1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/cpuvar.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/promif.h> 32 #include <sys/platform_module.h> 33 #include <sys/cmn_err.h> 34 #include <sys/errno.h> 35 #include <sys/machsystm.h> 36 #include <sys/bootconf.h> 37 #include <sys/nvpair.h> 38 #include <sys/kobj.h> 39 #include <sys/mem_cage.h> 40 #include <sys/opl.h> 41 #include <sys/scfd/scfostoescf.h> 42 #include <sys/cpu_sgnblk_defs.h> 43 #include <sys/utsname.h> 44 #include <sys/ddi.h> 45 #include <sys/sunndi.h> 46 #include <sys/lgrp.h> 47 #include <sys/memnode.h> 48 #include <sys/sysmacros.h> 49 #include <sys/time.h> 50 #include <sys/cpu.h> 51 #include <vm/vm_dep.h> 52 53 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); 54 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp); 55 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp); 56 int (*opl_get_mem_addr)(char *unum, char *sid, 57 uint64_t offset, uint64_t *paddr); 58 59 /* Memory for fcode claims. 16k times # maximum possible IO units */ 60 #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) 61 int efcode_size = EFCODE_SIZE; 62 63 #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ 64 65 /* Set the maximum number of boards for DR */ 66 int opl_boards = OPL_MAX_BOARDS; 67 68 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); 69 70 extern int tsb_lgrp_affinity; 71 72 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * 73 (OPL_MAX_TSBS_PER_PCICH); 74 75 pgcnt_t opl_startup_cage_size = 0; 76 77 /* 78 * The length of the delay in seconds in communication with XSCF after 79 * which the warning message will be logged. 80 */ 81 uint_t xscf_connect_delay = 60 * 15; 82 83 static opl_model_info_t opl_models[] = { 84 { "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE }, 85 { "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE }, 86 { "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE }, 87 { "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE }, 88 { "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE }, 89 }; 90 static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t); 91 92 /* 93 * opl_cur_model 94 */ 95 static opl_model_info_t *opl_cur_model = NULL; 96 97 static struct memlist *opl_memlist_per_board(struct memlist *ml); 98 static void post_xscf_msg(char *, int); 99 static void pass2xscf_thread(); 100 101 /* 102 * Note FF/DC out-of-order instruction engine takes only a 103 * single cycle to execute each spin loop 104 * for comparison, Panther takes 6 cycles for same loop 105 * 1500 approx nsec for OPL sleep instruction 106 * if spin count = OPL_BOFF_SLEEP*OPL_BOFF_SPIN then 107 * spin time should be equal to OPL_BOFF_TM nsecs 108 * Listed values tuned for 2.15GHz to 2.4GHz systems 109 * Value may change for future systems 110 */ 111 #define OPL_BOFF_SPIN 720 112 #define OPL_BOFF_BASE 1 113 #define OPL_BOFF_SLEEP 5 114 #define OPL_BOFF_CAP1 20 115 #define OPL_BOFF_CAP2 60 116 #define OPL_BOFF_MAX (40 * OPL_BOFF_SLEEP) 117 #define OPL_BOFF_TM 1500 118 119 #define OPL_CLOCK_TICK_THRESHOLD 128 120 #define OPL_CLOCK_TICK_NCPUS 64 121 122 extern int clock_tick_threshold; 123 extern int clock_tick_ncpus; 124 125 int 126 set_platform_max_ncpus(void) 127 { 128 return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); 129 } 130 131 int 132 set_platform_tsb_spares(void) 133 { 134 return (MIN(opl_tsb_spares, MAX_UPA)); 135 } 136 137 static void 138 set_model_info() 139 { 140 extern int ts_dispatch_extended; 141 char name[MAXSYSNAME]; 142 int i; 143 144 /* 145 * Get model name from the root node. 146 * 147 * We are using the prom device tree since, at this point, 148 * the Solaris device tree is not yet setup. 149 */ 150 (void) prom_getprop(prom_rootnode(), "model", (caddr_t)name); 151 152 for (i = 0; i < opl_num_models; i++) { 153 if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) { 154 opl_cur_model = &opl_models[i]; 155 break; 156 } 157 } 158 159 /* 160 * If model not matched, it's an unknown model. 161 * just return. 162 */ 163 if (i == opl_num_models) 164 return; 165 166 if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) && 167 (ts_dispatch_extended == -1)) { 168 /* 169 * Based on a platform model, select a dispatch table. 