xref: /titanic_51/usr/src/uts/sun4u/opl/os/opl.c (revision ac4d633f367252125bb35e97c5725d2aa68c1291)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/cpuvar.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/promif.h>
32 #include <sys/platform_module.h>
33 #include <sys/cmn_err.h>
34 #include <sys/errno.h>
35 #include <sys/machsystm.h>
36 #include <sys/bootconf.h>
37 #include <sys/nvpair.h>
38 #include <sys/kobj.h>
39 #include <sys/mem_cage.h>
40 #include <sys/opl.h>
41 #include <sys/scfd/scfostoescf.h>
42 #include <sys/cpu_sgnblk_defs.h>
43 #include <sys/utsname.h>
44 #include <sys/ddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/lgrp.h>
47 #include <sys/memnode.h>
48 #include <sys/sysmacros.h>
49 #include <vm/vm_dep.h>
50 
51 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
52 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
53 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
54 int (*opl_get_mem_addr)(char *unum, char *sid,
55     uint64_t offset, uint64_t *paddr);
56 
57 /* Memory for fcode claims.  16k times # maximum possible IO units */
58 #define	EFCODE_SIZE	(OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
59 int efcode_size = EFCODE_SIZE;
60 
61 #define	OPL_MC_MEMBOARD_SHIFT 38	/* Boards on 256BG boundary */
62 
63 /* Set the maximum number of boards for DR */
64 int opl_boards = OPL_MAX_BOARDS;
65 
66 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
67 
68 extern int tsb_lgrp_affinity;
69 
70 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
71 	(OPL_MAX_TSBS_PER_PCICH);
72 
73 pgcnt_t opl_startup_cage_size = 0;
74 
75 static opl_model_info_t opl_models[] = {
76 	{ "FF1", OPL_MAX_BOARDS_FF1 },
77 	{ "FF2", OPL_MAX_BOARDS_FF2 },
78 	{ "DC1", OPL_MAX_BOARDS_DC1 },
79 	{ "DC2", OPL_MAX_BOARDS_DC2 },
80 	{ "DC3", OPL_MAX_BOARDS_DC3 },
81 };
82 static	int	opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
83 
84 static	opl_model_info_t *opl_cur_model = NULL;
85 
86 static struct memlist *opl_memlist_per_board(struct memlist *ml);
87 
88 static enum {
89 	MODEL_FF1 = 0,
90 	MODEL_FF2 = 1,
91 	MODEL_DC = 2
92 } plat_model = -1;
93 
94 int
95 set_platform_max_ncpus(void)
96 {
97 	return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
98 }
99 
100 int
101 set_platform_tsb_spares(void)
102 {
103 	return (MIN(opl_tsb_spares, MAX_UPA));
104 }
105 
106 static void
107 set_model_info()
108 {
109 	char	name[MAXSYSNAME];
110 	int	i;
111 
112 	/*
113 	 * Get model name from the root node.
114 	 *
115 	 * We are using the prom device tree since, at this point,
116 	 * the Solaris device tree is not yet setup.
117 	 */
118 	(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
119 
120 	for (i = 0; i < opl_num_models; i++) {
121 		if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
122 			opl_cur_model = &opl_models[i];
123 			break;
124 		}
125 	}
126 	if (i == opl_num_models)
127 		cmn_err(CE_WARN, "No valid OPL model is found!"
128 		    "Set max_mmu_ctxdoms to the default.");
129 }
130 
131 static void
132 set_max_mmu_ctxdoms()
133 {
134 	extern uint_t	max_mmu_ctxdoms;
135 	int		max_boards;
136 
137 	/*
138 	 * From the model, get the maximum number of boards
139 	 * supported and set the value accordingly. If the model
140 	 * could not be determined or recognized, we assume the max value.
141 	 */
142 	if (opl_cur_model == NULL)
143 		max_boards = OPL_MAX_BOARDS;
144 	else
145 		max_boards = opl_cur_model->model_max_boards;
146 
147 	/*
148 	 * On OPL, cores and MMUs are one-to-one.
