1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/cpuvar.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/promif.h> 32 #include <sys/platform_module.h> 33 #include <sys/cmn_err.h> 34 #include <sys/errno.h> 35 #include <sys/machsystm.h> 36 #include <sys/bootconf.h> 37 #include <sys/nvpair.h> 38 #include <sys/kobj.h> 39 #include <sys/mem_cage.h> 40 #include <sys/opl.h> 41 #include <sys/scfd/scfostoescf.h> 42 #include <sys/cpu_sgnblk_defs.h> 43 #include <sys/utsname.h> 44 #include <sys/ddi.h> 45 #include <sys/sunndi.h> 46 #include <sys/lgrp.h> 47 #include <sys/memnode.h> 48 #include <sys/sysmacros.h> 49 #include <vm/vm_dep.h> 50 51 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); 52 53 /* Memory for fcode claims. 16k times # maximum possible IO units */ 54 #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) 55 int efcode_size = EFCODE_SIZE; 56 57 #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ 58 59 /* Set the maximum number of boards for DR */ 60 int opl_boards = OPL_MAX_BOARDS; 61 62 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); 63 64 extern int tsb_lgrp_affinity; 65 66 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * 67 (OPL_MAX_TSBS_PER_PCICH); 68 69 pgcnt_t opl_startup_cage_size = 0; 70 71 static struct memlist *opl_memlist_per_board(struct memlist *ml); 72 73 int 74 set_platform_max_ncpus(void) 75 { 76 return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); 77 } 78 79 int 80 set_platform_tsb_spares(void) 81 { 82 return (MIN(opl_tsb_spares, MAX_UPA)); 83 } 84 85 #pragma weak mmu_init_large_pages 86 87 void 88 set_platform_defaults(void) 89 { 90 extern char *tod_module_name; 91 extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); 92 extern int ts_dispatch_extended; 93 extern void mmu_init_large_pages(size_t); 94 95 /* Set the CPU signature function pointer */ 96 cpu_sgn_func = cpu_sgn_update; 97 98 /* Set appropriate tod module for OPL platform */ 99 ASSERT(tod_module_name == NULL); 100 tod_module_name = "todopl"; 101 102 /* 103 * Use the alternate TS dispatch table, which is better tuned 104 * for large servers. 105 */ 106 if (ts_dispatch_extended == -1) 107 ts_dispatch_extended = 1; 108 109 if ((mmu_page_sizes == max_mmu_page_sizes) && 110 (mmu_ism_pagesize != MMU_PAGESIZE32M)) { 111 if (&mmu_init_large_pages) 112 mmu_init_large_pages(mmu_ism_pagesize); 113 } 114 115 tsb_lgrp_affinity = 1; 116 } 117 118 /* 119 * Convert logical a board number to a physical one. 120 */ 121 122 #define LSBPROP "board#" 123 #define PSBPROP "physical-board#" 124 125 int 126 opl_get_physical_board(int id) 127 { 128 dev_info_t *root_dip, *dip = NULL; 129 char *dname = NULL; 130 int circ; 131 132 pnode_t pnode; 133 char pname[MAXSYSNAME] = {0}; 134 135 int lsb_id; /* Logical System Board ID */ 136 int psb_id; /* Physical System Board ID */ 137 138 139 /* 140 * This function is called on early stage of bootup when the 141 * kernel device tree is not initialized yet, and also 142 * later on when the device tree is up. We want to try 143 * the fast track first. 