xref: /titanic_51/usr/src/uts/sun4u/io/todbq4802.c (revision 06e46062ef4f5f4b687cbafb4518fb123fe23920)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * tod driver module for TI BQ4802 part
31  *
32  * Note: The way to access the bq4802's RTC registers is different than
33  * the previous RTC devices (m5823, m5819p, ds1287, etc) that we used.
34  * The address returns from OBP is mapped directly to the bq4802's RTC
35  * registers. To read/write the data from/to the bq4802 registers, one
36  * just add the register offset to the base address.
37  * To access the previous RTC devices, we write the register index to
38  * the address port (v_rtc_addr_reg) then read/write the data from/to
39  * the data port (v_rtc_data_reg).
40  */
41 
42 #include <sys/types.h>
43 #include <sys/conf.h>
44 #include <sys/kmem.h>
45 #include <sys/open.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/sysmacros.h>
49 
50 #include <sys/todbq4802.h>
51 #include <sys/modctl.h>
52 #include <sys/stat.h>
53 #include <sys/clock.h>
54 #include <sys/reboot.h>
55 #include <sys/machsystm.h>
56 
57 /*
58  * tod_ops entry routines
59  */
60 static timestruc_t	todbq4802_get(void);
61 static void		todbq4802_set(timestruc_t);
62 static uint_t		todbq4802_set_watchdog_timer(uint_t);
63 static uint_t		todbq4802_clear_watchdog_timer(void);
64 static void		todbq4802_set_power_alarm(timestruc_t);
65 static void		todbq4802_clear_power_alarm(void);
66 static uint64_t		todbq4802_get_cpufrequency(void);
67 
68 extern uint64_t		find_cpufrequency(volatile uint8_t *);
69 
70 /*
71  * External variables
72  */
73 extern int watchdog_enable;
74 extern int watchdog_available;
75 extern int boothowto;
76 
77 /*
78  * Global variables
79  */
80 int bq4802_debug_flags;
81 uint_t bq4802_hrestime_count = 0;
82 uint_t bq4802_uip_count = 0;
83 
84 /*
85  * Module linkage information for the kernel.
86  */
87 static struct modlmisc modlmisc = {
88 	&mod_miscops, "tod module for TI BQ4802"
89 };
90 
91 static struct modlinkage modlinkage = {
92 	MODREV_1, (void *)&modlmisc, NULL
93 };
94 
95 static void read_rtc(struct rtc_t *);
96 static void write_rtc_time(struct rtc_t *);
97 static void write_rtc_alarm(struct rtc_t *);
98 
99 int
100 _init(void)
101 {
102 	if (strcmp(tod_module_name, "todbq4802") == 0) {
103 		if (v_rtc_addr_reg == NULL)
104 			cmn_err(CE_PANIC, "addr not set, cannot read RTC\n");
105 
106 		BQ4802_DATA_REG(RTC_CNTRL) = (RTC_DSE | RTC_HM | RTC_STOP_N);
107 
108 		/* Clear AF flag by reading reg Flags (D) */
109 		(void) BQ4802_DATA_REG(RTC_FLAGS);
110 
111 		tod_ops.tod_get = todbq4802_get;
112 		tod_ops.tod_set = todbq4802_set;
113 		tod_ops.tod_set_watchdog_timer =
114 		    todbq4802_set_watchdog_timer;
115 		tod_ops.tod_clear_watchdog_timer =
116 		    todbq4802_clear_watchdog_timer;
117 		tod_ops.tod_set_power_alarm = todbq4802_set_power_alarm;
118 		tod_ops.tod_clear_power_alarm = todbq4802_clear_power_alarm;
119 		tod_ops.tod_get_cpufrequency = todbq4802_get_cpufrequency;
120 
121 		/*
122 		 * check if hardware watchdog timer is available and user
123 		 * enabled it.
124 		 */
125 		if (watchdog_enable) {
126 			if (!watchdog_available) {
127 				cmn_err(CE_WARN, "bq4802: Hardware watchdog "
128 				    "unavailable");
129 			} else if (boothowto & RB_DEBUG) {
130 				cmn_err(CE_WARN, "bq4802: Hardware watchdog"
131 				    " disabled [debugger]");
132 			}
133 		}
134 	}
135 
136 	return (mod_install(&modlinkage));
137 }
138 
139 int
140 _fini(void)
141 {
142 	if (strcmp(tod_module_name, "todbq4802") == 0)
143 		return (EBUSY);
144 
145 	return (mod_remove(&modlinkage));
146 }
147 
148 /*
149  * The loadable-module _info(9E) entry point
150  */
151 int
152 _info(struct modinfo *modinfop)
153 {
154 	return (mod_info(&modlinkage, modinfop));
155 }
156 
157 /*
158  * Read the current time from the clock chip and convert to UNIX form.
159  * Assumes that the year in the clock chip is valid.
160  * Must be called with tod_lock held.