149 	 */
150 	max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
151 }
152 
153 #pragma weak mmu_init_large_pages
154 
155 void
156 set_platform_defaults(void)
157 {
158 	extern char *tod_module_name;
159 	extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
160 	extern int ts_dispatch_extended;
161 	extern void mmu_init_large_pages(size_t);
162 
163 	/* Set the CPU signature function pointer */
164 	cpu_sgn_func = cpu_sgn_update;
165 
166 	/* Set appropriate tod module for OPL platform */
167 	ASSERT(tod_module_name == NULL);
168 	tod_module_name = "todopl";
169 
170 	/*
171 	 * Use the alternate TS dispatch table, which is better tuned
172 	 * for large servers.
173 	 */
174 	if (ts_dispatch_extended == -1)
175 		ts_dispatch_extended = 1;
176 
177 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
178 	    (mmu_ism_pagesize != MMU_PAGESIZE32M)) {
179 		if (&mmu_init_large_pages)
180 			mmu_init_large_pages(mmu_ism_pagesize);
181 	}
182 
183 	tsb_lgrp_affinity = 1;
184 
185 	set_model_info();
186 	set_max_mmu_ctxdoms();
187 }
188 
189 /*
190  * Convert logical a board number to a physical one.
191  */
192 
193 #define	LSBPROP		"board#"
194 #define	PSBPROP		"physical-board#"
195 
196 int
197 opl_get_physical_board(int id)
198 {
199 	dev_info_t	*root_dip, *dip = NULL;
200 	char		*dname = NULL;
201 	int		circ;
202 
203 	pnode_t		pnode;
204 	char		pname[MAXSYSNAME] = {0};
205 
206 	int		lsb_id;	/* Logical System Board ID */
207 	int		psb_id;	/* Physical System Board ID */
208 
209 
210 	/*
211 	 * This function is called on early stage of bootup when the
212 	 * kernel device tree is not initialized yet, and also
213 	 * later on when the device tree is up. We want to try
214 	 * the fast track first.
215 	 */
216 	root_dip = ddi_root_node();
217 	if (root_dip) {
218 		/* Get from devinfo node */
219 		ndi_devi_enter(root_dip, &circ);
220 		for (dip = ddi_get_child(root_dip); dip;
221 		    dip = ddi_get_next_sibling(dip)) {
222 
223 			dname = ddi_node_name(dip);
224 			if (strncmp(dname, "pseudo-mc", 9) != 0)
225 				continue;
226 
227 			if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
228 			    DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
229 				continue;
230 
231 			if (id == lsb_id) {
232 				if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
233 				    dip, DDI_PROP_DONTPASS, PSBPROP, -1))
234 				    == -1) {
235 					ndi_devi_exit(root_dip, circ);
236 					return (-1);
237 				} else {
238 					ndi_devi_exit(root_dip, circ);
239 					return (psb_id);
240 				}
241 			}
242 		}
243 		ndi_devi_exit(root_dip, circ);
244 	}
245 
246 	/*
247 	 * We do not have the kernel device tree, or we did not
248 	 * find the node for some reason (let's say the kernel
249 	 * device tree was modified), let's try the OBP tree.
250 	 */
251 	pnode = prom_rootnode();
252 	for (pnode = prom_childnode(pnode); pnode;
253 	    pnode = prom_nextnode(pnode)) {
254 
255 		if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
256 		    (strncmp(pname, "pseudo-mc", 9) != 0))
257 			continue;
258 
259 		if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
260 			continue;
261 
262 		if (id == lsb_id) {
263 			if (prom_getprop(pnode, PSBPROP,
264 			    (caddr_t)&psb_id) == -1) {
265 				return (-1);
266 			} else {
267 				return (psb_id);
268 			}
269 		}
270 	}
271 
272 	return (-1);
273 }
274 
275 /*
276  * For OPL it's possible that memory from two or more successive boards
277  * will be contiguous across the boards, and therefore represented as a
278  * single chunk.
279  * This function splits such chunks down the board boundaries.