144 */ 145 root_dip = ddi_root_node(); 146 if (root_dip) { 147 /* Get from devinfo node */ 148 ndi_devi_enter(root_dip, &circ); 149 for (dip = ddi_get_child(root_dip); dip; 150 dip = ddi_get_next_sibling(dip)) { 151 152 dname = ddi_node_name(dip); 153 if (strncmp(dname, "pseudo-mc", 9) != 0) 154 continue; 155 156 if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, 157 DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) 158 continue; 159 160 if (id == lsb_id) { 161 if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, 162 dip, DDI_PROP_DONTPASS, PSBPROP, -1)) 163 == -1) { 164 ndi_devi_exit(root_dip, circ); 165 return (-1); 166 } else { 167 ndi_devi_exit(root_dip, circ); 168 return (psb_id); 169 } 170 } 171 } 172 ndi_devi_exit(root_dip, circ); 173 } 174 175 /* 176 * We do not have the kernel device tree, or we did not 177 * find the node for some reason (let's say the kernel 178 * device tree was modified), let's try the OBP tree. 179 */ 180 pnode = prom_rootnode(); 181 for (pnode = prom_childnode(pnode); pnode; 182 pnode = prom_nextnode(pnode)) { 183 184 if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || 185 (strncmp(pname, "pseudo-mc", 9) != 0)) 186 continue; 187 188 if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) 189 continue; 190 191 if (id == lsb_id) { 192 if (prom_getprop(pnode, PSBPROP, 193 (caddr_t)&psb_id) == -1) { 194 return (-1); 195 } else { 196 return (psb_id); 197 } 198 } 199 } 200 201 return (-1); 202 } 203 204 /* 205 * For OPL it's possible that memory from two or more successive boards 206 * will be contiguous across the boards, and therefore represented as a 207 * single chunk. 208 * This function splits such chunks down the board boundaries. 209 */ 210 static struct memlist * 211 opl_memlist_per_board(struct memlist *ml) 212 { 213 uint64_t ssize, low, high, boundary; 214 struct memlist *head, *tail, *new; 215 216 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 217 218 head = tail = NULL; 219 220 for (; ml; ml = ml->next) { 221 low = (uint64_t)ml->address; 222 high = low+(uint64_t)(ml->size); 223 while (low < high) { 224 boundary = roundup(low+1, ssize); 225 boundary = MIN(high, boundary); 226 new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); 227 new->address = low; 228 new->size = boundary - low; 229 if (head == NULL) 230 head = new; 231 if (tail) { 232 tail->next = new; 233 new->prev = tail; 234 } 235 tail = new; 236 low = boundary; 237 } 238 } 239 return (head); 240 } 241 242 void 243 set_platform_cage_params(void) 244 { 245 extern pgcnt_t total_pages; 246 extern struct memlist *phys_avail; 247 struct memlist *ml, *tml; 248 int ret; 249 250 if (kernel_cage_enable) { 251 pgcnt_t preferred_cage_size; 252 253 preferred_cage_size = 254 MAX(opl_startup_cage_size, total_pages / 256); 255 256 ml = opl_memlist_per_board(phys_avail); 257 258 kcage_range_lock(); 259 /* 260 * Note: we are assuming that post has load the 261 * whole show in to the high end of memory. Having 262 * taken this leap, we copy the whole of phys_avail 263 * the glist and arrange for the cage to grow 264 * downward (descending pfns). 265 */ 266 ret = kcage_range_init(ml, 1); 267 268 /* free the memlist */ 269 do { 270 tml = ml->next; 271 kmem_free(ml, sizeof (struct memlist)); 272 ml = tml; 273 } while (ml != NULL); 274 275 if (ret == 0) 276 kcage_init(preferred_cage_size); 277 kcage_range_unlock(); 278 } 279 280 if (kcage_on) 281 cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); 282 else 283 cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); 284 } 285 286 /*ARGSUSED*/ 287 int 288 plat_cpu_poweron(struct cpu *cp) 289 { 290 int (*opl_cpu_poweron)(struct cpu *) = NULL; 291 292 opl_cpu_poweron = 293 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); 294 295 if (opl_cpu_poweron == NULL) 296 return (ENOTSUP); 297 else 298 return ((opl_cpu_poweron)(cp)); 299 300 } 301 302 /*ARGSUSED*/ 303 int 304 plat_cpu_poweroff(struct cpu *cp) 305 { 306 int (*opl_cpu_poweroff)(struct cpu *) = NULL; 307 308 opl_cpu_poweroff = 309 