170 * Only DC2 and DC3 systems uses the alternate/extended 171 * TS dispatch table. 172 * FF1, FF2 and DC1 systems used standard dispatch tables. 173 */ 174 ts_dispatch_extended = 1; 175 } 176 177 } 178 179 static void 180 set_max_mmu_ctxdoms() 181 { 182 extern uint_t max_mmu_ctxdoms; 183 int max_boards; 184 185 /* 186 * From the model, get the maximum number of boards 187 * supported and set the value accordingly. If the model 188 * could not be determined or recognized, we assume the max value. 189 */ 190 if (opl_cur_model == NULL) 191 max_boards = OPL_MAX_BOARDS; 192 else 193 max_boards = opl_cur_model->model_max_boards; 194 195 /* 196 * On OPL, cores and MMUs are one-to-one. 197 */ 198 max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards; 199 } 200 201 #pragma weak mmu_init_large_pages 202 203 void 204 set_platform_defaults(void) 205 { 206 extern char *tod_module_name; 207 extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); 208 extern void mmu_init_large_pages(size_t); 209 210 /* Set the CPU signature function pointer */ 211 cpu_sgn_func = cpu_sgn_update; 212 213 /* Set appropriate tod module for OPL platform */ 214 ASSERT(tod_module_name == NULL); 215 tod_module_name = "todopl"; 216 217 if ((mmu_page_sizes == max_mmu_page_sizes) && 218 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 219 if (&mmu_init_large_pages) 220 mmu_init_large_pages(mmu_ism_pagesize); 221 } 222 223 tsb_lgrp_affinity = 1; 224 225 set_max_mmu_ctxdoms(); 226 } 227 228 /* 229 * Convert logical a board number to a physical one. 230 */ 231 232 #define LSBPROP "board#" 233 #define PSBPROP "physical-board#" 234 235 int 236 opl_get_physical_board(int id) 237 { 238 dev_info_t *root_dip, *dip = NULL; 239 char *dname = NULL; 240 int circ; 241 242 pnode_t pnode; 243 char pname[MAXSYSNAME] = {0}; 244 245 int lsb_id; /* Logical System Board ID */ 246 int psb_id; /* Physical System Board ID */ 247 248 249 /* 250 * This function is called on early stage of bootup when the 251 * kernel device tree is not initialized yet, and also 252 * later on when the device tree is up. We want to try 253 * the fast track first. 254 */ 255 root_dip = ddi_root_node(); 256 if (root_dip) { 257 /* Get from devinfo node */ 258 ndi_devi_enter(root_dip, &circ); 259 for (dip = ddi_get_child(root_dip); dip; 260 dip = ddi_get_next_sibling(dip)) { 261 262 dname = ddi_node_name(dip); 263 if (strncmp(dname, "pseudo-mc", 9) != 0) 264 continue; 265 266 if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, 267 DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) 268 continue; 269 270 if (id == lsb_id) { 271 if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, 272 dip, DDI_PROP_DONTPASS, PSBPROP, -1)) 273 == -1) { 274 ndi_devi_exit(root_dip, circ); 275 return (-1); 276 } else { 277 ndi_devi_exit(root_dip, circ); 278 return (psb_id); 279 } 280 } 281 } 282 ndi_devi_exit(root_dip, circ); 283 } 284 285 /* 286 * We do not have the kernel device tree, or we did not 287 * find the node for some reason (let's say the kernel 288 * device tree was modified), let's try the OBP tree. 289 */ 290 pnode = prom_rootnode(); 291 for (pnode = prom_childnode(pnode); pnode; 292 pnode = prom_nextnode(pnode)) { 293 294 if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || 295 (strncmp(pname, "pseudo-mc", 9) != 0)) 296 continue; 297 298 if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) 299 continue; 300 301 if (id == lsb_id) { 302 if (prom_getprop(pnode, PSBPROP, 303 (caddr_t)&psb_id) == -1) { 304 return (-1); 305 } else { 306 return (psb_id); 307 } 308 } 309 } 310 311 return (-1); 312 } 313 314 /* 315 * For OPL it's possible that memory from two or more successive boards 316 * will be contiguous across the boards, and therefore represented as a 317 * single chunk. 318 * This function splits such chunks down the board boundaries. 