280  */
281 static struct memlist *
282 opl_memlist_per_board(struct memlist *ml)
283 {
284 	uint64_t ssize, low, high, boundary;
285 	struct memlist *head, *tail, *new;
286 
287 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
288 
289 	head = tail = NULL;
290 
291 	for (; ml; ml = ml->next) {
292 		low  = (uint64_t)ml->address;
293 		high = low+(uint64_t)(ml->size);
294 		while (low < high) {
295 			boundary = roundup(low+1, ssize);
296 			boundary = MIN(high, boundary);
297 			new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
298 			new->address = low;
299 			new->size = boundary - low;
300 			if (head == NULL)
301 				head = new;
302 			if (tail) {
303 				tail->next = new;
304 				new->prev = tail;
305 			}
306 			tail = new;
307 			low = boundary;
308 		}
309 	}
310 	return (head);
311 }
312 
313 void
314 set_platform_cage_params(void)
315 {
316 	extern pgcnt_t total_pages;
317 	extern struct memlist *phys_avail;
318 	struct memlist *ml, *tml;
319 	int ret;
320 
321 	if (kernel_cage_enable) {
322 		pgcnt_t preferred_cage_size;
323 
324 		preferred_cage_size =
325 			MAX(opl_startup_cage_size, total_pages / 256);
326 
327 		ml = opl_memlist_per_board(phys_avail);
328 
329 		kcage_range_lock();
330 		/*
331 		 * Note: we are assuming that post has load the
332 		 * whole show in to the high end of memory. Having
333 		 * taken this leap, we copy the whole of phys_avail
334 		 * the glist and arrange for the cage to grow
335 		 * downward (descending pfns).
336 		 */
337 		ret = kcage_range_init(ml, 1);
338 
339 		/* free the memlist */
340 		do {
341 			tml = ml->next;
342 			kmem_free(ml, sizeof (struct memlist));
343 			ml = tml;
344 		} while (ml != NULL);
345 
346 		if (ret == 0)
347 			kcage_init(preferred_cage_size);
348 		kcage_range_unlock();
349 	}
350 
351 	if (kcage_on)
352 		cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
353 	else
354 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
355 }
356 
357 /*ARGSUSED*/
358 int
359 plat_cpu_poweron(struct cpu *cp)
360 {
361 	int (*opl_cpu_poweron)(struct cpu *) = NULL;
362 
363 	opl_cpu_poweron =
364 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
365 
366 	if (opl_cpu_poweron == NULL)
367 		return (ENOTSUP);
368 	else
369 		return ((opl_cpu_poweron)(cp));
370 
371 }
372 
373 /*ARGSUSED*/
374 int
375 plat_cpu_poweroff(struct cpu *cp)
376 {
377 	int (*opl_cpu_poweroff)(struct cpu *) = NULL;
378 
379 	opl_cpu_poweroff =
380 	    (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
381 
382 	if (opl_cpu_poweroff == NULL)
383 		return (ENOTSUP);
384 	else
385 		return ((opl_cpu_poweroff)(cp));
386 
387 }
388 
389 int
390 plat_max_boards(void)
391 {
392 	return (OPL_MAX_BOARDS);
393 }
394 
395 int
396 plat_max_cpu_units_per_board(void)
397 {
398 	return (OPL_MAX_CPU_PER_BOARD);
399 }
400 
401 int
402 plat_max_mem_units_per_board(void)
403 {
404 	return (OPL_MAX_MEM_UNITS_PER_BOARD);
405 }
406 
407 int
408 plat_max_io_units_per_board(void)
409 {
410 	return (OPL_MAX_IO_UNITS_PER_BOARD);
411 }
412 
413 int
414 plat_max_cmp_units_per_board(void)
415 {
416 	return (OPL_MAX_CMP_UNITS_PER_BOARD);
417 }
418 
419 int
420 plat_max_core_units_per_board(void)
421 {
422 	return (OPL_MAX_CORE_UNITS_PER_BOARD);
423 }
424 
425 int
426 plat_pfn_to_mem_node(pfn_t pfn)
427 {
428 	return (pfn >> mem_node_pfn_shift);
429 }
430 
431 /* ARGSUSED */
432 void
433 plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
434 {
435 	size_t	elem;
436 	pfn_t	basepfn;
437 	pgcnt_t	npgs;
438 	uint64_t	boundary, ssize;
439 	uint64_t	low, high;
440 
441 	/*
442 	 * OPL mem slices are always aligned on a 256GB boundary.
443 	 */
444 	mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
445 	mem_node_physalign = 0;
446 
447 	/*
448 	 * Boot install lists are arranged <addr, len>, <addr, len>, ...