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); 310 311 if (opl_cpu_poweroff == NULL) 312 return (ENOTSUP); 313 else 314 return ((opl_cpu_poweroff)(cp)); 315 316 } 317 318 int 319 plat_max_boards(void) 320 { 321 return (OPL_MAX_BOARDS); 322 } 323 324 int 325 plat_max_cpu_units_per_board(void) 326 { 327 return (OPL_MAX_CPU_PER_BOARD); 328 } 329 330 int 331 plat_max_mem_units_per_board(void) 332 { 333 return (OPL_MAX_MEM_UNITS_PER_BOARD); 334 } 335 336 int 337 plat_max_io_units_per_board(void) 338 { 339 return (OPL_MAX_IO_UNITS_PER_BOARD); 340 } 341 342 int 343 plat_max_cmp_units_per_board(void) 344 { 345 return (OPL_MAX_CMP_UNITS_PER_BOARD); 346 } 347 348 int 349 plat_max_core_units_per_board(void) 350 { 351 return (OPL_MAX_CORE_UNITS_PER_BOARD); 352 } 353 354 int 355 plat_pfn_to_mem_node(pfn_t pfn) 356 { 357 return (pfn >> mem_node_pfn_shift); 358 } 359 360 /* ARGSUSED */ 361 void 362 plat_build_mem_nodes(u_longlong_t *list, size_t nelems) 363 { 364 size_t elem; 365 pfn_t basepfn; 366 pgcnt_t npgs; 367 uint64_t boundary, ssize; 368 uint64_t low, high; 369 370 /* 371 * OPL mem slices are always aligned on a 256GB boundary. 372 */ 373 mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; 374 mem_node_physalign = 0; 375 376 /* 377 * Boot install lists are arranged <addr, len>, <addr, len>, ... 378 */ 379 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 380 for (elem = 0; elem < nelems; elem += 2) { 381 low = (uint64_t)list[elem]; 382 high = low+(uint64_t)(list[elem+1]); 383 while (low < high) { 384 boundary = roundup(low+1, ssize); 385 boundary = MIN(high, boundary); 386 basepfn = btop(low); 387 npgs = btop(boundary - low); 388 mem_node_add_slice(basepfn, basepfn + npgs - 1); 389 low = boundary; 390 } 391 } 392 } 393 394 /* 395 * Find the CPU associated with a slice at boot-time. 396 */ 397 void 398 plat_fill_mc(pnode_t nodeid) 399 { 400 int board; 401 int memnode; 402 struct { 403 uint64_t addr; 404 uint64_t size; 405 } mem_range; 406 407 if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { 408 panic("Can not find board# property in mc node %x", nodeid); 409 } 410 if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { 411 panic("Can not find sb-mem-ranges property in mc node %x", 412 nodeid); 413 } 414 memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; 415 plat_assign_lgrphand_to_mem_node(board, memnode); 416 } 417 418 /* 419 * Return the platform handle for the lgroup containing the given CPU 420 * 421 * For OPL, lgroup platform handle == board #. 422 */ 423 424 extern int mpo_disabled; 425 extern lgrp_handle_t lgrp_default_handle; 426 427 lgrp_handle_t 428 plat_lgrp_cpu_to_hand(processorid_t id) 429 { 430 lgrp_handle_t plathand; 431 432 /* 433 * Return the real platform handle for the CPU until 434 * such time as we know that MPO should be disabled. 435 * At that point, we set the "mpo_disabled" flag to true, 436 * and from that point on, return the default handle. 437 * 438 * By the time we know that MPO should be disabled, the 439 * first CPU will have already been added to a leaf 440 * lgroup, but that's ok. The common lgroup code will 441 * double check that the boot CPU is in the correct place, 442 * and in the case where mpo should be disabled, will move 443 * it to the root if necessary. 