
1105 	size_t size;
1106 
1107 	/*
1108 	 * Kernel data nucleus pages
1109 	 */
1110 	size = e_moddata - s_data;
1111 	kdata_cnt += cpr_count_pages(s_data, size,
1112 	    mapflag, bitfunc, DBG_SHOWRANGE);
1113 
1114 	/*
1115 	 * kvseg and kvalloc pages
1116 	 */
1117 	segkmem_cnt += cpr_scan_kvseg(mapflag, bitfunc, &kvseg);
1118 	segkmem_cnt += cpr_count_pages(kvalloc.s_base, kvalloc.s_size,
1119 	    mapflag, bitfunc, DBG_SHOWRANGE);
1120 
1121 	/* segment to support kernel memory usage above 32-bit space (4GB) */
1122 	if (kmem64.s_base)
1123 		segkmem_cnt += cpr_count_pages(kmem64.s_base, kmem64.s_size,
1124 		    mapflag, bitfunc, DBG_SHOWRANGE);
1125 
1126 	CPR_DEBUG(CPR_DEBUG7, "\ni_cpr_count_sensitive_kpages:\n"
1127 	    "\tkdata_cnt %ld + segkmem_cnt %ld = %ld pages\n",
1128 	    kdata_cnt, segkmem_cnt, kdata_cnt + segkmem_cnt);
1129 
1130 	return (kdata_cnt + segkmem_cnt);
1131 }
1132 
1133 
1134 pgcnt_t
1135 i_cpr_count_storage_pages(int mapflag, bitfunc_t bitfunc)
1136 {
1137 	pgcnt_t count = 0;
1138 
1139 	if (i_cpr_storage_desc_base) {
1140 		count += cpr_count_pages((caddr_t)i_cpr_storage_desc_base,
1141 		    (size_t)mmu_ptob(i_cpr_storage_desc_pgcnt),
1142 		    mapflag, bitfunc, DBG_SHOWRANGE);
1143 	}
1144 	if (i_cpr_storage_data_base) {
1145 		count += cpr_count_pages(i_cpr_storage_data_base,
1146 		    (size_t)mmu_ptob(i_cpr_storage_data_sz),
1147 		    mapflag, bitfunc, DBG_SHOWRANGE);
1148 	}
1149 	return (count);
1150 }
1151 
1152 
1153 /*
1154  * Derived from cpr_write_statefile().
1155  * Allocate (or reallocate after exhausting the supply) descriptors for each
1156  * chunk of contiguous sensitive kpages.
1157  */
1158 static int
1159 i_cpr_storage_desc_alloc(csd_t **basepp, pgcnt_t *pgsp, csd_t **endpp,
1160     int retry)
1161 {
1162 	pgcnt_t npages;
1163 	int chunks;
1164 	csd_t	*descp, *end;
1165 	size_t	len;
1166 	char *str = "i_cpr_storage_desc_alloc:";
1167 
1168 	/*
1169 	 * On initial allocation, add some extra to cover overhead caused
1170 	 * by the allocation for the storage area later.