449 	 */
450 	ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
451 	for (elem = 0; elem < nelems; elem += 2) {
452 		low  = (uint64_t)list[elem];
453 		high = low+(uint64_t)(list[elem+1]);
454 		while (low < high) {
455 			boundary = roundup(low+1, ssize);
456 			boundary = MIN(high, boundary);
457 			basepfn = btop(low);
458 			npgs = btop(boundary - low);
459 			mem_node_add_slice(basepfn, basepfn + npgs - 1);
460 			low = boundary;
461 		}
462 	}
463 }
464 
465 /*
466  * Find the CPU associated with a slice at boot-time.
467  */
468 void
469 plat_fill_mc(pnode_t nodeid)
470 {
471 	int board;
472 	int memnode;
473 	struct {
474 		uint64_t	addr;
475 		uint64_t	size;
476 	} mem_range;
477 
478 	if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
479 		panic("Can not find board# property in mc node %x", nodeid);
480 	}
481 	if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
482 		panic("Can not find sb-mem-ranges property in mc node %x",
483 			nodeid);
484 	}
485 	memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
486 	plat_assign_lgrphand_to_mem_node(board, memnode);
487 }
488 
489 /*
490  * Return the platform handle for the lgroup containing the given CPU
491  *
492  * For OPL, lgroup platform handle == board #.
493  */
494 
495 extern int mpo_disabled;
496 extern lgrp_handle_t lgrp_default_handle;
497 
498 lgrp_handle_t
499 plat_lgrp_cpu_to_hand(processorid_t id)
500 {
501 	lgrp_handle_t plathand;
502 
503 	/*
504 	 * Return the real platform handle for the CPU until
505 	 * such time as we know that MPO should be disabled.
506 	 * At that point, we set the "mpo_disabled" flag to true,
507 	 * and from that point on, return the default handle.
508 	 *
509 	 * By the time we know that MPO should be disabled, the
510 	 * first CPU will have already been added to a leaf
511 	 * lgroup, but that's ok. The common lgroup code will
512 	 * double check that the boot CPU is in the correct place,
513 	 * and in the case where mpo should be disabled, will move
514 	 * it to the root if necessary.
515 	 */
516 	if (mpo_disabled) {
517 		/* If MPO is disabled, return the default (UMA) handle */
518 		plathand = lgrp_default_handle;
519 	} else
520 		plathand = (lgrp_handle_t)LSB_ID(id);
521 	return (plathand);
522 }
523 
524 /*
525  * Platform specific lgroup initialization
526  */
527 void
528 plat_lgrp_init(void)
529 {
530 	extern uint32_t lgrp_expand_proc_thresh;
531 	extern uint32_t lgrp_expand_proc_diff;
532 
533 	/*
534 	 * Set tuneables for the OPL architecture
535 	 *
536 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
537 	 * this process is currently running on before considering
538 	 * expanding threads to another lgroup.
539 	 *
540 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
541 	 * must be loaded before expanding to it.
542 	 *
543 	 * Since remote latencies can be costly, attempt to keep 3 threads
544 	 * within the same lgroup before expanding to the next lgroup.
545 	 */
546 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
547 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
548 }
549 
550 /*
551  * Platform notification of lgroup (re)configuration changes
552  */
553 /*ARGSUSED*/
554 void
555 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
556 {
557 	update_membounds_t *umb;
558 	lgrp_config_mem_rename_t lmr;
559 	int sbd, tbd;
560 	lgrp_handle_t hand, shand, thand;
561 	int mnode, snode, tnode;
562 	pfn_t start, end;
563 
564 	if (mpo_disabled)
565 		return;
566 
567 	switch (evt) {
568 
569 	case LGRP_CONFIG_MEM_ADD:
570 		/*
571 		 * Establish the lgroup handle to memnode translation.
572 		 */
573 		umb = (update_membounds_t *)arg;
574 
575 		hand = umb->u_board;
576 		mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
577 		plat_assign_lgrphand_to_mem_node(hand, mnode);
578 
579 		break;
580 
581 	case LGRP_CONFIG_MEM_DEL:
582 		/*
583 		 * Special handling for possible memory holes.