161  */
162 static timestruc_t
163 todbq4802_get(void)
164 {
165 	timestruc_t ts;
166 	todinfo_t tod;
167 	struct rtc_t rtc;
168 
169 	ASSERT(MUTEX_HELD(&tod_lock));
170 
171 	read_rtc(&rtc);
172 	DPRINTF("todbq4802_get: century=%d year=%d dom=%d hrs=%d min=%d"
173 	    " sec=%d\n", rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom,
174 	    rtc.rtc_hrs, rtc.rtc_min, rtc.rtc_sec);
175 
176 	/*
177 	 * tod_year is base 1900 so this code needs to adjust the true
178 	 * year retrieved from the rtc's century and year fields.
179 	 */
180 	tod.tod_year	= rtc.rtc_year + (rtc.rtc_century * 100) - 1900;
181 	tod.tod_month	= rtc.rtc_mon;
182 	tod.tod_day	= rtc.rtc_dom;
183 	tod.tod_dow	= rtc.rtc_dow;
184 	tod.tod_hour	= rtc.rtc_hrs;
185 	tod.tod_min	= rtc.rtc_min;
186 	tod.tod_sec	= rtc.rtc_sec;
187 
188 	ts.tv_sec = tod_to_utc(tod);
189 	ts.tv_nsec = 0;
190 	return (ts);
191 }
192 
193 /*
194  * Once every second, the user-accessible clock/calendar
195  * locations are updated simultaneously from the internal
196  * real-time counters. To prevent reading data in transition,
197  * updates to the bq4802 clock registers should be halted.
198  * Updating is halted by setting the Update Transfer Inhibit
199  * (UTI) bit D3 of the control register E. As long as the
200  * UTI bit is 1, updates to user-accessible clock locations are
201  * inhibited. Once the frozen clock information is retrieved by
202  * reading the appropriate clock memory locations, the UTI
203  * bit should be reset to 0 in order to allow updates to occur
204  * from the internal counters. Because the internal counters
205  * are not halted by setting the UTI bit, reading the clock
206  * locations has no effect on clock accuracy. Once the UTI bit
207  * is reset to 0, the internal registers update within one
208  * second the user-accessible registers with the correct time.
209  * A halt command issued during a clock update allows the
210  * update to occur before freezing the data.
211  */
212 static void
213 read_rtc(struct rtc_t *rtc)
214 {
215 	uint8_t	reg_cntrl;
216 
217 	/*
218 	 * Freeze
219 	 */
220 	reg_cntrl = BQ4802_DATA_REG(RTC_CNTRL);
221 	BQ4802_DATA_REG(RTC_CNTRL) = (reg_cntrl | RTC_UTI);
222 
223 	rtc->rtc_sec = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_SEC));
224 	rtc->rtc_asec = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_ASEC));
225 	rtc->rtc_min = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_MIN));
226 	rtc->rtc_amin = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_AMIN));
227 	rtc->rtc_hrs = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_HRS));
228 	rtc->rtc_ahrs = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_AHRS));
229 	rtc->rtc_dom = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_DOM));
230 	rtc->rtc_adom = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_ADOM));
231 	rtc->rtc_dow = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_DOW));
232 	rtc->rtc_mon = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_MON));
233 	rtc->rtc_year = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_YEAR));
234 	rtc->rtc_century = BCD_TO_BYTE(BQ4802_DATA_REG(RTC_CENTURY));
235 
236 	/*
237 	 * Unfreeze
238 	 */
239 	BQ4802_DATA_REG(RTC_CNTRL) = reg_cntrl;
240 }
241 
242 /*
243  * Write the specified time into the clock chip.
244  * Must be called with tod_lock held.
245  */
246 static void
247 todbq4802_set(timestruc_t ts)
248 {
249 	struct rtc_t	rtc;
250 	todinfo_t tod = utc_to_tod(ts.tv_sec);
251 	int year;
252 
253 	ASSERT(MUTEX_HELD(&tod_lock));
254 
255 	/* tod_year is base 1900 so this code needs to adjust */
256 	year = 1900 + tod.tod_year;
257 	rtc.rtc_year	= year % 100;
258 	rtc.rtc_century = year / 100;
259 	rtc.rtc_mon	= (uint8_t)tod.tod_month;
260 	rtc.rtc_dom	= (uint8_t)tod.tod_day;
261 	rtc.rtc_dow	= (uint8_t)tod.tod_dow;
262 	rtc.rtc_hrs	= (uint8_t)tod.tod_hour;
263 	rtc.rtc_min	= (uint8_t)tod.tod_min;
264 	rtc.rtc_sec	= (uint8_t)tod.tod_sec;
265 	DPRINTF("todbq4802_set: year=%d dom=%d hrs=%d min=%d sec=%d\n",
266 	    rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs, rtc.rtc_min, rtc.rtc_sec);
267 
268 	write_rtc_time(&rtc);
269 }
270 
271 /*
272  * The UTI bit must be used to set the bq4802 clock.
273  * Once set, the locations can be written with the desired
274  * information in BCD format. Resetting the UTI bit to 0 causes
275  * the written values to be transferred to the internal clock
276  * counters and allows updates to the user-accessible registers
277  * to resume within one second.