1171 	 */
1172 	if (retry == 0) {
1173 		chunks = cpr_contig_pages(NULL, STORAGE_DESC_ALLOC) +
1174 		    EXTRA_DESCS;
1175 		npages = mmu_btopr(sizeof (**basepp) * (pgcnt_t)chunks);
1176 		CPR_DEBUG(CPR_DEBUG7, "%s chunks %d, ", str, chunks);
1177 	} else {
1178 		CPR_DEBUG(CPR_DEBUG7, "%s retry %d: ", str, retry);
1179 		npages = *pgsp + 1;
1180 	}
1181 	/* Free old descriptors, if any */
1182 	if (*basepp)
1183 		kmem_free((caddr_t)*basepp, mmu_ptob(*pgsp));
1184 
1185 	descp = *basepp = kmem_alloc(mmu_ptob(npages), KM_NOSLEEP);
1186 	if (descp == NULL) {
1187 		CPR_DEBUG(CPR_DEBUG7, "%s no space for descriptors!\n", str);
1188 		return (ENOMEM);
1189 	}
1190 
1191 	*pgsp = npages;
1192 	len = mmu_ptob(npages);
1193 	end = *endpp = descp + (len / (sizeof (**basepp)));
1194 	CPR_DEBUG(CPR_DEBUG7, "npages 0x%lx, len 0x%lx, items 0x%lx\n\t*basepp "
1195 	    "%p, *endpp %p\n", npages, len, (len / (sizeof (**basepp))),
1196 	    *basepp, *endpp);
1197 	i_cpr_storage_desc_init(descp, npages, end);
1198 	return (0);
1199 }
1200 
1201 static void
1202 i_cpr_storage_desc_init(csd_t *descp, pgcnt_t npages, csd_t *end)
1203 {
1204 	size_t	len = mmu_ptob(npages);
1205 
1206 	/* Initialize the descriptors to something impossible. */
1207 	bzero(descp, len);
1208 #ifdef	DEBUG
1209 	/*
1210 	 * This condition is tested by an ASSERT
1211 	 */
1212 	for (; descp < end; descp++)
1213 		descp->csd_dirty_spfn = (uint_t)-1;
1214 #endif
1215 }
1216 
1217 int
1218 i_cpr_dump_sensitive_kpages(vnode_t *vp)
1219 {
1220 	int	error = 0;
1221 	uint_t	spin_cnt = 0;
1222 	csd_t	*descp;
1223 
1224 	/*
1225 	 * These following two variables need to be reinitialized
1226 	 * for each cpr cycle.
1227 	 */
1228 	i_cpr_sensitive_bytes_dumped = 0;
1229 	i_cpr_sensitive_pgs_dumped = 0;
1230 
1231 	if (i_cpr_storage_desc_base) {
1232 		for (descp = i_cpr_storage_desc_base;
1233 		    descp <= i_cpr_storage_desc_last_used; descp++) {
1234 			if (error = cpr_dump_sensitive(vp, descp))
1235 				return (error);
1236 			spin_cnt++;
1237 			if ((spin_cnt & 0x5F) == 1)
1238 				cpr_spinning_bar();
1239 		}
1240 		prom_printf(" \b");
1241 	}
1242 
1243 	CPR_DEBUG(CPR_DEBUG7, "\ni_cpr_dump_sensitive_kpages: dumped %ld\n",
1244 	    i_cpr_sensitive_pgs_dumped);
1245 	return (0);
1246 }
1247 
1248 
1249 /*
1250  * 1. Fill the cpr page descriptor with the info of the dirty pages
1251  *    and
1252  *    write the descriptor out. It will be used at resume.
1253  * 2. Write the clean data in stead of the dirty data out.
1254  *    Note: to save space, the clean data is already compressed.
1255  */
1256 static int
1257 cpr_dump_sensitive(vnode_t *vp, csd_t *descp)
1258 {
1259 	int error = 0;
1260 	caddr_t datap;
1261 	cpd_t cpd;	/* cpr page descriptor */
1262 	pfn_t	dirty_spfn;
1263 	pgcnt_t dirty_npages;
1264 	size_t clean_sz;
1265 	caddr_t	clean_sva;
1266 	int	clean_compressed;
1267 	extern uchar_t cpr_pagecopy[];
1268 
1269 	dirty_spfn = descp->csd_dirty_spfn;
1270 	dirty_npages = descp->csd_dirty_npages;
1271 	clean_sva = (caddr_t)descp->csd_clean_sva;
1272 	clean_sz = descp->csd_clean_sz;
1273 	clean_compressed = descp->csd_clean_compressed;
1274 
1275 	/* Fill cpr page descriptor. */
1276 	cpd.cpd_magic = (uint_t)CPR_PAGE_MAGIC;
1277 	cpd.cpd_pfn = dirty_spfn;
1278 	cpd.cpd_flag = 0;  /* must init to zero */
1279 	cpd.cpd_pages = dirty_npages;
1280 
1281 #ifdef	DEBUG
1282 	if ((cpd.cpd_usum = descp->csd_usum) != 0)
1283 		cpd.cpd_flag |= CPD_USUM;
1284 	if ((cpd.cpd_csum = descp->csd_csum) != 0)
1285 		cpd.cpd_flag |= CPD_CSUM;
1286 #endif
1287 
1288 	STAT->cs_dumped_statefsz += mmu_ptob(dirty_npages);
1289 
1290 	/*
1291 	 * The sensitive kpages are usually saved with compression
1292 	 * unless compression could not reduce the size of the data.