584 		 */
585 		umb = (update_membounds_t *)arg;
586 		hand = umb->u_board;
587 		if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
588 			if (mem_node_config[mnode].exists) {
589 				start = mem_node_config[mnode].physbase;
590 				end = mem_node_config[mnode].physmax;
591 				mem_node_pre_del_slice(start, end);
592 				mem_node_post_del_slice(start, end, 0);
593 			}
594 		}
595 
596 		break;
597 
598 	case LGRP_CONFIG_MEM_RENAME:
599 		/*
600 		 * During a DR copy-rename operation, all of the memory
601 		 * on one board is moved to another board -- but the
602 		 * addresses/pfns and memnodes don't change. This means
603 		 * the memory has changed locations without changing identity.
604 		 *
605 		 * Source is where we are copying from and target is where we
606 		 * are copying to.  After source memnode is copied to target
607 		 * memnode, the physical addresses of the target memnode are
608 		 * renamed to match what the source memnode had.  Then target
609 		 * memnode can be removed and source memnode can take its
610 		 * place.
611 		 *
612 		 * To do this, swap the lgroup handle to memnode mappings for
613 		 * the boards, so target lgroup will have source memnode and
614 		 * source lgroup will have empty target memnode which is where
615 		 * its memory will go (if any is added to it later).
616 		 *
617 		 * Then source memnode needs to be removed from its lgroup
618 		 * and added to the target lgroup where the memory was living
619 		 * but under a different name/memnode.  The memory was in the
620 		 * target memnode and now lives in the source memnode with
621 		 * different physical addresses even though it is the same
622 		 * memory.
623 		 */
624 		sbd = arg & 0xffff;
625 		tbd = (arg & 0xffff0000) >> 16;
626 		shand = sbd;
627 		thand = tbd;
628 		snode = plat_lgrphand_to_mem_node(shand);
629 		tnode = plat_lgrphand_to_mem_node(thand);
630 
631 		/*
632 		 * Special handling for possible memory holes.
633 		 */
634 		if (tnode != -1 && mem_node_config[tnode].exists) {
635 			start = mem_node_config[mnode].physbase;
636 			end = mem_node_config[mnode].physmax;
637 			mem_node_pre_del_slice(start, end);
638 			mem_node_post_del_slice(start, end, 0);
639 		}
640 
641 		plat_assign_lgrphand_to_mem_node(thand, snode);
642 		plat_assign_lgrphand_to_mem_node(shand, tnode);
643 
644 		lmr.lmem_rename_from = shand;
645 		lmr.lmem_rename_to = thand;
646 
647 		/*
648 		 * Remove source memnode of copy rename from its lgroup
649 		 * and add it to its new target lgroup
650 		 */
651 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
652 		    (uintptr_t)&lmr);
653 
654 		break;
655 
656 	default:
657 		break;
658 	}
659 }
660 
661 /*
662  * Return latency between "from" and "to" lgroups
663  *
664  * This latency number can only be used for relative comparison
665  * between lgroups on the running system, cannot be used across platforms,
666  * and may not reflect the actual latency.  It is platform and implementation
667  * specific, so platform gets to decide its value.  It would be nice if the
668  * number was at least proportional to make comparisons more meaningful though.
669  * NOTE: The numbers below are supposed to be load latencies for uncached
670  * memory divided by 10.
671  *
672  * XXX latency values for Columbus, not Columbus2. Should be fixed later when
673  *	we know the actual numbers for Columbus2.
674  */
675 int
676 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
677 {
678 	/*
679 	 * Return min remote latency when there are more than two lgroups
680 	 * (root and child) and getting latency between two different lgroups
681 	 * or root is involved
682 	 */
683 	if (lgrp_optimizations() && (from != to ||
684 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
685 		return (27);
686 	else
687 		return (25);
688 }
689 
690 /*
691  * Return platform handle for root lgroup
692  */
693 lgrp_handle_t
694 plat_lgrp_root_hand(void)
695 {
696 	if (mpo_disabled)
697 		return (lgrp_default_handle);
698 
699 	return (LGRP_DEFAULT_HANDLE);
700 }
701 
702 /*ARGSUSED*/
703 void
704 plat_freelist_process(int mnode)
705 {
706 }
707 
708 void
709 load_platform_drivers(void)
710 {
711 	(void) i_ddi_attach_pseudo_node("dr");
712 }
713 
714 /*
715  * No platform drivers on this platform
716  */
717 char *platform_module_list[] = {
718 	(char *)0
719 };
720 
721 /*ARGSUSED*/
722 void
723 plat_tod_fault(enum tod_fault_type tod_bad)
724 {
725 }
726 
727 /*ARGSUSED*/
728 void
729 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
730 {
731 	static void (*scf_panic_callback)(int);
732 	static void (*scf_shutdown_callback)(int);
733 
734 	/*
735 	 * This is for notifing system panic/shutdown to SCF.