278  */
279 void
280 write_rtc_time(struct rtc_t *rtc)
281 {
282 	uint8_t	reg_cntrl;
283 
284 	/*
285 	 * Freeze
286 	 */
287 	reg_cntrl = BQ4802_DATA_REG(RTC_CNTRL);
288 	BQ4802_DATA_REG(RTC_CNTRL) = (reg_cntrl | RTC_UTI);
289 
290 	BQ4802_DATA_REG(RTC_SEC) = BYTE_TO_BCD(rtc->rtc_sec);
291 	BQ4802_DATA_REG(RTC_MIN) = BYTE_TO_BCD(rtc->rtc_min);
292 	BQ4802_DATA_REG(RTC_HRS) = BYTE_TO_BCD(rtc->rtc_hrs);
293 	BQ4802_DATA_REG(RTC_DOM) = BYTE_TO_BCD(rtc->rtc_dom);
294 	BQ4802_DATA_REG(RTC_DOW) = BYTE_TO_BCD(rtc->rtc_dow);
295 	BQ4802_DATA_REG(RTC_MON) = BYTE_TO_BCD(rtc->rtc_mon);
296 	BQ4802_DATA_REG(RTC_YEAR) = BYTE_TO_BCD(rtc->rtc_year);
297 	BQ4802_DATA_REG(RTC_CENTURY) = BYTE_TO_BCD(rtc->rtc_century);
298 
299 	/*
300 	 * Unfreeze
301 	 */
302 	BQ4802_DATA_REG(RTC_CNTRL) = reg_cntrl;
303 }
304 
305 void
306 write_rtc_alarm(struct rtc_t *rtc)
307 {
308 	BQ4802_DATA_REG(RTC_ASEC) = BYTE_TO_BCD(rtc->rtc_asec);
309 	BQ4802_DATA_REG(RTC_AMIN) = BYTE_TO_BCD(rtc->rtc_amin);
310 	BQ4802_DATA_REG(RTC_AHRS) = BYTE_TO_BCD(rtc->rtc_ahrs);
311 	BQ4802_DATA_REG(RTC_ADOM) = BYTE_TO_BCD(rtc->rtc_adom);
312 }
313 
314 /*
315  * program the rtc registers for alarm to go off at the specified time
316  */
317 static void
318 todbq4802_set_power_alarm(timestruc_t ts)
319 {
320 	todinfo_t	tod;
321 	uint8_t		regc;
322 	struct rtc_t	rtc;
323 
324 	ASSERT(MUTEX_HELD(&tod_lock));
325 	tod = utc_to_tod(ts.tv_sec);
326 
327 	/*
328 	 * disable alarms and clear AF flag by reading reg Flags (D)
329 	 */
330 	regc = BQ4802_DATA_REG(RTC_ENABLES);
331 	BQ4802_DATA_REG(RTC_ENABLES) = regc & ~(RTC_AIE | RTC_ABE);
332 	(void) BQ4802_DATA_REG(RTC_FLAGS);
333 
334 	rtc.rtc_asec = (uint8_t)tod.tod_sec;
335 	rtc.rtc_amin = (uint8_t)tod.tod_min;
336 	rtc.rtc_ahrs = (uint8_t)tod.tod_hour;
337 	rtc.rtc_adom = (uint8_t)tod.tod_day;
338 	DPRINTF("todbq4802_set_alarm: dom=%d hrs=%d min=%d sec=%d\n",
339 	    rtc.rtc_adom, rtc.rtc_ahrs, rtc.rtc_amin, rtc.rtc_asec);
340 
341 	/*
342 	 * Write alarm values and enable alarm
343 	 */
344 	write_rtc_alarm(&rtc);
345 
346 	BQ4802_DATA_REG(RTC_ENABLES) = regc | RTC_AIE | RTC_ABE;
347 }
348 
349 /*
350  * clear alarm interrupt
351  */
352 static void
353 todbq4802_clear_power_alarm(void)
354 {
355 	uint8_t regc;
356 
357 	ASSERT(MUTEX_HELD(&tod_lock));
358 
359 	regc = BQ4802_DATA_REG(RTC_ENABLES);
360 	BQ4802_DATA_REG(RTC_ENABLES) = regc & ~(RTC_AIE | RTC_ABE);
361 }
362 
363 /*
364  * Determine the cpu frequency by watching the TOD chip rollover twice.
365  * Cpu clock rate is determined by computing the ticks added (in tick register)
366  * during one second interval on TOD.
367  */
368 uint64_t
369 todbq4802_get_cpufrequency(void)
370 {
371 	ASSERT(MUTEX_HELD(&tod_lock));
372 	return (find_cpufrequency((volatile uint8_t *)v_rtc_addr_reg));
373 }
374 
375 /*ARGSUSED*/
376 static uint_t
377 todbq4802_set_watchdog_timer(uint_t timeoutval)
378 {
379 	ASSERT(MUTEX_HELD(&tod_lock));
380 	return (0);
381 }
382 
383 static uint_t
384 todbq4802_clear_watchdog_timer(void)
385 {
386 	ASSERT(MUTEX_HELD(&tod_lock));
387 	return (0);
388 }
389