1293 	 * If user choose not to have the statefile compressed,
1294 	 * we need to decompress the data back before dumping it to disk.
1295 	 */
1296 	if (CPR->c_flags & C_COMPRESSING) {
1297 		cpd.cpd_length = clean_sz;
1298 		datap = clean_sva;
1299 		if (clean_compressed)
1300 			cpd.cpd_flag |= CPD_COMPRESS;
1301 	} else {
1302 		if (clean_compressed) {
1303 			cpd.cpd_length = decompress(clean_sva, cpr_pagecopy,
1304 			    clean_sz, mmu_ptob(dirty_npages));
1305 			datap = (caddr_t)cpr_pagecopy;
1306 			ASSERT(cpd.cpd_length == mmu_ptob(dirty_npages));
1307 		} else {
1308 			cpd.cpd_length = clean_sz;
1309 			datap = clean_sva;
1310 		}
1311 		cpd.cpd_csum = 0;
1312 	}
1313 
1314 	/* Write cpr page descriptor */
1315 	error = cpr_write(vp, (caddr_t)&cpd, sizeof (cpd));
1316 	if (error) {
1317 		CPR_DEBUG(CPR_DEBUG7, "descp: %p\n", descp);
1318 #ifdef DEBUG
1319 		debug_enter("cpr_dump_sensitive: cpr_write() page "
1320 		    "descriptor failed!\n");
1321 #endif
1322 		return (error);
1323 	}
1324 
1325 	i_cpr_sensitive_bytes_dumped += sizeof (cpd_t);
1326 
1327 	/* Write page data */
1328 	error = cpr_write(vp, (caddr_t)datap, cpd.cpd_length);
1329 	if (error) {
1330 		CPR_DEBUG(CPR_DEBUG7, "error: %x\n", error);
1331 		CPR_DEBUG(CPR_DEBUG7, "descp: %p\n", descp);
1332 		CPR_DEBUG(CPR_DEBUG7, "cpr_write(%p, %p , %lx)\n", vp, datap,
1333 		    cpd.cpd_length);
1334 #ifdef DEBUG
1335 		debug_enter("cpr_dump_sensitive: cpr_write() data failed!\n");
1336 #endif
1337 		return (error);
1338 	}
1339 
1340 	i_cpr_sensitive_bytes_dumped += cpd.cpd_length;
1341 	i_cpr_sensitive_pgs_dumped += dirty_npages;
1342 
1343 	return (error);
1344 }
1345 
1346 
1347 /*
1348  * Sanity check to make sure that we have dumped right amount
1349  * of pages from different sources to statefile.
1350  */
1351 int
1352 i_cpr_check_pgs_dumped(uint_t pgs_expected, uint_t regular_pgs_dumped)
1353 {
1354 	uint_t total_pgs_dumped;
1355 
1356 	total_pgs_dumped = regular_pgs_dumped + i_cpr_sensitive_pgs_dumped;
1357 
1358 	CPR_DEBUG(CPR_DEBUG7, "\ncheck_pgs: reg %d + sens %ld = %d, "
1359 	    "expect %d\n\n", regular_pgs_dumped, i_cpr_sensitive_pgs_dumped,
1360 	    total_pgs_dumped, pgs_expected);
1361 
1362 	if (pgs_expected == total_pgs_dumped)
1363 		return (0);
1364 
1365 	return (EINVAL);
1366 }
1367 
1368 
1369 int
1370 i_cpr_reusefini(void)
1371 {
1372 	struct vnode *vp;
1373 	cdef_t *cdef;
1374 	size_t size;
1375 	char *bufp;
1376 	int rc;
1377 
1378 	if (cpr_reusable_mode)
1379 		cpr_reusable_mode = 0;
1380 
1381 	if (rc = cpr_open_deffile(FREAD|FWRITE, &vp)) {
1382 		if (rc == EROFS) {
1383 			cpr_err(CE_CONT, "uadmin A_FREEZE AD_REUSEFINI "
1384 			    "(uadmin %d %d)\nmust be done with / mounted "
1385 			    "writeable.\n", A_FREEZE, AD_REUSEFINI);
1386 		}
1387 		return (rc);
1388 	}
1389 
1390 	cdef = kmem_alloc(sizeof (*cdef), KM_SLEEP);
1391 	rc = cpr_rdwr(UIO_READ, vp, cdef, sizeof (*cdef));
1392 
1393 	if (rc) {
1394 		cpr_err(CE_WARN, "Failed reading %s, errno = %d",