319 */ 320 static struct memlist * 321 opl_memlist_per_board(struct memlist *ml) 322 { 323 uint64_t ssize, low, high, boundary; 324 struct memlist *head, *tail, *new; 325 326 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 327 328 head = tail = NULL; 329 330 for (; ml; ml = ml->next) { 331 low = (uint64_t)ml->address; 332 high = low+(uint64_t)(ml->size); 333 while (low < high) { 334 boundary = roundup(low+1, ssize); 335 boundary = MIN(high, boundary); 336 new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); 337 new->address = low; 338 new->size = boundary - low; 339 if (head == NULL) 340 head = new; 341 if (tail) { 342 tail->next = new; 343 new->prev = tail; 344 } 345 tail = new; 346 low = boundary; 347 } 348 } 349 return (head); 350 } 351 352 void 353 set_platform_cage_params(void) 354 { 355 extern pgcnt_t total_pages; 356 extern struct memlist *phys_avail; 357 struct memlist *ml, *tml; 358 359 if (kernel_cage_enable) { 360 pgcnt_t preferred_cage_size; 361 362 preferred_cage_size = MAX(opl_startup_cage_size, 363 total_pages / 256); 364 365 ml = opl_memlist_per_board(phys_avail); 366 367 /* 368 * Note: we are assuming that post has load the 369 * whole show in to the high end of memory. Having 370 * taken this leap, we copy the whole of phys_avail 371 * the glist and arrange for the cage to grow 372 * downward (descending pfns). 373 */ 374 kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size); 375 376 /* free the memlist */ 377 do { 378 tml = ml->next; 379 kmem_free(ml, sizeof (struct memlist)); 380 ml = tml; 381 } while (ml != NULL); 382 } 383 384 if (kcage_on) 385 cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); 386 else 387 cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); 388 } 389 390 /*ARGSUSED*/ 391 int 392 plat_cpu_poweron(struct cpu *cp) 393 { 394 int (*opl_cpu_poweron)(struct cpu *) = NULL; 395 396 opl_cpu_poweron = 397 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); 398 399 if (opl_cpu_poweron == NULL) 400 return (ENOTSUP); 401 else 402 return ((opl_cpu_poweron)(cp)); 403 404 } 405 406 /*ARGSUSED*/ 407 int 408 plat_cpu_poweroff(struct cpu *cp) 409 { 410 int (*opl_cpu_poweroff)(struct cpu *) = NULL; 411 412 opl_cpu_poweroff = 413 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); 414 415 if (opl_cpu_poweroff == NULL) 416 return (ENOTSUP); 417 else 418 return ((opl_cpu_poweroff)(cp)); 419 420 } 421 422 int 423 plat_max_boards(void) 424 { 425 return (OPL_MAX_BOARDS); 426 } 427 428 int 429 plat_max_cpu_units_per_board(void) 430 { 431 return (OPL_MAX_CPU_PER_BOARD); 432 } 433 434 int 435 plat_max_mem_units_per_board(void) 436 { 437 return (OPL_MAX_MEM_UNITS_PER_BOARD); 438 } 439 440 int 441 plat_max_io_units_per_board(void) 442 { 443 return (OPL_MAX_IO_UNITS_PER_BOARD); 444 } 445 446 int 447 plat_max_cmp_units_per_board(void) 448 { 449 return (OPL_MAX_CMP_UNITS_PER_BOARD); 450 } 451 452 int 453 plat_max_core_units_per_board(void) 454 { 455 return (OPL_MAX_CORE_UNITS_PER_BOARD); 456 } 457 458 int 459 plat_pfn_to_mem_node(pfn_t pfn) 460 { 461 return (pfn >> mem_node_pfn_shift); 462 } 463 464 /* ARGSUSED */ 465 void 466 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) 467 { 468 size_t elem; 469 pfn_t basepfn; 470 pgcnt_t npgs; 471 uint64_t boundary, ssize; 472 uint64_t low, high; 473 474 /* 475 * OPL mem slices are always aligned on a 256GB boundary. 476 */ 477 mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; 478 mem_node_physalign = 0; 479 480 /* 481 * Boot install lists are arranged <addr, len>, <addr, len>, ... 482 */ 483 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 484 for (elem = 0; elem < nelems; list++, elem++) { 485 low = list->addr; 486 high = low + list->size; 487 while (low < high) { 488 boundary = roundup(low+1, ssize); 489 boundary = MIN(high, boundary); 490 basepfn = btop(low); 491 npgs = btop(boundary - low); 492 mem_node_add_slice(basepfn, basepfn + npgs - 1); 493 low = boundary; 494 } 495 } 496 } 497 498 /* 499 * Find the CPU associated with a slice at boot-time. 500 */ 501 void 502 plat_fill_mc(pnode_t nodeid) 503 { 504 int board; 505 int memnode; 506 struct { 507 uint64_t addr; 508 uint64_t size; 509 } mem_range; 510 511 if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { 512 panic("Can not find board# property in mc node %x", nodeid); 513 } 514 if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { 515 panic("Can not find sb-mem-ranges property in mc node %x", 516 nodeid); 517 } 518 memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; 519 plat_assign_lgrphand_to_mem_node(board, memnode); 520 } 521 522 /* 523 * Return the platform handle for the lgroup containing the given CPU 524 * 525 * For OPL, lgroup platform handle == board #. 