444 */ 445 if (mpo_disabled) { 446 /* If MPO is disabled, return the default (UMA) handle */ 447 plathand = lgrp_default_handle; 448 } else 449 plathand = (lgrp_handle_t)LSB_ID(id); 450 return (plathand); 451 } 452 453 /* 454 * Platform specific lgroup initialization 455 */ 456 void 457 plat_lgrp_init(void) 458 { 459 extern uint32_t lgrp_expand_proc_thresh; 460 extern uint32_t lgrp_expand_proc_diff; 461 462 /* 463 * Set tuneables for the OPL architecture 464 * 465 * lgrp_expand_proc_thresh is the minimum load on the lgroups 466 * this process is currently running on before considering 467 * expanding threads to another lgroup. 468 * 469 * lgrp_expand_proc_diff determines how much less the remote lgroup 470 * must be loaded before expanding to it. 471 * 472 * Since remote latencies can be costly, attempt to keep 3 threads 473 * within the same lgroup before expanding to the next lgroup. 474 */ 475 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3; 476 lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX; 477 } 478 479 /* 480 * Platform notification of lgroup (re)configuration changes 481 */ 482 /*ARGSUSED*/ 483 void 484 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) 485 { 486 update_membounds_t *umb; 487 lgrp_config_mem_rename_t lmr; 488 int sbd, tbd; 489 lgrp_handle_t hand, shand, thand; 490 int mnode, snode, tnode; 491 pfn_t start, end; 492 493 if (mpo_disabled) 494 return; 495 496 switch (evt) { 497 498 case LGRP_CONFIG_MEM_ADD: 499 /* 500 * Establish the lgroup handle to memnode translation. 501 */ 502 umb = (update_membounds_t *)arg; 503 504 hand = umb->u_board; 505 mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); 506 plat_assign_lgrphand_to_mem_node(hand, mnode); 507 508 break; 509 510 case LGRP_CONFIG_MEM_DEL: 511 /* 512 * Special handling for possible memory holes. 513 */ 514 umb = (update_membounds_t *)arg; 515 hand = umb->u_board; 516 if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { 517 if (mem_node_config[mnode].exists) { 518 start = mem_node_config[mnode].physbase; 519 end = mem_node_config[mnode].physmax; 520 mem_node_pre_del_slice(start, end); 521 mem_node_post_del_slice(start, end, 0); 522 } 523 } 524 525 break; 526 527 case LGRP_CONFIG_MEM_RENAME: 528 /* 529 * During a DR copy-rename operation, all of the memory 530 * on one board is moved to another board -- but the 531 * addresses/pfns and memnodes don't change. This means 532 * the memory has changed locations without changing identity. 533 * 534 * Source is where we are copying from and target is where we 535 * are copying to. After source memnode is copied to target 536 * memnode, the physical addresses of the target memnode are 537 * renamed to match what the source memnode had. Then target 538 * memnode can be removed and source memnode can take its 539 * place. 540 * 541 * To do this, swap the lgroup handle to memnode mappings for 542 * the boards, so target lgroup will have source memnode and 543 * source lgroup will have empty target memnode which is where 544 * its memory will go (if any is added to it later). 545 * 546 * Then source memnode needs to be removed from its lgroup 547 * and added to the target lgroup where the memory was living 548 * but under a different name/memnode. The memory was in the 549 * target memnode and now lives in the source memnode with 550 * different physical addresses even though it is the same 551 * memory. 552 */ 553 sbd = arg & 0xffff; 554 tbd = (arg & 0xffff0000) >> 16; 555 shand = sbd; 556 thand = tbd; 557 snode = plat_lgrphand_to_mem_node(shand); 558 tnode = plat_lgrphand_to_mem_node(thand); 559 560 /* 561 * Special handling for possible memory holes. 