1395 		    cpr_default_path, rc);
1396 	} else if (cdef->mini.magic != CPR_DEFAULT_MAGIC) {
1397 		cpr_err(CE_WARN, "bad magic number in %s, cannot restore "
1398 		    "prom values for %s", cpr_default_path,
1399 		    cpr_enumerate_promprops(&bufp, &size));
1400 		kmem_free(bufp, size);
1401 		rc = EINVAL;
1402 	} else {
1403 		/*
1404 		 * clean up prom properties
1405 		 */
1406 		rc = cpr_update_nvram(cdef->props);
1407 		if (rc == 0) {
1408 			/*
1409 			 * invalidate the disk copy and turn off reusable
1410 			 */
1411 			cdef->mini.magic = 0;
1412 			cdef->mini.reusable = 0;
1413 			if (rc = cpr_rdwr(UIO_WRITE, vp,
1414 			    &cdef->mini, sizeof (cdef->mini))) {
1415 				cpr_err(CE_WARN, "Failed writing %s, errno %d",
1416 				    cpr_default_path, rc);
1417 			}
1418 		}
1419 	}
1420 
1421 	(void) VOP_CLOSE(vp, FREAD|FWRITE, 1, (offset_t)0, CRED());
1422 	VN_RELE(vp);
1423 	kmem_free(cdef, sizeof (*cdef));
1424 
1425 	return (rc);
1426 }
1427 
1428 
1429 int
1430 i_cpr_reuseinit(void)
1431 {
1432 	int rc = 0;
1433 
1434 	if (rc = cpr_default_setup(1))
1435 		return (rc);
1436 
1437 	/*
1438 	 * We need to validate default file
1439 	 */
1440 	rc = cpr_validate_definfo(1);
1441 	if (rc == 0)
1442 		cpr_reusable_mode = 1;
1443 	else if (rc == EROFS) {
1444 		cpr_err(CE_NOTE, "reuseinit must be performed "
1445 		    "while / is mounted writeable");
1446 	}
1447 
1448 	(void) cpr_default_setup(0);
1449 
1450 	return (rc);
1451 }
1452 
1453 
1454 int
1455 i_cpr_check_cprinfo(void)
1456 {
1457 	struct vnode *vp;
1458 	cmini_t mini;
1459 	int rc = 0;
1460 
1461 	if (rc = cpr_open_deffile(FREAD, &vp)) {
1462 		if (rc == ENOENT)
1463 			cpr_err(CE_NOTE, "cprinfo file does not "
1464 			    "exist.  You must run 'uadmin %d %d' "
1465 			    "command while / is mounted writeable,\n"
1466 			    "then reboot and run 'uadmin %d %d' "
1467 			    "to create a reusable statefile",
1468 			    A_FREEZE, AD_REUSEINIT, A_FREEZE, AD_REUSABLE);
1469 		return (rc);
1470 	}
1471 
1472 	rc = cpr_rdwr(UIO_READ, vp, &mini, sizeof (mini));
1473 	(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED());
1474 	VN_RELE(vp);
1475 
1476 	if (rc) {
1477 		cpr_err(CE_WARN, "Failed reading %s, errno = %d",
1478 		    cpr_default_path, rc);
1479 	} else if (mini.magic != CPR_DEFAULT_MAGIC) {
1480 		cpr_err(CE_CONT, "bad magic number in cprinfo file.\n"
1481 		    "You must run 'uadmin %d %d' while / is mounted "
1482 		    "writeable, then reboot and run 'uadmin %d %d' "
1483 		    "to create a reusable statefile\n",
1484 		    A_FREEZE, AD_REUSEINIT, A_FREEZE, AD_REUSABLE);
1485 		rc = EINVAL;
1486 	}
1487 
1488 	return (rc);
1489 }
1490 
1491 
1492 int
1493 i_cpr_reusable_supported(void)
1494 {
1495 	return (1);
1496 }
1497 
1498 
1499 /*
1500  * find prom phys pages and alloc space for a tmp copy
1501  */
1502 static int
1503 i_cpr_find_ppages(void)
1504 {
1505 	extern struct vnode prom_ppages;
1506 	struct page *pp;
1507 	struct memlist *pmem;