526 */ 527 528 extern int mpo_disabled; 529 extern lgrp_handle_t lgrp_default_handle; 530 531 lgrp_handle_t 532 plat_lgrp_cpu_to_hand(processorid_t id) 533 { 534 lgrp_handle_t plathand; 535 536 /* 537 * Return the real platform handle for the CPU until 538 * such time as we know that MPO should be disabled. 539 * At that point, we set the "mpo_disabled" flag to true, 540 * and from that point on, return the default handle. 541 * 542 * By the time we know that MPO should be disabled, the 543 * first CPU will have already been added to a leaf 544 * lgroup, but that's ok. The common lgroup code will 545 * double check that the boot CPU is in the correct place, 546 * and in the case where mpo should be disabled, will move 547 * it to the root if necessary. 548 */ 549 if (mpo_disabled) { 550 /* If MPO is disabled, return the default (UMA) handle */ 551 plathand = lgrp_default_handle; 552 } else 553 plathand = (lgrp_handle_t)LSB_ID(id); 554 return (plathand); 555 } 556 557 /* 558 * Platform specific lgroup initialization 559 */ 560 void 561 plat_lgrp_init(void) 562 { 563 extern uint32_t lgrp_expand_proc_thresh; 564 extern uint32_t lgrp_expand_proc_diff; 565 566 /* 567 * Set tuneables for the OPL architecture 568 * 569 * lgrp_expand_proc_thresh is the minimum load on the lgroups 570 * this process is currently running on before considering 571 * expanding threads to another lgroup. 572 * 573 * lgrp_expand_proc_diff determines how much less the remote lgroup 574 * must be loaded before expanding to it. 575 * 576 * Since remote latencies can be costly, attempt to keep 3 threads 577 * within the same lgroup before expanding to the next lgroup. 578 */ 579 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3; 580 lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX; 581 } 582 583 /* 584 * Platform notification of lgroup (re)configuration changes 585 */ 586 /*ARGSUSED*/ 587 void 588 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) 589 { 590 update_membounds_t *umb; 591 lgrp_config_mem_rename_t lmr; 592 int sbd, tbd; 593 lgrp_handle_t hand, shand, thand; 594 int mnode, snode, tnode; 595 pfn_t start, end; 596 597 if (mpo_disabled) 598 return; 599 600 switch (evt) { 601 602 case LGRP_CONFIG_MEM_ADD: 603 /* 604 * Establish the lgroup handle to memnode translation. 605 */ 606 umb = (update_membounds_t *)arg; 607 608 hand = umb->u_board; 609 mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); 610 plat_assign_lgrphand_to_mem_node(hand, mnode); 611 612 break; 613 614 case LGRP_CONFIG_MEM_DEL: 615 /* 616 * Special handling for possible memory holes. 617 */ 618 umb = (update_membounds_t *)arg; 619 hand = umb->u_board; 620 if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { 621 if (mem_node_config[mnode].exists) { 622 start = mem_node_config[mnode].physbase; 623 end = mem_node_config[mnode].physmax; 624 mem_node_pre_del_slice(start, end); 625 mem_node_post_del_slice(start, end, 0); 626 } 627 } 628 629 break; 630 631 case LGRP_CONFIG_MEM_RENAME: 632 /* 633 * During a DR copy-rename operation, all of the memory 634 * on one board is moved to another board -- but the 635 * addresses/pfns and memnodes don't change. This means 636 * the memory has changed locations without changing identity. 637 * 638 * Source is where we are copying from and target is where we 639 * are copying to. After source memnode is copied to target 640 * memnode, the physical addresses of the target memnode are 641 * renamed to match what the source memnode had. Then target 642 * memnode can be removed and source memnode can take its 643 * place. 644 * 645 * To do this, swap the lgroup handle to memnode mappings for 646 * the boards, so target lgroup will have source memnode and 647 * source lgroup will have empty target memnode which is where 648 * its memory will go (if any is added to it later). 