736 	 * In case of shutdown and panic, SCF call back
737 	 * function should be called.
738 	 *  <SCF call back functions>
739 	 *   scf_panic_callb()   : panicsys()->panic_quiesce_hw()
740 	 *   scf_shutdown_callb(): halt() or power_down() or reboot_machine()
741 	 * cpuid should be -1 and state should be SIGST_EXIT.
742 	 */
743 	if (state == SIGST_EXIT && cpuid == -1) {
744 
745 		/*
746 		 * find the symbol for the SCF panic callback routine in driver
747 		 */
748 		if (scf_panic_callback == NULL)
749 			scf_panic_callback = (void (*)(int))
750 				modgetsymvalue("scf_panic_callb", 0);
751 		if (scf_shutdown_callback == NULL)
752 			scf_shutdown_callback = (void (*)(int))
753 				modgetsymvalue("scf_shutdown_callb", 0);
754 
755 		switch (sub_state) {
756 		case SIGSUBST_PANIC:
757 			if (scf_panic_callback == NULL) {
758 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
759 				    "scf_panic_callb not found\n");
760 				return;
761 			}
762 			scf_panic_callback(SIGSUBST_PANIC);
763 			break;
764 
765 		case SIGSUBST_HALT:
766 			if (scf_shutdown_callback == NULL) {
767 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
768 				    "scf_shutdown_callb not found\n");
769 				return;
770 			}
771 			scf_shutdown_callback(SIGSUBST_HALT);
772 			break;
773 
774 		case SIGSUBST_ENVIRON:
775 			if (scf_shutdown_callback == NULL) {
776 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
777 				    "scf_shutdown_callb not found\n");
778 				return;
779 			}
780 			scf_shutdown_callback(SIGSUBST_ENVIRON);
781 			break;
782 
783 		case SIGSUBST_REBOOT:
784 			if (scf_shutdown_callback == NULL) {
785 				cmn_err(CE_NOTE, "!cpu_sgn_update: "
786 				    "scf_shutdown_callb not found\n");
787 				return;
788 			}
789 			scf_shutdown_callback(SIGSUBST_REBOOT);
790 			break;
791 		}
792 	}
793 }
794 
795 /*ARGSUSED*/
796 int
797 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
798 	int flt_in_memory, ushort_t flt_status,
799 	char *buf, int buflen, int *lenp)
800 {
801 	/*
802 	 * check if it's a Memory error.
803 	 */
804 	if (flt_in_memory) {
805 		if (opl_get_mem_unum != NULL) {
806 			return (opl_get_mem_unum(synd_code, flt_addr,
807 				buf, buflen, lenp));
808 		} else {
809 			return (ENOTSUP);
810 		}
811 	} else {
812 		return (ENOTSUP);
813 	}
814 }
815 
816 /*ARGSUSED*/
817 int
818 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
819 {
820 	int	plen;
821 	int	ret = 0;
822 	char	model[20];
823 	uint_t	sb;
824 	pnode_t	node;
825 
826 	/* determine the platform model once */
827 	if (plat_model == -1) {
828 		plat_model = MODEL_DC; /* Default model */
829 		node = prom_rootnode();
830 		plen = prom_getproplen(node, "model");
831 		if (plen > 0 && plen < sizeof (model)) {
832 			(void) prom_getprop(node, "model", model);
833 			model[plen] = '\0';
834 			if (strcmp(model, "FF1") == 0)
835 				plat_model = MODEL_FF1;
836 			else if (strcmp(model, "FF2") == 0)
837 				plat_model = MODEL_FF2;
838 			else if (strncmp(model, "DC", 2) == 0)
839 				plat_model = MODEL_DC;
840 		}
841 	}
842 
843 	sb = opl_get_physical_board(LSB_ID(cpuid));
844 	if (sb == -1) {
845 		return (ENXIO);
846 	}
847 
848 	switch (plat_model) {
849 	case MODEL_FF1:
850 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
851 		    CHIP_ID(cpuid) / 2);
852 		break;
853 
854 	case MODEL_FF2:
855 		plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
856 		    CHIP_ID(cpuid) / 2);
857 		break;
858 
859 	case MODEL_DC:
860 		plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
861 		    CHIP_ID(cpuid));
862 		break;
863 
864 	default:
865 		/* This should never happen */
866 		return (ENODEV);
867 	}
868 
869 	if (plen >= buflen) {
870 		ret = ENOSPC;
871 	} else {
872 		if (lenp)
873 			*lenp = strlen(buf);
874 	}
875 	return (ret);
876 }
877 
878 #define	SCF_PUTINFO(f, s, p)	\
879 	f(KEY_ESCF, 0x01, 0, s, p)
880 void
881 plat_nodename_set(void)
882 {
883 	void *datap;
884 	static int (*scf_service_function)(uint32_t, uint8_t,
885 	    uint32_t, uint32_t, void *);
886 	int counter = 5;
887 
888 	/*
889 	 * find the symbol for the SCF put routine in driver
890 	 */
891 	if (scf_service_function == NULL)
892 		scf_service_function =
893 			(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
894 			modgetsymvalue("scf_service_putinfo", 0);
895 
896 	/*
897 	 * If the symbol was found, call it.  Otherwise, log a note (but not to
898 	 * the console).