1508 	pgcnt_t npages, pcnt, scnt, vcnt;
1509 	pfn_t ppn, plast, *dst;
1510 	int mapflag;
1511 
1512 	cpr_clear_bitmaps();
1513 	mapflag = REGULAR_BITMAP;
1514 
1515 	/*
1516 	 * there should be a page_t for each phys page used by the kernel;
1517 	 * set a bit for each phys page not tracked by a page_t
1518 	 */
1519 	pcnt = 0;
1520 	memlist_read_lock();
1521 	for (pmem = phys_install; pmem; pmem = pmem->next) {
1522 		npages = mmu_btop(pmem->size);
1523 		ppn = mmu_btop(pmem->address);
1524 		for (plast = ppn + npages; ppn < plast; ppn++) {
1525 			if (page_numtopp_nolock(ppn))
1526 				continue;
1527 			(void) cpr_setbit(ppn, mapflag);
1528 			pcnt++;
1529 		}
1530 	}
1531 	memlist_read_unlock();
1532 
1533 	/*
1534 	 * clear bits for phys pages in each segment
1535 	 */
1536 	scnt = cpr_count_seg_pages(mapflag, cpr_clrbit);
1537 
1538 	/*
1539 	 * set bits for phys pages referenced by the prom_ppages vnode;
1540 	 * these pages are mostly comprised of forthdebug words
1541 	 */
1542 	vcnt = 0;
1543 	for (pp = prom_ppages.v_pages; pp; ) {
1544 		if (cpr_setbit(pp->p_offset, mapflag) == 0)
1545 			vcnt++;
1546 		pp = pp->p_vpnext;
1547 		if (pp == prom_ppages.v_pages)
1548 			break;
1549 	}
1550 
1551 	/*
1552 	 * total number of prom pages are:
1553 	 * (non-page_t pages - seg pages + vnode pages)
1554 	 */
1555 	ppage_count = pcnt - scnt + vcnt;
1556 	CPR_DEBUG(CPR_DEBUG1,
1557 	    "find_ppages: pcnt %ld - scnt %ld + vcnt %ld = %ld\n",
1558 	    pcnt, scnt, vcnt, ppage_count);
1559 
1560 	/*
1561 	 * alloc array of pfn_t to store phys page list
1562 	 */
1563 	pphys_list_size = ppage_count * sizeof (pfn_t);
1564 	pphys_list = kmem_alloc(pphys_list_size, KM_NOSLEEP);
1565 	if (pphys_list == NULL) {
1566 		cpr_err(CE_WARN, "cannot alloc pphys_list");
1567 		return (ENOMEM);
1568 	}
1569 
1570 	/*
1571 	 * phys pages referenced in the bitmap should be
1572 	 * those used by the prom; scan bitmap and save
1573 	 * a list of prom phys page numbers
1574 	 */
1575 	dst = pphys_list;
1576 	memlist_read_lock();
1577 	for (pmem = phys_install; pmem; pmem = pmem->next) {
1578 		npages = mmu_btop(pmem->size);
1579 		ppn = mmu_btop(pmem->address);
1580 		for (plast = ppn + npages; ppn < plast; ppn++) {
1581 			if (cpr_isset(ppn, mapflag)) {
1582 				ASSERT(dst < (pphys_list + ppage_count));
1583 				*dst++ = ppn;
1584 			}
1585 		}
1586 	}
1587 	memlist_read_unlock();
1588 
1589 	/*
1590 	 * allocate space to store prom pages
1591 	 */
1592 	ppage_buf = kmem_alloc(mmu_ptob(ppage_count), KM_NOSLEEP);
1593 	if (ppage_buf == NULL) {
1594 		kmem_free(pphys_list, pphys_list_size);
1595 		pphys_list = NULL;
1596 		cpr_err(CE_WARN, "cannot alloc ppage_buf");
1597 		return (ENOMEM);
1598 	}
1599 
1600 	return (0);
1601 }
1602 
1603 
1604 /*
1605  * save prom pages to kmem pages
1606  */
1607 static void
1608 i_cpr_save_ppages(void)
1609 {
1610 	pfn_t *pphys, *plast;
1611 	caddr_t dst;
1612 
1613 	/*
1614 	 * map in each prom page and copy to a kmem page