649 * 650 * Then source memnode needs to be removed from its lgroup 651 * and added to the target lgroup where the memory was living 652 * but under a different name/memnode. The memory was in the 653 * target memnode and now lives in the source memnode with 654 * different physical addresses even though it is the same 655 * memory. 656 */ 657 sbd = arg & 0xffff; 658 tbd = (arg & 0xffff0000) >> 16; 659 shand = sbd; 660 thand = tbd; 661 snode = plat_lgrphand_to_mem_node(shand); 662 tnode = plat_lgrphand_to_mem_node(thand); 663 664 /* 665 * Special handling for possible memory holes. 666 */ 667 if (tnode != -1 && mem_node_config[tnode].exists) { 668 start = mem_node_config[tnode].physbase; 669 end = mem_node_config[tnode].physmax; 670 mem_node_pre_del_slice(start, end); 671 mem_node_post_del_slice(start, end, 0); 672 } 673 674 plat_assign_lgrphand_to_mem_node(thand, snode); 675 plat_assign_lgrphand_to_mem_node(shand, tnode); 676 677 lmr.lmem_rename_from = shand; 678 lmr.lmem_rename_to = thand; 679 680 /* 681 * Remove source memnode of copy rename from its lgroup 682 * and add it to its new target lgroup 683 */ 684 lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, 685 (uintptr_t)&lmr); 686 687 break; 688 689 default: 690 break; 691 } 692 } 693 694 /* 695 * Return latency between "from" and "to" lgroups 696 * 697 * This latency number can only be used for relative comparison 698 * between lgroups on the running system, cannot be used across platforms, 699 * and may not reflect the actual latency. It is platform and implementation 700 * specific, so platform gets to decide its value. It would be nice if the 701 * number was at least proportional to make comparisons more meaningful though. 702 * NOTE: The numbers below are supposed to be load latencies for uncached 703 * memory divided by 10. 704 * 705 */ 706 int 707 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 708 { 709 /* 710 * Return min remote latency when there are more than two lgroups 711 * (root and child) and getting latency between two different lgroups 712 * or root is involved 713 */ 714 if (lgrp_optimizations() && (from != to || 715 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 716 return (42); 717 else 718 return (35); 719 } 720 721 /* 722 * Return platform handle for root lgroup 723 */ 724 lgrp_handle_t 725 plat_lgrp_root_hand(void) 726 { 727 if (mpo_disabled) 728 return (lgrp_default_handle); 729 730 return (LGRP_DEFAULT_HANDLE); 731 } 732 733 /*ARGSUSED*/ 734 void 735 plat_freelist_process(int mnode) 736 { 737 } 738 739 void 740 load_platform_drivers(void) 741 { 742 (void) i_ddi_attach_pseudo_node("dr"); 743 } 744 745 /* 746 * No platform drivers on this platform 747 */ 748 char *platform_module_list[] = { 749 (char *)0 750 }; 751 752 /*ARGSUSED*/ 753 void 754 plat_tod_fault(enum tod_fault_type tod_bad) 755 { 756 } 757 758 /*ARGSUSED*/ 759 void 760 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) 761 { 762 static void (*scf_panic_callback)(int); 763 static void (*scf_shutdown_callback)(int); 764 765 /* 766 * This is for notifing system panic/shutdown to SCF. 767 * In case of shutdown and panic, SCF call back 768 * function should be called. 769 * <SCF call back functions> 770 * scf_panic_callb() : panicsys()->panic_quiesce_hw() 771 * scf_shutdown_callb(): halt() or power_down() or reboot_machine() 772 * cpuid should be -1 and state should be SIGST_EXIT. 773 */ 774 if (state == SIGST_EXIT && cpuid == -1) { 775 776 /* 777 * find the symbol for the SCF panic callback routine in driver 778 */ 779 if (scf_panic_callback == NULL) 780 scf_panic_callback = (void (*)(int)) 781 modgetsymvalue("scf_panic_callb", 0); 782 if (scf_shutdown_callback == NULL) 783 scf_shutdown_callback = (void (*)(int)) 784 modgetsymvalue("scf_shutdown_callb", 0); 785 786 switch (sub_state) { 787 case SIGSUBST_PANIC: 788 if (scf_panic_callback == NULL) { 789 cmn_err(CE_NOTE, "!cpu_sgn_update: " 790 "scf_panic_callb not found\n"); 791 return; 792 } 793 scf_panic_callback(SIGSUBST_PANIC); 794 break; 795 796 case SIGSUBST_HALT: 797 if (scf_shutdown_callback == NULL) { 