899 	 */
900 
901 	if (scf_service_function == NULL) {
902 		cmn_err(CE_NOTE,
903 		    "!plat_nodename_set: scf_service_putinfo not found\n");
904 		return;
905 	}
906 
907 	datap =
908 	    (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
909 
910 	if (datap == NULL) {
911 		return;
912 	}
913 
914 	bcopy((struct utsname *)&utsname,
915 	    (struct utsname *)datap, sizeof (struct utsname));
916 
917 	while ((SCF_PUTINFO(scf_service_function,
918 		sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
919 		delay(10 * drv_usectohz(1000000));
920 	}
921 	if (counter == 0)
922 		cmn_err(CE_NOTE,
923 			"!plat_nodename_set: "
924 			"scf_service_putinfo not responding\n");
925 
926 	kmem_free(datap, sizeof (struct utsname));
927 }
928 
929 caddr_t	efcode_vaddr = NULL;
930 
931 /*
932  * Preallocate enough memory for fcode claims.
933  */
934 
935 caddr_t
936 efcode_alloc(caddr_t alloc_base)
937 {
938 	caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
939 	    MMU_PAGESIZE);
940 	caddr_t vaddr;
941 
942 	/*
943 	 * allocate the physical memory for the Oberon fcode.
944 	 */
945 	if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
946 	    efcode_size, MMU_PAGESIZE)) == NULL)
947 		cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
948 
949 	efcode_vaddr = vaddr;
950 
951 	return (efcode_alloc_base + efcode_size);
952 }
953 
954 caddr_t
955 plat_startup_memlist(caddr_t alloc_base)
956 {
957 	caddr_t tmp_alloc_base;
958 
959 	tmp_alloc_base = efcode_alloc(alloc_base);
960 	tmp_alloc_base =
961 	    (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
962 	return (tmp_alloc_base);
963 }
964 
965 void
966 startup_platform(void)
967 {
968 }
969 
970 void
971 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
972 {
973 	int	impl;
974 
975 	impl = cpunodes[cpuid].implementation;
976 	if (IS_OLYMPUS_C(impl)) {
977 		info->mmu_idx = MMU_ID(cpuid);
978 		info->mmu_nctxs = 8192;
979 	} else {
980 		cmn_err(CE_PANIC, "Unknown processor %d", impl);
981 	}
982 }
983 
984 int
985 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
986 {
987 	if (opl_get_mem_sid == NULL) {
988 		return (ENOTSUP);
989 	}
990 	return (opl_get_mem_sid(unum, buf, buflen, lenp));
991 }
992 
993 int
994 plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
995 {
996 	if (opl_get_mem_offset == NULL) {
997 		return (ENOTSUP);
998 	}
999 	return (opl_get_mem_offset(paddr, offp));
1000 }
1001 
1002 int
1003 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1004 {
1005 	if (opl_get_mem_addr == NULL) {
1006 		return (ENOTSUP);
1007 	}
1008 	return (opl_get_mem_addr(unum, sid, offset, addrp));
1009 }
1010