1615 	 */
1616 	dst = ppage_buf;
1617 	plast = pphys_list + ppage_count;
1618 	for (pphys = pphys_list; pphys < plast; pphys++) {
1619 		i_cpr_mapin(cpr_vaddr, 1, *pphys);
1620 		bcopy(cpr_vaddr, dst, MMU_PAGESIZE);
1621 		i_cpr_mapout(cpr_vaddr, 1);
1622 		dst += MMU_PAGESIZE;
1623 	}
1624 
1625 	CPR_DEBUG(CPR_DEBUG1, "saved %ld prom pages\n", ppage_count);
1626 }
1627 
1628 
1629 /*
1630  * restore prom pages from kmem pages
1631  */
1632 static void
1633 i_cpr_restore_ppages(void)
1634 {
1635 	pfn_t *pphys, *plast;
1636 	caddr_t src;
1637 
1638 	dcache_flushall();
1639 
1640 	/*
1641 	 * map in each prom page and copy from a kmem page
1642 	 */
1643 	src = ppage_buf;
1644 	plast = pphys_list + ppage_count;
1645 	for (pphys = pphys_list; pphys < plast; pphys++) {
1646 		i_cpr_mapin(cpr_vaddr, 1, *pphys);
1647 		bcopy(src, cpr_vaddr, MMU_PAGESIZE);
1648 		i_cpr_mapout(cpr_vaddr, 1);
1649 		src += MMU_PAGESIZE;
1650 	}
1651 
1652 	dcache_flushall();
1653 
1654 	CPR_DEBUG(CPR_DEBUG1, "restored %ld prom pages\n", ppage_count);
1655 }
1656 
1657 
1658 /*
1659  * save/restore prom pages or free related allocs
1660  */
1661 int
1662 i_cpr_prom_pages(int action)
1663 {
1664 	int error;
1665 
1666 	if (action == CPR_PROM_SAVE) {
1667 		if (ppage_buf == NULL) {
1668 			ASSERT(pphys_list == NULL);
1669 			if (error = i_cpr_find_ppages())
1670 				return (error);
1671 			i_cpr_save_ppages();
1672 		}
1673 	} else if (action == CPR_PROM_RESTORE) {
1674 		i_cpr_restore_ppages();
1675 	} else if (action == CPR_PROM_FREE) {
1676 		if (pphys_list) {
1677 			ASSERT(pphys_list_size);
1678 			kmem_free(pphys_list, pphys_list_size);
1679 			pphys_list = NULL;
1680 			pphys_list_size = 0;
1681 		}
1682 		if (ppage_buf) {
1683 			ASSERT(ppage_count);
1684 			kmem_free(ppage_buf, mmu_ptob(ppage_count));
1685 			CPR_DEBUG(CPR_DEBUG1, "freed %ld prom pages\n",
1686 			    ppage_count);
1687 			ppage_buf = NULL;
1688 			ppage_count = 0;
1689 		}
1690 	}
1691 	return (0);
1692 }
1693 
1694 
1695 /*
1696  * record tlb data for the nucleus, bigktsb's, and the cpr module;
1697  * this data is later used by cprboot to install dtlb/itlb entries.
1698  * when we jump into the cpr module during the resume phase, those
1699  * mappings are needed until switching to the kernel trap table.
1700  * to make the dtte/itte info available during resume, we need
1701  * the info recorded prior to saving sensitive pages, otherwise
1702  * all the data would appear as NULLs.
1703  */
1704 static void
1705 i_cpr_save_tlbinfo(void)
1706 {
1707 	cti_t cti = {0};
1708 
1709 	/*
1710 	 * during resume - shortly after jumping into the cpr module,
1711 	 * sfmmu_load_mmustate() will overwrite any dtlb entry at any
1712 	 * index used for TSBs; skip is set so that any saved tte will
1713 	 * target other tlb offsets and prevent being lost during
1714 	 * resume.  now scan the dtlb and save locked entries,
1715 	 * then add entries for the tmp stack / data page and the
1716 	 * cpr thread structure.