562 */ 563 if (tnode != -1 && mem_node_config[tnode].exists) { 564 start = mem_node_config[mnode].physbase; 565 end = mem_node_config[mnode].physmax; 566 mem_node_pre_del_slice(start, end); 567 mem_node_post_del_slice(start, end, 0); 568 } 569 570 plat_assign_lgrphand_to_mem_node(thand, snode); 571 plat_assign_lgrphand_to_mem_node(shand, tnode); 572 573 lmr.lmem_rename_from = shand; 574 lmr.lmem_rename_to = thand; 575 576 /* 577 * Remove source memnode of copy rename from its lgroup 578 * and add it to its new target lgroup 579 */ 580 lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, 581 (uintptr_t)&lmr); 582 583 break; 584 585 default: 586 break; 587 } 588 } 589 590 /* 591 * Return latency between "from" and "to" lgroups 592 * 593 * This latency number can only be used for relative comparison 594 * between lgroups on the running system, cannot be used across platforms, 595 * and may not reflect the actual latency. It is platform and implementation 596 * specific, so platform gets to decide its value. It would be nice if the 597 * number was at least proportional to make comparisons more meaningful though. 598 * NOTE: The numbers below are supposed to be load latencies for uncached 599 * memory divided by 10. 600 * 601 * XXX latency values for Columbus, not Columbus2. Should be fixed later when 602 * we know the actual numbers for Columbus2. 603 */ 604 int 605 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 606 { 607 /* 608 * Return min remote latency when there are more than two lgroups 609 * (root and child) and getting latency between two different lgroups 610 * or root is involved 611 */ 612 if (lgrp_optimizations() && (from != to || 613 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 614 return (27); 615 else 616 return (25); 617 } 618 619 /* 620 * Return platform handle for root lgroup 621 */ 622 lgrp_handle_t 623 plat_lgrp_root_hand(void) 624 { 625 if (mpo_disabled) 626 return (lgrp_default_handle); 627 628 return (LGRP_DEFAULT_HANDLE); 629 } 630 631 /*ARGSUSED*/ 632 void 633 plat_freelist_process(int mnode) 634 { 635 } 636 637 void 638 load_platform_drivers(void) 639 { 640 (void) i_ddi_attach_pseudo_node("dr"); 641 } 642 643 /* 644 * No platform drivers on this platform 645 */ 646 char *platform_module_list[] = { 647 (char *)0 648 }; 649 650 /*ARGSUSED*/ 651 void 652 plat_tod_fault(enum tod_fault_type tod_bad) 653 { 654 } 655 656 /*ARGSUSED*/ 657 void 658 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) 659 { 660 static void (*scf_panic_callback)(int); 661 static void (*scf_shutdown_callback)(int); 662 663 /* 664 * This is for notifing system panic/shutdown to SCF. 665 * In case of shutdown and panic, SCF call back 666 * function should be called. 667 * <SCF call back functions> 668 * scf_panic_callb() : panicsys()->panic_quiesce_hw() 669 * scf_shutdown_callb(): halt() or power_down() or reboot_machine() 670 * cpuid should be -1 and state should be SIGST_EXIT. 671 */ 672 if (state == SIGST_EXIT && cpuid == -1) { 673 674 /* 675 * find the symbol for the SCF panic callback routine in driver 676 */ 677 if (scf_panic_callback == NULL) 678 scf_panic_callback = (void (*)(int)) 679 modgetsymvalue("scf_panic_callb", 0); 680 if (scf_shutdown_callback == NULL) 681 scf_shutdown_callback = (void (*)(int)) 682 modgetsymvalue("scf_shutdown_callb", 0); 683 684 switch (sub_state) { 685 case SIGSUBST_PANIC: 686 if (scf_panic_callback == NULL) { 687 cmn_err(CE_NOTE, "!cpu_sgn_update: " 688 "scf_panic_callb not found\n"); 689 return; 690 } 691 scf_panic_callback(SIGSUBST_PANIC); 692 break; 693 694 case SIGSUBST_HALT: 695 if (scf_shutdown_callback == NULL) { 696 cmn_err(CE_NOTE, "!cpu_sgn_update: " 697 "scf_shutdown_callb not found\n"); 698 