798 cmn_err(CE_NOTE, "!cpu_sgn_update: " 799 "scf_shutdown_callb not found\n"); 800 return; 801 } 802 scf_shutdown_callback(SIGSUBST_HALT); 803 break; 804 805 case SIGSUBST_ENVIRON: 806 if (scf_shutdown_callback == NULL) { 807 cmn_err(CE_NOTE, "!cpu_sgn_update: " 808 "scf_shutdown_callb not found\n"); 809 return; 810 } 811 scf_shutdown_callback(SIGSUBST_ENVIRON); 812 break; 813 814 case SIGSUBST_REBOOT: 815 if (scf_shutdown_callback == NULL) { 816 cmn_err(CE_NOTE, "!cpu_sgn_update: " 817 "scf_shutdown_callb not found\n"); 818 return; 819 } 820 scf_shutdown_callback(SIGSUBST_REBOOT); 821 break; 822 } 823 } 824 } 825 826 /*ARGSUSED*/ 827 int 828 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 829 int flt_in_memory, ushort_t flt_status, 830 char *buf, int buflen, int *lenp) 831 { 832 /* 833 * check if it's a Memory error. 834 */ 835 if (flt_in_memory) { 836 if (opl_get_mem_unum != NULL) { 837 return (opl_get_mem_unum(synd_code, flt_addr, buf, 838 buflen, lenp)); 839 } else { 840 return (ENOTSUP); 841 } 842 } else { 843 return (ENOTSUP); 844 } 845 } 846 847 /*ARGSUSED*/ 848 int 849 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 850 { 851 int ret = 0; 852 int sb; 853 int plen; 854 855 sb = opl_get_physical_board(LSB_ID(cpuid)); 856 if (sb == -1) { 857 return (ENXIO); 858 } 859 860 /* 861 * opl_cur_model is assigned here 862 */ 863 if (opl_cur_model == NULL) { 864 set_model_info(); 865 866 /* 867 * if not matched, return 868 */ 869 if (opl_cur_model == NULL) 870 return (ENODEV); 871 } 872 873 ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type)); 874 875 switch (opl_cur_model->model_type) { 876 case FF1: 877 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A", 878 CHIP_ID(cpuid) / 2); 879 break; 880 881 case FF2: 882 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B", 883 (CHIP_ID(cpuid) / 2) + (sb * 2)); 884 break; 885 886 case DC1: 887 case DC2: 888 case DC3: 889 plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb, 890 CHIP_ID(cpuid)); 891 break; 892 893 default: 894 /* This should never happen */ 895 return (ENODEV); 896 } 897 898 if (plen >= buflen) { 899 ret = ENOSPC; 900 } else { 901 if (lenp) 902 *lenp = strlen(buf); 903 } 904 return (ret); 905 } 906 907 void 908 plat_nodename_set(void) 909 { 910 post_xscf_msg((char *)&utsname, sizeof (struct utsname)); 911 } 912 913 caddr_t efcode_vaddr = NULL; 914 915 /* 916 * Preallocate enough memory for fcode claims. 917 */ 918 919 caddr_t 920 efcode_alloc(caddr_t alloc_base) 921 { 922 caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 923 MMU_PAGESIZE); 924 caddr_t vaddr; 925 926 /* 927 * allocate the physical memory for the Oberon fcode. 928 */ 929 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, 930 efcode_size, MMU_PAGESIZE)) == NULL) 931 cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); 932 933 efcode_vaddr = vaddr; 934 935 return (efcode_alloc_base + efcode_size); 936 } 937 938 caddr_t 939 plat_startup_memlist(caddr_t alloc_base) 940 { 941 caddr_t tmp_alloc_base; 942 943 tmp_alloc_base = efcode_alloc(alloc_base); 944 tmp_alloc_base = 945 (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); 946 return (tmp_alloc_base); 947 } 948 949 void 950 startup_platform(void) 951 { 952 if (clock_tick_threshold == 0) 953 clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD; 954 if (clock_tick_ncpus == 0) 955 clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS; 956 } 957 958 void 959 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info) 960 { 961 int impl; 962 963 impl = cpunodes[cpuid].implementation; 964 if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) { 965 info->mmu_idx = MMU_ID(cpuid); 966 info->mmu_nctxs = 8192; 967 } else { 968 cmn_err(CE_PANIC, "Unknown processor %d", impl); 969 } 970 } 971 972 int 973 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 974 { 975 if (opl_get_mem_sid == NULL) { 976 return (ENOTSUP); 977 } 978 return (opl_get_mem_sid(unum, buf, buflen, lenp)); 979 } 980 981 int 982 plat_get_mem_offset(uint64_t paddr, uint64_t *offp) 983 { 984 if (opl_get_mem_offset == NULL) { 985 return (ENOTSUP); 986 } 987 return (opl_get_mem_offset(paddr, offp)); 988 } 989 990 int 991 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 992 { 993 if (opl_get_mem_addr == NULL) { 994 return (ENOTSUP); 995 } 996 return (opl_get_mem_addr(unum, sid, offset, addrp)); 997 } 998 999 void 1000 plat_lock_delay(int *backoff) 1001 { 1002 int i; 1003 int cnt; 1004 int flag; 1005 int ctr; 1006 hrtime_t delay_start; 1007 /* 1008 * Platform specific lock delay code for OPL 1009 * 1010 * Using staged linear increases in the delay. 