1717 	 */
1718 	cti.dst = m_info.dtte;
1719 	cti.tail = cti.dst + CPR_MAX_TLB;
1720 	cti.reader = dtlb_rd_entry;
1721 	cti.writer = NULL;
1722 	cti.filter = i_cpr_lnb;
1723 	cti.index = cpunodes[CPU->cpu_id].dtlb_size - 1;
1724 
1725 	if (utsb_dtlb_ttenum != -1)
1726 		cti.skip = (1 << utsb_dtlb_ttenum);
1727 
1728 	if (utsb4m_dtlb_ttenum != -1)
1729 		cti.skip |= (1 << utsb4m_dtlb_ttenum);
1730 
1731 	i_cpr_scan_tlb(&cti);
1732 	i_cpr_make_tte(&cti, &i_cpr_data_page, datava);
1733 	i_cpr_make_tte(&cti, curthread, datava);
1734 
1735 	/*
1736 	 * scan itlb and save locked entries; add an entry for
1737 	 * the first text page of the cpr module; cprboot will
1738 	 * jump to that page after restoring kernel pages.
1739 	 */
1740 	cti.dst = m_info.itte;
1741 	cti.tail = cti.dst + CPR_MAX_TLB;
1742 	cti.reader = itlb_rd_entry;
1743 	cti.index = cpunodes[CPU->cpu_id].itlb_size - 1;
1744 	cti.skip = 0;
1745 	i_cpr_scan_tlb(&cti);
1746 	i_cpr_make_tte(&cti, (void *)i_cpr_resume_setup, textva);
1747 }
1748 
1749 
1750 /* ARGSUSED */
1751 int
1752 i_cpr_dump_setup(vnode_t *vp)
1753 {
1754 	/*
1755 	 * zero out m_info and add info to dtte/itte arrays
1756 	 */
1757 	bzero(&m_info, sizeof (m_info));
1758 	i_cpr_save_tlbinfo();
1759 	return (0);
1760 }
1761 
1762 
1763 int
1764 i_cpr_is_supported(void)
1765 {
1766 	char es_prop[] = "energystar-v2";
1767 	pnode_t node;
1768 	int last;
1769 	extern int cpr_supported_override;
1770 	extern int cpr_platform_enable;
1771 
1772 	/*
1773 	 * The next statement tests if a specific platform has turned off
1774 	 * cpr support.
1775 	 */
1776 	if (cpr_supported_override)
1777 		return (0);
1778 
1779 	/*
1780 	 * Do not inspect energystar-v* property if a platform has
1781 	 * specifically turned on cpr support
1782 	 */
1783 	if (cpr_platform_enable)
1784 		return (1);
1785 
1786 	node = prom_rootnode();
1787 	if (prom_getproplen(node, es_prop) != -1)
1788 		return (1);
1789 	last = strlen(es_prop) - 1;
1790 	es_prop[last] = '3';
1791 	return (prom_getproplen(node, es_prop) != -1);
1792 }
1793 
1794 
1795 /*
1796  * the actual size of the statefile data isn't known until after all the
1797  * compressed pages are written; even the inode size doesn't reflect the
1798  * data size since there are usually many extra fs blocks.  for recording
1799  * the actual data size, the first sector of the statefile is copied to
1800  * a tmp buf, and the copy is later updated and flushed to disk.
1801  */
1802 int
1803 i_cpr_blockzero(char *base, char **bufpp, int *blkno, vnode_t *vp)
1804 {
1805 	extern int cpr_flush_write(vnode_t *);
1806 	static char cpr_sector[DEV_BSIZE];
1807 	cpr_ext bytes, *dst;
1808 
1809 	/*
1810 	 * this routine is called after cdd_t and csu_md_t are copied
1811 	 * to cpr_buf; mini-hack alert: the save/update method creates
1812 	 * a dependency on the combined struct size being >= one sector
1813 	 * or DEV_BSIZE; since introduction in Sol2.7, csu_md_t size is
1814 	 * over 1K bytes and will probably grow with any changes.
1815 	 *
1816 	 * copy when vp is NULL, flush when non-NULL
1817 	 */
1818 	if (vp == NULL) {
1819 		ASSERT((*bufpp - base) >= DEV_BSIZE);
1820 		bcopy(base, cpr_sector, sizeof (cpr_sector));
1821 		return (0);
1822 	} else {
1823 		bytes = dbtob(*blkno);
1824 		dst = &((cdd_t *)cpr_sector)->cdd_filesize;
1825 		bcopy(&bytes, dst, sizeof (bytes));
1826 		bcopy(cpr_sector, base, sizeof (cpr_sector));
1827 		*bufpp = base + sizeof (cpr_sector);
1828 		*blkno = cpr_statefile_offset();
1829 		CPR_DEBUG(CPR_DEBUG1, "statefile data size: %ld\n\n", bytes);
1830 		return (cpr_flush_write(vp));
1831 	}
1832 }
1833 
1834 
1835 /*
1836  * Allocate bitmaps according to the phys_install list.