return; 699 } 700 scf_shutdown_callback(SIGSUBST_HALT); 701 break; 702 703 case SIGSUBST_ENVIRON: 704 if (scf_shutdown_callback == NULL) { 705 cmn_err(CE_NOTE, "!cpu_sgn_update: " 706 "scf_shutdown_callb not found\n"); 707 return; 708 } 709 scf_shutdown_callback(SIGSUBST_ENVIRON); 710 break; 711 712 case SIGSUBST_REBOOT: 713 if (scf_shutdown_callback == NULL) { 714 cmn_err(CE_NOTE, "!cpu_sgn_update: " 715 "scf_shutdown_callb not found\n"); 716 return; 717 } 718 scf_shutdown_callback(SIGSUBST_REBOOT); 719 break; 720 } 721 } 722 } 723 724 /*ARGSUSED*/ 725 int 726 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 727 int flt_in_memory, ushort_t flt_status, 728 char *buf, int buflen, int *lenp) 729 { 730 /* 731 * check if it's a Memory error. 732 */ 733 if (flt_in_memory) { 734 if (opl_get_mem_unum != NULL) { 735 return (opl_get_mem_unum(synd_code, flt_addr, 736 buf, buflen, lenp)); 737 } else { 738 return (ENOTSUP); 739 } 740 } else { 741 return (ENOTSUP); 742 } 743 } 744 745 /*ARGSUSED*/ 746 int 747 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 748 { 749 uint_t sb; 750 751 sb = opl_get_physical_board(LSB_ID(cpuid)); 752 if (sb == -1) { 753 return (ENXIO); 754 } 755 756 if (snprintf(buf, buflen, "CMU%d", sb) >= buflen) { 757 return (ENOSPC); 758 } else { 759 if (lenp) 760 *lenp = strlen(buf); 761 return (0); 762 } 763 } 764 765 #define SCF_PUTINFO(f, s, p) \ 766 f(KEY_ESCF, 0x01, 0, s, p) 767 void 768 plat_nodename_set(void) 769 { 770 void *datap; 771 static int (*scf_service_function)(uint32_t, uint8_t, 772 uint32_t, uint32_t, void *); 773 int counter = 5; 774 775 /* 776 * find the symbol for the SCF put routine in driver 777 */ 778 if (scf_service_function == NULL) 779 scf_service_function = 780 (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) 781 modgetsymvalue("scf_service_putinfo", 0); 782 783 /* 784 * If the symbol was found, call it. Otherwise, log a note (but not to 785 * the console). 786 */ 787 788 if (scf_service_function == NULL) { 789 cmn_err(CE_NOTE, 790 "!plat_nodename_set: scf_service_putinfo not found\n"); 791 return; 792 } 793 794 datap = 795 (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP); 796 797 if (datap == NULL) { 798 return; 799 } 800 801 bcopy((struct utsname *)&utsname, 802 (struct utsname *)datap, sizeof (struct utsname)); 803 804 while ((SCF_PUTINFO(scf_service_function, 805 sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) { 806 delay(10 * drv_usectohz(1000000)); 807 } 808 if (counter == 0) 809 cmn_err(CE_NOTE, 810 "!plat_nodename_set: " 811 "scf_service_putinfo not responding\n"); 812 813 kmem_free(datap, sizeof (struct utsname)); 814 } 815 816 caddr_t efcode_vaddr = NULL; 817 818 /* 819 * Preallocate enough memory for fcode claims. 820 */ 821 822 caddr_t 823 efcode_alloc(caddr_t alloc_base) 824 { 825 caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 826 MMU_PAGESIZE); 827 caddr_t vaddr; 828 829 /* 830 * allocate the physical memory for the Oberon fcode. 831 */ 832 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, 833 efcode_size, MMU_PAGESIZE)) == NULL) 834 cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); 835 836 efcode_vaddr = vaddr; 837 838 return (efcode_alloc_base + efcode_size); 839 } 840 841 caddr_t 842 plat_startup_memlist(caddr_t alloc_base) 843 { 844 caddr_t tmp_alloc_base; 845 846 tmp_alloc_base = efcode_alloc(alloc_base); 847 tmp_alloc_base = 848 (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); 849 return (tmp_alloc_base); 850 } 851 852 void 853 startup_platform(void) 854 { 855 } 856