1011 * The sleep instruction is the preferred method of delay, 1012 * but is too large of granularity for the initial backoff. 1013 */ 1014 1015 if (*backoff == 0) *backoff = OPL_BOFF_BASE; 1016 1017 flag = !*backoff; 1018 1019 if (*backoff < OPL_BOFF_CAP1) { 1020 /* 1021 * If desired backoff is long enough, 1022 * use sleep for most of it 1023 */ 1024 for (cnt = *backoff; cnt >= OPL_BOFF_SLEEP; 1025 cnt -= OPL_BOFF_SLEEP) { 1026 cpu_smt_pause(); 1027 } 1028 /* 1029 * spin for small remainder of backoff 1030 * 1031 * fake call to nulldev included to prevent 1032 * compiler from optimizing out the spin loop 1033 */ 1034 for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) { 1035 if (flag) (void) nulldev(); 1036 } 1037 } else { 1038 /* backoff is very large. Fill it by sleeping */ 1039 delay_start = gethrtime(); 1040 cnt = *backoff/OPL_BOFF_SLEEP; 1041 /* 1042 * use sleep instructions for delay 1043 */ 1044 for (i = 0; i < cnt; i++) { 1045 cpu_smt_pause(); 1046 } 1047 1048 /* 1049 * Note: if the other strand executes a sleep instruction, 1050 * then the sleep ends immediately with a minimum time of 1051 * 42 clocks. We check gethrtime to insure we have 1052 * waited long enough. And we include both a short 1053 * spin loop and a sleep for any final delay time. 1054 */ 1055 1056 while ((gethrtime() - delay_start) < cnt * OPL_BOFF_TM) { 1057 cpu_smt_pause(); 1058 for (ctr = OPL_BOFF_SPIN; ctr; ctr--) { 1059 if (flag) (void) nulldev(); 1060 } 1061 } 1062 } 1063 1064 /* 1065 * We adjust the backoff in three linear stages 1066 * The initial stage has small increases as this phase is 1067 * usually handle locks with light contention. We don't want 1068 * to have a long backoff on a lock that is available. 1069 * 1070 * In the second stage, we are in transition, unsure whether 1071 * the lock is under heavy contention. As the failures to 1072 * obtain the lock increase, we back off further. 1073 * 1074 * For the final stage, we are in a heavily contended or 1075 * long held long so we want to reduce the number of tries. 1076 */ 1077 if (*backoff < OPL_BOFF_CAP1) { 1078 *backoff += 1; 1079 } else { 1080 if (*backoff < OPL_BOFF_CAP2) { 1081 *backoff += OPL_BOFF_SLEEP; 1082 } else { 1083 *backoff += 2 * OPL_BOFF_SLEEP; 1084 } 1085 if (*backoff > OPL_BOFF_MAX) { 1086 *backoff = OPL_BOFF_MAX; 1087 } 1088 } 1089 } 1090 1091 /* 1092 * The following code implements asynchronous call to XSCF to setup the 1093 * domain node name. 1094 */ 1095 1096 #define FREE_MSG(m) kmem_free((m), NM_LEN((m)->len)) 1097 1098 /* 1099 * The following three macros define the all operations on the request 1100 * list we are using here, and hide the details of the list 1101 * implementation from the code. 1102 */ 1103 #define PUSH(m) \ 1104 { \ 1105 (m)->next = ctl_msg.head; \ 1106 (m)->prev = NULL; \ 1107 if ((m)->next != NULL) \ 1108 (m)->next->prev = (m); \ 1109 ctl_msg.head = (m); \ 1110 } 1111 1112 #define REMOVE(m) \ 1113 { \ 1114 if ((m)->prev != NULL) \ 1115 (m)->prev->next = (m)->next; \ 1116 else \ 1117 ctl_msg.head = (m)->next; \ 1118 if ((m)->next != NULL) \ 1119 (m)->next->prev = (m)->prev; \ 1120 } 1121 1122 #define FREE_THE_TAIL(head) \ 1123 { \ 1124 nm_msg_t *n_msg, *m; \ 1125 m = (head)->next; \ 1126 (head)->next = NULL; \ 1127 while (m != NULL) { \ 1128 n_msg = m->next; \ 1129 FREE_MSG(m); \ 1130 m = n_msg; \ 1131 } \ 1132 } 1133 1134 #define SCF_PUTINFO(f, s, p) \ 1135 f(KEY_ESCF, 0x01, 0, s, p) 1136 1137 #define PASS2XSCF(m, r) ((r = SCF_PUTINFO(ctl_msg.scf_service_function, \ 1138 (m)->len, (m)->data)) == 0) 1139 1140 /* 1141 * The value of the following macro loosely depends on the 1142 * value of the "device busy" timeout used in the SCF driver. 