1837  */
1838 static int
1839 i_cpr_bitmap_setup(void)
1840 {
1841 	struct memlist *pmem;
1842 	cbd_t *dp, *tail;
1843 	void *space;
1844 	size_t size;
1845 
1846 	/*
1847 	 * The number of bitmap descriptors will be the count of
1848 	 * phys_install ranges plus 1 for a trailing NULL struct.
1849 	 */
1850 	cpr_nbitmaps = 1;
1851 	for (pmem = phys_install; pmem; pmem = pmem->next)
1852 		cpr_nbitmaps++;
1853 
1854 	if (cpr_nbitmaps > (CPR_MAX_BMDESC - 1)) {
1855 		cpr_err(CE_WARN, "too many physical memory ranges %d, max %d",
1856 		    cpr_nbitmaps, CPR_MAX_BMDESC - 1);
1857 		return (EFBIG);
1858 	}
1859 
1860 	/* Alloc an array of bitmap descriptors. */
1861 	dp = kmem_zalloc(cpr_nbitmaps * sizeof (*dp), KM_NOSLEEP);
1862 	if (dp == NULL) {
1863 		cpr_nbitmaps = 0;
1864 		return (ENOMEM);
1865 	}
1866 	tail = dp + cpr_nbitmaps;
1867 
1868 	CPR->c_bmda = dp;
1869 	for (pmem = phys_install; pmem; pmem = pmem->next) {
1870 		size = BITMAP_BYTES(pmem->size);
1871 		space = kmem_zalloc(size * 2, KM_NOSLEEP);
1872 		if (space == NULL)
1873 			return (ENOMEM);
1874 		ASSERT(dp < tail);
1875 		dp->cbd_magic = CPR_BITMAP_MAGIC;
1876 		dp->cbd_spfn = mmu_btop(pmem->address);
1877 		dp->cbd_epfn = mmu_btop(pmem->address + pmem->size) - 1;
1878 		dp->cbd_size = size;
1879 		dp->cbd_reg_bitmap = (cpr_ptr)space;
1880 		dp->cbd_vlt_bitmap = (cpr_ptr)((caddr_t)space + size);
1881 		dp++;
1882 	}
1883 
1884 	/* set magic for the last descriptor */
1885 	ASSERT(dp == (tail - 1));
1886 	dp->cbd_magic = CPR_BITMAP_MAGIC;
1887 
1888 	return (0);
1889 }
1890 
1891 
1892 void
1893 i_cpr_bitmap_cleanup(void)
1894 {
1895 	cbd_t *dp;
1896 
1897 	if (CPR->c_bmda == NULL)
1898 		return;
1899 	for (dp = CPR->c_bmda; dp->cbd_size; dp++)
1900 		kmem_free((void *)dp->cbd_reg_bitmap, dp->cbd_size * 2);
1901 	kmem_free(CPR->c_bmda, cpr_nbitmaps * sizeof (*CPR->c_bmda));
1902 	CPR->c_bmda = NULL;
1903 	cpr_nbitmaps = 0;
1904 }
1905 
1906 
1907 /*
1908  * A "regular" and "volatile" bitmap are created for each range of
1909  * physical memory.  The volatile maps are used to count and track pages
1910  * susceptible to heap corruption - caused by drivers that allocate mem
1911  * during VOP_DUMP(); the regular maps are used for all the other non-
1912  * susceptible pages.  Before writing the bitmaps to the statefile,
1913  * each bitmap pair gets merged to simplify handling within cprboot.
1914  */
1915 int
1916 i_cpr_alloc_bitmaps(void)
1917 {
1918 	int err;
1919 
1920 	memlist_read_lock();
1921 	err = i_cpr_bitmap_setup();
1922 	memlist_read_unlock();
1923 	if (err)
1924 		i_cpr_bitmap_cleanup();
1925 	return (err);
1926 }
1927