1143 * (See pass2xscf_thread()). 1144 */ 1145 #define SCF_DEVBUSY_DELAY 10 1146 1147 /* 1148 * The default number of attempts to contact the scf driver 1149 * if we cannot fetch any information about the timeout value 1150 * it uses. 1151 */ 1152 1153 #define REPEATS 4 1154 1155 typedef struct nm_msg { 1156 struct nm_msg *next; 1157 struct nm_msg *prev; 1158 int len; 1159 char data[1]; 1160 } nm_msg_t; 1161 1162 #define NM_LEN(len) (sizeof (nm_msg_t) + (len) - 1) 1163 1164 static struct ctlmsg { 1165 nm_msg_t *head; 1166 nm_msg_t *now_serving; 1167 kmutex_t nm_lock; 1168 kthread_t *nmt; 1169 int cnt; 1170 int (*scf_service_function)(uint32_t, uint8_t, 1171 uint32_t, uint32_t, void *); 1172 } ctl_msg; 1173 1174 static void 1175 post_xscf_msg(char *dp, int len) 1176 { 1177 nm_msg_t *msg; 1178 1179 msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP); 1180 1181 bcopy(dp, msg->data, len); 1182 msg->len = len; 1183 1184 mutex_enter(&ctl_msg.nm_lock); 1185 if (ctl_msg.nmt == NULL) { 1186 ctl_msg.nmt = thread_create(NULL, 0, pass2xscf_thread, 1187 NULL, 0, &p0, TS_RUN, minclsyspri); 1188 } 1189 1190 PUSH(msg); 1191 ctl_msg.cnt++; 1192 mutex_exit(&ctl_msg.nm_lock); 1193 } 1194 1195 static void 1196 pass2xscf_thread() 1197 { 1198 nm_msg_t *msg; 1199 int ret; 1200 uint_t i, msg_sent, xscf_driver_delay; 1201 static uint_t repeat_cnt; 1202 uint_t *scf_wait_cnt; 1203 1204 mutex_enter(&ctl_msg.nm_lock); 1205 1206 /* 1207 * Find the address of the SCF put routine if it's not done yet. 1208 */ 1209 if (ctl_msg.scf_service_function == NULL) { 1210 if ((ctl_msg.scf_service_function = 1211 (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) 1212 modgetsymvalue("scf_service_putinfo", 0)) == NULL) { 1213 cmn_err(CE_NOTE, "pass2xscf_thread: " 1214 "scf_service_putinfo not found\n"); 1215 ctl_msg.nmt = NULL; 1216 mutex_exit(&ctl_msg.nm_lock); 1217 return; 1218 } 1219 } 1220 1221 /* 1222 * Calculate the number of attempts to connect XSCF based on the 1223 * scf driver delay (which is 1224 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value 1225 * of xscf_connect_delay (the total number of seconds to wait 1226 * till xscf get ready.) 1227 */ 1228 if (repeat_cnt == 0) { 1229 if ((scf_wait_cnt = 1230 (uint_t *) 1231 modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) { 1232 repeat_cnt = REPEATS; 1233 } else { 1234 1235 xscf_driver_delay = *scf_wait_cnt * 1236 SCF_DEVBUSY_DELAY; 1237 repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1; 1238 } 1239 } 1240 1241 while (ctl_msg.cnt != 0) { 1242 1243 /* 1244 * Take the very last request from the queue, 1245 */ 1246 ctl_msg.now_serving = ctl_msg.head; 1247 ASSERT(ctl_msg.now_serving != NULL); 1248 1249 /* 1250 * and discard all the others if any. 1251 */ 1252 FREE_THE_TAIL(ctl_msg.now_serving); 1253 ctl_msg.cnt = 1; 1254 mutex_exit(&ctl_msg.nm_lock); 1255 1256 /* 1257 * Pass the name to XSCF. Note please, we do not hold the 1258 * mutex while we are doing this. 1259 */ 1260 msg_sent = 0; 1261 for (i = 0; i < repeat_cnt; i++) { 1262 if (PASS2XSCF(ctl_msg.now_serving, ret)) { 1263 msg_sent = 1; 1264 break; 1265 } else { 1266 if (ret != EBUSY) { 1267 cmn_err(CE_NOTE, "pass2xscf_thread:" 1268 " unexpected return code" 1269 " from scf_service_putinfo():" 1270 " %d\n", ret); 1271 } 1272 } 1273 } 1274 1275 if (msg_sent) { 1276 1277 /* 1278 * Remove the request from the list 1279 */ 1280 mutex_enter(&ctl_msg.nm_lock); 1281 msg = ctl_msg.now_serving; 1282 ctl_msg.now_serving = NULL; 1283 REMOVE(msg); 1284 ctl_msg.cnt--; 1285 mutex_exit(&ctl_msg.nm_lock); 1286 FREE_MSG(msg); 1287 } else { 1288 1289 /* 1290 * If while we have tried to communicate with 1291 * XSCF there were any other requests we are 1292 * going to drop this one and take the latest 1293 * one. Otherwise we will try to pass this one 1294 * again. 1295 */ 1296 cmn_err(CE_NOTE, 1297 "pass2xscf_thread: " 1298 "scf_service_putinfo " 1299 "not responding\n"); 1300 } 1301 mutex_enter(&ctl_msg.nm_lock); 1302 } 1303 1304 /* 1305 * The request queue is empty, exit. 1306 */ 1307 ctl_msg.nmt = NULL; 1308 mutex_exit(&ctl_msg.nm_lock); 1309 } 1310